Stealth Mode script
[tomato.git] / release / src / router / miniupnpd / bsdqueue.h
blobc6afe1f7c445aa6de95b5749ef82867bd138f6cd
1 /* $OpenBSD: queue.h,v 1.31 2005/11/25 08:06:25 otto Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
4 /*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 #ifndef _SYS_QUEUE_H_
36 #define _SYS_QUEUE_H_
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues, and circular queues.
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
60 * A simple queue is headed by a pair of pointers, one the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
74 * A circle queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or after
78 * an existing element, at the head of the list, or at the end of the list.
79 * A circle queue may be traversed in either direction, but has a more
80 * complex end of list detection.
82 * For details on the use of these macros, see the queue(3) manual page.
85 #ifdef QUEUE_MACRO_DEBUG
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
92 * Singly-linked List definitions.
94 #define SLIST_HEAD(name, type) \
95 struct name { \
96 struct type *slh_first; /* first element */ \
99 #define SLIST_HEAD_INITIALIZER(head) \
100 { NULL }
102 #ifdef SLIST_ENTRY
103 #undef SLIST_ENTRY
104 #endif
106 #define SLIST_ENTRY(type) \
107 struct { \
108 struct type *sle_next; /* next element */ \
112 * Singly-linked List access methods.
114 #define SLIST_FIRST(head) ((head)->slh_first)
115 #define SLIST_END(head) NULL
116 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
117 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
119 #define SLIST_FOREACH(var, head, field) \
120 for((var) = SLIST_FIRST(head); \
121 (var) != SLIST_END(head); \
122 (var) = SLIST_NEXT(var, field))
124 #define SLIST_FOREACH_PREVPTR(var, varp, head, field) \
125 for ((varp) = &SLIST_FIRST((head)); \
126 ((var) = *(varp)) != SLIST_END(head); \
127 (varp) = &SLIST_NEXT((var), field))
130 * Singly-linked List functions.
132 #define SLIST_INIT(head) { \
133 SLIST_FIRST(head) = SLIST_END(head); \
136 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
137 (elm)->field.sle_next = (slistelm)->field.sle_next; \
138 (slistelm)->field.sle_next = (elm); \
139 } while (0)
141 #define SLIST_INSERT_HEAD(head, elm, field) do { \
142 (elm)->field.sle_next = (head)->slh_first; \
143 (head)->slh_first = (elm); \
144 } while (0)
146 #define SLIST_REMOVE_NEXT(head, elm, field) do { \
147 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
148 } while (0)
150 #define SLIST_REMOVE_HEAD(head, field) do { \
151 (head)->slh_first = (head)->slh_first->field.sle_next; \
152 } while (0)
154 #define SLIST_REMOVE(head, elm, type, field) do { \
155 if ((head)->slh_first == (elm)) { \
156 SLIST_REMOVE_HEAD((head), field); \
157 } else { \
158 struct type *curelm = (head)->slh_first; \
160 while (curelm->field.sle_next != (elm)) \
161 curelm = curelm->field.sle_next; \
162 curelm->field.sle_next = \
163 curelm->field.sle_next->field.sle_next; \
164 _Q_INVALIDATE((elm)->field.sle_next); \
166 } while (0)
169 * List definitions.
171 #define LIST_HEAD(name, type) \
172 struct name { \
173 struct type *lh_first; /* first element */ \
176 #define LIST_HEAD_INITIALIZER(head) \
177 { NULL }
179 #define LIST_ENTRY(type) \
180 struct { \
181 struct type *le_next; /* next element */ \
182 struct type **le_prev; /* address of previous next element */ \
186 * List access methods
188 #define LIST_FIRST(head) ((head)->lh_first)
189 #define LIST_END(head) NULL
190 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
191 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
193 #define LIST_FOREACH(var, head, field) \
194 for((var) = LIST_FIRST(head); \
195 (var)!= LIST_END(head); \
196 (var) = LIST_NEXT(var, field))
199 * List functions.
201 #define LIST_INIT(head) do { \
202 LIST_FIRST(head) = LIST_END(head); \
203 } while (0)
205 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
206 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
207 (listelm)->field.le_next->field.le_prev = \
208 &(elm)->field.le_next; \
209 (listelm)->field.le_next = (elm); \
210 (elm)->field.le_prev = &(listelm)->field.le_next; \
211 } while (0)
213 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
214 (elm)->field.le_prev = (listelm)->field.le_prev; \
215 (elm)->field.le_next = (listelm); \
216 *(listelm)->field.le_prev = (elm); \
217 (listelm)->field.le_prev = &(elm)->field.le_next; \
218 } while (0)
220 #define LIST_INSERT_HEAD(head, elm, field) do { \
221 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
222 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
223 (head)->lh_first = (elm); \
224 (elm)->field.le_prev = &(head)->lh_first; \
225 } while (0)
227 #define LIST_REMOVE(elm, field) do { \
228 if ((elm)->field.le_next != NULL) \
229 (elm)->field.le_next->field.le_prev = \
230 (elm)->field.le_prev; \
231 *(elm)->field.le_prev = (elm)->field.le_next; \
232 _Q_INVALIDATE((elm)->field.le_prev); \
233 _Q_INVALIDATE((elm)->field.le_next); \
234 } while (0)
236 #define LIST_REPLACE(elm, elm2, field) do { \
237 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
238 (elm2)->field.le_next->field.le_prev = \
239 &(elm2)->field.le_next; \
240 (elm2)->field.le_prev = (elm)->field.le_prev; \
241 *(elm2)->field.le_prev = (elm2); \
242 _Q_INVALIDATE((elm)->field.le_prev); \
243 _Q_INVALIDATE((elm)->field.le_next); \
244 } while (0)
247 * Simple queue definitions.
