SSID: Respect ASCII character Label.
[tomato.git] / release / src / router / busybox / networking / ntpd.c
blob603801ec60afcca90f7238bf3d68db537138064c
1 /*
2 * NTP client/server, based on OpenNTPD 3.9p1
4 * Author: Adam Tkac <vonsch@gmail.com>
6 * Licensed under GPLv2, see file LICENSE in this source tree.
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
31 //usage:#define ntpd_trivial_usage
32 //usage: "[-dnqNw"IF_FEATURE_NTPD_SERVER("l")"] [-S PROG] [-p PEER]..."
33 //usage:#define ntpd_full_usage "\n\n"
34 //usage: "NTP client/server\n"
35 //usage: "\n -d Verbose"
36 //usage: "\n -n Do not daemonize"
37 //usage: "\n -q Quit after clock is set"
38 //usage: "\n -N Run at high priority"
39 //usage: "\n -w Do not set time (only query peers), implies -n"
40 //usage: IF_FEATURE_NTPD_SERVER(
41 //usage: "\n -l Run as server on port 123"
42 //usage: )
43 //usage: "\n -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
44 //usage: "\n -p PEER Obtain time from PEER (may be repeated)"
46 #include "libbb.h"
47 #include <math.h>
48 #include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
49 #include <sys/timex.h>
50 #ifndef IPTOS_LOWDELAY
51 # define IPTOS_LOWDELAY 0x10
52 #endif
53 #ifndef IP_PKTINFO
54 # error "Sorry, your kernel has to support IP_PKTINFO"
55 #endif
58 /* Verbosity control (max level of -dddd options accepted).
59 * max 5 is very talkative (and bloated). 2 is non-bloated,
60 * production level setting.
62 #define MAX_VERBOSE 2
65 /* High-level description of the algorithm:
67 * We start running with very small poll_exp, BURSTPOLL,
68 * in order to quickly accumulate INITIAL_SAMPLES datapoints
69 * for each peer. Then, time is stepped if the offset is larger
70 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
71 * poll_exp to MINPOLL and enter frequency measurement step:
72 * we collect new datapoints but ignore them for WATCH_THRESHOLD
73 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
74 * offset and estimate frequency drift.
76 * (frequency measurement step seems to not be strictly needed,
77 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
78 * define set to 0)
80 * After this, we enter "steady state": we collect a datapoint,
81 * we select the best peer, if this datapoint is not a new one
82 * (IOW: if this datapoint isn't for selected peer), sleep
83 * and collect another one; otherwise, use its offset to update
84 * frequency drift, if offset is somewhat large, reduce poll_exp,
85 * otherwise increase poll_exp.
87 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
88 * happen, we assume that something "bad" happened (computer
89 * was hibernated, someone set totally wrong date, etc),
90 * then the time is stepped, all datapoints are discarded,
91 * and we go back to steady state.
94 #define RETRY_INTERVAL 5 /* on error, retry in N secs */
95 #define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
96 #define INITIAL_SAMPLES 4 /* how many samples do we want for init */
98 /* Clock discipline parameters and constants */
100 /* Step threshold (sec). std ntpd uses 0.128.
101 * Using exact power of 2 (1/8) results in smaller code */
102 #define STEP_THRESHOLD 0.125
103 #define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
104 /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
105 //UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
107 #define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
108 #define BURSTPOLL 0 /* initial poll */
109 #define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
110 /* If offset > discipline_jitter * POLLADJ_GATE, and poll interval is >= 2^BIGPOLL,
111 * then it is decreased _at once_. (If < 2^BIGPOLL, it will be decreased _eventually_).
113 #define BIGPOLL 10 /* 2^10 sec ~= 17 min */
114 #define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
115 /* Actively lower poll when we see such big offsets.
116 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
117 * if offset increases over ~0.04 sec */
118 #define POLLDOWN_OFFSET (STEP_THRESHOLD / 3)
119 #define MINDISP 0.01 /* minimum dispersion (sec) */
120 #define MAXDISP 16 /* maximum dispersion (sec) */
121 #define MAXSTRAT 16 /* maximum stratum (infinity metric) */
122 #define MAXDIST 1 /* distance threshold (sec) */
123 #define MIN_SELECTED 1 /* minimum intersection survivors */
124 #define MIN_CLUSTERED 3 /* minimum cluster survivors */
126 #define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
128 /* Poll-adjust threshold.
129 * When we see that offset is small enough compared to discipline jitter,
130 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
131 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
132 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
133 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
135 #define POLLADJ_LIMIT 40
136 /* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
137 * poll interval (we think we can't improve timekeeping
138 * by staying at smaller poll).
140 #define POLLADJ_GATE 4
141 #define TIMECONST_HACK_GATE 2
142 /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
143 #define ALLAN 512
144 /* PLL loop gain */
145 #define PLL 65536
146 /* FLL loop gain [why it depends on MAXPOLL??] */
147 #define FLL (MAXPOLL + 1)
148 /* Parameter averaging constant */
149 #define AVG 4
152 enum {
153 NTP_VERSION = 4,
154 NTP_MAXSTRATUM = 15,
156 NTP_DIGESTSIZE = 16,
157 NTP_MSGSIZE_NOAUTH = 48,
158 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
160 /* Status Masks */
161 MODE_MASK = (7 << 0),
162 VERSION_MASK = (7 << 3),
163 VERSION_SHIFT = 3,
164 LI_MASK = (3 << 6),
166 /* Leap Second Codes (high order two bits of m_status) */
167 LI_NOWARNING = (0 << 6), /* no warning */
168 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
169 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
170 LI_ALARM = (3 << 6), /* alarm condition */
172 /* Mode values */
173 MODE_RES0 = 0, /* reserved */
174 MODE_SYM_ACT = 1, /* symmetric active */
175 MODE_SYM_PAS = 2, /* symmetric passive */
176 MODE_CLIENT = 3, /* client */
177 MODE_SERVER = 4, /* server */
178 MODE_BROADCAST = 5, /* broadcast */
179 MODE_RES1 = 6, /* reserved for NTP control message */
180 MODE_RES2 = 7, /* reserved for private use */
183 //TODO: better base selection
184 #define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
186 #define NUM_DATAPOINTS 8
188 typedef struct {
189 uint32_t int_partl;
190 uint32_t fractionl;
191 } l_fixedpt_t;
193 typedef struct {
194 uint16_t int_parts;
195 uint16_t fractions;
196 } s_fixedpt_t;
198 typedef struct {
199 uint8_t m_status; /* status of local clock and leap info */
200 uint8_t m_stratum;
201 uint8_t m_ppoll; /* poll value */
202 int8_t m_precision_exp;
203 s_fixedpt_t m_rootdelay;
204 s_fixedpt_t m_rootdisp;
205 uint32_t m_refid;
206 l_fixedpt_t m_reftime;
207 l_fixedpt_t m_orgtime;
208 l_fixedpt_t m_rectime;
209 l_fixedpt_t m_xmttime;
210 uint32_t m_keyid;
211 uint8_t m_digest[NTP_DIGESTSIZE];
212 } msg_t;
214 typedef struct {
215 double d_offset;
216 double d_recv_time;
217 double d_dispersion;
218 } datapoint_t;
220 typedef struct {
221 len_and_sockaddr *p_lsa;
222 char *p_dotted;
223 /* when to send new query (if p_fd == -1)
224 * or when receive times out (if p_fd >= 0): */
225 int p_fd;
226 int datapoint_idx;
227 uint32_t lastpkt_refid;
228 uint8_t lastpkt_status;
229 uint8_t lastpkt_stratum;
230 uint8_t reachable_bits;
231 double next_action_time;
232 double p_xmttime;
233 double lastpkt_recv_time;
234 double lastpkt_delay;
235 double lastpkt_rootdelay;
236 double lastpkt_rootdisp;
237 /* produced by filter algorithm: */
238 double filter_offset;
239 double filter_dispersion;
240 double filter_jitter;
241 datapoint_t filter_datapoint[NUM_DATAPOINTS];
242 /* last sent packet: */
243 msg_t p_xmt_msg;
244 } peer_t;
247 #define USING_KERNEL_PLL_LOOP 1
248 #define USING_INITIAL_FREQ_ESTIMATION 0
250 enum {
251 OPT_n = (1 << 0),
252 OPT_q = (1 << 1),
253 OPT_N = (1 << 2),
254 OPT_x = (1 << 3),
255 /* Insert new options above this line. */
256 /* Non-compat options: */
257 OPT_w = (1 << 4),
258 OPT_p = (1 << 5),
259 OPT_S = (1 << 6),
260 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
261 /* We hijack some bits for other purposes */
262 OPT_qq = (1 << 31),
265 struct globals {
266 double cur_time;
267 /* total round trip delay to currently selected reference clock */
268 double rootdelay;
269 /* reference timestamp: time when the system clock was last set or corrected */
270 double reftime;
271 /* total dispersion to currently selected reference clock */
272 double rootdisp;
274 double last_script_run;
275 char *script_name;
276 llist_t *ntp_peers;
277 #if ENABLE_FEATURE_NTPD_SERVER
278 int listen_fd;
279 # define G_listen_fd (G.listen_fd)
280 #else
281 # define G_listen_fd (-1)
282 #endif
283 unsigned verbose;
284 unsigned peer_cnt;
285 /* refid: 32-bit code identifying the particular server or reference clock
286 * in stratum 0 packets this is a four-character ASCII string,
287 * called the kiss code, used for debugging and monitoring
288 * in stratum 1 packets this is a four-character ASCII string
289 * assigned to the reference clock by IANA. Example: "GPS "
290 * in stratum 2+ packets, it's IPv4 address or 4 first bytes
291 * of MD5 hash of IPv6
293 uint32_t refid;
294 uint8_t ntp_status;
295 /* precision is defined as the larger of the resolution and time to
296 * read the clock, in log2 units. For instance, the precision of a
297 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
298 * system clock hardware representation is to the nanosecond.
