1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-1998 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
32 /* @(#) $Id: trees.c 241205 2011-02-17 21:57:41Z $ */
34 /* #define GEN_TREES_H */
42 /* ===========================================================================
47 /* Bit length codes must not exceed MAX_BL_BITS bits */
50 /* end of block literal code */
53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
56 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58 #define REPZ_11_138 18
59 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61 local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 local
const uch bl_order
[BL_CODES
]
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72 /* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
76 #define Buf_size (8 * 2*sizeof(char))
77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
78 * more than 16 bits on some systems.)
81 /* ===========================================================================
82 * Local data. These are initialized only once.
85 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
87 #if defined(GEN_TREES_H) || !defined(STDC)
88 /* non ANSI compilers may not accept trees.h */
90 local ct_data static_ltree
[L_CODES
+2];
91 /* The static literal tree. Since the bit lengths are imposed, there is no
92 * need for the L_CODES extra codes used during heap construction. However
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
97 local ct_data static_dtree
[D_CODES
];
98 /* The static distance tree. (Actually a trivial tree since all codes use
102 uch _dist_code
[DIST_CODE_LEN
];
103 /* Distance codes. The first 256 values correspond to the distances
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of
105 * the 15 bit distances.
108 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
109 /* length code for each normalized match length (0 == MIN_MATCH) */
111 local
int base_length
[LENGTH_CODES
];
112 /* First normalized length for each code (0 = MIN_MATCH) */
114 local
int base_dist
[D_CODES
];
115 /* First normalized distance for each code (0 = distance of 1) */
119 #endif /* GEN_TREES_H */
121 struct static_tree_desc_s
{
122 const ct_data
*static_tree
; /* static tree or NULL */
123 const intf
*extra_bits
; /* extra bits for each code or NULL */
124 int extra_base
; /* base index for extra_bits */
125 int elems
; /* max number of elements in the tree */
126 int max_length
; /* max bit length for the codes */
129 local static_tree_desc static_l_desc
=
130 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
132 local static_tree_desc static_d_desc
=
133 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
135 local static_tree_desc static_bl_desc
=
136 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
138 /* ===========================================================================
139 * Local (static) routines in this file.
142 local
void tr_static_init
OF((void));
143 local
void init_block
OF((deflate_state
*s
));
144 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
145 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
146 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
147 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
148 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
149 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
150 local
int build_bl_tree
OF((deflate_state
*s
));
151 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
153 local
void compress_block
OF((deflate_state
*s
, ct_data
*ltree
,
155 local
void set_data_type
OF((deflate_state
*s
));
156 local
unsigned bi_reverse
OF((unsigned value
, int length
));
157 local
void bi_windup
OF((deflate_state
*s
));
158 local
void bi_flush
OF((deflate_state
*s
));
159 local
void copy_block
OF((deflate_state
*s
, charf
*buf
, unsigned len
,
163 local
void gen_trees_header
OF((void));
167 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168 /* Send a code of the given tree. c and tree must not have side effects */
171 # define send_code(s, c, tree) \
172 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
173 send_bits(s, tree[c].Code, tree[c].Len); }
176 /* ===========================================================================
177 * Output a short LSB first on the stream.
178 * IN assertion: there is enough room in pendingBuf.
180 #define put_short(s, w) { \
181 put_byte(s, (uch)((w) & 0xff)); \
182 put_byte(s, (uch)((ush)(w) >> 8)); \
185 /* ===========================================================================
186 * Send a value on a given number of bits.
187 * IN assertion: length <= 16 and value fits in length bits.
190 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
192 local
void send_bits(s
, value
, length
)
194 int value
; /* value to send */
195 int length
; /* number of bits */
197 Tracevv((stderr
," l %2d v %4x ", length
, value
));
198 Assert(length
> 0 && length
<= 15, "invalid length");
199 s
->bits_sent
+= (ulg
)length
;
201 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
202 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
203 * unused bits in value.
205 if (s
->bi_valid
> (int)Buf_size
- length
) {
206 s
->bi_buf
|= (value
<< s
->bi_valid
);
207 put_short(s
, s
->bi_buf
);
208 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
209 s
->bi_valid
+= length
- Buf_size
;
211 s
->bi_buf
|= value
<< s
->bi_valid
;
212 s
->bi_valid
+= length
;
217 #define send_bits(s, value, length) \
219 if (s->bi_valid > (int)Buf_size - len) {\
221 s->bi_buf |= (val << s->bi_valid);\
222 put_short(s, s->bi_buf);\
223 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
224 s->bi_valid += len - Buf_size;\
226 s->bi_buf |= (value) << s->bi_valid;\
233 #define MAX(a,b) (a >= b ? a : b)
234 /* the arguments must not have side effects */
236 /* ===========================================================================
237 * Initialize the various 'constant' tables.
