OpenSSL: update to 1.0.1m
[tomato.git] / release / src / router / openssl / crypto / ec / ec2_mult.c
blob68cc8771d5ebfe1154c077f6316f52965e80b527
1 /* crypto/ec/ec2_mult.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
16 /* ====================================================================
17 * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * openssl-core@openssl.org.
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
70 #include <openssl/err.h>
72 #include "ec_lcl.h"
74 #ifndef OPENSSL_NO_EC2M
76 /*-
77 * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
78 * coordinates.
79 * Uses algorithm Mdouble in appendix of
80 * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
81 * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
82 * modified to not require precomputation of c=b^{2^{m-1}}.
84 static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
85 BN_CTX *ctx)
87 BIGNUM *t1;
88 int ret = 0;
90 /* Since Mdouble is static we can guarantee that ctx != NULL. */
91 BN_CTX_start(ctx);
92 t1 = BN_CTX_get(ctx);
93 if (t1 == NULL)
94 goto err;
96 if (!group->meth->field_sqr(group, x, x, ctx))
97 goto err;
98 if (!group->meth->field_sqr(group, t1, z, ctx))
99 goto err;
100 if (!group->meth->field_mul(group, z, x, t1, ctx))
101 goto err;
102 if (!group->meth->field_sqr(group, x, x, ctx))
103 goto err;
104 if (!group->meth->field_sqr(group, t1, t1, ctx))
105 goto err;
106 if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
107 goto err;
108 if (!BN_GF2m_add(x, x, t1))
109 goto err;
111 ret = 1;
113 err:
114 BN_CTX_end(ctx);
115 return ret;
119 * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
120 * projective coordinates.
121 * Uses algorithm Madd in appendix of
122 * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
123 * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
125 static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
126 BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
127 BN_CTX *ctx)
129 BIGNUM *t1, *t2;
130 int ret = 0;
132 /* Since Madd is static we can guarantee that ctx != NULL. */
133 BN_CTX_start(ctx);
134 t1 = BN_CTX_get(ctx);
135 t2 = BN_CTX_get(ctx);
136 if (t2 == NULL)
137 goto err;
139 if (!BN_copy(t1, x))
140 goto err;
141 if (!group->meth->field_mul(group, x1, x1, z2, ctx))
142 goto err;
143 if (!group->meth->field_mul(group, z1, z1, x2, ctx))
144 goto err;
145 if (!group->meth->field_mul(group, t2, x1, z1, ctx))
146 goto err;
147 if (!BN_GF2m_add(z1, z1, x1))
148 goto err;
149 if (!group->meth->field_sqr(group, z1, z1, ctx))
150 goto err;
151 if (!group->meth->field_mul(group, x1, z1, t1, ctx))
152 goto err;
153 if (!BN_GF2m_add(x1, x1, t2))
154 goto err;
156 ret = 1;
158 err:
159 BN_CTX_end(ctx);
160 return ret;
164 * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
165 * using Montgomery point multiplication algorithm Mxy() in appendix of
166 * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
167 * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
168 * Returns:
169 * 0 on error
170 * 1 if return value should be the point at infinity
171 * 2 otherwise
173 static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
174 BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
175 BN_CTX *ctx)
177 BIGNUM *t3, *t4, *t5;
178 int ret = 0;
180 if (BN_is_zero(z1)) {
181 BN_zero(x2);
182 BN_zero(z2);
183 return 1;
186 if (BN_is_zero(z2)) {
187 if (!BN_copy(x2, x))
188 return 0;
189 if (!BN_GF2m_add(z2, x, y))
190 return 0;
191 return 2;
194 /* Since Mxy is static we can guarantee that ctx != NULL. */
195 BN_CTX_start(ctx);
196 t3 = BN_CTX_get(ctx);
197 t4 = BN_CTX_get(ctx);
198 t5 = BN_CTX_get(ctx);
199 if (t5 == NULL)
200 goto err;
202 if (!BN_one(t5))
203 goto err;
205 if (!group->meth->field_mul(group, t3, z1, z2, ctx))
206 goto err;
208 if (!group->meth->field_mul(group, z1, z1, x, ctx))
209 goto err;
210 if (!BN_GF2m_add(z1, z1, x1))
211 goto err;
212 if (!group->meth->field_mul(group, z2, z2, x, ctx))
213 goto err;
214 if (!group->meth->field_mul(group, x1, z2, x1, ctx))
215 goto err;
216 if (!BN_GF2m_add(z2, z2, x2))
217 goto err;
219 if (!group->meth->field_mul(group, z2, z2, z1, ctx))
220 goto err;
221 if (!group->meth->field_sqr(group, t4, x, ctx))
222 goto err;
223 if (!BN_GF2m_add(t4, t4, y))
224 goto err;
225 if (!group->meth->field_mul(group, t4, t4, t3, ctx))
226 goto err;
227 if (!BN_GF2m_add(t4, t4, z2))
228 goto err;
230 if (!group->meth->field_mul(group, t3, t3, x, ctx))
231 goto err;
232 if (!group->meth->field_div(group, t3, t5, t3, ctx))
233 goto err;
234 if (!group->meth->field_mul(group, t4, t3, t4, ctx))
235 goto err;
236 if (!group->meth->field_mul(group, x2, x1, t3, ctx))
237 goto err;
238 if (!BN_GF2m_add(z2, x2, x))
239 goto err;
241 if (!group->meth->field_mul(group, z2, z2, t4, ctx))
242 goto err;
243 if (!BN_GF2m_add(z2, z2, y))
244 goto err;
246 ret = 2;
248 err:
249 BN_CTX_end(ctx);
250 return ret;
254 * Computes scalar*point and stores the result in r.