300 * Delays, jitters of various kinds are clamped down to precision.
302 * If precision_sec is too large, discipline_jitter gets clamped to it
303 * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
304 * interval grows even though we really can benefit from staying at
305 * smaller one, collecting non-lagged datapoits and correcting offset.
306 * (Lagged datapoits exist when poll_exp is large but we still have
307 * systematic offset error - the time distance between datapoints
308 * is significant and older datapoints have smaller offsets.
309 * This makes our offset estimation a bit smaller than reality)
310 * Due to this effect, setting G_precision_sec close to
311 * STEP_THRESHOLD isn't such a good idea - offsets may grow
312 * too big and we will step. I observed it with -6.
314 * OTOH, setting precision_sec far too small would result in futile
315 * attempts to syncronize to an unachievable precision.
317 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
318 * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
319 * -9 is 1/512 ~= 0.001953 (let's try this for some time)
321 #define G_precision_exp -9
323 * G_precision_exp is used only for construction outgoing packets.
324 * It's ok to set G_precision_sec to a slightly different value
325 * (One which is "nicer looking" in logs).
326 * Exact value would be (1.0 / (1 << (- G_precision_exp))):
328 #define G_precision_sec 0.002
329 uint8_t stratum;
330 /* Bool. After set to 1, never goes back to 0: */
331 smallint initial_poll_complete;
333 #define STATE_NSET 0 /* initial state, "nothing is set" */
334 //#define STATE_FSET 1 /* frequency set from file */
335 #define STATE_SPIK 2 /* spike detected */
336 //#define STATE_FREQ 3 /* initial frequency */
337 #define STATE_SYNC 4 /* clock synchronized (normal operation) */
338 uint8_t discipline_state; // doc calls it c.state
339 uint8_t poll_exp; // s.poll
340 int polladj_count; // c.count
341 long kernel_freq_drift;
342 peer_t *last_update_peer;
343 double last_update_offset; // c.last
344 double last_update_recv_time; // s.t
345 double discipline_jitter; // c.jitter
346 /* Since we only compare it with ints, can simplify code
347 * by not making this variable floating point:
349 unsigned offset_to_jitter_ratio;
350 //double cluster_offset; // s.offset
351 //double cluster_jitter; // s.jitter
352 #if !USING_KERNEL_PLL_LOOP
353 double discipline_freq_drift; // c.freq
354 /* Maybe conditionally calculate wander? it's used only for logging */
355 double discipline_wander; // c.wander
356 #endif
358 #define G (*ptr_to_globals)
360 static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
363 #define VERB1 if (MAX_VERBOSE && G.verbose)
364 #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
365 #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
366 #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
367 #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
370 static double LOG2D(int a)
372 if (a < 0)
373 return 1.0 / (1UL << -a);
374 return 1UL << a;
376 static ALWAYS_INLINE double SQUARE(double x)
378 return x * x;
380 static ALWAYS_INLINE double MAXD(double a, double b)
382 if (a > b)
383 return a;
384 return b;
386 static ALWAYS_INLINE double MIND(double a, double b)
388 if (a < b)
389 return a;
390 return b;
392 static NOINLINE double my_SQRT(double X)
394 union {
395 float f;
396 int32_t i;
397 } v;
398 double invsqrt;
399 double Xhalf = X * 0.5;
401 /* Fast and good approximation to 1/sqrt(X), black magic */
402 v.f = X;
403 /*v.i = 0x5f3759df - (v.i >> 1);*/
404 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
405 invsqrt = v.f; /* better than 0.2% accuracy */
407 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
408 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
409 * f'(x) = -2/(x*x*x)
410 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
411 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
413 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
414 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
415 /* With 4 iterations, more than half results will be exact,
416 * at 6th iterations result stabilizes with about 72% results exact.
417 * We are well satisfied with 0.05% accuracy.
420 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
422 static ALWAYS_INLINE double SQRT(double X)
424 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
425 if (sizeof(float) != 4)
426 return sqrt(X);
428 /* This avoids needing libm, saves about 0.5k on x86-32 */
429 return my_SQRT(X);
432 static double
433 gettime1900d(void)
435 struct timeval tv;
436 gettimeofday(&tv, NULL); /* never fails */
437 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
438 return G.cur_time;
441 static void
442 d_to_tv(double d, struct timeval *tv)
444 tv->tv_sec = (long)d;
445 tv->tv_usec = (d - tv->tv_sec) * 1000000;
448 static double
449 lfp_to_d(l_fixedpt_t lfp)
451 double ret;
452 lfp.int_partl = ntohl(lfp.int_partl);
453 lfp.fractionl = ntohl(lfp.fractionl);
454 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
455 return ret;
457 static double
458 sfp_to_d(s_fixedpt_t sfp)
460 double ret;
461 sfp.int_parts = ntohs(sfp.int_parts);
462 sfp.fractions = ntohs(sfp.fractions);
463 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
464 return ret;
466 #if ENABLE_FEATURE_NTPD_SERVER
467 static l_fixedpt_t
468 d_to_lfp(double d)
470 l_fixedpt_t lfp;
471 lfp.int_partl = (uint32_t)d;
472 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
473 lfp.int_partl = htonl(lfp.int_partl);
474 lfp.fractionl = htonl(lfp.fractionl);
475 return lfp;
477 static s_fixedpt_t
478 d_to_sfp(double d)
480 s_fixedpt_t sfp;
481 sfp.int_parts = (uint16_t)d;
482 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
483 sfp.int_parts = htons(sfp.int_parts);
484 sfp.fractions = htons(sfp.fractions);
485 return sfp;
487 #endif
489 static double
490 dispersion(const datapoint_t *dp)
492 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
495 static double
496 root_distance(peer_t *p)
498 /* The root synchronization distance is the maximum error due to
499 * all causes of the local clock relative to the primary server.
500 * It is defined as half the total delay plus total dispersion
501 * plus peer jitter.
503 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
504 + p->lastpkt_rootdisp
505 + p->filter_dispersion
506 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
507 + p->filter_jitter;
510 static void
511 set_next(peer_t *p, unsigned t)
513 p->next_action_time = G.cur_time + t;
517 * Peer clock filter and its helpers
519 static void
520 filter_datapoints(peer_t *p)
522 int i, idx;
523 double sum, wavg;
524 datapoint_t *fdp;
526 #if 0
527 /* Simulations have shown that use of *averaged* offset for p->filter_offset
528 * is in fact worse than simply using last received one: with large poll intervals
529 * (>= 2048) averaging code uses offset values which are outdated by hours,
530 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
532 int got_newest;
533 double minoff, maxoff, w;
534 double x = x; /* for compiler */
535 double oldest_off = oldest_off;
536 double oldest_age = oldest_age;
537 double newest_off = newest_off;
538 double newest_age = newest_age;
540 fdp = p->filter_datapoint;
542 minoff = maxoff = fdp[0].d_offset;
543 for (i = 1; i < NUM_DATAPOINTS; i++) {
544 if (minoff > fdp[i].d_offset)
545 minoff = fdp[i].d_offset;
546 if (maxoff < fdp[i].d_offset)
547 maxoff = fdp[i].d_offset;
550 idx = p->datapoint_idx; /* most recent datapoint's index */
551 /* Average offset:
552 * Drop two outliers and take weighted average of the rest:
553 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
554 * we use older6/32, not older6/64 since sum of weights should be 1:
555 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
557 wavg = 0;
558 w = 0.5;
559 /* n-1
560 * --- dispersion(i)
561 * filter_dispersion = \ -------------
562 * / (i+1)
563 * --- 2
564 * i=0
566 got_newest = 0;
567 sum = 0;
568 for (i = 0; i < NUM_DATAPOINTS; i++) {
569 VERB4 {
570 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
572 fdp[idx].d_offset,
573 fdp[idx].d_dispersion, dispersion(&fdp[idx]),
574 G.cur_time - fdp[idx].d_recv_time,
575 (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
576 ? " (outlier by offset)" : ""
580 sum += dispersion(&fdp[idx]) / (2 << i);
582 if (minoff == fdp[idx].d_offset) {
583 minoff -= 1; /* so that we don't match it ever again */
584 } else
585 if (maxoff == fdp[idx].d_offset) {
586 maxoff += 1;
587 } else {
588 oldest_off = fdp[idx].d_offset;
589 oldest_age = G.cur_time - fdp[idx].d_recv_time;
590 if (!got_newest) {
591 got_newest = 1;
592 newest_off = oldest_off;
593 newest_age = oldest_age;
595 x = oldest_off * w;
596 wavg += x;
597 w /= 2;
600 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
602 p->filter_dispersion = sum;
603 wavg += x; /* add another older6/64 to form older6/32 */
604 /* Fix systematic underestimation with large poll intervals.
