busybox: update to 1.25.0
[tomato.git] / release / src / router / busybox / archival / gzip.c
blob8f1e4ff2961ebde9b6fe2605e4ee0b3d1a9eb526
1 /* vi: set sw=4 ts=4: */
2 /*
3 * Gzip implementation for busybox
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
18 /* big objects in bss:
19 * 00000020 b bl_count
20 * 00000074 b base_length
21 * 00000078 b base_dist
22 * 00000078 b static_dtree
23 * 0000009c b bl_tree
24 * 000000f4 b dyn_dtree
25 * 00000100 b length_code
26 * 00000200 b dist_code
27 * 0000023d b depth
28 * 00000400 b flag_buf
29 * 0000047a b heap
30 * 00000480 b static_ltree
31 * 000008f4 b dyn_ltree
33 /* TODO: full support for -v for DESKTOP
34 * "/usr/bin/gzip -v a bogus aa" should say:
35 a: 85.1% -- replaced with a.gz
36 gzip: bogus: No such file or directory
37 aa: 85.1% -- replaced with aa.gz
40 //config:config GZIP
41 //config: bool "gzip"
42 //config: default y
43 //config: help
44 //config: gzip is used to compress files.
45 //config: It's probably the most widely used UNIX compression program.
46 //config:
47 //config:config FEATURE_GZIP_LONG_OPTIONS
48 //config: bool "Enable long options"
49 //config: default y
50 //config: depends on GZIP && LONG_OPTS
51 //config: help
52 //config: Enable use of long options, increases size by about 106 Bytes
53 //config:
54 //config:config GZIP_FAST
55 //config: int "Trade memory for gzip speed (0:small,slow - 2:fast,big)"
56 //config: default 0
57 //config: range 0 2
58 //config: depends on GZIP
59 //config: help
60 //config: Enable big memory options for gzip.
61 //config: 0: small buffers, small hash-tables
62 //config: 1: larger buffers, larger hash-tables
63 //config: 2: larger buffers, largest hash-tables
64 //config: Larger models may give slightly better compression
65 //config:
66 //config:config FEATURE_GZIP_LEVELS
67 //config: bool "Enable compression levels"
68 //config: default n
69 //config: depends on GZIP
70 //config: help
71 //config: Enable support for compression levels 4-9. The default level
72 //config: is 6. If levels 1-3 are specified, 4 is used.
73 //config: If this option is not selected, -N options are ignored and -9
74 //config: is used.
76 //applet:IF_GZIP(APPLET(gzip, BB_DIR_BIN, BB_SUID_DROP))
77 //kbuild:lib-$(CONFIG_GZIP) += gzip.o
79 //usage:#define gzip_trivial_usage
80 //usage: "[-cf" IF_GUNZIP("d") IF_FEATURE_GZIP_LEVELS("123456789") "] [FILE]..."
81 //usage:#define gzip_full_usage "\n\n"
82 //usage: "Compress FILEs (or stdin)\n"
83 //usage: IF_FEATURE_GZIP_LEVELS(
84 //usage: "\n -1..9 Compression level"
85 //usage: )
86 //usage: IF_GUNZIP(
87 //usage: "\n -d Decompress"
88 //usage: )
89 //usage: "\n -c Write to stdout"
90 //usage: "\n -f Force"
91 //usage:
92 //usage:#define gzip_example_usage
93 //usage: "$ ls -la /tmp/busybox*\n"
94 //usage: "-rw-rw-r-- 1 andersen andersen 1761280 Apr 14 17:47 /tmp/busybox.tar\n"
95 //usage: "$ gzip /tmp/busybox.tar\n"
96 //usage: "$ ls -la /tmp/busybox*\n"
97 //usage: "-rw-rw-r-- 1 andersen andersen 554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
99 #include "libbb.h"
100 #include "bb_archive.h"
103 /* ===========================================================================
105 //#define DEBUG 1
106 /* Diagnostic functions */
107 #ifdef DEBUG
108 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
109 # define Trace(x) fprintf x
110 # define Tracev(x) {if (verbose) fprintf x; }
111 # define Tracevv(x) {if (verbose > 1) fprintf x; }
112 # define Tracec(c,x) {if (verbose && (c)) fprintf x; }
113 # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
114 #else
115 # define Assert(cond,msg)
116 # define Trace(x)
117 # define Tracev(x)
118 # define Tracevv(x)
119 # define Tracec(c,x)
120 # define Tracecv(c,x)
121 #endif
124 /* ===========================================================================
126 #if CONFIG_GZIP_FAST == 0
127 # define SMALL_MEM
128 #elif CONFIG_GZIP_FAST == 1
129 # define MEDIUM_MEM
130 #elif CONFIG_GZIP_FAST == 2
131 # define BIG_MEM
132 #else
133 # error "Invalid CONFIG_GZIP_FAST value"
134 #endif
136 #ifndef INBUFSIZ
137 # ifdef SMALL_MEM
138 # define INBUFSIZ 0x2000 /* input buffer size */
139 # else
140 # define INBUFSIZ 0x8000 /* input buffer size */
141 # endif
142 #endif
144 #ifndef OUTBUFSIZ
145 # ifdef SMALL_MEM
146 # define OUTBUFSIZ 8192 /* output buffer size */
147 # else
148 # define OUTBUFSIZ 16384 /* output buffer size */
149 # endif
150 #endif
152 #ifndef DIST_BUFSIZE
153 # ifdef SMALL_MEM
154 # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
155 # else
156 # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
157 # endif
158 #endif
160 /* gzip flag byte */
161 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
162 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
163 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
164 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
165 #define COMMENT 0x10 /* bit 4 set: file comment present */
166 #define RESERVED 0xC0 /* bit 6,7: reserved */
168 /* internal file attribute */
169 #define UNKNOWN 0xffff
170 #define BINARY 0
171 #define ASCII 1
173 #ifndef WSIZE
174 # define WSIZE 0x8000 /* window size--must be a power of two, and */
175 #endif /* at least 32K for zip's deflate method */
177 #define MIN_MATCH 3
178 #define MAX_MATCH 258
179 /* The minimum and maximum match lengths */
181 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
182 /* Minimum amount of lookahead, except at the end of the input file.
183 * See deflate.c for comments about the MIN_MATCH+1.
186 #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
187 /* In order to simplify the code, particularly on 16 bit machines, match
188 * distances are limited to MAX_DIST instead of WSIZE.
191 #ifndef MAX_PATH_LEN
192 # define MAX_PATH_LEN 1024 /* max pathname length */
193 #endif
195 #define seekable() 0 /* force sequential output */
196 #define translate_eol 0 /* no option -a yet */
198 #ifndef BITS
199 # define BITS 16
200 #endif
201 #define INIT_BITS 9 /* Initial number of bits per code */
203 #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
204 /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
205 * It's a pity that old uncompress does not check bit 0x20. That makes
206 * extension of the format actually undesirable because old compress
207 * would just crash on the new format instead of giving a meaningful
208 * error message. It does check the number of bits, but it's more
209 * helpful to say "unsupported format, get a new version" than
210 * "can only handle 16 bits".
213 #ifdef MAX_EXT_CHARS
214 # define MAX_SUFFIX MAX_EXT_CHARS
215 #else
216 # define MAX_SUFFIX 30
217 #endif
220 /* ===========================================================================
221 * Compile with MEDIUM_MEM to reduce the memory requirements or
222 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
223 * entire input file can be held in memory (not possible on 16 bit systems).
224 * Warning: defining these symbols affects HASH_BITS (see below) and thus
225 * affects the compression ratio. The compressed output
226 * is still correct, and might even be smaller in some cases.
229 #ifdef SMALL_MEM
230 # define HASH_BITS 13 /* Number of bits used to hash strings */
231 #endif
232 #ifdef MEDIUM_MEM
233 # define HASH_BITS 14
234 #endif
235 #ifndef HASH_BITS
236 # define HASH_BITS 15
237 /* For portability to 16 bit machines, do not use values above 15. */
238 #endif
240 #define HASH_SIZE (unsigned)(1<<HASH_BITS)
241 #define HASH_MASK (HASH_SIZE-1)
242 #define WMASK (WSIZE-1)
243 /* HASH_SIZE and WSIZE must be powers of two */
244 #ifndef TOO_FAR
245 # define TOO_FAR 4096
246 #endif
247 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
250 /* ===========================================================================
251 * These types are not really 'char', 'short' and 'long'
253 typedef uint8_t uch;
254 typedef uint16_t ush;
255 typedef uint32_t ulg;
256 typedef int32_t lng;
258 typedef ush Pos;
259 typedef unsigned IPos;
260 /* A Pos is an index in the character window. We use short instead of int to
261 * save space in the various tables. IPos is used only for parameter passing.
