1 /* crypto/sha/sha512.c */
2 /* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
10 * IMPLEMENTATION NOTES.
12 * As you might have noticed 32-bit hash algorithms:
14 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15 * - optimized versions implement two transform functions: one operating
16 * on [aligned] data in host byte order and one - on data in input
18 * - share common byte-order neutral collector and padding function
19 * implementations, ../md32_common.h;
21 * Neither of the above applies to this SHA-512 implementations. Reasons
22 * [in reverse order] are:
24 * - it's the only 64-bit hash algorithm for the moment of this writing,
25 * there is no need for common collector/padding implementation [yet];
26 * - by supporting only one transform function [which operates on
27 * *aligned* data in input stream byte order, big-endian in this case]
28 * we minimize burden of maintenance in two ways: a) collector/padding
29 * function is simpler; b) only one transform function to stare at;
30 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31 * apply a number of optimizations to mitigate potential performance
32 * penalties caused by previous design decision;
36 * Implementation relies on the fact that "long long" is 64-bit on
37 * both 32- and 64-bit platforms. If some compiler vendor comes up
38 * with 128-bit long long, adjustment to sha.h would be required.
39 * As this implementation relies on 64-bit integer type, it's totally
40 * inappropriate for platforms which don't support it, most notably
42 * <appro@fy.chalmers.se>
47 # include <openssl/crypto.h>
48 # include <openssl/sha.h>
49 # include <openssl/opensslv.h>
51 # include "cryptlib.h"
53 const char SHA512_version
[] = "SHA-512" OPENSSL_VERSION_PTEXT
;
55 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57 defined(__s390__) || defined(__s390x__) || \
58 defined(__aarch64__) || \
60 # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
63 fips_md_init_ctx(SHA384
, SHA512
)
65 c
->h
[0] = U64(0xcbbb9d5dc1059ed8);
66 c
->h
[1] = U64(0x629a292a367cd507);
67 c
->h
[2] = U64(0x9159015a3070dd17);
68 c
->h
[3] = U64(0x152fecd8f70e5939);
69 c
->h
[4] = U64(0x67332667ffc00b31);
70 c
->h
[5] = U64(0x8eb44a8768581511);
71 c
->h
[6] = U64(0xdb0c2e0d64f98fa7);
72 c
->h
[7] = U64(0x47b5481dbefa4fa4);
77 c
->md_len
= SHA384_DIGEST_LENGTH
;
83 c
->h
[0] = U64(0x6a09e667f3bcc908);
84 c
->h
[1] = U64(0xbb67ae8584caa73b);
85 c
->h
[2] = U64(0x3c6ef372fe94f82b);
86 c
->h
[3] = U64(0xa54ff53a5f1d36f1);
87 c
->h
[4] = U64(0x510e527fade682d1);
88 c
->h
[5] = U64(0x9b05688c2b3e6c1f);
89 c
->h
[6] = U64(0x1f83d9abfb41bd6b);
90 c
->h
[7] = U64(0x5be0cd19137e2179);
95 c
->md_len
= SHA512_DIGEST_LENGTH
;
102 void sha512_block_data_order(SHA512_CTX
*ctx
, const void *in
, size_t num
);
104 int SHA512_Final(unsigned char *md
, SHA512_CTX
*c
)
106 unsigned char *p
= (unsigned char *)c
->u
.p
;
109 p
[n
] = 0x80; /* There always is a room for one */
111 if (n
> (sizeof(c
->u
) - 16))
112 memset(p
+ n
, 0, sizeof(c
->u
) - n
), n
= 0,
113 sha512_block_data_order(c
, p
, 1);
115 memset(p
+ n
, 0, sizeof(c
->u
) - 16 - n
);
117 c
->u
.d
[SHA_LBLOCK
- 2] = c
->Nh
;
118 c
->u
.d
[SHA_LBLOCK
- 1] = c
->Nl
;
120 p
[sizeof(c
->u
) - 1] = (unsigned char)(c
->Nl
);
121 p
[sizeof(c
->u
) - 2] = (unsigned char)(c
->Nl
>> 8);
122 p
[sizeof(c
->u
) - 3] = (unsigned char)(c
->Nl
>> 16);
123 p
[sizeof(c
->u
) - 4] = (unsigned char)(c
->Nl
>> 24);
124 p
[sizeof(c
->u
) - 5] = (unsigned char)(c
->Nl
>> 32);
125 p
[sizeof(c
->u
) - 6] = (unsigned char)(c
->Nl
>> 40);
126 p
[sizeof(c
->u
) - 7] = (unsigned char)(c
->Nl
>> 48);
127 p
[sizeof(c
->u
) - 8] = (unsigned char)(c
->Nl
>> 56);
128 p
[sizeof(c
->u
) - 9] = (unsigned char)(c
->Nh
);
129 p
[sizeof(c
->u
) - 10] = (unsigned char)(c
->Nh
>> 8);
130 p
[sizeof(c
->u
) - 11] = (unsigned char)(c
->Nh
>> 16);
131 p
[sizeof(c
->u
) - 12] = (unsigned char)(c
->Nh
>> 24);
132 p
[sizeof(c
->u
) - 13] = (unsigned char)(c
->Nh
>> 32);
133 p
[sizeof(c
->u
) - 14] = (unsigned char)(c
->Nh
>> 40);
134 p
[sizeof(c
->u
) - 15] = (unsigned char)(c
->Nh
>> 48);
135 p