605 * Imagine that we still have a bit of uncorrected drift,
606 * and poll interval is big (say, 100 sec). Offsets form a progression:
607 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
608 * The algorithm above drops 0.0 and 0.7 as outliers,
609 * and then we have this estimation, ~25% off from 0.7:
610 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
612 x = oldest_age - newest_age;
613 if (x != 0) {
614 x = newest_age / x; /* in above example, 100 / (600 - 100) */
615 if (x < 1) { /* paranoia check */
616 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
617 wavg += x;
620 p->filter_offset = wavg;
622 #else
624 fdp = p->filter_datapoint;
625 idx = p->datapoint_idx; /* most recent datapoint's index */
627 /* filter_offset: simply use the most recent value */
628 p->filter_offset = fdp[idx].d_offset;
630 /* n-1
631 * --- dispersion(i)
632 * filter_dispersion = \ -------------
633 * / (i+1)
634 * --- 2
635 * i=0
637 wavg = 0;
638 sum = 0;
639 for (i = 0; i < NUM_DATAPOINTS; i++) {
640 sum += dispersion(&fdp[idx]) / (2 << i);
641 wavg += fdp[idx].d_offset;
642 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
644 wavg /= NUM_DATAPOINTS;
645 p->filter_dispersion = sum;
646 #endif
648 /* +----- -----+ ^ 1/2
649 * | n-1 |
650 * | --- |
651 * | 1 \ 2 |
652 * filter_jitter = | --- * / (avg-offset_j) |
653 * | n --- |
654 * | j=0 |
655 * +----- -----+
656 * where n is the number of valid datapoints in the filter (n > 1);
657 * if filter_jitter < precision then filter_jitter = precision
659 sum = 0;
660 for (i = 0; i < NUM_DATAPOINTS; i++) {
661 sum += SQUARE(wavg - fdp[i].d_offset);
663 sum = SQRT(sum / NUM_DATAPOINTS);
664 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
666 VERB3 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
667 p->filter_offset,
668 p->filter_dispersion,
669 p->filter_jitter);
672 static void
673 reset_peer_stats(peer_t *p, double offset)
675 int i;
676 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
678 for (i = 0; i < NUM_DATAPOINTS; i++) {
679 if (small_ofs) {
680 p->filter_datapoint[i].d_recv_time += offset;
681 if (p->filter_datapoint[i].d_offset != 0) {
682 p->filter_datapoint[i].d_offset -= offset;
683 //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
684 // i,
685 // p->filter_datapoint[i].d_offset + offset,
686 // p->filter_datapoint[i].d_offset);
688 } else {
689 p->filter_datapoint[i].d_recv_time = G.cur_time;
690 p->filter_datapoint[i].d_offset = 0;
691 p->filter_datapoint[i].d_dispersion = MAXDISP;
694 if (small_ofs) {
695 p->lastpkt_recv_time += offset;
696 } else {
697 p->reachable_bits = 0;
698 p->lastpkt_recv_time = G.cur_time;
700 filter_datapoints(p); /* recalc p->filter_xxx */
701 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
704 static void
705 add_peers(char *s)
707 peer_t *p;
709 p = xzalloc(sizeof(*p));
710 p->p_lsa = xhost2sockaddr(s, 123);
711 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
712 p->p_fd = -1;
713 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
714 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
715 reset_peer_stats(p, 16 * STEP_THRESHOLD);
717 llist_add_to(&G.ntp_peers, p);
718 G.peer_cnt++;
721 static int
722 do_sendto(int fd,
723 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
724 msg_t *msg, ssize_t len)
726 ssize_t ret;
728 errno = 0;
729 if (!from) {
730 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
731 } else {
732 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
734 if (ret != len) {
735 bb_perror_msg("send failed");
736 return -1;
738 return 0;
741 static void
742 send_query_to_peer(peer_t *p)
744 /* Why do we need to bind()?
745 * See what happens when we don't bind:
747 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
748 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
749 * gettimeofday({1259071266, 327885}, NULL) = 0
750 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
751 * ^^^ we sent it from some source port picked by kernel.
752 * time(NULL) = 1259071266
753 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
754 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
755 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
756 * ^^^ this recv will receive packets to any local port!
758 * Uncomment this and use strace to see it in action:
760 #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
762 if (p->p_fd == -1) {
763 int fd, family;
764 len_and_sockaddr *local_lsa;
766 family = p->p_lsa->u.sa.sa_family;
767 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
768 /* local_lsa has "null" address and port 0 now.
769 * bind() ensures we have a *particular port* selected by kernel
770 * and remembered in p->p_fd, thus later recv(p->p_fd)
771 * receives only packets sent to this port.
773 PROBE_LOCAL_ADDR
774 xbind(fd, &local_lsa->u.sa, local_lsa->len);
775 PROBE_LOCAL_ADDR
776 #if ENABLE_FEATURE_IPV6
777 if (family == AF_INET)
778 #endif
779 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
780 free(local_lsa);
783 /* Emit message _before_ attempted send. Think of a very short
784 * roundtrip networks: we need to go back to recv loop ASAP,
785 * to reduce delay. Printing messages after send works against that.
787 VERB1 bb_error_msg("sending query to %s", p->p_dotted);
790 * Send out a random 64-bit number as our transmit time. The NTP
791 * server will copy said number into the originate field on the
792 * response that it sends us. This is totally legal per the SNTP spec.
794 * The impact of this is two fold: we no longer send out the current
795 * system time for the world to see (which may aid an attacker), and
796 * it gives us a (not very secure) way of knowing that we're not
797 * getting spoofed by an attacker that can't capture our traffic
798 * but can spoof packets from the NTP server we're communicating with.
800 * Save the real transmit timestamp locally.
802 p->p_xmt_msg.m_xmttime.int_partl = random();
803 p->p_xmt_msg.m_xmttime.fractionl = random();
804 p->p_xmttime = gettime1900d();
806 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
807 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
809 close(p->p_fd);
810 p->p_fd = -1;
811 set_next(p, RETRY_INTERVAL);
812 return;
815 p->reachable_bits <<= 1;
816 set_next(p, RESPONSE_INTERVAL);
820 /* Note that there is no provision to prevent several run_scripts
821 * to be done in quick succession. In fact, it happens rather often
822 * if initial syncronization results in a step.
823 * You will see "step" and then "stratum" script runs, sometimes
824 * as close as only 0.002 seconds apart.
825 * Script should be ready to deal with this.
827 static void run_script(const char *action, double offset)
829 char *argv[3];
830 char *env1, *env2, *env3, *env4;
832 if (!G.script_name)
833 return;
835 argv[0] = (char*) G.script_name;
836 argv[1] = (char*) action;
837 argv[2] = NULL;
839 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
841 env1 = xasprintf("%s=%u", "stratum", G.stratum);
842 putenv(env1);
843 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
844 putenv(env2);
845 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
846 putenv(env3);
847 env4 = xasprintf("%s=%f", "offset", offset);
848 putenv(env4);
849 /* Other items of potential interest: selected peer,
850 * rootdelay, reftime, rootdisp, refid, ntp_status,
851 * last_update_offset, last_update_recv_time, discipline_jitter,
852 * how many peers have reachable_bits = 0?