239 local
void tr_static_init()
241 #if defined(GEN_TREES_H) || !defined(STDC)
242 static int static_init_done
= 0;
243 int n
; /* iterates over tree elements */
244 int bits
; /* bit counter */
245 int length
; /* length value */
246 int code
; /* code value */
247 int dist
; /* distance index */
248 ush bl_count
[MAX_BITS
+1];
249 /* number of codes at each bit length for an optimal tree */
251 if (static_init_done
) return;
253 /* For some embedded targets, global variables are not initialized: */
254 static_l_desc
.static_tree
= static_ltree
;
255 static_l_desc
.extra_bits
= extra_lbits
;
256 static_d_desc
.static_tree
= static_dtree
;
257 static_d_desc
.extra_bits
= extra_dbits
;
258 static_bl_desc
.extra_bits
= extra_blbits
;
260 /* Initialize the mapping length (0..255) -> length code (0..28) */
262 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
263 base_length
[code
] = length
;
264 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
265 _length_code
[length
++] = (uch
)code
;
268 Assert (length
== 256, "tr_static_init: length != 256");
269 /* Note that the length 255 (match length 258) can be represented
270 * in two different ways: code 284 + 5 bits or code 285, so we
271 * overwrite length_code[255] to use the best encoding:
273 _length_code
[length
-1] = (uch
)code
;
275 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
277 for (code
= 0 ; code
< 16; code
++) {
278 base_dist
[code
] = dist
;
279 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
280 _dist_code
[dist
++] = (uch
)code
;
283 Assert (dist
== 256, "tr_static_init: dist != 256");
284 dist
>>= 7; /* from now on, all distances are divided by 128 */
285 for ( ; code
< D_CODES
; code
++) {
286 base_dist
[code
] = dist
<< 7;
287 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
288 _dist_code
[256 + dist
++] = (uch
)code
;
291 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
293 /* Construct the codes of the static literal tree */
294 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
296 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
297 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
298 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
299 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
300 /* Codes 286 and 287 do not exist, but we must include them in the
301 * tree construction to get a canonical Huffman tree (longest code
304 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
306 /* The static distance tree is trivial: */
307 for (n
= 0; n
< D_CODES
; n
++) {
308 static_dtree
[n
].Len
= 5;
309 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
311 static_init_done
= 1;
316 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
319 /* ===========================================================================
320 * Genererate the file trees.h describing the static trees.
327 # define SEPARATOR(i, last, width) \
328 ((i) == (last)? "\n};\n\n" : \
329 ((i) % (width) == (width)-1 ? ",\n" : ", "))
331 void gen_trees_header()
333 FILE *header
= fopen("trees.h", "w");
336 Assert (header
!= NULL
, "Can't open trees.h");
338 "/* header created automatically with -DGEN_TREES_H */\n\n");
340 fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
341 for (i
= 0; i
< L_CODES
+2; i
++) {
342 fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
,
343 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5));
346 fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
347 for (i
= 0; i
< D_CODES
; i
++) {
348 fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
,
349 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5));
352 fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n");
353 for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
354 fprintf(header
, "%2u%s", _dist_code
[i
],
355 SEPARATOR(i
, DIST_CODE_LEN
-1, 20));
358 fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
359 for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
360 fprintf(header
, "%2u%s", _length_code
[i
],
361 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20));
364 fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
365 for (i
= 0; i
< LENGTH_CODES
; i
++) {
366 fprintf(header
, "%1u%s", base_length
[i
],
367 SEPARATOR(i
, LENGTH_CODES
-1, 20));
370 fprintf(header
, "local const int base_dist[D_CODES] = {\n");
371 for (i
= 0; i
< D_CODES
; i
++) {
372 fprintf(header
, "%5u%s", base_dist
[i
],
373 SEPARATOR(i
, D_CODES
-1, 10));
378 #endif /* GEN_TREES_H */
380 /* ===========================================================================
381 * Initialize the tree data structures for a new zlib stream.
388 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
389 s
->l_desc
.stat_desc
= &static_l_desc
;
391 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
392 s
->d_desc
.stat_desc
= &static_d_desc
;
394 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
395 s
->bl_desc
.stat_desc
= &static_bl_desc
;
399 s
->last_eob_len
= 8; /* enough lookahead for inflate */
401 s
->compressed_len
= 0L;
405 /* Initialize the first block of the first file: */
409 /* ===========================================================================
410 * Initialize a new block.
412 local
void init_block(s
)
415 int n
; /* iterates over tree elements */
417 /* Initialize the trees. */
418 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
419 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
420 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
422 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
423 s
->opt_len
= s
->static_len
= 0L;
424 s
->last_lit
= s
->matches
= 0;
428 /* Index within the heap array of least frequent node in the Huffman tree */
431 /* ===========================================================================
432 * Remove the smallest element from the heap and recreate the heap with
433 * one less element. Updates heap and heap_len.