264 enum {
265 WINDOW_SIZE = 2 * WSIZE,
266 /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
267 * input file length plus MIN_LOOKAHEAD.
270 #ifndef ENABLE_FEATURE_GZIP_LEVELS
272 max_chain_length = 4096,
273 /* To speed up deflation, hash chains are never searched beyond this length.
274 * A higher limit improves compression ratio but degrades the speed.
277 max_lazy_match = 258,
278 /* Attempt to find a better match only when the current match is strictly
279 * smaller than this value. This mechanism is used only for compression
280 * levels >= 4.
283 max_insert_length = max_lazy_match,
284 /* Insert new strings in the hash table only if the match length
285 * is not greater than this length. This saves time but degrades compression.
286 * max_insert_length is used only for compression levels <= 3.
289 good_match = 32,
290 /* Use a faster search when the previous match is longer than this */
292 /* Values for max_lazy_match, good_match and max_chain_length, depending on
293 * the desired pack level (0..9). The values given below have been tuned to
294 * exclude worst case performance for pathological files. Better values may be
295 * found for specific files.
298 nice_match = 258, /* Stop searching when current match exceeds this */
299 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
300 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
301 * meaning.
303 #endif /* ENABLE_FEATURE_GZIP_LEVELS */
307 struct globals {
309 #ifdef ENABLE_FEATURE_GZIP_LEVELS
310 unsigned max_chain_length;
311 unsigned max_lazy_match;
312 unsigned good_match;
313 unsigned nice_match;
314 #define max_chain_length (G1.max_chain_length)
315 #define max_lazy_match (G1.max_lazy_match)
316 #define good_match (G1.good_match)
317 #define nice_match (G1.nice_match)
318 #endif
320 lng block_start;
322 /* window position at the beginning of the current output block. Gets
323 * negative when the window is moved backwards.
325 unsigned ins_h; /* hash index of string to be inserted */
327 #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
328 /* Number of bits by which ins_h and del_h must be shifted at each
329 * input step. It must be such that after MIN_MATCH steps, the oldest
330 * byte no longer takes part in the hash key, that is:
331 * H_SHIFT * MIN_MATCH >= HASH_BITS
334 unsigned prev_length;
336 /* Length of the best match at previous step. Matches not greater than this
337 * are discarded. This is used in the lazy match evaluation.
340 unsigned strstart; /* start of string to insert */
341 unsigned match_start; /* start of matching string */
342 unsigned lookahead; /* number of valid bytes ahead in window */
344 /* ===========================================================================
346 #define DECLARE(type, array, size) \
347 type * array
348 #define ALLOC(type, array, size) \
349 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
350 #define FREE(array) \
351 do { free(array); array = NULL; } while (0)
353 /* global buffers */
355 /* buffer for literals or lengths */
356 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
357 DECLARE(uch, l_buf, INBUFSIZ);
359 DECLARE(ush, d_buf, DIST_BUFSIZE);
360 DECLARE(uch, outbuf, OUTBUFSIZ);
362 /* Sliding window. Input bytes are read into the second half of the window,
363 * and move to the first half later to keep a dictionary of at least WSIZE
364 * bytes. With this organization, matches are limited to a distance of
365 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
366 * performed with a length multiple of the block size. Also, it limits
367 * the window size to 64K, which is quite useful on MSDOS.
368 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
369 * be less efficient).
371 DECLARE(uch, window, 2L * WSIZE);
373 /* Link to older string with same hash index. To limit the size of this
374 * array to 64K, this link is maintained only for the last 32K strings.
375 * An index in this array is thus a window index modulo 32K.
377 /* DECLARE(Pos, prev, WSIZE); */
378 DECLARE(ush, prev, 1L << BITS);
380 /* Heads of the hash chains or 0. */
381 /* DECLARE(Pos, head, 1<<HASH_BITS); */
382 #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
384 /* number of input bytes */
385 ulg isize; /* only 32 bits stored in .gz file */
387 /* bbox always use stdin/stdout */
388 #define ifd STDIN_FILENO /* input file descriptor */
389 #define ofd STDOUT_FILENO /* output file descriptor */
391 #ifdef DEBUG
392 unsigned insize; /* valid bytes in l_buf */
393 #endif
394 unsigned outcnt; /* bytes in output buffer */
396 smallint eofile; /* flag set at end of input file */
398 /* ===========================================================================
399 * Local data used by the "bit string" routines.
402 unsigned short bi_buf;
404 /* Output buffer. bits are inserted starting at the bottom (least significant
405 * bits).
408 #undef BUF_SIZE
409 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
410 /* Number of bits used within bi_buf. (bi_buf might be implemented on
411 * more than 16 bits on some systems.)
414 int bi_valid;
416 /* Current input function. Set to mem_read for in-memory compression */
418 #ifdef DEBUG
419 ulg bits_sent; /* bit length of the compressed data */
420 #endif
422 /*uint32_t *crc_32_tab;*/
423 uint32_t crc; /* shift register contents */
426 #define G1 (*(ptr_to_globals - 1))
429 /* ===========================================================================
430 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
431 * (used for the compressed data only)
433 static void flush_outbuf(void)
435 if (G1.outcnt == 0)
436 return;
438 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
439 G1.outcnt = 0;
443 /* ===========================================================================
445 /* put_8bit is used for the compressed output */
446 #define put_8bit(c) \
447 do { \
448 G1.outbuf[G1.outcnt++] = (c); \
449 if (G1.outcnt == OUTBUFSIZ) \
450 flush_outbuf(); \
451 } while (0)
453 /* Output a 16 bit value, lsb first */
454 static void put_16bit(ush w)
456 /* GCC 4.2.1 won't optimize out redundant loads of G1.outcnt
457 * (probably because of fear of aliasing with G1.outbuf[]
458 * stores), do it explicitly:
460 unsigned outcnt = G1.outcnt;
461 uch *dst = &G1.outbuf[outcnt];
463 #if BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN
464 if (outcnt < OUTBUFSIZ-2) {
465 /* Common case */
466 ush *dst16 = (void*) dst;
467 *dst16 = w; /* unalinged LSB 16-bit store */
468 G1.outcnt = outcnt + 2;
469 return;
471 *dst = (uch)w;
472 w >>= 8;
473 #else
474 *dst = (uch)w;
475 w >>= 8;
476 if (outcnt < OUTBUFSIZ-2) {
477 /* Common case */
478 dst[1] = w;
479 G1.outcnt = outcnt + 2;
480 return;
482 #endif
484 /* Slowpath: we will need to do flush_outbuf() */
485 G1.outcnt = ++outcnt;
486 if (outcnt == OUTBUFSIZ)
487 flush_outbuf();
488 put_8bit(w);
491 static void put_32bit(ulg n)
493 put_16bit(n);
494 put_16bit(n >> 16);
497 /* ===========================================================================
498 * Run a set of bytes through the crc shift register. If s is a NULL
499 * pointer, then initialize the crc shift register contents instead.
500 * Return the current crc in either case.
502 static void updcrc(uch * s, unsigned n)
504 G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
508 /* ===========================================================================
509 * Read a new buffer from the current input file, perform end-of-line
510 * translation, and update the crc and input file size.
511 * IN assertion: size >= 2 (for end-of-line translation)
513 static unsigned file_read(void *buf, unsigned size)
515 unsigned len;
517 Assert(G1.insize == 0, "l_buf not empty");
519 len = safe_read(ifd, buf, size);
520 if (len == (unsigned)(-1) || len == 0)
521 return len;
523 updcrc(buf, len);
524 G1.isize += len;
525 return len;
529 /* ===========================================================================
530 * Send a value on a given number of bits.
531 * IN assertion: length <= 16 and value fits in length bits.
533 static void send_bits(int value, int length)
535 #ifdef DEBUG
536 Tracev((stderr, " l %2d v %4x ", length, value));
537 Assert(length > 0 && length <= 15, "invalid length");
538 G1.bits_sent += length;
539 #endif
540 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
541 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
542 * unused bits in value.
544 if (G1.bi_valid > (int) BUF_SIZE - length) {
545 G1.bi_buf |= (value << G1.bi_valid);
546 put_16bit(G1.bi_buf);
547 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
548 G1.bi_valid += length - BUF_SIZE;
549 } else {
550 G1.bi_buf |= value << G1.bi_valid;
551 G1.bi_valid += length;
556 /* ===========================================================================
557 * Reverse the first len bits of a code, using straightforward code (a faster
558 * method would use a table)
559 * IN assertion: 1 <= len <= 15
561 static unsigned bi_reverse(unsigned code, int len)
563 unsigned res = 0;
565 while (1) {
566 res |= code & 1;
567 if (--len <= 0) return res;
568 code >>= 1;
569 res <<= 1;
574 /* ===========================================================================
575 * Write out any remaining bits in an incomplete byte.