855 /* Don't want to wait: it may run hwclock --systohc, and that
856 * may take some time (seconds): */
857 /*spawn_and_wait(argv);*/
858 spawn(argv);
860 unsetenv("stratum");
861 unsetenv("freq_drift_ppm");
862 unsetenv("poll_interval");
863 unsetenv("offset");
864 free(env1);
865 free(env2);
866 free(env3);
867 free(env4);
869 G.last_script_run = G.cur_time;
872 static NOINLINE void
873 step_time(double offset)
875 llist_t *item;
876 double dtime;
877 struct timeval tvc, tvn;
878 char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
879 time_t tval;
881 gettimeofday(&tvc, NULL); /* never fails */
882 dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
883 d_to_tv(dtime, &tvn);
884 if (settimeofday(&tvn, NULL) == -1)
885 bb_perror_msg_and_die("settimeofday");
887 VERB2 {
888 tval = tvc.tv_sec;
889 strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", localtime(&tval));
890 bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
892 tval = tvn.tv_sec;
893 strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", localtime(&tval));
894 bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
896 /* Correct various fields which contain time-relative values: */
898 /* p->lastpkt_recv_time, p->next_action_time and such: */
899 for (item = G.ntp_peers; item != NULL; item = item->link) {
900 peer_t *pp = (peer_t *) item->data;
901 reset_peer_stats(pp, offset);
902 //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
903 // offset, pp->next_action_time, pp->next_action_time + offset);
904 pp->next_action_time += offset;
906 /* Globals: */
907 G.cur_time += offset;
908 G.last_update_recv_time += offset;
909 G.last_script_run += offset;
914 * Selection and clustering, and their helpers
916 typedef struct {
917 peer_t *p;
918 int type;
919 double edge;
920 double opt_rd; /* optimization */
921 } point_t;
922 static int
923 compare_point_edge(const void *aa, const void *bb)
925 const point_t *a = aa;
926 const point_t *b = bb;
927 if (a->edge < b->edge) {
928 return -1;
930 return (a->edge > b->edge);
932 typedef struct {
933 peer_t *p;
934 double metric;
935 } survivor_t;
936 static int
937 compare_survivor_metric(const void *aa, const void *bb)
939 const survivor_t *a = aa;
940 const survivor_t *b = bb;
941 if (a->metric < b->metric) {
942 return -1;
944 return (a->metric > b->metric);
946 static int
947 fit(peer_t *p, double rd)
949 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
950 /* One or zero bits in reachable_bits */
951 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
952 return 0;
954 #if 0 /* we filter out such packets earlier */
955 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
956 || p->lastpkt_stratum >= MAXSTRAT
958 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
959 return 0;
961 #endif
962 /* rd is root_distance(p) */
963 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
964 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
965 return 0;
967 //TODO
968 // /* Do we have a loop? */
969 // if (p->refid == p->dstaddr || p->refid == s.refid)
970 // return 0;
971 return 1;
973 static peer_t*
974 select_and_cluster(void)
976 peer_t *p;
977 llist_t *item;
978 int i, j;
979 int size = 3 * G.peer_cnt;
980 /* for selection algorithm */
981 point_t point[size];
982 unsigned num_points, num_candidates;
983 double low, high;
984 unsigned num_falsetickers;
985 /* for cluster algorithm */
986 survivor_t survivor[size];
987 unsigned num_survivors;
989 /* Selection */
991 num_points = 0;
992 item = G.ntp_peers;
993 if (G.initial_poll_complete) while (item != NULL) {
994 double rd, offset;
996 p = (peer_t *) item->data;
997 rd = root_distance(p);
998 offset = p->filter_offset;
999 if (!fit(p, rd)) {
1000 item = item->link;
1001 continue;
1004 VERB4 bb_error_msg("interval: [%f %f %f] %s",
1005 offset - rd,
1006 offset,
1007 offset + rd,
1008 p->p_dotted
1010 point[num_points].p = p;
1011 point[num_points].type = -1;
1012 point[num_points].edge = offset - rd;
1013 point[num_points].opt_rd = rd;
1014 num_points++;
1015 point[num_points].p = p;
1016 point[num_points].type = 0;
1017 point[num_points].edge = offset;
1018 point[num_points].opt_rd = rd;
1019 num_points++;
1020 point[num_points].p = p;
1021 point[num_points].type = 1;
1022 point[num_points].edge = offset + rd;
1023 point[num_points].opt_rd = rd;
1024 num_points++;
1025 item = item->link;
1027 num_candidates = num_points / 3;
1028 if (num_candidates == 0) {
1029 VERB3 bb_error_msg("no valid datapoints, no peer selected");
1030 return NULL;
1032 //TODO: sorting does not seem to be done in reference code
1033 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1035 /* Start with the assumption that there are no falsetickers.
1036 * Attempt to find a nonempty intersection interval containing
1037 * the midpoints of all truechimers.
1038 * If a nonempty interval cannot be found, increase the number
1039 * of assumed falsetickers by one and try again.
1040 * If a nonempty interval is found and the number of falsetickers
1041 * is less than the number of truechimers, a majority has been found
1042 * and the midpoint of each truechimer represents
1043 * the candidates available to the cluster algorithm.
1045 num_falsetickers = 0;
1046 while (1) {
1047 int c;
1048 unsigned num_midpoints = 0;
1050 low = 1 << 9;
1051 high = - (1 << 9);
1052 c = 0;
1053 for (i = 0; i < num_points; i++) {
1054 /* We want to do:
1055 * if (point[i].type == -1) c++;
1056 * if (point[i].type == 1) c--;
1057 * and it's simpler to do it this way:
1059 c -= point[i].type;
1060 if (c >= num_candidates - num_falsetickers) {
1061 /* If it was c++ and it got big enough... */
1062 low = point[i].edge;
1063 break;
1065 if (point[i].type == 0)
1066 num_midpoints++;
1068 c = 0;
1069 for (i = num_points-1; i >= 0; i--) {
1070 c += point[i].type;
1071 if (c >= num_candidates - num_falsetickers) {
1072 high = point[i].edge;
1073 break;
1075 if (point[i].type == 0)
1076 num_midpoints++;
1078 /* If the number of midpoints is greater than the number
1079 * of allowed falsetickers, the intersection contains at
1080 * least one truechimer with no midpoint - bad.
1081 * Also, interval should be nonempty.
1083 if (num_midpoints <= num_falsetickers && low < high)
1084 break;
1085 num_falsetickers++;
1086 if (num_falsetickers * 2 >= num_candidates) {
1087 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1088 num_falsetickers, num_candidates);
1089 return NULL;
1092 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1093 low, high, num_candidates, num_falsetickers);
1095 /* Clustering */
1097 /* Construct a list of survivors (p, metric)
1098 * from the chime list, where metric is dominated
1099 * first by stratum and then by root distance.
1100 * All other things being equal, this is the order of preference.
1102 num_survivors = 0;
1103 for (i = 0; i < num_points; i++) {
1104 if (point[i].edge < low || point[i].edge > high)
1105 continue;
1106 p = point[i].p;
1107 survivor[num_survivors].p = p;
1108 /* x.opt_rd == root_distance(p); */
1109 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1110 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1111 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1112 num_survivors++;
1114 /* There must be at least MIN_SELECTED survivors to satisfy the
1115 * correctness assertions. Ordinarily, the Byzantine criteria
1116 * require four survivors, but for the demonstration here, one
1117 * is acceptable.
1119 if (num_survivors < MIN_SELECTED) {
1120 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1121 num_survivors, MIN_SELECTED);
1122 return NULL;
1125 //looks like this is ONLY used by the fact that later we pick survivor[0].
1126 //we can avoid sorting then, just find the minimum once!
1127 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1129 /* For each association p in turn, calculate the selection
1130 * jitter p->sjitter as the square root of the sum of squares
1131 * (p->offset - q->offset) over all q associations. The idea is
1132 * to repeatedly discard the survivor with maximum selection
1133 * jitter until a termination condition is met.
1135 while (1) {
1136 unsigned max_idx = max_idx;
1137 double max_selection_jitter = max_selection_jitter;
1138 double min_jitter = min_jitter;
1140 if (num_survivors <= MIN_CLUSTERED) {
1141 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
1142 num_survivors, MIN_CLUSTERED);
1143 break;
1146 /* To make sure a few survivors are left
1147 * for the clustering algorithm to chew on,
1148 * we stop if the number of survivors
1149 * is less than or equal to MIN_CLUSTERED (3).
1151 for (i = 0; i < num_survivors; i++) {
1152 double selection_jitter_sq;
1154 p = survivor[i].p;
1155 if (i == 0 || p->filter_jitter < min_jitter)
1156 min_jitter = p->filter_jitter;
1158 selection_jitter_sq = 0;
1159 for (j = 0; j < num_survivors; j++) {
1160 peer_t *q = survivor[j].p;
1161 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1163 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1164 max_selection_jitter = selection_jitter_sq;
1165 max_idx = i;
1167 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1168 i, selection_jitter_sq);
1170 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1171 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1172 max_idx, max_selection_jitter, min_jitter);
1174 /* If the maximum selection jitter is less than the
1175 * minimum peer jitter, then tossing out more survivors
1176 * will not lower the minimum peer jitter, so we might
1177 * as well stop.
1179 if (max_selection_jitter < min_jitter) {
1180 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1181 max_selection_jitter, min_jitter, num_survivors);
1182 break;
1185 /* Delete survivor[max_idx] from the list
1186 * and go around again.
1188 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1189 num_survivors--;
1190 while (max_idx < num_survivors) {
1191 survivor[max_idx] = survivor[max_idx + 1];
1192 max_idx++;
1196 if (0) {
1197 /* Combine the offsets of the clustering algorithm survivors
1198 * using a weighted average with weight determined by the root
1199 * distance. Compute the selection jitter as the weighted RMS
1200 * difference between the first survivor and the remaining
1201 * survivors. In some cases the inherent clock jitter can be
1202 * reduced by not using this algorithm, especially when frequent
1203 * clockhopping is involved. bbox: thus we don't do it.
1205 double x, y, z, w;
1206 y = z = w = 0;
1207 for (i = 0; i < num_survivors; i++) {
1208 p = survivor[i].p;
1209 x = root_distance(p);
1210 y += 1 / x;
1211 z += p->filter_offset / x;
1212 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1214 //G.cluster_offset = z / y;
1215 //G.cluster_jitter = SQRT(w / y);
1218 /* Pick the best clock. If the old system peer is on the list
1219 * and at the same stratum as the first survivor on the list,
1220 * then don't do a clock hop. Otherwise, select the first
1221 * survivor on the list as the new system peer.
