dnscrypto-proxy: Update to release 1.3.0
[tomato.git] / release / src / router / dnscrypt / src / libevent-modified / test / regress.c
blob5935f9be07108d109ecc63b1fdd32029d396f37d
1 /*
2 * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
3 * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifdef WIN32
29 #include <winsock2.h>
30 #include <windows.h>
31 #endif
33 #include "event2/event-config.h"
35 #include <sys/types.h>
36 #include <sys/stat.h>
37 #ifdef _EVENT_HAVE_SYS_TIME_H
38 #include <sys/time.h>
39 #endif
40 #include <sys/queue.h>
41 #ifndef WIN32
42 #include <sys/socket.h>
43 #include <sys/wait.h>
44 #include <signal.h>
45 #include <unistd.h>
46 #include <netdb.h>
47 #endif
48 #include <fcntl.h>
49 #include <signal.h>
50 #include <stdlib.h>
51 #include <stdio.h>
52 #include <string.h>
53 #include <errno.h>
54 #include <assert.h>
55 #include <ctype.h>
57 #include "event2/event.h"
58 #include "event2/event_struct.h"
59 #include "event2/event_compat.h"
60 #include "event2/tag.h"
61 #include "event2/buffer.h"
62 #include "event2/buffer_compat.h"
63 #include "event2/util.h"
64 #include "event-internal.h"
65 #include "evthread-internal.h"
66 #include "util-internal.h"
67 #include "log-internal.h"
69 #include "regress.h"
71 #ifndef WIN32
72 #include "regress.gen.h"
73 #endif
75 evutil_socket_t pair[2];
76 int test_ok;
77 int called;
78 struct event_base *global_base;
80 static char wbuf[4096];
81 static char rbuf[4096];
82 static int woff;
83 static int roff;
84 static int usepersist;
85 static struct timeval tset;
86 static struct timeval tcalled;
89 #define TEST1 "this is a test"
90 #define SECONDS 1
92 #ifndef SHUT_WR
93 #define SHUT_WR 1
94 #endif
96 #ifdef WIN32
97 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
98 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
99 #endif
101 struct basic_cb_args
103 struct event_base *eb;
104 struct event *ev;
105 unsigned int callcount;
108 static void
109 simple_read_cb(evutil_socket_t fd, short event, void *arg)
111 char buf[256];
112 int len;
114 len = read(fd, buf, sizeof(buf));
116 if (len) {
117 if (!called) {
118 if (event_add(arg, NULL) == -1)
119 exit(1);
121 } else if (called == 1)
122 test_ok = 1;
124 called++;
127 static void
128 basic_read_cb(evutil_socket_t fd, short event, void *data)
130 char buf[256];
131 int len;
132 struct basic_cb_args *arg = data;
134 len = read(fd, buf, sizeof(buf));
136 if (len < 0) {
137 tt_fail_perror("read (callback)");
138 } else {
139 switch (arg->callcount++) {
140 case 0: /* first call: expect to read data; cycle */
141 if (len > 0)
142 return;
144 tt_fail_msg("EOF before data read");
145 break;
147 case 1: /* second call: expect EOF; stop */
148 if (len > 0)
149 tt_fail_msg("not all data read on first cycle");
150 break;
152 default: /* third call: should not happen */
153 tt_fail_msg("too many cycles");
157 event_del(arg->ev);
158 event_base_loopexit(arg->eb, NULL);
161 static void
162 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
166 static void
167 simple_write_cb(evutil_socket_t fd, short event, void *arg)
169 int len;
171 len = write(fd, TEST1, strlen(TEST1) + 1);
172 if (len == -1)
173 test_ok = 0;
174 else
175 test_ok = 1;
178 static void
179 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
181 struct event *ev = arg;
182 int len;
184 len = 128;
185 if (woff + len >= (int)sizeof(wbuf))
186 len = sizeof(wbuf) - woff;
188 len = write(fd, wbuf + woff, len);
189 if (len == -1) {
190 fprintf(stderr, "%s: write\n", __func__);
191 if (usepersist)
192 event_del(ev);
193 return;
196 woff += len;
198 if (woff >= (int)sizeof(wbuf)) {
199 shutdown(fd, SHUT_WR);
200 if (usepersist)
201 event_del(ev);
202 return;
205 if (!usepersist) {
206 if (event_add(ev, NULL) == -1)
207 exit(1);
211 static void
212 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
214 struct event *ev = arg;
215 int len;
217 len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
218 if (len == -1)
219 fprintf(stderr, "%s: read\n", __func__);
220 if (len <= 0) {
221 if (usepersist)
222 event_del(ev);
223 return;
226 roff += len;
227 if (!usepersist) {
228 if (event_add(ev, NULL) == -1)
229 exit(1);
233 static void
234 timeout_cb(evutil_socket_t fd, short event, void *arg)
236 struct timeval tv;
237 int diff;
239 evutil_gettimeofday(&tcalled, NULL);
240 if (evutil_timercmp(&tcalled, &tset, >))
241 evutil_timersub(&tcalled, &tset, &tv);
242 else
243 evutil_timersub(&tset, &tcalled, &tv);
245 diff = tv.tv_sec*1000 + tv.tv_usec/1000 - SECONDS * 1000;
246 if (diff < 0)
247 diff = -diff;
249 if (diff < 100)
250 test_ok = 1;
253 struct both {
254 struct event ev;
255 int nread;
258 static void
259 combined_read_cb(evutil_socket_t fd, short event, void *arg)
261 struct both *both = arg;
262 char buf[128];
263 int len;
265 len = read(fd, buf, sizeof(buf));
266 if (len == -1)
267 fprintf(stderr, "%s: read\n", __func__);
268 if (len <= 0)
269 return;
271 both->nread += len;
272 if (event_add(&both->ev, NULL) == -1)
273 exit(1);
276 static void
277 combined_write_cb(evutil_socket_t fd, short event, void *arg)
279 struct both *both = arg;
280 char buf[128];
281 int len;
283 len = sizeof(buf);
284 if (len > both->nread)
285 len = both->nread;
287 memset(buf, 'q', len);
289 len = write(fd, buf, len);
290 if (len == -1)
291 fprintf(stderr, "%s: write\n", __func__);
292 if (len <= 0) {
293 shutdown(fd, SHUT_WR);
294 return;
297 both->nread -= len;
298 if (event_add(&both->ev, NULL) == -1)
299 exit(1);
302 /* These macros used to replicate the work of the legacy test wrapper code */
303 #define setup_test(x) do { \
304 if (!in_legacy_test_wrapper) { \
305 TT_FAIL(("Legacy test %s not wrapped properly", x)); \
306 return; \
308 } while (0)
309 #define cleanup_test() setup_test("cleanup")
311 static void
312 test_simpleread(void)
314 struct event ev;
316 /* Very simple read test */
317 setup_test("Simple read: ");
319 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
320 tt_fail_perror("write");
323 shutdown(pair[0], SHUT_WR);
325 event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
326 if (event_add(&ev, NULL) == -1)
327 exit(1);
328 event_dispatch();
330 cleanup_test();
333 static void
334 test_simplewrite(void)
336 struct event ev;
338 /* Very simple write test */
339 setup_test("Simple write: ");
341 event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
342 if (event_add(&ev, NULL) == -1)
343 exit(1);
344 event_dispatch();
346 cleanup_test();
349 static void
350 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
352 if (++called == 2)
353 test_ok = 1;
356 static void
357 test_simpleread_multiple(void)
359 struct event one, two;
361 /* Very simple read test */
362 setup_test("Simple read to multiple evens: ");
364 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
365 tt_fail_perror("write");
368 shutdown(pair[0], SHUT_WR);
370 event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
371 if (event_add(&one, NULL) == -1)
372 exit(1);
373 event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
374 if (event_add(&two, NULL) == -1)
375 exit(1);
376 event_dispatch();
378 cleanup_test();
381 static int have_closed = 0;
382 static int premature_event = 0;
383 static void
384 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
386 evutil_socket_t **fds = ptr;
387 TT_BLATHER(("Closing"));
388 evutil_closesocket(*fds[0]);
389 evutil_closesocket(*fds[1]);
390 *fds[0] = -1;
391 *fds[1] = -1;
392 have_closed = 1;
395 static void
396 record_event_cb(evutil_socket_t s, short what, void *ptr)
398 short *whatp = ptr;
399 if (!have_closed)
400 premature_event = 1;
401 *whatp = what;
402 TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
405 static void