577 static void bi_windup(void)
579 if (G1.bi_valid > 8) {
580 put_16bit(G1.bi_buf);
581 } else if (G1.bi_valid > 0) {
582 put_8bit(G1.bi_buf);
584 G1.bi_buf = 0;
585 G1.bi_valid = 0;
586 #ifdef DEBUG
587 G1.bits_sent = (G1.bits_sent + 7) & ~7;
588 #endif
592 /* ===========================================================================
593 * Copy a stored block to the zip file, storing first the length and its
594 * one's complement if requested.
596 static void copy_block(char *buf, unsigned len, int header)
598 bi_windup(); /* align on byte boundary */
600 if (header) {
601 put_16bit(len);
602 put_16bit(~len);
603 #ifdef DEBUG
604 G1.bits_sent += 2 * 16;
605 #endif
607 #ifdef DEBUG
608 G1.bits_sent += (ulg) len << 3;
609 #endif
610 while (len--) {
611 put_8bit(*buf++);
616 /* ===========================================================================
617 * Fill the window when the lookahead becomes insufficient.
618 * Updates strstart and lookahead, and sets eofile if end of input file.
619 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
620 * OUT assertions: at least one byte has been read, or eofile is set;
621 * file reads are performed for at least two bytes (required for the
622 * translate_eol option).
624 static void fill_window(void)
626 unsigned n, m;
627 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
628 /* Amount of free space at the end of the window. */
630 /* If the window is almost full and there is insufficient lookahead,
631 * move the upper half to the lower one to make room in the upper half.
633 if (more == (unsigned) -1) {
634 /* Very unlikely, but possible on 16 bit machine if strstart == 0
635 * and lookahead == 1 (input done one byte at time)
637 more--;
638 } else if (G1.strstart >= WSIZE + MAX_DIST) {
639 /* By the IN assertion, the window is not empty so we can't confuse
640 * more == 0 with more == 64K on a 16 bit machine.
642 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
644 memcpy(G1.window, G1.window + WSIZE, WSIZE);
645 G1.match_start -= WSIZE;
646 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
648 G1.block_start -= WSIZE;
650 for (n = 0; n < HASH_SIZE; n++) {
651 m = head[n];
652 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
654 for (n = 0; n < WSIZE; n++) {
655 m = G1.prev[n];
656 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
657 /* If n is not on any hash chain, prev[n] is garbage but
658 * its value will never be used.
661 more += WSIZE;
663 /* At this point, more >= 2 */
664 if (!G1.eofile) {
665 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
666 if (n == 0 || n == (unsigned) -1) {
667 G1.eofile = 1;
668 } else {
669 G1.lookahead += n;
675 /* ===========================================================================
676 * Set match_start to the longest match starting at the given string and
677 * return its length. Matches shorter or equal to prev_length are discarded,
678 * in which case the result is equal to prev_length and match_start is
679 * garbage.
680 * IN assertions: cur_match is the head of the hash chain for the current
681 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
684 /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
685 * match.s. The code is functionally equivalent, so you can use the C version
686 * if desired.
688 static int longest_match(IPos cur_match)
690 unsigned chain_length = max_chain_length; /* max hash chain length */
691 uch *scan = G1.window + G1.strstart; /* current string */
692 uch *match; /* matched string */
693 int len; /* length of current match */
694 int best_len = G1.prev_length; /* best match length so far */
695 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
696 /* Stop when cur_match becomes <= limit. To simplify the code,
697 * we prevent matches with the string of window index 0.
700 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
701 * It is easy to get rid of this optimization if necessary.
703 #if HASH_BITS < 8 || MAX_MATCH != 258
704 # error Code too clever
705 #endif
706 uch *strend = G1.window + G1.strstart + MAX_MATCH;
707 uch scan_end1 = scan[best_len - 1];
708 uch scan_end = scan[best_len];
710 /* Do not waste too much time if we already have a good match: */
711 if (G1.prev_length >= good_match) {
712 chain_length >>= 2;
714 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
716 do {
717 Assert(cur_match < G1.strstart, "no future");
718 match = G1.window + cur_match;
720 /* Skip to next match if the match length cannot increase
721 * or if the match length is less than 2:
723 if (match[best_len] != scan_end
724 || match[best_len - 1] != scan_end1
725 || *match != *scan || *++match != scan[1]
727 continue;
730 /* The check at best_len-1 can be removed because it will be made
731 * again later. (This heuristic is not always a win.)
732 * It is not necessary to compare scan[2] and match[2] since they
733 * are always equal when the other bytes match, given that
734 * the hash keys are equal and that HASH_BITS >= 8.
736 scan += 2, match++;
738 /* We check for insufficient lookahead only every 8th comparison;
739 * the 256th check will be made at strstart+258.
741 do {
742 } while (*++scan == *++match && *++scan == *++match &&
743 *++scan == *++match && *++scan == *++match &&
744 *++scan == *++match && *++scan == *++match &&
745 *++scan == *++match && *++scan == *++match && scan < strend);
747 len = MAX_MATCH - (int) (strend - scan);
748 scan = strend - MAX_MATCH;
750 if (len > best_len) {
751 G1.match_start = cur_match;
752 best_len = len;
753 if (len >= nice_match)
754 break;
755 scan_end1 = scan[best_len - 1];
756 scan_end = scan[best_len];
758 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
759 && --chain_length != 0);
761 return best_len;
765 #ifdef DEBUG
766 /* ===========================================================================
767 * Check that the match at match_start is indeed a match.
769 static void check_match(IPos start, IPos match, int length)
771 /* check that the match is indeed a match */
772 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
773 bb_error_msg(" start %d, match %d, length %d", start, match, length);
774 bb_error_msg("invalid match");
776 if (verbose > 1) {
777 bb_error_msg("\\[%d,%d]", start - match, length);
778 do {
779 bb_putchar_stderr(G1.window[start++]);
780 } while (--length != 0);
783 #else
784 # define check_match(start, match, length) ((void)0)
785 #endif
788 /* trees.c -- output deflated data using Huffman coding
789 * Copyright (C) 1992-1993 Jean-loup Gailly
790 * This is free software; you can redistribute it and/or modify it under the
791 * terms of the GNU General Public License, see the file COPYING.
794 /* PURPOSE
795 * Encode various sets of source values using variable-length
796 * binary code trees.
798 * DISCUSSION
799 * The PKZIP "deflation" process uses several Huffman trees. The more
800 * common source values are represented by shorter bit sequences.
802 * Each code tree is stored in the ZIP file in a compressed form
803 * which is itself a Huffman encoding of the lengths of
804 * all the code strings (in ascending order by source values).
805 * The actual code strings are reconstructed from the lengths in
806 * the UNZIP process, as described in the "application note"
807 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
809 * REFERENCES
810 * Lynch, Thomas J.
811 * Data Compression: Techniques and Applications, pp. 53-55.
812 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
814 * Storer, James A.
815 * Data Compression: Methods and Theory, pp. 49-50.
816 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
818 * Sedgewick, R.
819 * Algorithms, p290.
820 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
822 * INTERFACE
823 * void ct_init()
824 * Allocate the match buffer, initialize the various tables [and save
825 * the location of the internal file attribute (ascii/binary) and
826 * method (DEFLATE/STORE) -- deleted in bbox]
828 * void ct_tally(int dist, int lc);
829 * Save the match info and tally the frequency counts.
831 * ulg flush_block(char *buf, ulg stored_len, int eof)
832 * Determine the best encoding for the current block: dynamic trees,
833 * static trees or store, and output the encoded block to the zip
834 * file. Returns the total compressed length for the file so far.