1223 p = survivor[0].p;
1224 if (G.last_update_peer
1225 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1227 /* Starting from 1 is ok here */
1228 for (i = 1; i < num_survivors; i++) {
1229 if (G.last_update_peer == survivor[i].p) {
1230 VERB4 bb_error_msg("keeping old synced peer");
1231 p = G.last_update_peer;
1232 goto keep_old;
1236 G.last_update_peer = p;
1237 keep_old:
1238 VERB3 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1239 p->p_dotted,
1240 p->filter_offset,
1241 G.cur_time - p->lastpkt_recv_time
1243 return p;
1248 * Local clock discipline and its helpers
1250 static void
1251 set_new_values(int disc_state, double offset, double recv_time)
1253 /* Enter new state and set state variables. Note we use the time
1254 * of the last clock filter sample, which must be earlier than
1255 * the current time.
1257 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1258 disc_state, offset, recv_time);
1259 G.discipline_state = disc_state;
1260 G.last_update_offset = offset;
1261 G.last_update_recv_time = recv_time;
1263 /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1264 static NOINLINE int
1265 update_local_clock(peer_t *p)
1267 int rc;
1268 struct timex tmx;
1269 /* Note: can use G.cluster_offset instead: */
1270 double offset = p->filter_offset;
1271 double recv_time = p->lastpkt_recv_time;
1272 double abs_offset;
1273 #if !USING_KERNEL_PLL_LOOP
1274 double freq_drift;
1275 #endif
1276 double since_last_update;
1277 double etemp, dtemp;
1279 abs_offset = fabs(offset);
1281 #if 0
1282 /* If needed, -S script can do it by looking at $offset
1283 * env var and killing parent */
1284 /* If the offset is too large, give up and go home */
1285 if (abs_offset > PANIC_THRESHOLD) {
1286 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1288 #endif
1290 /* If this is an old update, for instance as the result
1291 * of a system peer change, avoid it. We never use
1292 * an old sample or the same sample twice.
1294 if (recv_time <= G.last_update_recv_time) {
1295 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1296 G.last_update_recv_time, recv_time);
1297 return 0; /* "leave poll interval as is" */
1300 /* Clock state machine transition function. This is where the
1301 * action is and defines how the system reacts to large time
1302 * and frequency errors.
1304 since_last_update = recv_time - G.reftime;
1305 #if !USING_KERNEL_PLL_LOOP
1306 freq_drift = 0;
1307 #endif
1308 #if USING_INITIAL_FREQ_ESTIMATION
1309 if (G.discipline_state == STATE_FREQ) {
1310 /* Ignore updates until the stepout threshold */
1311 if (since_last_update < WATCH_THRESHOLD) {
1312 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1313 WATCH_THRESHOLD - since_last_update);
1314 return 0; /* "leave poll interval as is" */
1316 # if !USING_KERNEL_PLL_LOOP
1317 freq_drift = (offset - G.last_update_offset) / since_last_update;
1318 # endif
1320 #endif
1322 /* There are two main regimes: when the
1323 * offset exceeds the step threshold and when it does not.
1325 if (abs_offset > STEP_THRESHOLD) {
1326 switch (G.discipline_state) {
1327 case STATE_SYNC:
1328 /* The first outlyer: ignore it, switch to SPIK state */
1329 VERB3 bb_error_msg("offset:%+f - spike detected", offset);
1330 G.discipline_state = STATE_SPIK;
1331 return -1; /* "decrease poll interval" */
1333 case STATE_SPIK:
1334 /* Ignore succeeding outlyers until either an inlyer
1335 * is found or the stepout threshold is exceeded.
1337 if (since_last_update < WATCH_THRESHOLD) {
1338 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1339 WATCH_THRESHOLD - since_last_update);
1340 return -1; /* "decrease poll interval" */
1342 /* fall through: we need to step */
1343 } /* switch */
1345 /* Step the time and clamp down the poll interval.
1347 * In NSET state an initial frequency correction is
1348 * not available, usually because the frequency file has
1349 * not yet been written. Since the time is outside the
1350 * capture range, the clock is stepped. The frequency
1351 * will be set directly following the stepout interval.
1353 * In FSET state the initial frequency has been set
1354 * from the frequency file. Since the time is outside
1355 * the capture range, the clock is stepped immediately,
1356 * rather than after the stepout interval. Guys get
1357 * nervous if it takes 17 minutes to set the clock for
1358 * the first time.
1360 * In SPIK state the stepout threshold has expired and
1361 * the phase is still above the step threshold. Note
1362 * that a single spike greater than the step threshold
1363 * is always suppressed, even at the longer poll
1364 * intervals.
1366 VERB3 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1367 step_time(offset);
1368 if (option_mask32 & OPT_q) {
1369 /* We were only asked to set time once. Done. */
1370 exit(0);
1373 G.polladj_count = 0;
1374 G.poll_exp = MINPOLL;
1375 G.stratum = MAXSTRAT;
1377 run_script("step", offset);
1379 #if USING_INITIAL_FREQ_ESTIMATION
1380 if (G.discipline_state == STATE_NSET) {
1381 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1382 return 1; /* "ok to increase poll interval" */
1384 #endif
1385 abs_offset = offset = 0;
1386 set_new_values(STATE_SYNC, offset, recv_time);
1388 } else { /* abs_offset <= STEP_THRESHOLD */
1390 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1391 VERB3 bb_error_msg("small offset:%+f, disabling burst mode", offset);
1392 G.polladj_count = 0;
1393 G.poll_exp = MINPOLL;
1396 /* Compute the clock jitter as the RMS of exponentially
1397 * weighted offset differences. Used by the poll adjust code.
1399 etemp = SQUARE(G.discipline_jitter);
1400 dtemp = SQUARE(offset - G.last_update_offset);
1401 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1403 switch (G.discipline_state) {
1404 case STATE_NSET:
1405 if (option_mask32 & OPT_q) {
1406 /* We were only asked to set time once.
1407 * The clock is precise enough, no need to step.
1409 exit(0);
1411 #if USING_INITIAL_FREQ_ESTIMATION
1412 /* This is the first update received and the frequency
1413 * has not been initialized. The first thing to do
1414 * is directly measure the oscillator frequency.
1416 set_new_values(STATE_FREQ, offset, recv_time);
1417 #else
1418 set_new_values(STATE_SYNC, offset, recv_time);
1419 #endif
1420 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1421 return 0; /* "leave poll interval as is" */
1423 #if 0 /* this is dead code for now */
1424 case STATE_FSET:
1425 /* This is the first update and the frequency
1426 * has been initialized. Adjust the phase, but
1427 * don't adjust the frequency until the next update.
1429 set_new_values(STATE_SYNC, offset, recv_time);
1430 /* freq_drift remains 0 */
1431 break;
1432 #endif
1434 #if USING_INITIAL_FREQ_ESTIMATION
1435 case STATE_FREQ:
1436 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1437 * Correct the phase and frequency and switch to SYNC state.
1438 * freq_drift was already estimated (see code above)
1440 set_new_values(STATE_SYNC, offset, recv_time);
1441 break;
1442 #endif
1444 default:
1445 #if !USING_KERNEL_PLL_LOOP
1446 /* Compute freq_drift due to PLL and FLL contributions.
1448 * The FLL and PLL frequency gain constants
1449 * depend on the poll interval and Allan
1450 * intercept. The FLL is not used below one-half
1451 * the Allan intercept. Above that the loop gain
1452 * increases in steps to 1 / AVG.
1454 if ((1 << G.poll_exp) > ALLAN / 2) {
1455 etemp = FLL - G.poll_exp;
1456 if (etemp < AVG)
1457 etemp = AVG;
1458 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1460 /* For the PLL the integration interval
1461 * (numerator) is the minimum of the update
1462 * interval and poll interval. This allows
1463 * oversampling, but not undersampling.
1465 etemp = MIND(since_last_update, (1 << G.poll_exp));
1466 dtemp = (4 * PLL) << G.poll_exp;
1467 freq_drift += offset * etemp / SQUARE(dtemp);
1468 #endif
1469 set_new_values(STATE_SYNC, offset, recv_time);
1470 break;
1472 if (G.stratum != p->lastpkt_stratum + 1) {
1473 G.stratum = p->lastpkt_stratum + 1;
1474 run_script("stratum", offset);
1478 if (G.discipline_jitter < G_precision_sec)
1479 G.discipline_jitter = G_precision_sec;
1480 G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1482 G.reftime = G.cur_time;
1483 G.ntp_status = p->lastpkt_status;
1484 G.refid = p->lastpkt_refid;
1485 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1486 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1487 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1488 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1489 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1491 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1492 * (Any other state does not reach this, they all return earlier)
1493 * By this time, freq_drift and offset are set
1494 * to values suitable for adjtimex.
1496 #if !USING_KERNEL_PLL_LOOP
1497 /* Calculate the new frequency drift and frequency stability (wander).
1498 * Compute the clock wander as the RMS of exponentially weighted
1499 * frequency differences. This is not used directly, but can,
1500 * along with the jitter, be a highly useful monitoring and
1501 * debugging tool.