[sizeof(c
->u
) - 16] = (unsigned char)(c
->Nh
>> 56);
138 sha512_block_data_order(c
, p
, 1);
144 /* Let compiler decide if it's appropriate to unroll... */
145 case SHA384_DIGEST_LENGTH
:
146 for (n
= 0; n
< SHA384_DIGEST_LENGTH
/ 8; n
++) {
147 SHA_LONG64 t
= c
->h
[n
];
149 *(md
++) = (unsigned char)(t
>> 56);
150 *(md
++) = (unsigned char)(t
>> 48);
151 *(md
++) = (unsigned char)(t
>> 40);
152 *(md
++) = (unsigned char)(t
>> 32);
153 *(md
++) = (unsigned char)(t
>> 24);
154 *(md
++) = (unsigned char)(t
>> 16);
155 *(md
++) = (unsigned char)(t
>> 8);
156 *(md
++) = (unsigned char)(t
);
159 case SHA512_DIGEST_LENGTH
:
160 for (n
= 0; n
< SHA512_DIGEST_LENGTH
/ 8; n
++) {
161 SHA_LONG64 t
= c
->h
[n
];
163 *(md
++) = (unsigned char)(t
>> 56);
164 *(md
++) = (unsigned char)(t
>> 48);
165 *(md
++) = (unsigned char)(t
>> 40);
166 *(md
++) = (unsigned char)(t
>> 32);
167 *(md
++) = (unsigned char)(t
>> 24);
168 *(md
++) = (unsigned char)(t
>> 16);
169 *(md
++) = (unsigned char)(t
>> 8);
170 *(md
++) = (unsigned char)(t
);
173 /* ... as well as make sure md_len is not abused. */
181 int SHA384_Final(unsigned char *md
, SHA512_CTX
*c
)
183 return SHA512_Final(md
, c
);
186 int SHA512_Update(SHA512_CTX
*c
, const void *_data
, size_t len
)
189 unsigned char *p
= c
->u
.p
;
190 const unsigned char *data
= (const unsigned char *)_data
;
195 l
= (c
->Nl
+ (((SHA_LONG64
) len
) << 3)) & U64(0xffffffffffffffff);
198 if (sizeof(len
) >= 8)
199 c
->Nh
+= (((SHA_LONG64
) len
) >> 61);
203 size_t n
= sizeof(c
->u
) - c
->num
;
206 memcpy(p
+ c
->num
, data
, len
), c
->num
+= (unsigned int)len
;
209 memcpy(p
+ c
->num
, data
, n
), c
->num
= 0;
211 sha512_block_data_order(c
, p
, 1);
215 if (len
>= sizeof(c
->u
)) {
216 # ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
217 if ((size_t)data
% sizeof(c
->u
.d
[0]) != 0)
218 while (len
>= sizeof(c
->u
))
219 memcpy(p
, data
, sizeof(c
->u
)),
220 sha512_block_data_order(c
, p
, 1),
221 len
-= sizeof(c
->u
), data
+= sizeof(c
->u
);
224 sha512_block_data_order(c
, data
, len
/ sizeof(c
->u
)),
225 data
+= len
, len
%= sizeof(c
->u
), data
-= len
;
229 memcpy(p
, data
, len
), c
->num
= (int)len
;
234 int SHA384_Update(SHA512_CTX
*c
, const void *data
, size_t len
)
236 return SHA512_Update(c
, data
, len
);
239 void SHA512_Transform(SHA512_CTX
*c
, const unsigned char *data
)
241 # ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
242 if ((size_t)data
% sizeof(c
->u
.d
[0]) != 0)
243 memcpy(c
->u
.p
, data
, sizeof(c
->u
.p
)), data
= c
->u
.p
;
245 sha512_block_data_order(c
, data
, 1);
248 unsigned char *SHA384(const unsigned char *d
, size_t n
, unsigned char *md
)
251 static unsigned char m
[SHA384_DIGEST_LENGTH
];
256 SHA512_Update(&c
, d
, n
);
257 SHA512_Final(md
, &c
);
258 OPENSSL_cleanse(&c
, sizeof(c
));
262 unsigned char *SHA512(const unsigned char *d
, size_t n
, unsigned char *md
)
265 static unsigned char m
[SHA512_DIGEST_LENGTH
];
270 SHA512_Update(&c
, d
, n
);
271 SHA512_Final(md
, &c
);
272 OPENSSL_cleanse(&c
, sizeof(c
));
277 static const SHA_LONG64 K512
[80] = {
278 U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
279 U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
280 U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
281 U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
282 U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
283 U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
284 U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
285 U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
286 U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
287 U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
288 U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
289 U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
290 U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
291 U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
292 U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
293 U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
294 U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