435 #define pqremove(s, tree, top) \
437 top = s->heap[SMALLEST]; \
438 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
439 pqdownheap(s, tree, SMALLEST); \
442 /* ===========================================================================
443 * Compares to subtrees, using the tree depth as tie breaker when
444 * the subtrees have equal frequency. This minimizes the worst case length.
446 #define smaller(tree, n, m, depth) \
447 (tree[n].Freq < tree[m].Freq || \
448 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
450 /* ===========================================================================
451 * Restore the heap property by moving down the tree starting at node k,
452 * exchanging a node with the smallest of its two sons if necessary, stopping
453 * when the heap property is re-established (each father smaller than its
456 local
void pqdownheap(s
, tree
, k
)
458 ct_data
*tree
; /* the tree to restore */
459 int k
; /* node to move down */
462 int j
= k
<< 1; /* left son of k */
463 while (j
<= s
->heap_len
) {
464 /* Set j to the smallest of the two sons: */
465 if (j
< s
->heap_len
&&
466 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
469 /* Exit if v is smaller than both sons */
470 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
472 /* Exchange v with the smallest son */
473 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
475 /* And continue down the tree, setting j to the left son of k */
481 /* ===========================================================================
482 * Compute the optimal bit lengths for a tree and update the total bit length
483 * for the current block.
484 * IN assertion: the fields freq and dad are set, heap[heap_max] and
485 * above are the tree nodes sorted by increasing frequency.
486 * OUT assertions: the field len is set to the optimal bit length, the
487 * array bl_count contains the frequencies for each bit length.
488 * The length opt_len is updated; static_len is also updated if stree is
491 local
void gen_bitlen(s
, desc
)
493 tree_desc
*desc
; /* the tree descriptor */
495 ct_data
*tree
= desc
->dyn_tree
;
496 int max_code
= desc
->max_code
;
497 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
498 const intf
*extra
= desc
->stat_desc
->extra_bits
;
499 int base
= desc
->stat_desc
->extra_base
;
500 int max_length
= desc
->stat_desc
->max_length
;
501 int h
; /* heap index */
502 int n
, m
; /* iterate over the tree elements */
503 int bits
; /* bit length */
504 int xbits
; /* extra bits */
505 ush f
; /* frequency */
506 int overflow
= 0; /* number of elements with bit length too large */
508 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
510 /* In a first pass, compute the optimal bit lengths (which may
511 * overflow in the case of the bit length tree).
513 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
515 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
517 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
518 if (bits
> max_length
) bits
= max_length
, overflow
++;
519 tree
[n
].Len
= (ush
)bits
;
520 /* We overwrite tree[n].Dad which is no longer needed */
522 if (n
> max_code
) continue; /* not a leaf node */
526 if (n
>= base
) xbits
= extra
[n
-base
];
528 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
529 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
531 if (overflow
== 0) return;
533 Trace((stderr
,"\nbit length overflow\n"));
534 /* This happens for example on obj2 and pic of the Calgary corpus */
536 /* Find the first bit length which could increase: */
539 while (s
->bl_count
[bits
] == 0) bits
--;
540 s
->bl_count
[bits
]--; /* move one leaf down the tree */
541 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
542 s
->bl_count
[max_length
]--;
543 /* The brother of the overflow item also moves one step up,
544 * but this does not affect bl_count[max_length]
547 } while (overflow
> 0);
549 /* Now recompute all bit lengths, scanning in increasing frequency.
550 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
551 * lengths instead of fixing only the wrong ones. This idea is taken
552 * from 'ar' written by Haruhiko Okumura.)
554 for (bits
= max_length
; bits
!= 0; bits
--) {
555 n
= s
->bl_count
[bits
];
558 if (m
> max_code
) continue;
559 if (tree
[m
].Len
!= (unsigned) bits
) {
560 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
561 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
563 tree
[m
].Len
= (ush
)bits
;
570 /* ===========================================================================
571 * Generate the codes for a given tree and bit counts (which need not be
573 * IN assertion: the array bl_count contains the bit length statistics for
574 * the given tree and the field len is set for all tree elements.
575 * OUT assertion: the field code is set for all tree elements of non
578 local
void gen_codes (tree
, max_code
, bl_count
)
579 ct_data
*tree
; /* the tree to decorate */
580 int max_code
; /* largest code with non zero frequency */
581 ushf
*bl_count
; /* number of codes at each bit length */
583 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
584 ush code
= 0; /* running code value */
585 int bits
; /* bit index */
586 int n
; /* code index */
588 /* The distribution counts are first used to generate the code values
589 * without bit reversal.