1503 dtemp = G.discipline_freq_drift + freq_drift;
1504 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1505 etemp = SQUARE(G.discipline_wander);
1506 dtemp = SQUARE(dtemp);
1507 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1509 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1510 G.discipline_freq_drift,
1511 (long)(G.discipline_freq_drift * 65536e6),
1512 freq_drift,
1513 G.discipline_wander);
1514 #endif
1515 VERB3 {
1516 memset(&tmx, 0, sizeof(tmx));
1517 if (adjtimex(&tmx) < 0)
1518 bb_perror_msg_and_die("adjtimex");
1519 bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1520 tmx.freq, tmx.offset, tmx.status, tmx.constant);
1523 memset(&tmx, 0, sizeof(tmx));
1524 #if 0
1525 //doesn't work, offset remains 0 (!) in kernel:
1526 //ntpd: set adjtimex freq:1786097 tmx.offset:77487
1527 //ntpd: prev adjtimex freq:1786097 tmx.offset:0
1528 //ntpd: cur adjtimex freq:1786097 tmx.offset:0
1529 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1530 /* 65536 is one ppm */
1531 tmx.freq = G.discipline_freq_drift * 65536e6;
1532 #endif
1533 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1534 tmx.offset = (offset * 1000000); /* usec */
1535 tmx.status = STA_PLL;
1536 if (G.ntp_status & LI_PLUSSEC)
1537 tmx.status |= STA_INS;
1538 if (G.ntp_status & LI_MINUSSEC)
1539 tmx.status |= STA_DEL;
1541 tmx.constant = G.poll_exp - 4;
1542 /* EXPERIMENTAL.
1543 * The below if statement should be unnecessary, but...
1544 * It looks like Linux kernel's PLL is far too gentle in changing
1545 * tmx.freq in response to clock offset. Offset keeps growing
1546 * and eventually we fall back to smaller poll intervals.
1547 * We can make correction more agressive (about x2) by supplying
1548 * PLL time constant which is one less than the real one.
1549 * To be on a safe side, let's do it only if offset is significantly
1550 * larger than jitter.
1552 if (tmx.constant > 0 && G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1553 tmx.constant--;
1555 //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1556 //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1557 rc = adjtimex(&tmx);
1558 if (rc < 0)
1559 bb_perror_msg_and_die("adjtimex");
1560 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1561 * Not sure why. Perhaps it is normal.
1563 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1564 rc, tmx.freq, tmx.offset, tmx.status);
1565 G.kernel_freq_drift = tmx.freq / 65536;
1566 VERB2 bb_error_msg("update from:%s offset:%+f jitter:%f clock drift:%+.3fppm tc:%d",
1567 p->p_dotted, offset, G.discipline_jitter, (double)tmx.freq / 65536, (int)tmx.constant);
1569 return 1; /* "ok to increase poll interval" */
1574 * We've got a new reply packet from a peer, process it
1575 * (helpers first)
1577 static unsigned
1578 retry_interval(void)
1580 /* Local problem, want to retry soon */
1581 unsigned interval, r;
1582 interval = RETRY_INTERVAL;
1583 r = random();
1584 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1585 VERB3 bb_error_msg("chose retry interval:%u", interval);
1586 return interval;
1588 static unsigned
1589 poll_interval(int exponent)
1591 unsigned interval, r;
1592 exponent = G.poll_exp + exponent;
1593 if (exponent < 0)
1594 exponent = 0;
1595 interval = 1 << exponent;
1596 r = random();
1597 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1598 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1599 return interval;
1601 static NOINLINE void
1602 recv_and_process_peer_pkt(peer_t *p)
1604 int rc;
1605 ssize_t size;
1606 msg_t msg;
1607 double T1, T2, T3, T4;
1608 unsigned interval;
1609 datapoint_t *datapoint;
1610 peer_t *q;
1612 /* We can recvfrom here and check from.IP, but some multihomed
1613 * ntp servers reply from their *other IP*.
1614 * TODO: maybe we should check at least what we can: from.port == 123?
1616 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1617 if (size == -1) {
1618 bb_perror_msg("recv(%s) error", p->p_dotted);
1619 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1620 || errno == ENETUNREACH || errno == ENETDOWN
1621 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1622 || errno == EAGAIN
1624 //TODO: always do this?
1625 interval = retry_interval();
1626 goto set_next_and_close_sock;
1628 xfunc_die();
1631 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1632 bb_error_msg("malformed packet received from %s", p->p_dotted);
1633 goto bail;
1636 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1637 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1639 goto bail;
1642 if ((msg.m_status & LI_ALARM) == LI_ALARM
1643 || msg.m_stratum == 0
1644 || msg.m_stratum > NTP_MAXSTRATUM
1646 // TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1647 // "DENY", "RSTR" - peer does not like us at all
1648 // "RATE" - peer is overloaded, reduce polling freq
1649 interval = poll_interval(0);
1650 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1651 goto set_next_and_close_sock;
1654 // /* Verify valid root distance */
1655 // if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1656 // return; /* invalid header values */
1658 p->lastpkt_status = msg.m_status;
1659 p->lastpkt_stratum = msg.m_stratum;
1660 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1661 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1662 p->lastpkt_refid = msg.m_refid;
1665 * From RFC 2030 (with a correction to the delay math):
1667 * Timestamp Name ID When Generated
1668 * ------------------------------------------------------------
1669 * Originate Timestamp T1 time request sent by client
1670 * Receive Timestamp T2 time request received by server
1671 * Transmit Timestamp T3 time reply sent by server
1672 * Destination Timestamp T4 time reply received by client
1674 * The roundtrip delay and local clock offset are defined as
1676 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1678 T1 = p->p_xmttime;
1679 T2 = lfp_to_d(msg.m_rectime);
1680 T3 = lfp_to_d(msg.m_xmttime);
1681 T4 = G.cur_time;
1683 p->lastpkt_recv_time = T4;
1685 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1686 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1687 datapoint = &p->filter_datapoint[p->datapoint_idx];
1688 datapoint->d_recv_time = T4;
1689 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1690 /* The delay calculation is a special case. In cases where the
1691 * server and client clocks are running at different rates and
1692 * with very fast networks, the delay can appear negative. In
1693 * order to avoid violating the Principle of Least Astonishment,
1694 * the delay is clamped not less than the system precision.
1696 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1697 if (p->lastpkt_delay < G_precision_sec)
1698 p->lastpkt_delay = G_precision_sec;
1699 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1700 if (!p->reachable_bits) {
1701 /* 1st datapoint ever - replicate offset in every element */
1702 int i;
1703 for (i = 0; i < NUM_DATAPOINTS; i++) {
1704 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1708 p->reachable_bits |= 1;
1709 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1710 bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
1711 p->p_dotted,
1712 datapoint->d_offset,
1713 p->lastpkt_delay,
1714 p->lastpkt_status,
1715 p->lastpkt_stratum,
1716 p->lastpkt_refid,
1717 p->lastpkt_rootdelay,
1718 p->reachable_bits
1719 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1720 * m_reftime, m_orgtime, m_rectime, m_xmttime
1725 /* Muck with statictics and update the clock */
1726 filter_datapoints(p);
1727 q = select_and_cluster();
1728 rc = -1;
1729 if (q) {
1730 rc = 0;
1731 if (!(option_mask32 & OPT_w)) {
1732 rc = update_local_clock(q);
1733 /* If drift is dangerously large, immediately
1734 * drop poll interval one step down.
1736 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1737 VERB3 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
1738 goto poll_down;
1742 /* else: no peer selected, rc = -1: we want to poll more often */
1744 if (rc != 0) {
1745 /* Adjust the poll interval by comparing the current offset
1746 * with the clock jitter. If the offset is less than
1747 * the clock jitter times a constant, then the averaging interval
1748 * is increased, otherwise it is decreased. A bit of hysteresis
1749 * helps calm the dance. Works best using burst mode.
1751 if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
1752 /* was += G.poll_exp but it is a bit
1753 * too optimistic for my taste at high poll_exp's */
1754 G.polladj_count += MINPOLL;
1755 if (G.polladj_count > POLLADJ_LIMIT) {
1756 G.polladj_count = 0;
1757 if (G.poll_exp < MAXPOLL) {
1758 G.poll_exp++;
1759 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1760 G.discipline_jitter, G.poll_exp);
1762 } else {
1763 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1765 } else {
1766 G.polladj_count -= G.poll_exp * 2;
1767 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1768 poll_down:
1769 G.polladj_count = 0;
1770 if (G.poll_exp > MINPOLL) {
1771 llist_t *item;
1773 G.poll_exp--;
1774 /* Correct p->next_action_time in each peer
1775 * which waits for sending, so that they send earlier.
1776 * Old pp->next_action_time are on the order
1777 * of t + (1 << old_poll_exp) + small_random,
1778 * we simply need to subtract ~half of that.
1780 for (item = G.ntp_peers; item != NULL; item = item->link) {
1781 peer_t *pp = (peer_t *) item->data;
1782 if (pp->p_fd < 0)
1783 pp->next_action_time -= (1 << G.poll_exp);
1785 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1786 G.discipline_jitter, G.poll_exp);
1788 } else {
1789 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1794 /* Decide when to send new query for this peer */
1795 interval = poll_interval(0);
1797 set_next_and_close_sock:
1798 set_next(p, interval);
1799 /* We do not expect any more packets from this peer for now.
1800 * Closing the socket informs kernel about it.
1801 * We open a new socket when we send a new query.