249 #define SIMPLEQ_HEAD(name, type) \
250 struct name { \
251 struct type *sqh_first; /* first element */ \
252 struct type **sqh_last; /* addr of last next element */ \
255 #define SIMPLEQ_HEAD_INITIALIZER(head) \
256 { NULL, &(head).sqh_first }
258 #define SIMPLEQ_ENTRY(type) \
259 struct { \
260 struct type *sqe_next; /* next element */ \
264 * Simple queue access methods.
266 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
267 #define SIMPLEQ_END(head) NULL
268 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
269 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
271 #define SIMPLEQ_FOREACH(var, head, field) \
272 for((var) = SIMPLEQ_FIRST(head); \
273 (var) != SIMPLEQ_END(head); \
274 (var) = SIMPLEQ_NEXT(var, field))
277 * Simple queue functions.
279 #define SIMPLEQ_INIT(head) do { \
280 (head)->sqh_first = NULL; \
281 (head)->sqh_last = &(head)->sqh_first; \
282 } while (0)
284 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
285 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
286 (head)->sqh_last = &(elm)->field.sqe_next; \
287 (head)->sqh_first = (elm); \
288 } while (0)
290 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
291 (elm)->field.sqe_next = NULL; \
292 *(head)->sqh_last = (elm); \
293 (head)->sqh_last = &(elm)->field.sqe_next; \
294 } while (0)
296 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
297 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
298 (head)->sqh_last = &(elm)->field.sqe_next; \
299 (listelm)->field.sqe_next = (elm); \
300 } while (0)
302 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
303 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
304 (head)->sqh_last = &(head)->sqh_first; \
305 } while (0)
308 * Tail queue definitions.
310 #define TAILQ_HEAD(name, type) \
311 struct name { \
312 struct type *tqh_first; /* first element */ \
313 struct type **tqh_last; /* addr of last next element */ \
316 #define TAILQ_HEAD_INITIALIZER(head) \
317 { NULL, &(head).tqh_first }
319 #define TAILQ_ENTRY(type) \
320 struct { \
321 struct type *tqe_next; /* next element */ \
322 struct type **tqe_prev; /* address of previous next element */ \
326 * tail queue access methods
328 #define TAILQ_FIRST(head) ((head)->tqh_first)
329 #define TAILQ_END(head) NULL
330 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
331 #define TAILQ_LAST(head, headname) \
332 (*(((struct headname *)((head)->tqh_last))->tqh_last))
333 /* XXX */
334 #define TAILQ_PREV(elm, headname, field) \
335 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
336 #define TAILQ_EMPTY(head) \
337 (TAILQ_FIRST(head) == TAILQ_END(head))
339 #define TAILQ_FOREACH(var, head, field) \
340 for((var) = TAILQ_FIRST(head); \
341 (var) != TAILQ_END(head); \
342 (var) = TAILQ_NEXT(var, field))
344 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
345 for((var) = TAILQ_LAST(head, headname); \
346 (var) != TAILQ_END(head); \
347 (var) = TAILQ_PREV(var, headname, field))
350 * Tail queue functions.