406 test_simpleclose(void *ptr)
408 /* Test that a close of FD is detected as a read and as a write. */
409 struct event_base *base = event_base_new();
410 evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
411 evutil_socket_t *to_close[2];
412 struct event *rev=NULL, *wev=NULL, *closeev=NULL;
413 struct timeval tv;
414 short got_read_on_close = 0, got_write_on_close = 0;
415 char buf[1024];
416 memset(buf, 99, sizeof(buf));
417 #ifdef WIN32
418 #define LOCAL_SOCKETPAIR_AF AF_INET
419 #else
420 #define LOCAL_SOCKETPAIR_AF AF_UNIX
421 #endif
422 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
423 TT_DIE(("socketpair: %s", strerror(errno)));
424 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
425 TT_DIE(("socketpair: %s", strerror(errno)));
426 if (evutil_make_socket_nonblocking(pair1[1]) < 0)
427 TT_DIE(("make_socket_nonblocking"));
428 if (evutil_make_socket_nonblocking(pair2[1]) < 0)
429 TT_DIE(("make_socket_nonblocking"));
431 /** Stuff pair2[1] full of data, until write fails */
432 while (1) {
433 int r = write(pair2[1], buf, sizeof(buf));
434 if (r<0) {
435 int err = evutil_socket_geterror(pair2[1]);
436 if (! EVUTIL_ERR_RW_RETRIABLE(err))
437 TT_DIE(("write failed strangely: %s",
438 evutil_socket_error_to_string(err)));
439 break;
442 to_close[0] = &pair1[0];
443 to_close[1] = &pair2[0];
445 closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
446 to_close);
447 rev = event_new(base, pair1[1], EV_READ, record_event_cb,
448 &got_read_on_close);
449 TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
450 wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
451 &got_write_on_close);
452 TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
453 tv.tv_sec = 0;
454 tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
455 * sure we get a read event. */
456 event_add(closeev, &tv);
457 event_add(rev, NULL);
458 event_add(wev, NULL);
459 /* Don't let the test go on too long. */
460 tv.tv_sec = 0;
461 tv.tv_usec = 200*1000;
462 event_base_loopexit(base, &tv);
463 event_base_loop(base, 0);
465 tt_int_op(got_read_on_close, ==, EV_READ);
466 tt_int_op(got_write_on_close, ==, EV_WRITE);
467 tt_int_op(premature_event, ==, 0);
469 end:
470 if (pair1[0] >= 0)
471 evutil_closesocket(pair1[0]);
472 if (pair1[1] >= 0)
473 evutil_closesocket(pair1[1]);
474 if (pair2[0] >= 0)
475 evutil_closesocket(pair2[0]);
476 if (pair2[1] >= 0)
477 evutil_closesocket(pair2[1]);
478 if (rev)
479 event_free(rev);
480 if (wev)
481 event_free(wev);
482 if (closeev)
483 event_free(closeev);
484 if (base)
485 event_base_free(base);
489 static void
490 test_multiple(void)
492 struct event ev, ev2;
493 int i;
495 /* Multiple read and write test */
496 setup_test("Multiple read/write: ");
497 memset(rbuf, 0, sizeof(rbuf));
498 for (i = 0; i < (int)sizeof(wbuf); i++)
499 wbuf[i] = i;
501 roff = woff = 0;
502 usepersist = 0;
504 event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
505 if (event_add(&ev, NULL) == -1)
506 exit(1);
507 event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
508 if (event_add(&ev2, NULL) == -1)
509 exit(1);
510 event_dispatch();
512 if (roff == woff)
513 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
515 cleanup_test();
518 static void
519 test_persistent(void)
521 struct event ev, ev2;
522 int i;
524 /* Multiple read and write test with persist */
525 setup_test("Persist read/write: ");
526 memset(rbuf, 0, sizeof(rbuf));
527 for (i = 0; i < (int)sizeof(wbuf); i++)
528 wbuf[i] = i;
530 roff = woff = 0;
531 usepersist = 1;
533 event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
534 if (event_add(&ev, NULL) == -1)
535 exit(1);
536 event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
537 if (event_add(&ev2, NULL) == -1)
538 exit(1);
539 event_dispatch();
541 if (roff == woff)
542 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
544 cleanup_test();
547 static void
548 test_combined(void)
550 struct both r1, r2, w1, w2;
552 setup_test("Combined read/write: ");
553 memset(&r1, 0, sizeof(r1));
554 memset(&r2, 0, sizeof(r2));
555 memset(&w1, 0, sizeof(w1));
556 memset(&w2, 0, sizeof(w2));
558 w1.nread = 4096;
559 w2.nread = 8192;
561 event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
562 event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
563 event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
564 event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
565 tt_assert(event_add(&r1.ev, NULL) != -1);
566 tt_assert(!event_add(&w1.ev, NULL));
567 tt_assert(!event_add(&r2.ev, NULL));
568 tt_assert(!event_add(&w2.ev, NULL));
569 event_dispatch();
571 if (r1.nread == 8192 && r2.nread == 4096)
572 test_ok = 1;
574 end:
575 cleanup_test();
578 static void
579 test_simpletimeout(void)
581 struct timeval tv;
582 struct event ev;
584 setup_test("Simple timeout: ");
586 tv.tv_usec = 0;
587 tv.tv_sec = SECONDS;
588 evtimer_set(&ev, timeout_cb, NULL);
589 evtimer_add(&ev, &tv);
591 evutil_gettimeofday(&tset, NULL);
592 event_dispatch();
594 cleanup_test();
597 static void
598 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
600 int *count = arg;
602 (*count)++;
603 if (*count == 6) {
604 /* call loopexit only once - on slow machines(?), it is
605 * apparently possible for this to get called twice. */
606 test_ok = 1;
607 event_base_loopexit(global_base, NULL);
611 static void
612 test_persistent_timeout(void)
614 struct timeval tv;
615 struct event ev;
616 int count = 0;
618 evutil_timerclear(&tv);
619 tv.tv_usec = 10000;
621 event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
622 periodic_timeout_cb, &count);
623 event_add(&ev, &tv);
625 event_dispatch();
627 event_del(&ev);
630 static void
631 test_persistent_timeout_jump(void *ptr)
633 struct basic_test_data *data = ptr;
634 struct event ev;
635 int count = 0;
636 struct timeval msec100 = { 0, 100 * 1000 };
637 struct timeval msec50 = { 0, 50 * 1000 };
639 event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
640 event_add(&ev, &msec100);
641 /* Wait for a bit */
642 #ifdef _WIN32
643 Sleep(1000);
644 #else
645 sleep(1);
646 #endif
647 event_base_loopexit(data->base, &msec50);
648 event_base_dispatch(data->base);
649 tt_int_op(count, ==, 1);
651 end:
652 event_del(&ev);
655 struct persist_active_timeout_called {
656 int n;
657 short events[16];
658 struct timeval tvs[16];
661 static void
662 activate_cb(evutil_socket_t fd, short event, void *arg)
664 struct event *ev = arg;
665 event_active(ev, EV_READ, 1);
668 static void
669 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
671 struct persist_active_timeout_called *c = arg;
672 if (c->n < 15) {
673 c->events[c->n] = event;
674 evutil_gettimeofday(&c->tvs[c->n], NULL);
675 ++c->n;
679 static void
680 test_persistent_active_timeout(void *ptr)
682 struct timeval tv, tv2, tv_exit, start;
683 struct event ev;
684 struct persist_active_timeout_called res;
686 struct basic_test_data *data = ptr;
687 struct event_base *base = data->base;
689 memset(&res, 0, sizeof(res));
691 tv.tv_sec = 0;
692 tv.tv_usec = 200 * 1000;
693 event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
694 persist_active_timeout_cb, &res);
695 event_add(&ev, &tv);
697 tv2.tv_sec = 0;
698 tv2.tv_usec = 100 * 1000;
699 event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
701 tv_exit.tv_sec = 0;
702 tv_exit.tv_usec = 600 * 1000;
703 event_base_loopexit(base, &tv_exit);
705 event_base_assert_ok(base);
706 evutil_gettimeofday(&start, NULL);
708 event_base_dispatch(base);
709 event_base_assert_ok(base);
711 tt_int_op(res.n, ==, 3);
712 tt_int_op(res.events[0], ==, EV_READ);
713 tt_int_op(res.events[1], ==, EV_TIMEOUT);
714 tt_int_op(res.events[2], ==, EV_TIMEOUT);
715 test_timeval_diff_eq(&start, &res.tvs[0], 100);