1803 close(p->p_fd);
1804 p->p_fd = -1;
1805 bail:
1806 return;
1809 #if ENABLE_FEATURE_NTPD_SERVER
1810 static NOINLINE void
1811 recv_and_process_client_pkt(void /*int fd*/)
1813 ssize_t size;
1814 //uint8_t version;
1815 len_and_sockaddr *to;
1816 struct sockaddr *from;
1817 msg_t msg;
1818 uint8_t query_status;
1819 l_fixedpt_t query_xmttime;
1821 to = get_sock_lsa(G_listen_fd);
1822 from = xzalloc(to->len);
1824 size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1825 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1826 char *addr;
1827 if (size < 0) {
1828 if (errno == EAGAIN)
1829 goto bail;
1830 bb_perror_msg_and_die("recv");
1832 addr = xmalloc_sockaddr2dotted_noport(from);
1833 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1834 free(addr);
1835 goto bail;
1838 query_status = msg.m_status;
1839 query_xmttime = msg.m_xmttime;
1841 /* Build a reply packet */
1842 memset(&msg, 0, sizeof(msg));
1843 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
1844 msg.m_status |= (query_status & VERSION_MASK);
1845 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1846 MODE_SERVER : MODE_SYM_PAS;
1847 msg.m_stratum = G.stratum;
1848 msg.m_ppoll = G.poll_exp;
1849 msg.m_precision_exp = G_precision_exp;
1850 /* this time was obtained between poll() and recv() */
1851 msg.m_rectime = d_to_lfp(G.cur_time);
1852 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1853 if (G.peer_cnt == 0) {
1854 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1855 G.reftime = G.cur_time;
1857 msg.m_reftime = d_to_lfp(G.reftime);
1858 msg.m_orgtime = query_xmttime;
1859 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1860 //simple code does not do this, fix simple code!
1861 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1862 //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1863 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1865 /* We reply from the local address packet was sent to,
1866 * this makes to/from look swapped here: */
1867 do_sendto(G_listen_fd,
1868 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1869 &msg, size);
1871 bail:
1872 free(to);
1873 free(from);
1875 #endif
1877 /* Upstream ntpd's options:
1879 * -4 Force DNS resolution of host names to the IPv4 namespace.
1880 * -6 Force DNS resolution of host names to the IPv6 namespace.
1881 * -a Require cryptographic authentication for broadcast client,
1882 * multicast client and symmetric passive associations.
1883 * This is the default.
1884 * -A Do not require cryptographic authentication for broadcast client,
1885 * multicast client and symmetric passive associations.
1886 * This is almost never a good idea.
1887 * -b Enable the client to synchronize to broadcast servers.
1888 * -c conffile
1889 * Specify the name and path of the configuration file,
1890 * default /etc/ntp.conf
1891 * -d Specify debugging mode. This option may occur more than once,
1892 * with each occurrence indicating greater detail of display.
1893 * -D level
1894 * Specify debugging level directly.
1895 * -f driftfile
1896 * Specify the name and path of the frequency file.
1897 * This is the same operation as the "driftfile FILE"
1898 * configuration command.
1899 * -g Normally, ntpd exits with a message to the system log
1900 * if the offset exceeds the panic threshold, which is 1000 s
1901 * by default. This option allows the time to be set to any value
1902 * without restriction; however, this can happen only once.
1903 * If the threshold is exceeded after that, ntpd will exit
1904 * with a message to the system log. This option can be used
1905 * with the -q and -x options. See the tinker command for other options.
1906 * -i jaildir
1907 * Chroot the server to the directory jaildir. This option also implies
1908 * that the server attempts to drop root privileges at startup
1909 * (otherwise, chroot gives very little additional security).
1910 * You may need to also specify a -u option.
1911 * -k keyfile
1912 * Specify the name and path of the symmetric key file,
1913 * default /etc/ntp/keys. This is the same operation
1914 * as the "keys FILE" configuration command.
1915 * -l logfile
1916 * Specify the name and path of the log file. The default
1917 * is the system log file. This is the same operation as
1918 * the "logfile FILE" configuration command.
1919 * -L Do not listen to virtual IPs. The default is to listen.
1920 * -n Don't fork.
1921 * -N To the extent permitted by the operating system,
1922 * run the ntpd at the highest priority.
1923 * -p pidfile
1924 * Specify the name and path of the file used to record the ntpd
1925 * process ID. This is the same operation as the "pidfile FILE"
1926 * configuration command.
1927 * -P priority
1928 * To the extent permitted by the operating system,
1929 * run the ntpd at the specified priority.
1930 * -q Exit the ntpd just after the first time the clock is set.
1931 * This behavior mimics that of the ntpdate program, which is
1932 * to be retired. The -g and -x options can be used with this option.
1933 * Note: The kernel time discipline is disabled with this option.
1934 * -r broadcastdelay
1935 * Specify the default propagation delay from the broadcast/multicast
1936 * server to this client. This is necessary only if the delay
1937 * cannot be computed automatically by the protocol.
1938 * -s statsdir
1939 * Specify the directory path for files created by the statistics
1940 * facility. This is the same operation as the "statsdir DIR"
1941 * configuration command.
1942 * -t key
1943 * Add a key number to the trusted key list. This option can occur
1944 * more than once.
1945 * -u user[:group]
1946 * Specify a user, and optionally a group, to switch to.
1947 * -v variable
1948 * -V variable
1949 * Add a system variable listed by default.
1950 * -x Normally, the time is slewed if the offset is less than the step
1951 * threshold, which is 128 ms by default, and stepped if above
1952 * the threshold. This option sets the threshold to 600 s, which is
1953 * well within the accuracy window to set the clock manually.
1954 * Note: since the slew rate of typical Unix kernels is limited
1955 * to 0.5 ms/s, each second of adjustment requires an amortization
1956 * interval of 2000 s. Thus, an adjustment as much as 600 s
1957 * will take almost 14 days to complete. This option can be used
1958 * with the -g and -q options. See the tinker command for other options.
1959 * Note: The kernel time discipline is disabled with this option.
1962 /* By doing init in a separate function we decrease stack usage
1963 * in main loop.
1965 static NOINLINE void ntp_init(char **argv)
1967 unsigned opts;
1968 llist_t *peers;
1970 srandom(getpid());
1972 if (getuid())
1973 bb_error_msg_and_die(bb_msg_you_must_be_root);
1975 /* Set some globals */
1976 G.stratum = MAXSTRAT;
1977 if (BURSTPOLL != 0)
1978 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
1979 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
1981 /* Parse options */
1982 peers = NULL;
1983 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
1984 opts = getopt32(argv,
1985 "nqNx" /* compat */
1986 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1987 "d" /* compat */
1988 "46aAbgL", /* compat, ignored */
1989 &peers, &G.script_name, &G.verbose);
1990 if (!(opts & (OPT_p|OPT_l)))
1991 bb_show_usage();
1992 // if (opts & OPT_x) /* disable stepping, only slew is allowed */
1993 // G.time_was_stepped = 1;
1994 if (peers) {
1995 while (peers)
1996 add_peers(llist_pop(&peers));
1997 } else {
1998 /* -l but no peers: "stratum 1 server" mode */
1999 G.stratum = 1;
2001 if (!(opts & OPT_n)) {
2002 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2003 logmode = LOGMODE_NONE;
2005 #if ENABLE_FEATURE_NTPD_SERVER
2006 G_listen_fd = -1;
2007 if (opts & OPT_l) {
2008 G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2009 socket_want_pktinfo(G_listen_fd);
2010 setsockopt(G_listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
2012 #endif
2013 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2014 if (opts & OPT_N)
2015 setpriority(PRIO_PROCESS, 0, -15);
2017 /* If network is up, syncronization occurs in ~10 seconds.
2018 * We give "ntpd -q" 10 seconds to get first reply,
2019 * then another 50 seconds to finish syncing.
2021 * I tested ntpd 4.2.6p1 and apparently it never exits
2022 * (will try forever), but it does not feel right.
2023 * The goal of -q is to act like ntpdate: set time
2024 * after a reasonably small period of polling, or fail.
2026 if (opts & OPT_q) {
2027 option_mask32 |= OPT_qq;
2028 alarm(10);
2031 bb_signals(0
2032 | (1 << SIGTERM)
2033 | (1 << SIGINT)
2034 | (1 << SIGALRM)
2035 , record_signo
2037 bb_signals(0
2038 | (1 << SIGPIPE)
2039 | (1 << SIGCHLD)
2040 , SIG_IGN
2044 int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2045 int ntpd_main(int argc UNUSED_PARAM, char **argv)
2047 #undef G
2048 struct globals G;
2049 struct pollfd *pfd;
2050 peer_t **idx2peer;
2051 unsigned cnt;
2053 memset(&G, 0, sizeof(G));
2054 SET_PTR_TO_GLOBALS(&G);
2056 ntp_init(argv);
2058 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2059 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2060 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2061 pfd = xzalloc(sizeof(pfd[0]) * cnt);
2063 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2064 * packets to each peer.
2065 * NB: if some peer is not responding, we may end up sending
2066 * fewer packets to it and more to other peers.