837 #define MAX_BITS 15
838 /* All codes must not exceed MAX_BITS bits */
840 #define MAX_BL_BITS 7
841 /* Bit length codes must not exceed MAX_BL_BITS bits */
843 #define LENGTH_CODES 29
844 /* number of length codes, not counting the special END_BLOCK code */
846 #define LITERALS 256
847 /* number of literal bytes 0..255 */
849 #define END_BLOCK 256
850 /* end of block literal code */
852 #define L_CODES (LITERALS+1+LENGTH_CODES)
853 /* number of Literal or Length codes, including the END_BLOCK code */
855 #define D_CODES 30
856 /* number of distance codes */
858 #define BL_CODES 19
859 /* number of codes used to transfer the bit lengths */
861 /* extra bits for each length code */
862 static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
863 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
864 4, 4, 5, 5, 5, 5, 0
867 /* extra bits for each distance code */
868 static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
869 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
870 10, 10, 11, 11, 12, 12, 13, 13
873 /* extra bits for each bit length code */
874 static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
875 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
877 /* number of codes at each bit length for an optimal tree */
878 static const uint8_t bl_order[BL_CODES] ALIGN1 = {
879 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
881 #define STORED_BLOCK 0
882 #define STATIC_TREES 1
883 #define DYN_TREES 2
884 /* The three kinds of block type */
886 #ifndef LIT_BUFSIZE
887 # ifdef SMALL_MEM
888 # define LIT_BUFSIZE 0x2000
889 # else
890 # ifdef MEDIUM_MEM
891 # define LIT_BUFSIZE 0x4000
892 # else
893 # define LIT_BUFSIZE 0x8000
894 # endif
895 # endif
896 #endif
897 #ifndef DIST_BUFSIZE
898 # define DIST_BUFSIZE LIT_BUFSIZE
899 #endif
900 /* Sizes of match buffers for literals/lengths and distances. There are
901 * 4 reasons for limiting LIT_BUFSIZE to 64K:
902 * - frequencies can be kept in 16 bit counters
903 * - if compression is not successful for the first block, all input data is
904 * still in the window so we can still emit a stored block even when input
905 * comes from standard input. (This can also be done for all blocks if
906 * LIT_BUFSIZE is not greater than 32K.)
907 * - if compression is not successful for a file smaller than 64K, we can
908 * even emit a stored file instead of a stored block (saving 5 bytes).
909 * - creating new Huffman trees less frequently may not provide fast
910 * adaptation to changes in the input data statistics. (Take for
911 * example a binary file with poorly compressible code followed by
912 * a highly compressible string table.) Smaller buffer sizes give
913 * fast adaptation but have of course the overhead of transmitting trees
914 * more frequently.
915 * - I can't count above 4
916 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
917 * memory at the expense of compression). Some optimizations would be possible
918 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
920 #define REP_3_6 16
921 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
922 #define REPZ_3_10 17
923 /* repeat a zero length 3-10 times (3 bits of repeat count) */
924 #define REPZ_11_138 18
925 /* repeat a zero length 11-138 times (7 bits of repeat count) */
927 /* ===========================================================================
929 /* Data structure describing a single value and its code string. */
930 typedef struct ct_data {
931 union {
932 ush freq; /* frequency count */
933 ush code; /* bit string */
934 } fc;
935 union {
936 ush dad; /* father node in Huffman tree */
937 ush len; /* length of bit string */
938 } dl;
939 } ct_data;
941 #define Freq fc.freq
942 #define Code fc.code
943 #define Dad dl.dad
944 #define Len dl.len
946 #define HEAP_SIZE (2*L_CODES + 1)
947 /* maximum heap size */
949 typedef struct tree_desc {
950 ct_data *dyn_tree; /* the dynamic tree */
951 ct_data *static_tree; /* corresponding static tree or NULL */
952 const uint8_t *extra_bits; /* extra bits for each code or NULL */
953 int extra_base; /* base index for extra_bits */
954 int elems; /* max number of elements in the tree */
955 int max_length; /* max bit length for the codes */
956 int max_code; /* largest code with non zero frequency */
957 } tree_desc;
959 struct globals2 {
961 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
962 int heap_len; /* number of elements in the heap */
963 int heap_max; /* element of largest frequency */
965 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
966 * The same heap array is used to build all trees.
969 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
970 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
972 ct_data static_ltree[L_CODES + 2];
974 /* The static literal tree. Since the bit lengths are imposed, there is no
975 * need for the L_CODES extra codes used during heap construction. However
976 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
977 * below).
980 ct_data static_dtree[D_CODES];
982 /* The static distance tree. (Actually a trivial tree since all codes use
983 * 5 bits.)
986 ct_data bl_tree[2 * BL_CODES + 1];
988 /* Huffman tree for the bit lengths */
990 tree_desc l_desc;
991 tree_desc d_desc;
992 tree_desc bl_desc;
994 ush bl_count[MAX_BITS + 1];
996 /* The lengths of the bit length codes are sent in order of decreasing
997 * probability, to avoid transmitting the lengths for unused bit length codes.
1000 uch depth[2 * L_CODES + 1];
1002 /* Depth of each subtree used as tie breaker for trees of equal frequency */
1004 uch length_code[MAX_MATCH - MIN_MATCH + 1];
1006 /* length code for each normalized match length (0 == MIN_MATCH) */
1008 uch dist_code[512];
1010 /* distance codes. The first 256 values correspond to the distances
1011 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1012 * the 15 bit distances.
1015 int base_length[LENGTH_CODES];
1017 /* First normalized length for each code (0 = MIN_MATCH) */
1019 int base_dist[D_CODES];
1021 /* First normalized distance for each code (0 = distance of 1) */
1023 uch flag_buf[LIT_BUFSIZE / 8];
1025 /* flag_buf is a bit array distinguishing literals from lengths in
1026 * l_buf, thus indicating the presence or absence of a distance.
1029 unsigned last_lit; /* running index in l_buf */
1030 unsigned last_dist; /* running index in d_buf */
1031 unsigned last_flags; /* running index in flag_buf */
1032 uch flags; /* current flags not yet saved in flag_buf */
1033 uch flag_bit; /* current bit used in flags */
1035 /* bits are filled in flags starting at bit 0 (least significant).
1036 * Note: these flags are overkill in the current code since we don't
1037 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
1040 ulg opt_len; /* bit length of current block with optimal trees */
1041 ulg static_len; /* bit length of current block with static trees */
1043 ulg compressed_len; /* total bit length of compressed file */
1046 #define G2ptr ((struct globals2*)(ptr_to_globals))
1047 #define G2 (*G2ptr)
1050 /* ===========================================================================
1052 static void gen_codes(ct_data * tree, int max_code);
1053 static void build_tree(tree_desc * desc);
1054 static void scan_tree(ct_data * tree, int max_code);
1055 static void send_tree(ct_data * tree, int max_code);
1056 static int build_bl_tree(void);
1057 static void send_all_trees(int lcodes, int dcodes, int blcodes);
1058 static void compress_block(ct_data * ltree, ct_data * dtree);
1061 #ifndef DEBUG
1062 /* Send a code of the given tree. c and tree must not have side effects */
1063 # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1064 #else
1065 # define SEND_CODE(c, tree) \
1067 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
1068 send_bits(tree[c].Code, tree[c].Len); \
1070 #endif
1072 #define D_CODE(dist) \
1073 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
1074 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1075 * must not have side effects. dist_code[256] and dist_code[257] are never
1076 * used.
1077 * The arguments must not have side effects.
1081 /* ===========================================================================
1082 * Initialize a new block.
1084 static void init_block(void)
1086 int n; /* iterates over tree elements */
1088 /* Initialize the trees. */
1089 for (n = 0; n < L_CODES; n++)
1090 G2.dyn_ltree[n].Freq = 0;
1091 for (n = 0; n < D_CODES; n++)
1092 G2.dyn_dtree[n].Freq = 0;
1093 for (n = 0; n < BL_CODES; n++)
1094 G2.bl_tree[n].Freq = 0;
1096 G2.dyn_ltree[END_BLOCK].Freq = 1;
1097 G2.opt_len = G2.static_len = 0;
1098 G2.last_lit = G2.last_dist = G2.last_flags = 0;
1099 G2.flags = 0;
1100 G2.flag_bit = 1;
1104 /* ===========================================================================
1105 * Restore the heap property by moving down the tree starting at node k,
1106 * exchanging a node with the smallest of its two sons if necessary, stopping
1107 * when the heap property is re-established (each father smaller than its
1108 * two sons).
1111 /* Compares to subtrees, using the tree depth as tie breaker when
1112 * the subtrees have equal frequency. This minimizes the worst case length. */
1113 #define SMALLER(tree, n, m) \
1114 (tree[n].Freq < tree[m].Freq \
1115 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1117 static void pqdownheap(ct_data * tree, int k)
1119 int v = G2.heap[k];
1120 int j = k << 1; /* left son of k */
1122 while (j <= G2.heap_len) {
1123 /* Set j to the smallest of the two sons: */
1124 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1125 j++;
1127 /* Exit if v is smaller than both sons */
1128 if (SMALLER(tree, v, G2.heap[j]))
1129 break;
1131 /* Exchange v with the smallest son */
1132 G2.heap[k] = G2.heap[j];
1133 k = j;
1135 /* And continue down the tree, setting j to the left son of k */
1136 j <<= 1;
1138 G2.heap[k] = v;
1142 /* ===========================================================================
1143 * Compute the optimal bit lengths for a tree and update the total bit length
1144 * for the current block.
1145 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1146 * above are the tree nodes sorted by increasing frequency.
1147 * OUT assertions: the field len is set to the optimal bit length, the
1148 * array bl_count contains the frequencies for each bit length.