716 test_timeval_diff_eq(&start, &res.tvs[1], 300);
717 test_timeval_diff_eq(&start, &res.tvs[2], 500);
718 end:
719 event_del(&ev);
722 struct common_timeout_info {
723 struct event ev;
724 struct timeval called_at;
725 int which;
726 int count;
729 static void
730 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
732 struct common_timeout_info *ti = arg;
733 ++ti->count;
734 evutil_gettimeofday(&ti->called_at, NULL);
735 if (ti->count >= 6)
736 event_del(&ti->ev);
739 static void
740 test_common_timeout(void *ptr)
742 struct basic_test_data *data = ptr;
744 struct event_base *base = data->base;
745 int i;
746 struct common_timeout_info info[100];
748 struct timeval now;
749 struct timeval tmp_100_ms = { 0, 100*1000 };
750 struct timeval tmp_200_ms = { 0, 200*1000 };
752 const struct timeval *ms_100, *ms_200;
754 ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
755 ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
756 tt_assert(ms_100);
757 tt_assert(ms_200);
758 tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
759 ==, ms_200);
760 tt_int_op(ms_100->tv_sec, ==, 0);
761 tt_int_op(ms_200->tv_sec, ==, 0);
762 tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
763 tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
765 memset(info, 0, sizeof(info));
767 for (i=0; i<100; ++i) {
768 info[i].which = i;
769 event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
770 common_timeout_cb, &info[i]);
771 if (i % 2) {
772 event_add(&info[i].ev, ms_100);
773 } else {
774 event_add(&info[i].ev, ms_200);
778 event_base_assert_ok(base);
779 event_base_dispatch(base);
781 evutil_gettimeofday(&now, NULL);
782 event_base_assert_ok(base);
784 for (i=0; i<10; ++i) {
785 struct timeval tmp;
786 int ms_diff;
787 tt_int_op(info[i].count, ==, 6);
788 evutil_timersub(&now, &info[i].called_at, &tmp);
789 ms_diff = tmp.tv_usec/1000 + tmp.tv_sec*1000;
790 if (i % 2) {
791 tt_int_op(ms_diff, >, 500);
792 tt_int_op(ms_diff, <, 700);
793 } else {
794 tt_int_op(ms_diff, >, -100);
795 tt_int_op(ms_diff, <, 100);
799 /* Make sure we can free the base with some events in. */
800 for (i=0; i<100; ++i) {
801 if (i % 2) {
802 event_add(&info[i].ev, ms_100);
803 } else {
804 event_add(&info[i].ev, ms_200);
808 end:
809 event_base_free(data->base); /* need to do this here before info is
810 * out-of-scope */
811 data->base = NULL;
814 #ifndef WIN32
815 static void signal_cb(evutil_socket_t fd, short event, void *arg);
817 #define current_base event_global_current_base_
818 extern struct event_base *current_base;
820 static void
821 child_signal_cb(evutil_socket_t fd, short event, void *arg)
823 struct timeval tv;
824 int *pint = arg;
826 *pint = 1;
828 tv.tv_usec = 500000;
829 tv.tv_sec = 0;
830 event_loopexit(&tv);
833 static void
834 test_fork(void)
836 int status, got_sigchld = 0;
837 struct event ev, sig_ev;
838 pid_t pid;
840 setup_test("After fork: ");
842 tt_assert(current_base);
843 evthread_make_base_notifiable(current_base);
845 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
846 tt_fail_perror("write");
849 event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
850 if (event_add(&ev, NULL) == -1)
851 exit(1);
853 evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
854 evsignal_add(&sig_ev, NULL);
856 event_base_assert_ok(current_base);
857 TT_BLATHER(("Before fork"));
858 if ((pid = regress_fork()) == 0) {
859 /* in the child */
860 TT_BLATHER(("In child, before reinit"));
861 event_base_assert_ok(current_base);
862 if (event_reinit(current_base) == -1) {
863 fprintf(stdout, "FAILED (reinit)\n");
864 exit(1);
866 TT_BLATHER(("After reinit"));
867 event_base_assert_ok(current_base);
868 TT_BLATHER(("After assert-ok"));
870 evsignal_del(&sig_ev);
872 called = 0;
874 event_dispatch();
876 event_base_free(current_base);
878 /* we do not send an EOF; simple_read_cb requires an EOF
879 * to set test_ok. we just verify that the callback was
880 * called. */
881 exit(test_ok != 0 || called != 2 ? -2 : 76);
884 /* wait for the child to read the data */
885 sleep(1);
887 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
888 tt_fail_perror("write");
891 TT_BLATHER(("Before waitpid"));
892 if (waitpid(pid, &status, 0) == -1) {
893 fprintf(stdout, "FAILED (fork)\n");
894 exit(1);
896 TT_BLATHER(("After waitpid"));
898 if (WEXITSTATUS(status) != 76) {
899 fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
900 exit(1);
903 /* test that the current event loop still works */
904 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
905 fprintf(stderr, "%s: write\n", __func__);
908 shutdown(pair[0], SHUT_WR);
910 event_dispatch();
912 if (!got_sigchld) {
913 fprintf(stdout, "FAILED (sigchld)\n");
914 exit(1);
917 evsignal_del(&sig_ev);
919 end:
920 cleanup_test();
923 static void
924 signal_cb_sa(int sig)
926 test_ok = 2;
929 static void
930 signal_cb(evutil_socket_t fd, short event, void *arg)
932 struct event *ev = arg;
934 evsignal_del(ev);
935 test_ok = 1;
938 static void
939 test_simplesignal(void)
941 struct event ev;
942 struct itimerval itv;
944 setup_test("Simple signal: ");
945 evsignal_set(&ev, SIGALRM, signal_cb, &ev);
946 evsignal_add(&ev, NULL);
947 /* find bugs in which operations are re-ordered */
948 evsignal_del(&ev);
949 evsignal_add(&ev, NULL);
951 memset(&itv, 0, sizeof(itv));
952 itv.it_value.tv_sec = 1;
953 if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
954 goto skip_simplesignal;
956 event_dispatch();
957 skip_simplesignal:
958 if (evsignal_del(&ev) == -1)
959 test_ok = 0;
961 cleanup_test();
964 static void
965 test_multiplesignal(void)
967 struct event ev_one, ev_two;
968 struct itimerval itv;
970 setup_test("Multiple signal: ");
972 evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
973 evsignal_add(&ev_one, NULL);
975 evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
976 evsignal_add(&ev_two, NULL);
978 memset(&itv, 0, sizeof(itv));
979 itv.it_value.tv_sec = 1;
980 if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
981 goto skip_simplesignal;
983 event_dispatch();
985 skip_simplesignal:
986 if (evsignal_del(&ev_one) == -1)
987 test_ok = 0;
988 if (evsignal_del(&ev_two) == -1)
989 test_ok = 0;
991 cleanup_test();
994 static void
995 test_immediatesignal(void)
997 struct event ev;
999 test_ok = 0;
1000 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1001 evsignal_add(&ev, NULL);
1002 raise(SIGUSR1);
1003 event_loop(EVLOOP_NONBLOCK);
1004 evsignal_del(&ev);
1005 cleanup_test();
1008 static void
1009 test_signal_dealloc(void)
1011 /* make sure that evsignal_event is event_del'ed and pipe closed */
1012 struct event ev;
1013 struct event_base *base = event_init();
1014 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1015 evsignal_add(&ev, NULL);
1016 evsignal_del(&ev);
1017 event_base_free(base);
1018 /* If we got here without asserting, we're fine. */
1019 test_ok = 1;
1020 cleanup_test();
1023 static void
1024 test_signal_pipeloss(void)
1026 /* make sure that the base1 pipe is closed correctly. */
1027 struct event_base *base1, *base2;
1028 int pipe1;
1029 test_ok = 0;
1030 base1 = event_init();
1031 pipe1 = base1->sig.ev_signal_pair[0];
1032 base2 = event_init();
1033 event_base_free(base2);
1034 event_base_free(base1);
1035 if (close(pipe1) != -1 || errno!=EBADF) {
1036 /* fd must be closed, so second close gives -1, EBADF */
1037 printf("signal pipe not closed. ");
1038 test_ok = 0;
1039 } else {
1040 test_ok = 1;
1042 cleanup_test();
1046 * make two bases to catch signals, use both of them. this only works
1047 * for event mechanisms that use our signal pipe trick. kqueue handles
1048 * signals internally, and all interested kqueues get all the signals.