2067 * NB2: sync usually happens using INITIAL_SAMPLES packets,
2068 * since last reply does not come back instantaneously.
2070 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2072 while (!bb_got_signal) {
2073 llist_t *item;
2074 unsigned i, j;
2075 int nfds, timeout;
2076 double nextaction;
2078 /* Nothing between here and poll() blocks for any significant time */
2080 nextaction = G.cur_time + 3600;
2082 i = 0;
2083 #if ENABLE_FEATURE_NTPD_SERVER
2084 if (G_listen_fd != -1) {
2085 pfd[0].fd = G_listen_fd;
2086 pfd[0].events = POLLIN;
2087 i++;
2089 #endif
2090 /* Pass over peer list, send requests, time out on receives */
2091 for (item = G.ntp_peers; item != NULL; item = item->link) {
2092 peer_t *p = (peer_t *) item->data;
2094 if (p->next_action_time <= G.cur_time) {
2095 if (p->p_fd == -1) {
2096 /* Time to send new req */
2097 if (--cnt == 0) {
2098 G.initial_poll_complete = 1;
2100 send_query_to_peer(p);
2101 } else {
2102 /* Timed out waiting for reply */
2103 close(p->p_fd);
2104 p->p_fd = -1;
2105 timeout = poll_interval(-2); /* -2: try a bit sooner */
2106 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2107 p->p_dotted, p->reachable_bits, timeout);
2108 set_next(p, timeout);
2112 if (p->next_action_time < nextaction)
2113 nextaction = p->next_action_time;
2115 if (p->p_fd >= 0) {
2116 /* Wait for reply from this peer */
2117 pfd[i].fd = p->p_fd;
2118 pfd[i].events = POLLIN;
2119 idx2peer[i] = p;
2120 i++;
2124 timeout = nextaction - G.cur_time;
2125 if (timeout < 0)
2126 timeout = 0;
2127 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2129 /* Here we may block */
2130 VERB2 {
2131 if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2132 /* We wait for at least one reply.
2133 * Poll for it, without wasting time for message.
2134 * Since replies often come under 1 second, this also
2135 * reduces clutter in logs.
2137 nfds = poll(pfd, i, 1000);
2138 if (nfds != 0)
2139 goto did_poll;
2140 if (--timeout <= 0)
2141 goto did_poll;
2143 bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2145 nfds = poll(pfd, i, timeout * 1000);
2146 did_poll:
2147 gettime1900d(); /* sets G.cur_time */
2148 if (nfds <= 0) {
2149 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
2150 /* Useful for updating battery-backed RTC and such */
2151 run_script("periodic", G.last_update_offset);
2152 gettime1900d(); /* sets G.cur_time */
2154 continue;
2157 /* Process any received packets */
2158 j = 0;
2159 #if ENABLE_FEATURE_NTPD_SERVER
2160 if (G.listen_fd != -1) {
2161 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2162 nfds--;
2163 recv_and_process_client_pkt(/*G.listen_fd*/);
2164 gettime1900d(); /* sets G.cur_time */
2166 j = 1;
2168 #endif
2169 for (; nfds != 0 && j < i; j++) {
2170 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2172 * At init, alarm was set to 10 sec.
2173 * Now we did get a reply.
2174 * Increase timeout to 50 seconds to finish syncing.
2176 if (option_mask32 & OPT_qq) {
2177 option_mask32 &= ~OPT_qq;
2178 alarm(50);
2180 nfds--;
2181 recv_and_process_peer_pkt(idx2peer[j]);
2182 gettime1900d(); /* sets G.cur_time */
2185 } /* while (!bb_got_signal) */
2187 kill_myself_with_sig(bb_got_signal);
2195 /*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2197 /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2199 #if 0
2200 static double
2201 direct_freq(double fp_offset)
2203 #ifdef KERNEL_PLL
2205 * If the kernel is enabled, we need the residual offset to
2206 * calculate the frequency correction.
2208 if (pll_control && kern_enable) {
2209 memset(&ntv, 0, sizeof(ntv));
2210 ntp_adjtime(&ntv);
2211 #ifdef STA_NANO
2212 clock_offset = ntv.offset / 1e9;
2213 #else /* STA_NANO */
2214 clock_offset = ntv.offset / 1e6;
2215 #endif /* STA_NANO */
2216 drift_comp = FREQTOD(ntv.freq);
2218 #endif /* KERNEL_PLL */
2219 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2220 wander_resid = 0;
2221 return drift_comp;
2224 static void
2225 set_freq(double freq) /* frequency update */
2227 char tbuf[80];
2229 drift_comp = freq;
2231 #ifdef KERNEL_PLL
2233 * If the kernel is enabled, update the kernel frequency.
2235 if (pll_control && kern_enable) {
2236 memset(&ntv, 0, sizeof(ntv));
2237 ntv.modes = MOD_FREQUENCY;
2238 ntv.freq = DTOFREQ(drift_comp);
2239 ntp_adjtime(&ntv);
2240 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2241 report_event(EVNT_FSET, NULL, tbuf);
2242 } else {
2243 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2244 report_event(EVNT_FSET, NULL, tbuf);
2246 #else /* KERNEL_PLL */
2247 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2248 report_event(EVNT_FSET, NULL, tbuf);
2249 #endif /* KERNEL_PLL */
2256 #ifdef KERNEL_PLL
2258 * This code segment works when clock adjustments are made using
2259 * precision time kernel support and the ntp_adjtime() system
2260 * call. This support is available in Solaris 2.6 and later,
2261 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2262 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2263 * DECstation 5000/240 and Alpha AXP, additional kernel
2264 * modifications provide a true microsecond clock and nanosecond
2265 * clock, respectively.
2267 * Important note: The kernel discipline is used only if the
2268 * step threshold is less than 0.5 s, as anything higher can
2269 * lead to overflow problems. This might occur if some misguided
2270 * lad set the step threshold to something ridiculous.
2272 if (pll_control && kern_enable) {
2274 #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2277 * We initialize the structure for the ntp_adjtime()
2278 * system call. We have to convert everything to
2279 * microseconds or nanoseconds first. Do not update the
2280 * system variables if the ext_enable flag is set. In
2281 * this case, the external clock driver will update the
2282 * variables, which will be read later by the local
2283 * clock driver. Afterwards, remember the time and
2284 * frequency offsets for jitter and stability values and
2285 * to update the frequency file.
2287 memset(&ntv, 0, sizeof(ntv));
2288 if (ext_enable) {
2289 ntv.modes = MOD_STATUS;
2290 } else {
2291 #ifdef STA_NANO
2292 ntv.modes = MOD_BITS | MOD_NANO;
2293 #else /* STA_NANO */
2294 ntv.modes = MOD_BITS;
2295 #endif /* STA_NANO */
2296 if (clock_offset < 0)
2297 dtemp = -.5;
2298 else
2299 dtemp = .5;
2300 #ifdef STA_NANO
2301 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2302 ntv.constant = sys_poll;
2303 #else /* STA_NANO */
2304 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2305 ntv.constant = sys_poll - 4;
2306 #endif /* STA_NANO */
2307 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2308 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2309 ntv.status = STA_PLL;
2312 * Enable/disable the PPS if requested.
2314 if (pps_enable) {
2315 if (!(pll_status & STA_PPSTIME))
2316 report_event(EVNT_KERN,
2317 NULL, "PPS enabled");
2318 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2319 } else {
2320 if (pll_status & STA_PPSTIME)
2321 report_event(EVNT_KERN,
2322 NULL, "PPS disabled");
2323 ntv.status &= ~(STA_PPSTIME |
2324 STA_PPSFREQ);
2326 if (sys_leap == LEAP_ADDSECOND)
2327 ntv.status |= STA_INS;
2328 else if (sys_leap == LEAP_DELSECOND)
2329 ntv.status |= STA_DEL;
2333 * Pass the stuff to the kernel. If it squeals, turn off
2334 * the pps. In any case, fetch the kernel offset,
2335 * frequency and jitter.
2337 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2338 if (!(ntv.status & STA_PPSSIGNAL))
2339 report_event(EVNT_KERN, NULL,
2340 "PPS no signal");
2342 pll_status = ntv.status;
2343 #ifdef STA_NANO
2344 clock_offset = ntv.offset / 1e9;
2345 #else /* STA_NANO */
2346 clock_offset = ntv.offset / 1e6;
2347 #endif /* STA_NANO */
2348 clock_frequency = FREQTOD(ntv.freq);
2351 * If the kernel PPS is lit, monitor its performance.
2353 if (ntv.status & STA_PPSTIME) {
2354 #ifdef STA_NANO
2355 clock_jitter = ntv.jitter / 1e9;
2356 #else /* STA_NANO */
2357 clock_jitter = ntv.jitter / 1e6;
2358 #endif /* STA_NANO */
2361 #if defined(STA_NANO) && NTP_API == 4
2363 * If the TAI changes, update the kernel TAI.
2365 if (loop_tai != sys_tai) {
2366 loop_tai = sys_tai;
2367 ntv.modes = MOD_TAI;
2368 ntv.constant = sys_tai;
2369 ntp_adjtime(&ntv);
2371 #endif /* STA_NANO */
2373 #endif /* KERNEL_PLL */
2374 #endif