1149 * The length opt_len is updated; static_len is also updated if stree is
1150 * not null.
1152 static void gen_bitlen(tree_desc * desc)
1154 ct_data *tree = desc->dyn_tree;
1155 const uint8_t *extra = desc->extra_bits;
1156 int base = desc->extra_base;
1157 int max_code = desc->max_code;
1158 int max_length = desc->max_length;
1159 ct_data *stree = desc->static_tree;
1160 int h; /* heap index */
1161 int n, m; /* iterate over the tree elements */
1162 int bits; /* bit length */
1163 int xbits; /* extra bits */
1164 ush f; /* frequency */
1165 int overflow = 0; /* number of elements with bit length too large */
1167 for (bits = 0; bits <= MAX_BITS; bits++)
1168 G2.bl_count[bits] = 0;
1170 /* In a first pass, compute the optimal bit lengths (which may
1171 * overflow in the case of the bit length tree).
1173 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1175 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1176 n = G2.heap[h];
1177 bits = tree[tree[n].Dad].Len + 1;
1178 if (bits > max_length) {
1179 bits = max_length;
1180 overflow++;
1182 tree[n].Len = (ush) bits;
1183 /* We overwrite tree[n].Dad which is no longer needed */
1185 if (n > max_code)
1186 continue; /* not a leaf node */
1188 G2.bl_count[bits]++;
1189 xbits = 0;
1190 if (n >= base)
1191 xbits = extra[n - base];
1192 f = tree[n].Freq;
1193 G2.opt_len += (ulg) f *(bits + xbits);
1195 if (stree)
1196 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1198 if (overflow == 0)
1199 return;
1201 Trace((stderr, "\nbit length overflow\n"));
1202 /* This happens for example on obj2 and pic of the Calgary corpus */
1204 /* Find the first bit length which could increase: */
1205 do {
1206 bits = max_length - 1;
1207 while (G2.bl_count[bits] == 0)
1208 bits--;
1209 G2.bl_count[bits]--; /* move one leaf down the tree */
1210 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1211 G2.bl_count[max_length]--;
1212 /* The brother of the overflow item also moves one step up,
1213 * but this does not affect bl_count[max_length]
1215 overflow -= 2;
1216 } while (overflow > 0);
1218 /* Now recompute all bit lengths, scanning in increasing frequency.
1219 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1220 * lengths instead of fixing only the wrong ones. This idea is taken
1221 * from 'ar' written by Haruhiko Okumura.)
1223 for (bits = max_length; bits != 0; bits--) {
1224 n = G2.bl_count[bits];
1225 while (n != 0) {
1226 m = G2.heap[--h];
1227 if (m > max_code)
1228 continue;
1229 if (tree[m].Len != (unsigned) bits) {
1230 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1231 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1232 tree[m].Len = bits;
1234 n--;
1240 /* ===========================================================================
1241 * Generate the codes for a given tree and bit counts (which need not be
1242 * optimal).
1243 * IN assertion: the array bl_count contains the bit length statistics for
1244 * the given tree and the field len is set for all tree elements.
1245 * OUT assertion: the field code is set for all tree elements of non
1246 * zero code length.
1248 static void gen_codes(ct_data * tree, int max_code)
1250 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1251 ush code = 0; /* running code value */
1252 int bits; /* bit index */
1253 int n; /* code index */
1255 /* The distribution counts are first used to generate the code values
1256 * without bit reversal.
1258 for (bits = 1; bits <= MAX_BITS; bits++) {
1259 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1261 /* Check that the bit counts in bl_count are consistent. The last code
1262 * must be all ones.
1264 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1265 "inconsistent bit counts");
1266 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1268 for (n = 0; n <= max_code; n++) {
1269 int len = tree[n].Len;
1271 if (len == 0)
1272 continue;
1273 /* Now reverse the bits */
1274 tree[n].Code = bi_reverse(next_code[len]++, len);
1276 Tracec(tree != G2.static_ltree,
1277 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1278 (n > ' ' ? n : ' '), len, tree[n].Code,
1279 next_code[len] - 1));
1284 /* ===========================================================================
1285 * Construct one Huffman tree and assigns the code bit strings and lengths.
1286 * Update the total bit length for the current block.
1287 * IN assertion: the field freq is set for all tree elements.
1288 * OUT assertions: the fields len and code are set to the optimal bit length
1289 * and corresponding code. The length opt_len is updated; static_len is
1290 * also updated if stree is not null. The field max_code is set.
1293 /* Remove the smallest element from the heap and recreate the heap with
1294 * one less element. Updates heap and heap_len. */
1296 #define SMALLEST 1
1297 /* Index within the heap array of least frequent node in the Huffman tree */
1299 #define PQREMOVE(tree, top) \
1300 do { \
1301 top = G2.heap[SMALLEST]; \
1302 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1303 pqdownheap(tree, SMALLEST); \
1304 } while (0)
1306 static void build_tree(tree_desc * desc)
1308 ct_data *tree = desc->dyn_tree;
1309 ct_data *stree = desc->static_tree;
1310 int elems = desc->elems;
1311 int n, m; /* iterate over heap elements */
1312 int max_code = -1; /* largest code with non zero frequency */
1313 int node = elems; /* next internal node of the tree */
1315 /* Construct the initial heap, with least frequent element in
1316 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1317 * heap[0] is not used.
1319 G2.heap_len = 0;
1320 G2.heap_max = HEAP_SIZE;
1322 for (n = 0; n < elems; n++) {
1323 if (tree[n].Freq != 0) {
1324 G2.heap[++G2.heap_len] = max_code = n;
1325 G2.depth[n] = 0;
1326 } else {
1327 tree[n].Len = 0;
1331 /* The pkzip format requires that at least one distance code exists,
1332 * and that at least one bit should be sent even if there is only one
1333 * possible code. So to avoid special checks later on we force at least
1334 * two codes of non zero frequency.
1336 while (G2.heap_len < 2) {
1337 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1339 tree[new].Freq = 1;
1340 G2.depth[new] = 0;
1341 G2.opt_len--;
1342 if (stree)
1343 G2.static_len -= stree[new].Len;
1344 /* new is 0 or 1 so it does not have extra bits */
1346 desc->max_code = max_code;
1348 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1349 * establish sub-heaps of increasing lengths:
1351 for (n = G2.heap_len / 2; n >= 1; n--)
1352 pqdownheap(tree, n);
1354 /* Construct the Huffman tree by repeatedly combining the least two
1355 * frequent nodes.
1357 do {
1358 PQREMOVE(tree, n); /* n = node of least frequency */
1359 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1361 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1362 G2.heap[--G2.heap_max] = m;
1364 /* Create a new node father of n and m */
1365 tree[node].Freq = tree[n].Freq + tree[m].Freq;
1366 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1367 tree[n].Dad = tree[m].Dad = (ush) node;
1368 #ifdef DUMP_BL_TREE
1369 if (tree == G2.bl_tree) {
1370 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1371 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1373 #endif
1374 /* and insert the new node in the heap */
1375 G2.heap[SMALLEST] = node++;
1376 pqdownheap(tree, SMALLEST);
1377 } while (G2.heap_len >= 2);
1379 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1381 /* At this point, the fields freq and dad are set. We can now
1382 * generate the bit lengths.
1384 gen_bitlen((tree_desc *) desc);
1386 /* The field len is now set, we can generate the bit codes */
1387 gen_codes((ct_data *) tree, max_code);
1391 /* ===========================================================================
1392 * Scan a literal or distance tree to determine the frequencies of the codes
1393 * in the bit length tree. Updates opt_len to take into account the repeat
1394 * counts. (The contribution of the bit length codes will be added later
1395 * during the construction of bl_tree.)
1397 static void scan_tree(ct_data * tree, int max_code)
1399 int n; /* iterates over all tree elements */
1400 int prevlen = -1; /* last emitted length */
1401 int curlen; /* length of current code */
1402 int nextlen = tree[0].Len; /* length of next code */
1403 int count = 0; /* repeat count of the current code */
1404 int max_count = 7; /* max repeat count */
1405 int min_count = 4; /* min repeat count */
1407 if (nextlen == 0) {
1408 max_count = 138;
1409 min_count = 3;
1411 tree[max_code + 1].Len = 0xffff; /* guard */
1413 for (n = 0; n <= max_code; n++) {
1414 curlen = nextlen;
1415 nextlen = tree[n + 1].Len;
1416 if (++count < max_count && curlen == nextlen)
1417 continue;
1419 if (count < min_count) {
1420 G2.bl_tree[curlen].Freq += count;
1421 } else if (curlen != 0) {
1422 if (curlen != prevlen)
1423 G2.bl_tree[curlen].Freq++;
1424 G2.bl_tree[REP_3_6].Freq++;
1425 } else if (count <= 10) {
1426 G2.bl_tree[REPZ_3_10].Freq++;
1427 } else {
1428 G2.bl_tree[REPZ_11_138].Freq++;
1430 count = 0;
1431 prevlen = curlen;
1433 max_count = 7;
1434 min_count = 4;
1435 if (nextlen == 0) {
1436 max_count = 138;
1437 min_count = 3;
1438 } else if (curlen == nextlen) {
1439 max_count = 6;
1440 min_count = 3;
1446 /* ===========================================================================
1447 * Send a literal or distance tree in compressed form, using the codes in
1448 * bl_tree.