295 U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
296 U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
297 U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
298 U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
299 U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
300 U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
301 U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
302 U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
303 U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
304 U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
305 U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
306 U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
307 U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
308 U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
309 U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
310 U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
311 U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
312 U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
313 U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
314 U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
315 U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
316 U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
317 U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
321 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
322 # if defined(__x86_64) || defined(__x86_64__)
323 # define ROTR(a,n) ({ SHA_LONG64 ret; \
328 # if !defined(B_ENDIAN)
329 # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
334 # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
335 # if defined(I386_ONLY)
336 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
337 unsigned int hi=p[0],lo=p[1]; \
338 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
339 "roll $16,%%eax; roll $16,%%edx; "\
340 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
341 : "=a"(lo),"=d"(hi) \
342 : "0"(lo),"1"(hi) : "cc"); \
343 ((SHA_LONG64)hi)<<32|lo; })
345 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
346 unsigned int hi=p[0],lo=p[1]; \
347 asm ("bswapl %0; bswapl %1;" \
348 : "=r"(lo),"=r"(hi) \
349 : "0"(lo),"1"(hi)); \
350 ((SHA_LONG64)hi)<<32|lo; })
352 # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
353 # define ROTR(a,n) ({ SHA_LONG64 ret; \
354 asm ("rotrdi %0,%1,%2" \
356 : "r"(a),"K"(n)); ret; })
357 # elif defined(__aarch64__)
358 # define ROTR(a,n) ({ SHA_LONG64 ret; \
359 asm ("ror %0,%1,%2" \
361 : "r"(a),"I"(n)); ret; })
362 # if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
363 __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
364 # define PULL64(x) ({ SHA_LONG64 ret; \
367 : "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
370 # elif defined(_MSC_VER)
371 # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
372 # pragma intrinsic(_rotr64)
373 # define ROTR(a,n) _rotr64((a),n)
375 # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
376 # if defined(I386_ONLY)
377 static SHA_LONG64 __fastcall
__pull64be(const void *x
)
379 _asm mov edx
,[ecx
+ 0]
380 _asm mov eax
,[ecx
+ 4]
383 _asm rol edx
, 16 _asm rol eax
, 16 _asm xchg dh
, dl _asm xchg ah
, al
}
385 static SHA_LONG64 __fastcall
__pull64be(const void *x
)
387 _asm mov edx
,[ecx
+ 0]
388 _asm mov eax
,[ecx
+ 4]
389 _asm bswap edx _asm bswap eax
}
391 # define PULL64(x) __pull64be(&(x))
393 # pragma inline_depth(0)
399 # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
400 # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
403 # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
405 # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
406 # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
407 # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
408 # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
409 # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
410 # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
411 # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
413 * This code should give better results on 32-bit CPU with less than
414 * ~24 registers, both size and performance wise...