1050 static void
1051 test_signal_switchbase(void)
1053 struct event ev1, ev2;
1054 struct event_base *base1, *base2;
1055 int is_kqueue;
1056 test_ok = 0;
1057 base1 = event_init();
1058 base2 = event_init();
1059 is_kqueue = !strcmp(event_get_method(),"kqueue");
1060 evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1061 evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1062 if (event_base_set(base1, &ev1) ||
1063 event_base_set(base2, &ev2) ||
1064 event_add(&ev1, NULL) ||
1065 event_add(&ev2, NULL)) {
1066 fprintf(stderr, "%s: cannot set base, add\n", __func__);
1067 exit(1);
1070 tt_ptr_op(event_get_base(&ev1), ==, base1);
1071 tt_ptr_op(event_get_base(&ev2), ==, base2);
1073 test_ok = 0;
1074 /* can handle signal before loop is called */
1075 raise(SIGUSR1);
1076 event_base_loop(base2, EVLOOP_NONBLOCK);
1077 if (is_kqueue) {
1078 if (!test_ok)
1079 goto end;
1080 test_ok = 0;
1082 event_base_loop(base1, EVLOOP_NONBLOCK);
1083 if (test_ok && !is_kqueue) {
1084 test_ok = 0;
1086 /* set base1 to handle signals */
1087 event_base_loop(base1, EVLOOP_NONBLOCK);
1088 raise(SIGUSR1);
1089 event_base_loop(base1, EVLOOP_NONBLOCK);
1090 event_base_loop(base2, EVLOOP_NONBLOCK);
1092 end:
1093 event_base_free(base1);
1094 event_base_free(base2);
1095 cleanup_test();
1099 * assert that a signal event removed from the event queue really is
1100 * removed - with no possibility of it's parent handler being fired.
1102 static void
1103 test_signal_assert(void)
1105 struct event ev;
1106 struct event_base *base = event_init();
1107 test_ok = 0;
1108 /* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1109 evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1110 evsignal_add(&ev, NULL);
1112 * if evsignal_del() fails to reset the handler, it's current handler
1113 * will still point to evsig_handler().
1115 evsignal_del(&ev);
1117 raise(SIGCONT);
1118 #if 0
1119 /* only way to verify we were in evsig_handler() */
1120 /* XXXX Now there's no longer a good way. */
1121 if (base->sig.evsig_caught)
1122 test_ok = 0;
1123 else
1124 test_ok = 1;
1125 #else
1126 test_ok = 1;
1127 #endif
1129 event_base_free(base);
1130 cleanup_test();
1131 return;
1135 * assert that we restore our previous signal handler properly.
1137 static void
1138 test_signal_restore(void)
1140 struct event ev;
1141 struct event_base *base = event_init();
1142 #ifdef _EVENT_HAVE_SIGACTION
1143 struct sigaction sa;
1144 #endif
1146 test_ok = 0;
1147 #ifdef _EVENT_HAVE_SIGACTION
1148 sa.sa_handler = signal_cb_sa;
1149 sa.sa_flags = 0x0;
1150 sigemptyset(&sa.sa_mask);
1151 if (sigaction(SIGUSR1, &sa, NULL) == -1)
1152 goto out;
1153 #else
1154 if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1155 goto out;
1156 #endif
1157 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1158 evsignal_add(&ev, NULL);
1159 evsignal_del(&ev);
1161 raise(SIGUSR1);
1162 /* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1163 if (test_ok != 2)
1164 test_ok = 0;
1165 out:
1166 event_base_free(base);
1167 cleanup_test();
1168 return;
1171 static void
1172 signal_cb_swp(int sig, short event, void *arg)
1174 called++;
1175 if (called < 5)
1176 raise(sig);
1177 else
1178 event_loopexit(NULL);
1180 static void
1181 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1183 if (called == -1) {
1184 struct timeval tv = {5, 0};
1186 called = 0;
1187 evtimer_add((struct event *)arg, &tv);
1188 raise(SIGUSR1);
1189 return;
1191 test_ok = 0;
1192 event_loopexit(NULL);
1195 static void
1196 test_signal_while_processing(void)
1198 struct event_base *base = event_init();
1199 struct event ev, ev_timer;
1200 struct timeval tv = {0, 0};
1202 setup_test("Receiving a signal while processing other signal: ");
1204 called = -1;
1205 test_ok = 1;
1206 signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1207 signal_add(&ev, NULL);
1208 evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1209 evtimer_add(&ev_timer, &tv);
1210 event_dispatch();
1212 event_base_free(base);
1213 cleanup_test();
1214 return;
1216 #endif
1218 static void
1219 test_free_active_base(void *ptr)
1221 struct basic_test_data *data = ptr;
1222 struct event_base *base1;
1223 struct event ev1;
1225 base1 = event_init();
1226 if (base1) {
1227 event_assign(&ev1, base1, data->pair[1], EV_READ,
1228 dummy_read_cb, NULL);
1229 event_add(&ev1, NULL);
1230 event_base_free(base1); /* should not crash */
1231 } else {
1232 tt_fail_msg("failed to create event_base for test");
1235 base1 = event_init();
1236 tt_assert(base1);
1237 event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1238 event_active(&ev1, EV_READ, 1);
1239 event_base_free(base1);
1240 end:
1244 static void
1245 test_manipulate_active_events(void *ptr)
1247 struct basic_test_data *data = ptr;
1248 struct event_base *base = data->base;
1249 struct event ev1;
1251 event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1253 /* Make sure an active event is pending. */
1254 event_active(&ev1, EV_READ, 1);
1255 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1256 ==, EV_READ);
1258 /* Make sure that activating an event twice works. */
1259 event_active(&ev1, EV_WRITE, 1);
1260 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1261 ==, EV_READ|EV_WRITE);
1263 end:
1264 event_del(&ev1);
1267 static void
1268 test_bad_assign(void *ptr)
1270 struct event ev;
1271 int r;
1272 /* READ|SIGNAL is not allowed */
1273 r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1274 tt_int_op(r,==,-1);
1276 end:
1280 static int reentrant_cb_run = 0;
1282 static void
1283 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1285 struct event_base *base = ptr;
1286 int r;
1287 reentrant_cb_run = 1;
1288 /* This reentrant call to event_base_loop should be detected and
1289 * should fail */
1290 r = event_base_loop(base, 0);
1291 tt_int_op(r, ==, -1);
1292 end:
1296 static void
1297 test_bad_reentrant(void *ptr)
1299 struct basic_test_data *data = ptr;
1300 struct event_base *base = data->base;
1301 struct event ev;
1302 int r;
1303 event_assign(&ev, base, -1,
1304 0, bad_reentrant_run_loop_cb, base);
1306 event_active(&ev, EV_WRITE, 1);
1307 r = event_base_loop(base, 0);
1308 tt_int_op(r, ==, 1);
1309 tt_int_op(reentrant_cb_run, ==, 1);
1310 end:
1314 static void
1315 test_event_base_new(void *ptr)
1317 struct basic_test_data *data = ptr;
1318 struct event_base *base = 0;
1319 struct event ev1;
1320 struct basic_cb_args args;
1322 int towrite = (int)strlen(TEST1)+1;
1323 int len = write(data->pair[0], TEST1, towrite);
1325 if (len < 0)
1326 tt_abort_perror("initial write");
1327 else if (len != towrite)
1328 tt_abort_printf(("initial write fell short (%d of %d bytes)",
1329 len, towrite));
1331 if (shutdown(data->pair[0], SHUT_WR))
1332 tt_abort_perror("initial write shutdown");
1334 base = event_base_new();
1335 if (!base)
1336 tt_abort_msg("failed to create event base");
1338 args.eb = base;
1339 args.ev = &ev1;
1340 args.callcount = 0;
1341 event_assign(&ev1, base, data->pair[1],
1342 EV_READ|EV_PERSIST, basic_read_cb, &args);
1344 if (event_add(&ev1, NULL))
1345 tt_abort_perror("initial event_add");