1450 static void send_tree(ct_data * tree, int max_code)
1452 int n; /* iterates over all tree elements */
1453 int prevlen = -1; /* last emitted length */
1454 int curlen; /* length of current code */
1455 int nextlen = tree[0].Len; /* length of next code */
1456 int count = 0; /* repeat count of the current code */
1457 int max_count = 7; /* max repeat count */
1458 int min_count = 4; /* min repeat count */
1460 /* tree[max_code+1].Len = -1; *//* guard already set */
1461 if (nextlen == 0)
1462 max_count = 138, min_count = 3;
1464 for (n = 0; n <= max_code; n++) {
1465 curlen = nextlen;
1466 nextlen = tree[n + 1].Len;
1467 if (++count < max_count && curlen == nextlen) {
1468 continue;
1469 } else if (count < min_count) {
1470 do {
1471 SEND_CODE(curlen, G2.bl_tree);
1472 } while (--count);
1473 } else if (curlen != 0) {
1474 if (curlen != prevlen) {
1475 SEND_CODE(curlen, G2.bl_tree);
1476 count--;
1478 Assert(count >= 3 && count <= 6, " 3_6?");
1479 SEND_CODE(REP_3_6, G2.bl_tree);
1480 send_bits(count - 3, 2);
1481 } else if (count <= 10) {
1482 SEND_CODE(REPZ_3_10, G2.bl_tree);
1483 send_bits(count - 3, 3);
1484 } else {
1485 SEND_CODE(REPZ_11_138, G2.bl_tree);
1486 send_bits(count - 11, 7);
1488 count = 0;
1489 prevlen = curlen;
1490 if (nextlen == 0) {
1491 max_count = 138;
1492 min_count = 3;
1493 } else if (curlen == nextlen) {
1494 max_count = 6;
1495 min_count = 3;
1496 } else {
1497 max_count = 7;
1498 min_count = 4;
1504 /* ===========================================================================
1505 * Construct the Huffman tree for the bit lengths and return the index in
1506 * bl_order of the last bit length code to send.
1508 static int build_bl_tree(void)
1510 int max_blindex; /* index of last bit length code of non zero freq */
1512 /* Determine the bit length frequencies for literal and distance trees */
1513 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1514 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1516 /* Build the bit length tree: */
1517 build_tree(&G2.bl_desc);
1518 /* opt_len now includes the length of the tree representations, except
1519 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1522 /* Determine the number of bit length codes to send. The pkzip format
1523 * requires that at least 4 bit length codes be sent. (appnote.txt says
1524 * 3 but the actual value used is 4.)
1526 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1527 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1528 break;
1530 /* Update opt_len to include the bit length tree and counts */
1531 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1532 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1534 return max_blindex;
1538 /* ===========================================================================
1539 * Send the header for a block using dynamic Huffman trees: the counts, the
1540 * lengths of the bit length codes, the literal tree and the distance tree.
1541 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1543 static void send_all_trees(int lcodes, int dcodes, int blcodes)
1545 int rank; /* index in bl_order */
1547 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1548 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1549 && blcodes <= BL_CODES, "too many codes");
1550 Tracev((stderr, "\nbl counts: "));
1551 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1552 send_bits(dcodes - 1, 5);
1553 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1554 for (rank = 0; rank < blcodes; rank++) {
1555 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1556 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1558 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1560 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1561 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1563 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1564 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1568 /* ===========================================================================
1569 * Save the match info and tally the frequency counts. Return true if
1570 * the current block must be flushed.
1572 static int ct_tally(int dist, int lc)
1574 G1.l_buf[G2.last_lit++] = lc;
1575 if (dist == 0) {
1576 /* lc is the unmatched char */
1577 G2.dyn_ltree[lc].Freq++;
1578 } else {
1579 /* Here, lc is the match length - MIN_MATCH */
1580 dist--; /* dist = match distance - 1 */
1581 Assert((ush) dist < (ush) MAX_DIST
1582 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1583 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1586 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1587 G2.dyn_dtree[D_CODE(dist)].Freq++;
1589 G1.d_buf[G2.last_dist++] = dist;
1590 G2.flags |= G2.flag_bit;
1592 G2.flag_bit <<= 1;
1594 /* Output the flags if they fill a byte: */
1595 if ((G2.last_lit & 7) == 0) {
1596 G2.flag_buf[G2.last_flags++] = G2.flags;
1597 G2.flags = 0;
1598 G2.flag_bit = 1;
1600 /* Try to guess if it is profitable to stop the current block here */
1601 if ((G2.last_lit & 0xfff) == 0) {
1602 /* Compute an upper bound for the compressed length */
1603 ulg out_length = G2.last_lit * 8L;
1604 ulg in_length = (ulg) G1.strstart - G1.block_start;
1605 int dcode;
1607 for (dcode = 0; dcode < D_CODES; dcode++) {
1608 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1610 out_length >>= 3;
1611 Trace((stderr,
1612 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1613 G2.last_lit, G2.last_dist, in_length, out_length,
1614 100L - out_length * 100L / in_length));
1615 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1616 return 1;
1618 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1619 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1620 * on 16 bit machines and because stored blocks are restricted to
1621 * 64K-1 bytes.
1625 /* ===========================================================================
1626 * Send the block data compressed using the given Huffman trees
1628 static void compress_block(ct_data * ltree, ct_data * dtree)
1630 unsigned dist; /* distance of matched string */
1631 int lc; /* match length or unmatched char (if dist == 0) */
1632 unsigned lx = 0; /* running index in l_buf */
1633 unsigned dx = 0; /* running index in d_buf */
1634 unsigned fx = 0; /* running index in flag_buf */
1635 uch flag = 0; /* current flags */
1636 unsigned code; /* the code to send */
1637 int extra; /* number of extra bits to send */
1639 if (G2.last_lit != 0) do {
1640 if ((lx & 7) == 0)
1641 flag = G2.flag_buf[fx++];
1642 lc = G1.l_buf[lx++];
1643 if ((flag & 1) == 0) {
1644 SEND_CODE(lc, ltree); /* send a literal byte */
1645 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1646 } else {
1647 /* Here, lc is the match length - MIN_MATCH */
1648 code = G2.length_code[lc];
1649 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1650 extra = extra_lbits[code];
1651 if (extra != 0) {
1652 lc -= G2.base_length[code];
1653 send_bits(lc, extra); /* send the extra length bits */
1655 dist = G1.d_buf[dx++];
1656 /* Here, dist is the match distance - 1 */
1657 code = D_CODE(dist);
1658 Assert(code < D_CODES, "bad d_code");
1660 SEND_CODE(code, dtree); /* send the distance code */
1661 extra = extra_dbits[code];
1662 if (extra != 0) {
1663 dist -= G2.base_dist[code];
1664 send_bits(dist, extra); /* send the extra distance bits */
1666 } /* literal or match pair ? */
1667 flag >>= 1;
1668 } while (lx < G2.last_lit);
1670 SEND_CODE(END_BLOCK, ltree);
1674 /* ===========================================================================
1675 * Determine the best encoding for the current block: dynamic trees, static
1676 * trees or store, and output the encoded block to the zip file. This function
1677 * returns the total compressed length for the file so far.
1679 static ulg flush_block(char *buf, ulg stored_len, int eof)
1681 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1682 int max_blindex; /* index of last bit length code of non zero freq */
1684 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1686 /* Construct the literal and distance trees */
1687 build_tree(&G2.l_desc);
1688 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1690 build_tree(&G2.d_desc);
1691 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1692 /* At this point, opt_len and static_len are the total bit lengths of
1693 * the compressed block data, excluding the tree representations.
1696 /* Build the bit length tree for the above two trees, and get the index
1697 * in bl_order of the last bit length code to send.