415 */ static void sha512_block_data_order(SHA512_CTX
*ctx
, const void *in
,
418 const SHA_LONG64
*W
= in
;
420 SHA_LONG64 X
[9 + 80], *F
;
435 for (i
= 0; i
< 16; i
++, F
--) {
444 T
+= F
[7] + Sigma1(E
) + Ch(E
, F
[5], F
[6]) + K512
[i
];
446 A
= T
+ Sigma0(A
) + Maj(A
, F
[1], F
[2]);
449 for (; i
< 80; i
++, F
--) {
450 T
= sigma0(F
[8 + 16 - 1]);
451 T
+= sigma1(F
[8 + 16 - 14]);
452 T
+= F
[8 + 16] + F
[8 + 16 - 9];
457 T
+= F
[7] + Sigma1(E
) + Ch(E
, F
[5], F
[6]) + K512
[i
];
459 A
= T
+ Sigma0(A
) + Maj(A
, F
[1], F
[2]);
475 # elif defined(OPENSSL_SMALL_FOOTPRINT)
476 static void sha512_block_data_order(SHA512_CTX
*ctx
, const void *in
,
479 const SHA_LONG64
*W
= in
;
480 SHA_LONG64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
, T1
, T2
;
495 for (i
= 0; i
< 16; i
++) {
499 T1
= X
[i
] = PULL64(W
[i
]);
501 T1
+= h
+ Sigma1(e
) + Ch(e
, f
, g
) + K512
[i
];
502 T2
= Sigma0(a
) + Maj(a
, b
, c
);
513 for (; i
< 80; i
++) {
514 s0
= X
[(i
+ 1) & 0x0f];
516 s1
= X
[(i
+ 14) & 0x0f];
519 T1
= X
[i
& 0xf] += s0
+ s1
+ X
[(i
+ 9) & 0xf];
520 T1
+= h
+ Sigma1(e
) + Ch(e
, f
, g
) + K512
[i
];
521 T2
= Sigma0(a
) + Maj(a
, b
, c
);
546 # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
547 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
548 h = Sigma0(a) + Maj(a,b,c); \
549 d += T1; h += T1; } while (0)
550 # define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
551 s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
552 s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
553 T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
554 ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
555 static void sha512_block_data_order(SHA512_CTX
*ctx
, const void *in
,
558 const SHA_LONG64
*W
= in
;
559 SHA_LONG64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
, T1
;
576 ROUND_00_15(0, a
, b
, c
, d
, e
, f
, g
, h
);
578 ROUND_00_15(1, h
, a
, b
, c
, d
, e
, f
, g
);
580 ROUND_00_15(2, g
, h
, a
, b
, c
, d
, e
, f
);
582 ROUND_00_15(3, f
, g
, h
, a
, b
, c
, d
, e
);
584 ROUND_00_15(4, e
, f
, g
, h
, a
, b
, c
, d
);
586 ROUND_00_15(5, d
, e
, f
, g
, h
, a
, b
, c
);
588 ROUND_00_15(6, c
, d
, e
, f
, g
, h
, a
, b
);
590 ROUND_00_15(7, b
, c
, d
, e
, f
, g
, h
, a
);
592 ROUND_00_15(8, a
, b
, c
, d
, e
, f
, g
, h
);
594 ROUND_00_15(9, h
, a
, b
, c
, d
, e
, f
, g
);
596 ROUND_00_15(10, g
, h
, a
, b
, c
, d
, e
, f
);
598 ROUND_00_15(11, f
, g
, h
, a
, b
, c
, d
, e
);
600 ROUND_00_15(12, e
, f
, g
, h
, a
, b
, c
, d
);
602 ROUND_00_15(13, d
, e
, f
, g
, h
, a
, b
, c
);
604 ROUND_00_15(14, c
, d
, e
, f
, g
, h
, a
, b