1347 if (event_base_loop(base, 0))
1348 tt_abort_msg("unsuccessful exit from event loop");
1350 end:
1351 if (base)
1352 event_base_free(base);
1355 static void
1356 test_loopexit(void)
1358 struct timeval tv, tv_start, tv_end;
1359 struct event ev;
1361 setup_test("Loop exit: ");
1363 tv.tv_usec = 0;
1364 tv.tv_sec = 60*60*24;
1365 evtimer_set(&ev, timeout_cb, NULL);
1366 evtimer_add(&ev, &tv);
1368 tv.tv_usec = 0;
1369 tv.tv_sec = 1;
1370 event_loopexit(&tv);
1372 evutil_gettimeofday(&tv_start, NULL);
1373 event_dispatch();
1374 evutil_gettimeofday(&tv_end, NULL);
1375 evutil_timersub(&tv_end, &tv_start, &tv_end);
1377 evtimer_del(&ev);
1379 tt_assert(event_base_got_exit(global_base));
1380 tt_assert(!event_base_got_break(global_base));
1382 if (tv.tv_sec < 2)
1383 test_ok = 1;
1385 end:
1386 cleanup_test();
1389 static void
1390 test_loopexit_multiple(void)
1392 struct timeval tv;
1393 struct event_base *base;
1395 setup_test("Loop Multiple exit: ");
1397 base = event_base_new();
1399 tv.tv_usec = 0;
1400 tv.tv_sec = 1;
1401 event_base_loopexit(base, &tv);
1403 tv.tv_usec = 0;
1404 tv.tv_sec = 2;
1405 event_base_loopexit(base, &tv);
1407 event_base_dispatch(base);
1409 tt_assert(event_base_got_exit(base));
1410 tt_assert(!event_base_got_break(base));
1412 event_base_free(base);
1414 test_ok = 1;
1416 end:
1417 cleanup_test();
1420 static void
1421 break_cb(evutil_socket_t fd, short events, void *arg)
1423 test_ok = 1;
1424 event_loopbreak();
1427 static void
1428 fail_cb(evutil_socket_t fd, short events, void *arg)
1430 test_ok = 0;
1433 static void
1434 test_loopbreak(void)
1436 struct event ev1, ev2;
1437 struct timeval tv;
1439 setup_test("Loop break: ");
1441 tv.tv_sec = 0;
1442 tv.tv_usec = 0;
1443 evtimer_set(&ev1, break_cb, NULL);
1444 evtimer_add(&ev1, &tv);
1445 evtimer_set(&ev2, fail_cb, NULL);
1446 evtimer_add(&ev2, &tv);
1448 event_dispatch();
1450 tt_assert(!event_base_got_exit(global_base));
1451 tt_assert(event_base_got_break(global_base));
1453 evtimer_del(&ev1);
1454 evtimer_del(&ev2);
1456 end:
1457 cleanup_test();
1460 static struct event *readd_test_event_last_added = NULL;
1461 static void
1462 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1464 char buf[256];
1465 struct event *ev_other = arg;
1466 readd_test_event_last_added = ev_other;
1468 if (read(fd, buf, sizeof(buf)) < 0) {
1469 tt_fail_perror("read");
1472 event_add(ev_other, NULL);
1473 ++test_ok;
1476 static void
1477 test_nonpersist_readd(void)
1479 struct event ev1, ev2;
1481 setup_test("Re-add nonpersistent events: ");
1482 event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1483 event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1485 if (write(pair[0], "Hello", 5) < 0) {
1486 tt_fail_perror("write(pair[0])");
1489 if (write(pair[1], "Hello", 5) < 0) {
1490 tt_fail_perror("write(pair[1])\n");
1493 if (event_add(&ev1, NULL) == -1 ||
1494 event_add(&ev2, NULL) == -1) {
1495 test_ok = 0;
1497 if (test_ok != 0)
1498 exit(1);
1499 event_loop(EVLOOP_ONCE);
1500 if (test_ok != 2)
1501 exit(1);
1502 /* At this point, we executed both callbacks. Whichever one got
1503 * called first added the second, but the second then immediately got
1504 * deleted before its callback was called. At this point, though, it
1505 * re-added the first.
1507 if (!readd_test_event_last_added) {
1508 test_ok = 0;
1509 } else if (readd_test_event_last_added == &ev1) {
1510 if (!event_pending(&ev1, EV_READ, NULL) ||
1511 event_pending(&ev2, EV_READ, NULL))
1512 test_ok = 0;
1513 } else {
1514 if (event_pending(&ev1, EV_READ, NULL) ||
1515 !event_pending(&ev2, EV_READ, NULL))
1516 test_ok = 0;
1519 event_del(&ev1);
1520 event_del(&ev2);
1522 cleanup_test();
1525 struct test_pri_event {
1526 struct event ev;
1527 int count;
1530 static void
1531 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
1533 struct test_pri_event *pri = arg;
1534 struct timeval tv;
1536 if (pri->count == 3) {
1537 event_loopexit(NULL);
1538 return;
1541 pri->count++;
1543 evutil_timerclear(&tv);
1544 event_add(&pri->ev, &tv);
1547 static void
1548 test_priorities_impl(int npriorities)
1550 struct test_pri_event one, two;
1551 struct timeval tv;
1553 TT_BLATHER(("Testing Priorities %d: ", npriorities));
1555 event_base_priority_init(global_base, npriorities);
1557 memset(&one, 0, sizeof(one));
1558 memset(&two, 0, sizeof(two));
1560 timeout_set(&one.ev, test_priorities_cb, &one);
1561 if (event_priority_set(&one.ev, 0) == -1) {
1562 fprintf(stderr, "%s: failed to set priority", __func__);
1563 exit(1);
1566 timeout_set(&two.ev, test_priorities_cb, &two);
1567 if (event_priority_set(&two.ev, npriorities - 1) == -1) {
1568 fprintf(stderr, "%s: failed to set priority", __func__);
1569 exit(1);
1572 evutil_timerclear(&tv);
1574 if (event_add(&one.ev, &tv) == -1)
1575 exit(1);
1576 if (event_add(&two.ev, &tv) == -1)
1577 exit(1);
1579 event_dispatch();
1581 event_del(&one.ev);
1582 event_del(&two.ev);
1584 if (npriorities == 1) {
1585 if (one.count == 3 && two.count == 3)
1586 test_ok = 1;
1587 } else if (npriorities == 2) {
1588 /* Two is called once because event_loopexit is priority 1 */
1589 if (one.count == 3 && two.count == 1)
1590 test_ok = 1;
1591 } else {
1592 if (one.count == 3 && two.count == 0)
1593 test_ok = 1;
1597 static void
1598 test_priorities(void)
1600 test_priorities_impl(1);
1601 if (test_ok)
1602 test_priorities_impl(2);
1603 if (test_ok)
1604 test_priorities_impl(3);
1607 /* priority-active-inversion: activate a higher-priority event, and make sure
1608 * it keeps us from running a lower-priority event first. */
1609 static int n_pai_calls = 0;
1610 static struct event pai_events[3];
1612 static void
1613 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
1615 int *call_order = arg;
1616 *call_order = n_pai_calls++;
1617 if (n_pai_calls == 1) {
1618 /* This should activate later, even though it shares a
1619 priority with us. */
1620 event_active(&pai_events[1], EV_READ, 1);
1621 /* This should activate next, since its priority is higher,
1622 even though we activated it second. */
1623 event_active(&pai_events[2], EV_TIMEOUT, 1);
1627 static void
1628 test_priority_active_inversion(void *data_)
1630 struct basic_test_data *data = data_;
1631 struct event_base *base = data->base;
1632 int call_order[3];
1633 int i;
1634 tt_int_op(event_base_priority_init(base, 8), ==, 0);
1636 n_pai_calls = 0;
1637 memset(call_order, 0, sizeof(call_order));
1639 for (i=0;i<3;++i) {
1640 event_assign(&pai_events[i], data->base, -1, 0,
1641 prio_active_inversion_cb, &call_order[i]);
1644 event_priority_set(&pai_events[0], 4);
1645 event_priority_set(&pai_events[1], 4);
1646 event_priority_set(&pai_events[2], 0);
1648 event_active(&pai_events[0], EV_WRITE, 1);
1650 event_base_dispatch(base);
1651 tt_int_op(n_pai_calls, ==, 3);
1652 tt_int_op(call_order[0], ==, 0);
1653 tt_int_op(call_order[1], ==, 2);
1654 tt_int_op(call_order[2], ==, 1);
1655 end:
1660 static void
1661 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
1663 if (event & EV_READ)
1664 test_ok |= 1;