1699 max_blindex = build_bl_tree();
1701 /* Determine the best encoding. Compute first the block length in bytes */
1702 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1703 static_lenb = (G2.static_len + 3 + 7) >> 3;
1705 Trace((stderr,
1706 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1707 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1708 G2.last_lit, G2.last_dist));
1710 if (static_lenb <= opt_lenb)
1711 opt_lenb = static_lenb;
1713 /* If compression failed and this is the first and last block,
1714 * and if the zip file can be seeked (to rewrite the local header),
1715 * the whole file is transformed into a stored file:
1717 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1718 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1719 if (buf == NULL)
1720 bb_error_msg("block vanished");
1722 copy_block(buf, (unsigned) stored_len, 0); /* without header */
1723 G2.compressed_len = stored_len << 3;
1724 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1725 /* 4: two words for the lengths */
1726 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1727 * Otherwise we can't have processed more than WSIZE input bytes since
1728 * the last block flush, because compression would have been
1729 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1730 * transform a block into a stored block.
1732 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1733 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1734 G2.compressed_len += (stored_len + 4) << 3;
1736 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1737 } else if (static_lenb == opt_lenb) {
1738 send_bits((STATIC_TREES << 1) + eof, 3);
1739 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1740 G2.compressed_len += 3 + G2.static_len;
1741 } else {
1742 send_bits((DYN_TREES << 1) + eof, 3);
1743 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1744 max_blindex + 1);
1745 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1746 G2.compressed_len += 3 + G2.opt_len;
1748 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1749 init_block();
1751 if (eof) {
1752 bi_windup();
1753 G2.compressed_len += 7; /* align on byte boundary */
1755 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1756 G2.compressed_len - 7 * eof));
1758 return G2.compressed_len >> 3;
1762 /* ===========================================================================
1763 * Update a hash value with the given input byte
1764 * IN assertion: all calls to UPDATE_HASH are made with consecutive
1765 * input characters, so that a running hash key can be computed from the
1766 * previous key instead of complete recalculation each time.
1768 #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1771 /* ===========================================================================
1772 * Same as above, but achieves better compression. We use a lazy
1773 * evaluation for matches: a match is finally adopted only if there is
1774 * no better match at the next window position.
1776 * Processes a new input file and return its compressed length. Sets
1777 * the compressed length, crc, deflate flags and internal file
1778 * attributes.
1781 /* Flush the current block, with given end-of-file flag.
1782 * IN assertion: strstart is set to the end of the current match. */
1783 #define FLUSH_BLOCK(eof) \
1784 flush_block( \
1785 G1.block_start >= 0L \
1786 ? (char*)&G1.window[(unsigned)G1.block_start] \
1787 : (char*)NULL, \
1788 (ulg)G1.strstart - G1.block_start, \
1789 (eof) \
1792 /* Insert string s in the dictionary and set match_head to the previous head
1793 * of the hash chain (the most recent string with same hash key). Return
1794 * the previous length of the hash chain.
1795 * IN assertion: all calls to INSERT_STRING are made with consecutive
1796 * input characters and the first MIN_MATCH bytes of s are valid
1797 * (except for the last MIN_MATCH-1 bytes of the input file). */
1798 #define INSERT_STRING(s, match_head) \
1799 do { \
1800 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1801 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1802 head[G1.ins_h] = (s); \
1803 } while (0)
1805 static ulg deflate(void)
1807 IPos hash_head; /* head of hash chain */
1808 IPos prev_match; /* previous match */
1809 int flush; /* set if current block must be flushed */
1810 int match_available = 0; /* set if previous match exists */
1811 unsigned match_length = MIN_MATCH - 1; /* length of best match */
1813 /* Process the input block. */
1814 while (G1.lookahead != 0) {
1815 /* Insert the string window[strstart .. strstart+2] in the
1816 * dictionary, and set hash_head to the head of the hash chain:
1818 INSERT_STRING(G1.strstart, hash_head);
1820 /* Find the longest match, discarding those <= prev_length.
1822 G1.prev_length = match_length;
1823 prev_match = G1.match_start;
1824 match_length = MIN_MATCH - 1;
1826 if (hash_head != 0 && G1.prev_length < max_lazy_match
1827 && G1.strstart - hash_head <= MAX_DIST
1829 /* To simplify the code, we prevent matches with the string
1830 * of window index 0 (in particular we have to avoid a match
1831 * of the string with itself at the start of the input file).
1833 match_length = longest_match(hash_head);
1834 /* longest_match() sets match_start */
1835 if (match_length > G1.lookahead)
1836 match_length = G1.lookahead;
1838 /* Ignore a length 3 match if it is too distant: */
1839 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1840 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1841 * but we will ignore the current match anyway.
1843 match_length--;
1846 /* If there was a match at the previous step and the current
1847 * match is not better, output the previous match:
1849 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1850 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1851 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1853 /* Insert in hash table all strings up to the end of the match.
1854 * strstart-1 and strstart are already inserted.
1856 G1.lookahead -= G1.prev_length - 1;
1857 G1.prev_length -= 2;
1858 do {
1859 G1.strstart++;
1860 INSERT_STRING(G1.strstart, hash_head);
1861 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1862 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1863 * these bytes are garbage, but it does not matter since the
1864 * next lookahead bytes will always be emitted as literals.
1866 } while (--G1.prev_length != 0);
1867 match_available = 0;
1868 match_length = MIN_MATCH - 1;
1869 G1.strstart++;
1870 if (flush) {
1871 FLUSH_BLOCK(0);
1872 G1.block_start = G1.strstart;
1874 } else if (match_available) {
1875 /* If there was no match at the previous position, output a
1876 * single literal. If there was a match but the current match
1877 * is longer, truncate the previous match to a single literal.
1879 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1880 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1881 FLUSH_BLOCK(0);
1882 G1.block_start = G1.strstart;
1884 G1.strstart++;
1885 G1.lookahead--;
1886 } else {
1887 /* There is no previous match to compare with, wait for
1888 * the next step to decide.
1890 match_available = 1;
1891 G1.strstart++;
1892 G1.lookahead--;
1894 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1896 /* Make sure that we always have enough lookahead, except
1897 * at the end of the input file. We need MAX_MATCH bytes
1898 * for the next match, plus MIN_MATCH bytes to insert the
1899 * string following the next match.
1901 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1902 fill_window();
1904 if (match_available)
1905 ct_tally(0, G1.window[G1.strstart - 1]);
1907 return FLUSH_BLOCK(1); /* eof */
1911 /* ===========================================================================
1912 * Initialize the bit string routines.
1914 static void bi_init(void)
1916 G1.bi_buf = 0;
1917 G1.bi_valid = 0;
1918 #ifdef DEBUG
1919 G1.bits_sent = 0L;
1920 #endif
1924 /* ===========================================================================
1925 * Initialize the "longest match" routines for a new file
1927 static void lm_init(ush * flagsp)
1929 unsigned j;
1931 /* Initialize the hash table. */
1932 memset(head, 0, HASH_SIZE * sizeof(*head));
1933 /* prev will be initialized on the fly */
1935 /* speed options for the general purpose bit flag */
1936 *flagsp |= 2; /* FAST 4, SLOW 2 */
1937 /* ??? reduce max_chain_length for binary files */
1939 G1.strstart = 0;
1940 G1.block_start = 0L;
1942 G1.lookahead = file_read(G1.window,
1943 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1945 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1946 G1.eofile = 1;
1947 G1.lookahead = 0;
1948 return;
1950 G1.eofile = 0;
1951 /* Make sure that we always have enough lookahead. This is important
1952 * if input comes from a device such as a tty.
1954 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1955 fill_window();
1957 G1.ins_h = 0;
1958 for (j = 0; j < MIN_MATCH - 1; j++)
1959 UPDATE_HASH(G1.ins_h, G1.window[j]);
1960 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1961 * not important since only literal bytes will be emitted.
1966 /* ===========================================================================
1967 * Allocate the match buffer, initialize the various tables and save the
1968 * location of the internal file attribute (ascii/binary) and method
1969 * (DEFLATE/STORE).