);
606 ROUND_00_15(15, b
, c
, d
, e
, f
, g
, h
, a
);
608 T1
= X
[0] = PULL64(W
[0]);
609 ROUND_00_15(0, a
, b
, c
, d
, e
, f
, g
, h
);
610 T1
= X
[1] = PULL64(W
[1]);
611 ROUND_00_15(1, h
, a
, b
, c
, d
, e
, f
, g
);
612 T1
= X
[2] = PULL64(W
[2]);
613 ROUND_00_15(2, g
, h
, a
, b
, c
, d
, e
, f
);
614 T1
= X
[3] = PULL64(W
[3]);
615 ROUND_00_15(3, f
, g
, h
, a
, b
, c
, d
, e
);
616 T1
= X
[4] = PULL64(W
[4]);
617 ROUND_00_15(4, e
, f
, g
, h
, a
, b
, c
, d
);
618 T1
= X
[5] = PULL64(W
[5]);
619 ROUND_00_15(5, d
, e
, f
, g
, h
, a
, b
, c
);
620 T1
= X
[6] = PULL64(W
[6]);
621 ROUND_00_15(6, c
, d
, e
, f
, g
, h
, a
, b
);
622 T1
= X
[7] = PULL64(W
[7]);
623 ROUND_00_15(7, b
, c
, d
, e
, f
, g
, h
, a
);
624 T1
= X
[8] = PULL64(W
[8]);
625 ROUND_00_15(8, a
, b
, c
, d
, e
, f
, g
, h
);
626 T1
= X
[9] = PULL64(W
[9]);
627 ROUND_00_15(9, h
, a
, b
, c
, d
, e
, f
, g
);
628 T1
= X
[10] = PULL64(W
[10]);
629 ROUND_00_15(10, g
, h
, a
, b
, c
, d
, e
, f
);
630 T1
= X
[11] = PULL64(W
[11]);
631 ROUND_00_15(11, f
, g
, h
, a
, b
, c
, d
, e
);
632 T1
= X
[12] = PULL64(W
[12]);
633 ROUND_00_15(12, e
, f
, g
, h
, a
, b
, c
, d
);
634 T1
= X
[13] = PULL64(W
[13]);
635 ROUND_00_15(13, d
, e
, f
, g
, h
, a
, b
, c
);
636 T1
= X
[14] = PULL64(W
[14]);
637 ROUND_00_15(14, c
, d
, e
, f
, g
, h
, a
, b
);
638 T1
= X
[15] = PULL64(W
[15]);
639 ROUND_00_15(15, b
, c
, d
, e
, f
, g
, h
, a
);
642 for (i
= 16; i
< 80; i
+= 16) {
643 ROUND_16_80(i
, 0, a
, b
, c
, d
, e
, f
, g
, h
, X
);
644 ROUND_16_80(i
, 1, h
, a
, b
, c
, d
, e
, f
, g
, X
);
645 ROUND_16_80(i
, 2, g
, h
, a
, b
, c
, d
, e
, f
, X
);
646 ROUND_16_80(i
, 3, f
, g
, h
, a
, b
, c
, d
, e
, X
);
647 ROUND_16_80(i
, 4, e
, f
, g
, h
, a
, b
, c
, d
, X
);
648 ROUND_16_80(i
, 5, d
, e
, f
, g
, h
, a
, b
, c
, X
);
649 ROUND_16_80(i
, 6, c
, d
, e
, f
, g
, h
, a
, b
, X
);
650 ROUND_16_80(i
, 7, b
, c
, d
, e
, f
, g
, h
, a
, X
);
651 ROUND_16_80(i
, 8, a
, b
, c
, d
, e
, f
, g
, h
, X
);
652 ROUND_16_80(i
, 9, h
, a
, b
, c
, d
, e
, f
, g
, X
);
653 ROUND_16_80(i
, 10, g
, h
, a
, b
, c
, d
, e
, f
, X
);
654 ROUND_16_80(i
, 11, f
, g
, h
, a
, b
, c
, d
, e
, X
);
655 ROUND_16_80(i
, 12, e
, f
, g
, h
, a
, b
, c
, d
, X
);
656 ROUND_16_80(i
, 13, d
, e
, f
, g
, h
, a
, b
, c
, X
);
657 ROUND_16_80(i
, 14, c
, d
, e
, f
, g
, h
, a
, b
, X
);
658 ROUND_16_80(i
, 15, b
, c
, d
, e
, f
, g
, h
, a
, X
);
676 # endif /* SHA512_ASM */
678 #else /* !OPENSSL_NO_SHA512 */
680 # if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
681 static void *dummy
= &dummy
;
684 #endif /* !OPENSSL_NO_SHA512 */