1665 else if (event & EV_WRITE)
1666 test_ok |= 2;
1669 static void
1670 test_multiple_events_for_same_fd(void)
1672 struct event e1, e2;
1674 setup_test("Multiple events for same fd: ");
1676 event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
1677 event_add(&e1, NULL);
1678 event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
1679 event_add(&e2, NULL);
1680 event_loop(EVLOOP_ONCE);
1681 event_del(&e2);
1683 if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
1684 tt_fail_perror("write");
1687 event_loop(EVLOOP_ONCE);
1688 event_del(&e1);
1690 if (test_ok != 3)
1691 test_ok = 0;
1693 cleanup_test();
1696 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1697 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
1698 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
1699 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1701 static void
1702 read_once_cb(evutil_socket_t fd, short event, void *arg)
1704 char buf[256];
1705 int len;
1707 len = read(fd, buf, sizeof(buf));
1709 if (called) {
1710 test_ok = 0;
1711 } else if (len) {
1712 /* Assumes global pair[0] can be used for writing */
1713 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1714 tt_fail_perror("write");
1715 test_ok = 0;
1716 } else {
1717 test_ok = 1;
1721 called++;
1724 static void
1725 test_want_only_once(void)
1727 struct event ev;
1728 struct timeval tv;
1730 /* Very simple read test */
1731 setup_test("Want read only once: ");
1733 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1734 tt_fail_perror("write");
1737 /* Setup the loop termination */
1738 evutil_timerclear(&tv);
1739 tv.tv_sec = 1;
1740 event_loopexit(&tv);
1742 event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
1743 if (event_add(&ev, NULL) == -1)
1744 exit(1);
1745 event_dispatch();
1747 cleanup_test();
1750 #define TEST_MAX_INT 6
1752 static void
1753 evtag_int_test(void *ptr)
1755 struct evbuffer *tmp = evbuffer_new();
1756 ev_uint32_t integers[TEST_MAX_INT] = {
1757 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
1759 ev_uint32_t integer;
1760 ev_uint64_t big_int;
1761 int i;
1763 evtag_init();
1765 for (i = 0; i < TEST_MAX_INT; i++) {
1766 int oldlen, newlen;
1767 oldlen = (int)EVBUFFER_LENGTH(tmp);
1768 evtag_encode_int(tmp, integers[i]);
1769 newlen = (int)EVBUFFER_LENGTH(tmp);
1770 TT_BLATHER(("encoded 0x%08x with %d bytes",
1771 (unsigned)integers[i], newlen - oldlen));
1772 big_int = integers[i];
1773 big_int *= 1000000000; /* 1 billion */
1774 evtag_encode_int64(tmp, big_int);
1777 for (i = 0; i < TEST_MAX_INT; i++) {
1778 tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
1779 tt_uint_op(integer, ==, integers[i]);
1780 tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
1781 tt_assert((big_int / 1000000000) == integers[i]);
1784 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
1785 end:
1786 evbuffer_free(tmp);
1789 static void
1790 evtag_fuzz(void *ptr)
1792 u_char buffer[4096];
1793 struct evbuffer *tmp = evbuffer_new();
1794 struct timeval tv;
1795 int i, j;
1797 int not_failed = 0;
1799 evtag_init();
1801 for (j = 0; j < 100; j++) {
1802 for (i = 0; i < (int)sizeof(buffer); i++)
1803 buffer[i] = rand();
1804 evbuffer_drain(tmp, -1);
1805 evbuffer_add(tmp, buffer, sizeof(buffer));
1807 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
1808 not_failed++;
1811 /* The majority of decodes should fail */
1812 tt_int_op(not_failed, <, 10);
1814 /* Now insert some corruption into the tag length field */
1815 evbuffer_drain(tmp, -1);
1816 evutil_timerclear(&tv);
1817 tv.tv_sec = 1;
1818 evtag_marshal_timeval(tmp, 0, &tv);
1819 evbuffer_add(tmp, buffer, sizeof(buffer));
1821 ((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
1822 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
1823 tt_abort_msg("evtag_unmarshal_timeval should have failed");
1826 end:
1827 evbuffer_free(tmp);
1830 static void
1831 evtag_tag_encoding(void *ptr)
1833 struct evbuffer *tmp = evbuffer_new();
1834 ev_uint32_t integers[TEST_MAX_INT] = {
1835 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
1837 ev_uint32_t integer;
1838 int i;
1840 evtag_init();
1842 for (i = 0; i < TEST_MAX_INT; i++) {
1843 int oldlen, newlen;
1844 oldlen = (int)EVBUFFER_LENGTH(tmp);
1845 evtag_encode_tag(tmp, integers[i]);
1846 newlen = (int)EVBUFFER_LENGTH(tmp);
1847 TT_BLATHER(("encoded 0x%08x with %d bytes",
1848 (unsigned)integers[i], newlen - oldlen));
1851 for (i = 0; i < TEST_MAX_INT; i++) {
1852 tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
1853 tt_uint_op(integer, ==, integers[i]);
1856 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
1858 end:
1859 evbuffer_free(tmp);
1862 static void
1863 evtag_test_peek(void *ptr)
1865 struct evbuffer *tmp = evbuffer_new();
1866 ev_uint32_t u32;
1868 evtag_marshal_int(tmp, 30, 0);
1869 evtag_marshal_string(tmp, 40, "Hello world");
1871 tt_int_op(evtag_peek(tmp, &u32), ==, 1);
1872 tt_int_op(u32, ==, 30);
1873 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
1874 tt_int_op(u32, ==, 1+1+1);
1875 tt_int_op(evtag_consume(tmp), ==, 0);
1877 tt_int_op(evtag_peek(tmp, &u32), ==, 1);
1878 tt_int_op(u32, ==, 40);
1879 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
1880 tt_int_op(u32, ==, 1+1+11);
1881 tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
1882 tt_int_op(u32, ==, 11);
1884 end:
1885 evbuffer_free(tmp);
1889 static void
1890 test_methods(void *ptr)
1892 const char **methods = event_get_supported_methods();
1893 struct event_config *cfg = NULL;
1894 struct event_base *base = NULL;
1895 const char *backend;
1896 int n_methods = 0;
1898 tt_assert(methods);
1900 backend = methods[0];
1901 while (*methods != NULL) {
1902 TT_BLATHER(("Support method: %s", *methods));
1903 ++methods;
1904 ++n_methods;
1907 cfg = event_config_new();
1908 assert(cfg != NULL);
1910 tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
1911 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
1913 base = event_base_new_with_config(cfg);
1914 if (n_methods > 1) {
1915 tt_assert(base);
1916 tt_str_op(backend, !=, event_base_get_method(base));
1917 } else {
1918 tt_assert(base == NULL);
1921 end:
1922 if (base)
1923 event_base_free(base);
1924 if (cfg)
1925 event_config_free(cfg);
1928 static void
1929 test_version(void *arg)
1931 const char *vstr;
1932 ev_uint32_t vint;
1933 int major, minor, patch, n;
1935 vstr = event_get_version();
1936 vint = event_get_version_number();
1938 tt_assert(vstr);
1939 tt_assert(vint);
1941 tt_str_op(vstr, ==, LIBEVENT_VERSION);
1942 tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
1944 n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
1945 tt_assert(3 == n);
1946 tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
1947 end:
1951 static void
1952 test_base_features(void *arg)
1954 struct event_base *base = NULL;
1955 struct event_config *cfg = NULL;
1957 cfg = event_config_new();
1959 tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
1961 base = event_base_new_with_config(cfg);
1962 if (base) {
1963 tt_int_op(EV_FEATURE_ET, ==,
1964 event_base_get_features(base) & EV_FEATURE_ET);
1965 } else {