1970 * One callsite in zip()
1972 static void ct_init(void)
1974 int n; /* iterates over tree elements */
1975 int length; /* length value */
1976 int code; /* code value */
1977 int dist; /* distance index */
1979 G2.compressed_len = 0L;
1981 #ifdef NOT_NEEDED
1982 if (G2.static_dtree[0].Len != 0)
1983 return; /* ct_init already called */
1984 #endif
1986 /* Initialize the mapping length (0..255) -> length code (0..28) */
1987 length = 0;
1988 for (code = 0; code < LENGTH_CODES - 1; code++) {
1989 G2.base_length[code] = length;
1990 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1991 G2.length_code[length++] = code;
1994 Assert(length == 256, "ct_init: length != 256");
1995 /* Note that the length 255 (match length 258) can be represented
1996 * in two different ways: code 284 + 5 bits or code 285, so we
1997 * overwrite length_code[255] to use the best encoding:
1999 G2.length_code[length - 1] = code;
2001 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2002 dist = 0;
2003 for (code = 0; code < 16; code++) {
2004 G2.base_dist[code] = dist;
2005 for (n = 0; n < (1 << extra_dbits[code]); n++) {
2006 G2.dist_code[dist++] = code;
2009 Assert(dist == 256, "ct_init: dist != 256");
2010 dist >>= 7; /* from now on, all distances are divided by 128 */
2011 for (; code < D_CODES; code++) {
2012 G2.base_dist[code] = dist << 7;
2013 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
2014 G2.dist_code[256 + dist++] = code;
2017 Assert(dist == 256, "ct_init: 256+dist != 512");
2019 /* Construct the codes of the static literal tree */
2020 /* already zeroed - it's in bss
2021 for (n = 0; n <= MAX_BITS; n++)
2022 G2.bl_count[n] = 0; */
2024 n = 0;
2025 while (n <= 143) {
2026 G2.static_ltree[n++].Len = 8;
2027 G2.bl_count[8]++;
2029 while (n <= 255) {
2030 G2.static_ltree[n++].Len = 9;
2031 G2.bl_count[9]++;
2033 while (n <= 279) {
2034 G2.static_ltree[n++].Len = 7;
2035 G2.bl_count[7]++;
2037 while (n <= 287) {
2038 G2.static_ltree[n++].Len = 8;
2039 G2.bl_count[8]++;
2041 /* Codes 286 and 287 do not exist, but we must include them in the
2042 * tree construction to get a canonical Huffman tree (longest code
2043 * all ones)
2045 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
2047 /* The static distance tree is trivial: */
2048 for (n = 0; n < D_CODES; n++) {
2049 G2.static_dtree[n].Len = 5;
2050 G2.static_dtree[n].Code = bi_reverse(n, 5);
2053 /* Initialize the first block of the first file: */
2054 init_block();
2058 /* ===========================================================================
2059 * Deflate in to out.
2060 * IN assertions: the input and output buffers are cleared.
2063 static void zip(void)
2065 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
2067 G1.outcnt = 0;
2069 /* Write the header to the gzip file. See algorithm.doc for the format */
2070 /* magic header for gzip files: 1F 8B */
2071 /* compression method: 8 (DEFLATED) */
2072 /* general flags: 0 */
2073 put_32bit(0x00088b1f);
2074 put_32bit(0); /* Unix timestamp */
2076 /* Write deflated file to zip file */
2077 G1.crc = ~0;
2079 bi_init();
2080 ct_init();
2081 lm_init(&deflate_flags);
2083 put_8bit(deflate_flags); /* extra flags */
2084 put_8bit(3); /* OS identifier = 3 (Unix) */
2086 deflate();
2088 /* Write the crc and uncompressed size */
2089 put_32bit(~G1.crc);
2090 put_32bit(G1.isize);
2092 flush_outbuf();
2096 /* ======================================================================== */
2097 static
2098 IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_state_t *xstate UNUSED_PARAM)
2100 /* Clear input and output buffers */
2101 G1.outcnt = 0;
2102 #ifdef DEBUG
2103 G1.insize = 0;
2104 #endif
2105 G1.isize = 0;
2107 /* Reinit G2.xxx */
2108 memset(&G2, 0, sizeof(G2));
2109 G2.l_desc.dyn_tree = G2.dyn_ltree;
2110 G2.l_desc.static_tree = G2.static_ltree;
2111 G2.l_desc.extra_bits = extra_lbits;
2112 G2.l_desc.extra_base = LITERALS + 1;
2113 G2.l_desc.elems = L_CODES;
2114 G2.l_desc.max_length = MAX_BITS;
2115 //G2.l_desc.max_code = 0;
2116 G2.d_desc.dyn_tree = G2.dyn_dtree;
2117 G2.d_desc.static_tree = G2.static_dtree;
2118 G2.d_desc.extra_bits = extra_dbits;
2119 //G2.d_desc.extra_base = 0;
2120 G2.d_desc.elems = D_CODES;
2121 G2.d_desc.max_length = MAX_BITS;
2122 //G2.d_desc.max_code = 0;
2123 G2.bl_desc.dyn_tree = G2.bl_tree;
2124 //G2.bl_desc.static_tree = NULL;
2125 G2.bl_desc.extra_bits = extra_blbits,
2126 //G2.bl_desc.extra_base = 0;
2127 G2.bl_desc.elems = BL_CODES;
2128 G2.bl_desc.max_length = MAX_BL_BITS;
2129 //G2.bl_desc.max_code = 0;
2131 #if 0
2132 /* Saving of timestamp is disabled. Why?
2133 * - it is not Y2038-safe.
2134 * - some people want deterministic results
2135 * (normally they'd use -n, but our -n is a nop).
2136 * - it's bloat.
2137 * Per RFC 1952, gzfile.time=0 is "no timestamp".
2138 * If users will demand this to be reinstated,
2139 * implement -n "don't save timestamp".
2141 struct stat s;
2142 s.st_ctime = 0;
2143 fstat(STDIN_FILENO, &s);
2144 zip(s.st_ctime);
2145 #else
2146 zip();
2147 #endif
2148 return 0;
2151 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2152 static const char gzip_longopts[] ALIGN1 =
2153 "stdout\0" No_argument "c"
2154 "to-stdout\0" No_argument "c"
2155 "force\0" No_argument "f"
2156 "verbose\0" No_argument "v"
2157 #if ENABLE_GUNZIP
2158 "decompress\0" No_argument "d"
2159 "uncompress\0" No_argument "d"
2160 "test\0" No_argument "t"
2161 #endif
2162 "quiet\0" No_argument "q"
2163 "fast\0" No_argument "1"
2164 "best\0" No_argument "9"
2165 "no-name\0" No_argument "n"
2167 #endif
2170 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2171 * Man page says:
2172 * -n --no-name
2173 * gzip: do not save the original file name and time stamp.
2174 * (The original name is always saved if the name had to be truncated.)
2175 * gunzip: do not restore the original file name/time even if present
2176 * (remove only the gzip suffix from the compressed file name).
2177 * This option is the default when decompressing.
2178 * -N --name
2179 * gzip: always save the original file name and time stamp (this is the default)
2180 * gunzip: restore the original file name and time stamp if present.
2183 int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2184 #if ENABLE_GUNZIP
2185 int gzip_main(int argc, char **argv)
2186 #else
2187 int gzip_main(int argc UNUSED_PARAM, char **argv)
2188 #endif
2190 unsigned opt;
2191 #ifdef ENABLE_FEATURE_GZIP_LEVELS
2192 static const struct {
2193 uint8_t good;
2194 uint8_t chain_shift;
2195 uint8_t lazy2;
2196 uint8_t nice2;
2197 } gzip_level_config[6] = {
2198 {4, 4, 4/2, 16/2}, /* Level 4 */
2199 {8, 5, 16/2, 32/2}, /* Level 5 */
2200 {8, 7, 16/2, 128/2}, /* Level 6 */
2201 {8, 8, 32/2, 128/2}, /* Level 7 */
2202 {32, 10, 128/2, 258/2}, /* Level 8 */
2203 {32, 12, 258/2, 258/2}, /* Level 9 */
2205 #endif
2207 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2208 + sizeof(struct globals));
2210 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2211 applet_long_options = gzip_longopts;
2212 #endif
2213 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2214 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "qn123456789");
2215 #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2216 if (opt & 0x18) // -d and/or -t
2217 return gunzip_main(argc, argv);
2218 #endif
2219 #ifdef ENABLE_FEATURE_GZIP_LEVELS
2220 opt >>= ENABLE_GUNZIP ? 7 : 5; /* drop cfv[dt]qn bits */
2221 if (opt == 0)
2222 opt = 1 << 6; /* default: 6 */
2223 /* Map 1..3 to 4 */
2224 if (opt & 0x7)
2225 opt |= 1 << 4;
2226 opt = ffs(opt >> 3);
2227 max_chain_length = 1 << gzip_level_config[opt].chain_shift;
2228 good_match = gzip_level_config[opt].good;
2229 max_lazy_match = gzip_level_config[opt].lazy2 * 2;
2230 nice_match = gzip_level_config[opt].nice2 * 2;
2231 #endif
2232 option_mask32 &= 0x7; /* retain only -cfv */
2234 /* Allocate all global buffers (for DYN_ALLOC option) */
2235 ALLOC(uch, G1.l_buf, INBUFSIZ);
2236 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2237 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2238 ALLOC(uch, G1.window, 2L * WSIZE);
2239 ALLOC(ush, G1.prev, 1L << BITS);
2241 /* Initialize the CRC32 table */
2242 global_crc32_table = crc32_filltable(NULL, 0);
2244 argv += optind;
2245 return bbunpack(argv, pack_gzip, append_ext, "gz");