255 * point can not equal r.
256 * Uses a modified algorithm 2P of
257 * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
258 * GF(2^m) without precomputation" (CHES '99, LNCS 1717).
260 * To protect against side-channel attack the function uses constant time swap,
261 * avoiding conditional branches.
263 static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
264 EC_POINT *r,
265 const BIGNUM *scalar,
266 const EC_POINT *point,
267 BN_CTX *ctx)
269 BIGNUM *x1, *x2, *z1, *z2;
270 int ret = 0, i;
271 BN_ULONG mask, word;
273 if (r == point) {
274 ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
275 return 0;
278 /* if result should be point at infinity */
279 if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
280 EC_POINT_is_at_infinity(group, point)) {
281 return EC_POINT_set_to_infinity(group, r);
284 /* only support affine coordinates */
285 if (!point->Z_is_one)
286 return 0;
289 * Since point_multiply is static we can guarantee that ctx != NULL.
291 BN_CTX_start(ctx);
292 x1 = BN_CTX_get(ctx);
293 z1 = BN_CTX_get(ctx);
294 if (z1 == NULL)
295 goto err;
297 x2 = &r->X;
298 z2 = &r->Y;
300 bn_wexpand(x1, group->field.top);
301 bn_wexpand(z1, group->field.top);
302 bn_wexpand(x2, group->field.top);
303 bn_wexpand(z2, group->field.top);
305 if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
306 goto err; /* x1 = x */
307 if (!BN_one(z1))
308 goto err; /* z1 = 1 */
309 if (!group->meth->field_sqr(group, z2, x1, ctx))
310 goto err; /* z2 = x1^2 = x^2 */
311 if (!group->meth->field_sqr(group, x2, z2, ctx))
312 goto err;
313 if (!BN_GF2m_add(x2, x2, &group->b))
314 goto err; /* x2 = x^4 + b */
316 /* find top most bit and go one past it */
317 i = scalar->top - 1;
318 mask = BN_TBIT;
319 word = scalar->d[i];
320 while (!(word & mask))
321 mask >>= 1;
322 mask >>= 1;
323 /* if top most bit was at word break, go to next word */
324 if (!mask) {
325 i--;
326 mask = BN_TBIT;
329 for (; i >= 0; i--) {
330 word = scalar->d[i];
331 while (mask) {
332 BN_consttime_swap(word & mask, x1, x2, group->field.top);
333 BN_consttime_swap(word & mask, z1, z2, group->field.top);
334 if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
335 goto err;
336 if (!gf2m_Mdouble(group, x1, z1, ctx))
337 goto err;
338 BN_consttime_swap(word & mask, x1, x2, group->field.top);
339 BN_consttime_swap(word & mask, z1, z2, group->field.top);
340 mask >>= 1;
342 mask = BN_TBIT;
345 /* convert out of "projective" coordinates */
346 i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
347 if (i == 0)
348 goto err;
349 else if (i == 1) {
350 if (!EC_POINT_set_to_infinity(group, r))
351 goto err;
352 } else {
353 if (!BN_one(&r->Z))
354 goto err;
355 r->Z_is_one = 1;
358 /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
359 BN_set_negative(&r->X, 0);
360 BN_set_negative(&r->Y, 0);
362 ret = 1;
364 err:
365 BN_CTX_end(ctx);
366 return ret;
370 * Computes the sum
371 * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
372 * gracefully ignoring NULL scalar values.
374 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
375 const BIGNUM *scalar, size_t num,
376 const EC_POINT *points[], const BIGNUM *scalars[],
377 BN_CTX *ctx)
379 BN_CTX *new_ctx = NULL;
380 int ret = 0;
381 size_t i;
382 EC_POINT *p = NULL;
383 EC_POINT *acc = NULL;
385 if (ctx == NULL) {
386 ctx = new_ctx = BN_CTX_new();
387 if (ctx == NULL)
388 return 0;
392 * This implementation is more efficient than the wNAF implementation for
393 * 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more
394 * points, or if we can perform a fast multiplication based on
395 * precomputation.
397 if ((scalar && (num > 1)) || (num > 2)
398 || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
399 ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
400 goto err;
403 if ((p = EC_POINT_new(group)) == NULL)
404 goto err;
405 if ((acc = EC_POINT_new(group)) == NULL)
406 goto err;
408 if (!EC_POINT_set_to_infinity(group, acc))
409 goto err;
411 if (scalar) {
412 if (!ec_GF2m_montgomery_point_multiply
413 (group, p, scalar, group->generator, ctx))
414 goto err;
415 if (BN_is_negative(scalar))
416 if (!group->meth->invert(group, p, ctx))
417 goto err;
418 if (!group->meth->add(group, acc, acc, p, ctx))
419 goto err;
422 for (i = 0; i < num; i++) {
423 if (!ec_GF2m_montgomery_point_multiply
424 (group, p, scalars[i], points[i], ctx))
425 goto err;
426 if (BN_is_negative(scalars[i]))
427 if (!group->meth->invert(group, p, ctx))
428 goto err;
429 if (!group->meth->add(group, acc, acc, p, ctx))
430 goto err;
433 if (!EC_POINT_copy(r, acc))
434 goto err;
436 ret = 1;
438 err:
439 if (p)
440 EC_POINT_free(p);
441 if (acc)
442 EC_POINT_free(acc);
443 if (new_ctx != NULL)
444 BN_CTX_free(new_ctx);
445 return ret;
449 * Precomputation for point multiplication: fall back to wNAF methods because
450 * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
453 int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
455 return ec_wNAF_precompute_mult(group, ctx);
458 int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
460 return ec_wNAF_have_precompute_mult(group);
463 #endif