1966 base = event_base_new();
1967 tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
1970 end:
1971 if (base)
1972 event_base_free(base);
1973 if (cfg)
1974 event_config_free(cfg);
1977 #ifdef _EVENT_HAVE_SETENV
1978 #define SETENV_OK
1979 #elif !defined(_EVENT_HAVE_SETENV) && defined(_EVENT_HAVE_PUTENV)
1980 static void setenv(const char *k, const char *v, int _o)
1982 char b[256];
1983 evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
1984 putenv(b);
1986 #define SETENV_OK
1987 #endif
1989 #ifdef _EVENT_HAVE_UNSETENV
1990 #define UNSETENV_OK
1991 #elif !defined(_EVENT_HAVE_UNSETENV) && defined(_EVENT_HAVE_PUTENV)
1992 static void unsetenv(const char *k)
1994 char b[256];
1995 evutil_snprintf(b, sizeof(b), "%s=",k);
1996 putenv(b);
1998 #define UNSETENV_OK
1999 #endif
2001 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2002 static void
2003 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2005 char *cp;
2006 evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2007 for (cp = buf; *cp; ++cp) {
2008 *cp = EVUTIL_TOUPPER(*cp);
2011 #endif
2013 static void
2014 test_base_environ(void *arg)
2016 struct event_base *base = NULL;
2017 struct event_config *cfg = NULL;
2019 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2020 const char **basenames;
2021 int i, n_methods=0;
2022 char varbuf[128];
2023 const char *defaultname, *ignoreenvname;
2025 /* See if unsetenv works before we rely on it. */
2026 setenv("EVENT_NOWAFFLES", "1", 1);
2027 unsetenv("EVENT_NOWAFFLES");
2028 if (getenv("EVENT_NOWAFFLES") != NULL) {
2029 #ifndef _EVENT_HAVE_UNSETENV
2030 TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2031 #else
2032 TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2033 #endif
2034 tt_skip();
2037 basenames = event_get_supported_methods();
2038 for (i = 0; basenames[i]; ++i) {
2039 methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2040 unsetenv(varbuf);
2041 ++n_methods;
2044 base = event_base_new();
2045 tt_assert(base);
2047 defaultname = event_base_get_method(base);
2048 TT_BLATHER(("default is <%s>", defaultname));
2049 event_base_free(base);
2050 base = NULL;
2052 /* Can we disable the method with EVENT_NOfoo ? */
2053 if (!strcmp(defaultname, "epoll (with changelist)")) {
2054 setenv("EVENT_NOEPOLL", "1", 1);
2055 ignoreenvname = "epoll";
2056 } else {
2057 methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2058 setenv(varbuf, "1", 1);
2059 ignoreenvname = defaultname;
2062 /* Use an empty cfg rather than NULL so a failure doesn't exit() */
2063 cfg = event_config_new();
2064 base = event_base_new_with_config(cfg);
2065 event_config_free(cfg);
2066 cfg = NULL;
2067 if (n_methods == 1) {
2068 tt_assert(!base);
2069 } else {
2070 tt_assert(base);
2071 tt_str_op(defaultname, !=, event_base_get_method(base));
2072 event_base_free(base);
2073 base = NULL;
2076 /* Can we disable looking at the environment with IGNORE_ENV ? */
2077 cfg = event_config_new();
2078 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2079 base = event_base_new_with_config(cfg);
2080 tt_assert(base);
2081 tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2082 #else
2083 tt_skip();
2084 #endif
2086 end:
2087 if (base)
2088 event_base_free(base);
2089 if (cfg)
2090 event_config_free(cfg);
2093 static void
2094 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2096 tt_int_op(event, ==, EV_READ);
2097 called += 1;
2098 end:
2102 static void
2103 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2105 tt_int_op(event, ==, EV_TIMEOUT);
2106 called += 100;
2107 end:
2111 static void
2112 test_event_once(void *ptr)
2114 struct basic_test_data *data = ptr;
2115 struct timeval tv;
2116 int r;
2118 tv.tv_sec = 0;
2119 tv.tv_usec = 50*1000;
2120 called = 0;
2121 r = event_base_once(data->base, data->pair[0], EV_READ,
2122 read_called_once_cb, NULL, NULL);
2123 tt_int_op(r, ==, 0);
2124 r = event_base_once(data->base, -1, EV_TIMEOUT,
2125 timeout_called_once_cb, NULL, &tv);
2126 tt_int_op(r, ==, 0);
2127 r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2128 tt_int_op(r, <, 0);
2130 if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2131 tt_fail_perror("write");
2134 shutdown(data->pair[1], SHUT_WR);
2136 event_base_dispatch(data->base);
2138 tt_int_op(called, ==, 101);
2139 end:
2143 static void
2144 test_event_pending(void *ptr)
2146 struct basic_test_data *data = ptr;
2147 struct event *r=NULL, *w=NULL, *t=NULL;
2148 struct timeval tv, now, tv2, diff;
2150 tv.tv_sec = 0;
2151 tv.tv_usec = 500 * 1000;
2152 r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2153 NULL);
2154 w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2155 NULL);
2156 t = evtimer_new(data->base, timeout_cb, NULL);
2158 tt_assert(r);
2159 tt_assert(w);
2160 tt_assert(t);
2162 evutil_gettimeofday(&now, NULL);
2163 event_add(r, NULL);
2164 event_add(t, &tv);
2166 tt_assert( event_pending(r, EV_READ, NULL));
2167 tt_assert(!event_pending(w, EV_WRITE, NULL));
2168 tt_assert(!event_pending(r, EV_WRITE, NULL));
2169 tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2170 tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2171 tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2172 tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2174 tt_assert(evutil_timercmp(&tv2, &now, >));
2175 evutil_timeradd(&now, &tv, &tv);
2176 evutil_timersub(&tv2, &tv, &diff);
2177 tt_int_op(diff.tv_sec, ==, 0);
2178 tt_int_op(labs(diff.tv_usec), <, 1000);
2180 end:
2181 if (r) {
2182 event_del(r);
2183 event_free(r);
2185 if (w) {
2186 event_del(w);
2187 event_free(w);
2189 if (t) {
2190 event_del(t);
2191 event_free(t);
2195 #ifndef WIN32
2196 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2198 static void
2199 dfd_cb(evutil_socket_t fd, short e, void *data)
2201 *(int*)data = (int)e;
2204 /* Regression test for our workaround for a fun epoll/linux related bug
2205 * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2206 * will get you an EEXIST */
2207 static void
2208 test_dup_fd(void *arg)
2210 struct basic_test_data *data = arg;
2211 struct event_base *base = data->base;
2212 struct event *ev1=NULL, *ev2=NULL;
2213 int fd, dfd=-1;
2214 int ev1_got, ev2_got;
2216 tt_int_op(write(data->pair[0], "Hello world",
2217 strlen("Hello world")), >, 0);
2218 fd = data->pair[1];
2220 dfd = dup(fd);
2221 tt_int_op(dfd, >=, 0);
2223 ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2224 ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2225 ev1_got = ev2_got = 0;
2226 event_add(ev1, NULL);
2227 event_add(ev2, NULL);
2228 event_base_loop(base, EVLOOP_ONCE);
2229 tt_int_op(ev1_got, ==, EV_READ);
2230 tt_int_op(ev2_got, ==, EV_READ);
2232 /* Now close and delete dfd then dispatch. We need to do the
2233 * dispatch here so that when we add it later, we think there
2234 * was an intermediate delete. */
2235 close(dfd);
2236 event_del(ev2);
2237 ev1_got = ev2_got = 0;
2238 event_base_loop(base, EVLOOP_ONCE);
2239 tt_want_int_op(ev1_got, ==, EV_READ);
2240 tt_int_op(ev2_got, ==, 0);
2242 /* Re-duplicate the fd. We need to get the same duplicated