352 #define TAILQ_INIT(head) do { \
353 (head)->tqh_first = NULL; \
354 (head)->tqh_last = &(head)->tqh_first; \
355 } while (0)
357 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
358 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
359 (head)->tqh_first->field.tqe_prev = \
360 &(elm)->field.tqe_next; \
361 else \
362 (head)->tqh_last = &(elm)->field.tqe_next; \
363 (head)->tqh_first = (elm); \
364 (elm)->field.tqe_prev = &(head)->tqh_first; \
365 } while (0)
367 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
368 (elm)->field.tqe_next = NULL; \
369 (elm)->field.tqe_prev = (head)->tqh_last; \
370 *(head)->tqh_last = (elm); \
371 (head)->tqh_last = &(elm)->field.tqe_next; \
372 } while (0)
374 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
375 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
376 (elm)->field.tqe_next->field.tqe_prev = \
377 &(elm)->field.tqe_next; \
378 else \
379 (head)->tqh_last = &(elm)->field.tqe_next; \
380 (listelm)->field.tqe_next = (elm); \
381 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
382 } while (0)
384 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
385 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
386 (elm)->field.tqe_next = (listelm); \
387 *(listelm)->field.tqe_prev = (elm); \
388 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
389 } while (0)
391 #define TAILQ_REMOVE(head, elm, field) do { \
392 if (((elm)->field.tqe_next) != NULL) \
393 (elm)->field.tqe_next->field.tqe_prev = \
394 (elm)->field.tqe_prev; \
395 else \
396 (head)->tqh_last = (elm)->field.tqe_prev; \
397 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
398 _Q_INVALIDATE((elm)->field.tqe_prev); \
399 _Q_INVALIDATE((elm)->field.tqe_next); \
400 } while (0)
402 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
403 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
404 (elm2)->field.tqe_next->field.tqe_prev = \
405 &(elm2)->field.tqe_next; \
406 else \
407 (head)->tqh_last = &(elm2)->field.tqe_next; \
408 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
409 *(elm2)->field.tqe_prev = (elm2); \
410 _Q_INVALIDATE((elm)->field.tqe_prev); \
411 _Q_INVALIDATE((elm)->field.tqe_next); \
412 } while (0)
415 * Circular queue definitions.
417 #define CIRCLEQ_HEAD(name, type) \
418 struct name { \
419 struct type *cqh_first; /* first element */ \
420 struct type *cqh_last; /* last element */ \
423 #define CIRCLEQ_HEAD_INITIALIZER(head) \
424 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
426 #define CIRCLEQ_ENTRY(type) \
427 struct { \
428 struct type *cqe_next; /* next element */ \
429 struct type *cqe_prev; /* previous element */ \
433 * Circular queue access methods
435 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
436 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
437 #define CIRCLEQ_END(head) ((void *)(head))
438 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
439 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
440 #define CIRCLEQ_EMPTY(head) \
441 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
443 #define CIRCLEQ_FOREACH(var, head, field) \
444 for((var) = CIRCLEQ_FIRST(head); \
445 (var) != CIRCLEQ_END(head); \
446 (var) = CIRCLEQ_NEXT(var, field))
448 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
449 for((var) = CIRCLEQ_LAST(head); \
450 (var) != CIRCLEQ_END(head); \
451 (var) = CIRCLEQ_PREV(var, field))
454 * Circular queue functions.
456 #define CIRCLEQ_INIT(head) do { \
457 (head)->cqh_first = CIRCLEQ_END(head); \
458 (head)->cqh_last = CIRCLEQ_END(head); \
459 } while (0)
461 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
462 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
463 (elm)->field.cqe_prev = (listelm); \
464 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
465 (head)->cqh_last = (elm); \
466 else \
467 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
468 (listelm)->field.cqe_next = (elm); \
469 } while (0)
471 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
472 (elm)->field.cqe_next = (listelm); \
473 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
474 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
475 (head)->cqh_first = (elm); \
476 else \
477 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
478 (listelm)->field.cqe_prev = (elm); \
479 } while (0)
481 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
482 (elm)->field.cqe_next = (head)->cqh_first; \
483 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
484 if ((head)->cqh_last == CIRCLEQ_END(head)) \
485 (head)->cqh_last = (elm); \
486 else \
487 (head)->cqh_first->field.cqe_prev = (elm); \
488 (head)->cqh_first = (elm); \
489 } while (0)
491 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
492 (elm)->field.cqe_next = CIRCLEQ_END(head); \
493 (elm)->field.cqe_prev = (head)->cqh_last; \
494 if ((head)->cqh_first == CIRCLEQ_END(head)) \
495 (head)->cqh_first = (elm); \
496 else \
497 (head)->cqh_last->field.cqe_next = (elm); \
498 (head)->cqh_last = (elm); \
499 } while (0)
501 #define CIRCLEQ_REMOVE(head, elm, field) do { \
502 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
503 (head)->cqh_last = (elm)->field.cqe_prev; \
504 else \
505 (elm)->field.cqe_next->field.cqe_prev = \
506 (elm)->field.cqe_prev; \
507 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
508 (head)->cqh_first = (elm)->field.cqe_next; \
509 else \
510 (elm)->field.cqe_prev->field.cqe_next = \
511 (elm)->field.cqe_next; \
512 _Q_INVALIDATE((elm)->field.cqe_prev); \
513 _Q_INVALIDATE((elm)->field.cqe_next); \
514 } while (0)
516 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
517 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
518 CIRCLEQ_END(head)) \
519 (head).cqh_last = (elm2); \
520 else \
521 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
522 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
523 CIRCLEQ_END(head)) \
524 (head).cqh_first = (elm2); \
525 else \
526 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
527 _Q_INVALIDATE((elm)->field.cqe_prev); \
528 _Q_INVALIDATE((elm)->field.cqe_next); \
529 } while (0)
531 #endif /* !_SYS_QUEUE_H_ */