2243 * value that we closed to provoke the epoll quirk. Also, we
2244 * need to change the events to write, or else the old lingering
2245 * read event will make the test pass whether the change was
2246 * successful or not. */
2247 tt_int_op(dup2(fd, dfd), ==, dfd);
2248 event_free(ev2);
2249 ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2250 event_add(ev2, NULL);
2251 ev1_got = ev2_got = 0;
2252 event_base_loop(base, EVLOOP_ONCE);
2253 tt_want_int_op(ev1_got, ==, EV_READ);
2254 tt_int_op(ev2_got, ==, EV_WRITE);
2256 end:
2257 if (ev1)
2258 event_free(ev1);
2259 if (ev2)
2260 event_free(ev2);
2261 if (dfd >= 0)
2262 close(dfd);
2264 #endif
2266 #ifdef _EVENT_DISABLE_MM_REPLACEMENT
2267 static void
2268 test_mm_functions(void *arg)
2270 _tinytest_set_test_skipped();
2272 #else
2273 static int
2274 check_dummy_mem_ok(void *_mem)
2276 char *mem = _mem;
2277 mem -= 16;
2278 return !memcmp(mem, "{[<guardedram>]}", 16);
2281 static void *
2282 dummy_malloc(size_t len)
2284 char *mem = malloc(len+16);
2285 memcpy(mem, "{[<guardedram>]}", 16);
2286 return mem+16;
2289 static void *
2290 dummy_realloc(void *_mem, size_t len)
2292 char *mem = _mem;
2293 if (!mem)
2294 return dummy_malloc(len);
2295 tt_want(check_dummy_mem_ok(_mem));
2296 mem -= 16;
2297 mem = realloc(mem, len+16);
2298 return mem+16;
2301 static void
2302 dummy_free(void *_mem)
2304 char *mem = _mem;
2305 tt_want(check_dummy_mem_ok(_mem));
2306 mem -= 16;
2307 free(mem);
2310 static void
2311 test_mm_functions(void *arg)
2313 struct event_base *b = NULL;
2314 struct event_config *cfg = NULL;
2315 event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2316 cfg = event_config_new();
2317 event_config_avoid_method(cfg, "Nonesuch");
2318 b = event_base_new_with_config(cfg);
2319 tt_assert(b);
2320 tt_assert(check_dummy_mem_ok(b));
2321 end:
2322 if (cfg)
2323 event_config_free(cfg);
2324 if (b)
2325 event_base_free(b);
2327 #endif
2329 static void
2330 many_event_cb(evutil_socket_t fd, short event, void *arg)
2332 int *calledp = arg;
2333 *calledp += 1;
2336 static void
2337 test_many_events(void *arg)
2339 /* Try 70 events that should all be ready at once. This will
2340 * exercise the "resize" code on most of the backends, and will make
2341 * sure that we can get past the 64-handle limit of some windows
2342 * functions. */
2343 #define MANY 70
2345 struct basic_test_data *data = arg;
2346 struct event_base *base = data->base;
2347 int one_at_a_time = data->setup_data != NULL;
2348 evutil_socket_t sock[MANY];
2349 struct event *ev[MANY];
2350 int called[MANY];
2351 int i;
2352 int loopflags = EVLOOP_NONBLOCK, evflags=0;
2353 const int is_evport = !strcmp(event_base_get_method(base),"evport");
2354 if (one_at_a_time) {
2355 loopflags |= EVLOOP_ONCE;
2356 evflags = EV_PERSIST;
2359 memset(sock, 0xff, sizeof(sock));
2360 memset(ev, 0, sizeof(ev));
2361 memset(called, 0, sizeof(called));
2362 if (is_evport && one_at_a_time) {
2363 TT_DECLARE("NOTE", ("evport can't pass this in 2.0; skipping\n"));
2364 tt_skip();
2367 for (i = 0; i < MANY; ++i) {
2368 /* We need an event that will hit the backend, and that will
2369 * be ready immediately. "Send a datagram" is an easy
2370 * instance of that. */
2371 sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2372 tt_assert(sock[i] >= 0);
2373 called[i] = 0;
2374 ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2375 many_event_cb, &called[i]);
2376 event_add(ev[i], NULL);
2377 if (one_at_a_time)
2378 event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2381 event_base_loop(base, loopflags);
2383 for (i = 0; i < MANY; ++i) {
2384 if (one_at_a_time)
2385 tt_int_op(called[i], ==, MANY - i + 1);
2386 else
2387 tt_int_op(called[i], ==, 1);
2390 end:
2391 for (i = 0; i < MANY; ++i) {
2392 if (ev[i])
2393 event_free(ev[i]);
2394 if (sock[i] >= 0)
2395 evutil_closesocket(sock[i]);
2397 #undef MANY
2400 static void
2401 test_struct_event_size(void *arg)
2403 tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2404 end:
2408 struct testcase_t main_testcases[] = {
2409 /* Some converted-over tests */
2410 { "methods", test_methods, TT_FORK, NULL, NULL },
2411 { "version", test_version, 0, NULL, NULL },
2412 BASIC(base_features, TT_FORK|TT_NO_LOGS),
2413 { "base_environ", test_base_environ, TT_FORK, NULL, NULL },
2415 BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
2416 BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
2418 BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
2420 BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2421 BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2423 LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
2424 { "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2425 { "persistent_active_timeout", test_persistent_active_timeout,
2426 TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2427 LEGACY(priorities, TT_FORK|TT_NEED_BASE),
2428 BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
2429 { "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
2430 &basic_setup, NULL },
2432 /* These legacy tests may not all need all of these flags. */
2433 LEGACY(simpleread, TT_ISOLATED),
2434 LEGACY(simpleread_multiple, TT_ISOLATED),
2435 LEGACY(simplewrite, TT_ISOLATED),
2436 { "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
2437 NULL },
2438 LEGACY(multiple, TT_ISOLATED),
2439 LEGACY(persistent, TT_ISOLATED),
2440 LEGACY(combined, TT_ISOLATED),
2441 LEGACY(simpletimeout, TT_ISOLATED),
2442 LEGACY(loopbreak, TT_ISOLATED),
2443 LEGACY(loopexit, TT_ISOLATED),
2444 LEGACY(loopexit_multiple, TT_ISOLATED),
2445 LEGACY(nonpersist_readd, TT_ISOLATED),
2446 LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
2447 LEGACY(want_only_once, TT_ISOLATED),
2448 { "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
2449 { "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
2450 NULL },
2451 #ifndef WIN32
2452 { "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
2453 #endif
2454 { "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
2455 { "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
2456 { "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
2458 { "struct_event_size", test_struct_event_size, 0, NULL, NULL },
2460 #ifndef WIN32
2461 LEGACY(fork, TT_ISOLATED),
2462 #endif
2463 END_OF_TESTCASES
2466 struct testcase_t evtag_testcases[] = {
2467 { "int", evtag_int_test, TT_FORK, NULL, NULL },
2468 { "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
2469 { "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
2470 { "peek", evtag_test_peek, 0, NULL, NULL },
2472 END_OF_TESTCASES
2475 struct testcase_t signal_testcases[] = {
2476 #ifndef WIN32
2477 LEGACY(simplesignal, TT_ISOLATED),
2478 LEGACY(multiplesignal, TT_ISOLATED),
2479 LEGACY(immediatesignal, TT_ISOLATED),
2480 LEGACY(signal_dealloc, TT_ISOLATED),
2481 LEGACY(signal_pipeloss, TT_ISOLATED),
2482 LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
2483 LEGACY(signal_restore, TT_ISOLATED),
2484 LEGACY(signal_assert, TT_ISOLATED),
2485 LEGACY(signal_while_processing, TT_ISOLATED),
2486 #endif
2487 END_OF_TESTCASES