591 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
592 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
594 /* Check that the bit counts in bl_count are consistent. The last code
597 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
598 "inconsistent bit counts");
599 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
601 for (n
= 0; n
<= max_code
; n
++) {
602 int len
= tree
[n
].Len
;
603 if (len
== 0) continue;
604 /* Now reverse the bits */
605 tree
[n
].Code
= bi_reverse(next_code
[len
]++, len
);
607 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
608 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
612 /* ===========================================================================
613 * Construct one Huffman tree and assigns the code bit strings and lengths.
614 * Update the total bit length for the current block.
615 * IN assertion: the field freq is set for all tree elements.
616 * OUT assertions: the fields len and code are set to the optimal bit length
617 * and corresponding code. The length opt_len is updated; static_len is
618 * also updated if stree is not null. The field max_code is set.
620 local
void build_tree(s
, desc
)
622 tree_desc
*desc
; /* the tree descriptor */
624 ct_data
*tree
= desc
->dyn_tree
;
625 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
626 int elems
= desc
->stat_desc
->elems
;
627 int n
, m
; /* iterate over heap elements */
628 int max_code
= -1; /* largest code with non zero frequency */
629 int node
; /* new node being created */
631 /* Construct the initial heap, with least frequent element in
632 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
633 * heap[0] is not used.
635 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
637 for (n
= 0; n
< elems
; n
++) {
638 if (tree
[n
].Freq
!= 0) {
639 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
646 /* The pkzip format requires that at least one distance code exists,
647 * and that at least one bit should be sent even if there is only one
648 * possible code. So to avoid special checks later on we force at least
649 * two codes of non zero frequency.
651 while (s
->heap_len
< 2) {
652 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
655 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
656 /* node is 0 or 1 so it does not have extra bits */
658 desc
->max_code
= max_code
;
660 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
661 * establish sub-heaps of increasing lengths:
663 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
665 /* Construct the Huffman tree by repeatedly combining the least two
668 node
= elems
; /* next internal node of the tree */
670 pqremove(s
, tree
, n
); /* n = node of least frequency */
671 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
673 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
674 s
->heap
[--(s
->heap_max
)] = m
;
676 /* Create a new node father of n and m */
677 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
678 s
->depth
[node
] = (uch
) (MAX(s
->depth
[n
], s
->depth
[m
]) + 1);
679 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
681 if (tree
== s
->bl_tree
) {
682 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
683 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
686 /* and insert the new node in the heap */
687 s
->heap
[SMALLEST
] = node
++;
688 pqdownheap(s
, tree
, SMALLEST
);
690 } while (s
->heap_len
>= 2);
692 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
694 /* At this point, the fields freq and dad are set. We can now
695 * generate the bit lengths.
697 gen_bitlen(s
, (tree_desc
*)desc
);
699 /* The field len is now set, we can generate the bit codes */
700 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
703 /* ===========================================================================
704 * Scan a literal or distance tree to determine the frequencies of the codes
705 * in the bit length tree.
707 local
void scan_tree (s
, tree
, max_code
)
709 ct_data
*tree
; /* the tree to be scanned */
710 int max_code
; /* and its largest code of non zero frequency */
712 int n
; /* iterates over all tree elements */
713 int prevlen
= -1; /* last emitted length */
714 int curlen
; /* length of current code */
715 int nextlen
= tree
[0].Len
; /* length of next code */
716 int count
= 0; /* repeat count of the current code */
717 int max_count
= 7; /* max repeat count */
718 int min_count
= 4; /* min repeat count */
720 if (nextlen
== 0) max_count
= 138, min_count
= 3;
721 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
723 for (n
= 0; n
<= max_code
; n
++) {
724 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
725 if (++count
< max_count
&& curlen
== nextlen
) {
727 } else if (count
< min_count
) {
728 s
->bl_tree
[curlen
].Freq
+= count
;
729 } else if (curlen
!= 0) {
730 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
731 s
->bl_tree
[REP_3_6
].Freq
++;
732 } else if (count
<= 10) {
733 s
->bl_tree
[REPZ_3_10
].Freq
++;
735 s
->bl_tree
[REPZ_11_138
].Freq
++;
737 count
= 0; prevlen
= curlen
;
739 max_count
= 138, min_count
= 3;
740 } else if (curlen
== nextlen
) {
741 max_count
= 6, min_count
= 3;
743 max_count
= 7, min_count
= 4;
748 /* ===========================================================================
749 * Send a literal or distance tree in compressed form, using the codes in
752 local
void send_tree (s
, tree
, max_code
)
754 ct_data
*tree
; /* the tree to be scanned */
755 int max_code
; /* and its largest code of non zero frequency */
757 int n
; /* iterates over all tree elements */
758 int prevlen
= -1; /* last emitted length */
759 int curlen
; /* length of current code */
760 int nextlen
= tree
[0].Len
; /* length of next code */
761 int count
= 0; /* repeat count of the current code */
762 int max_count
= 7; /* max repeat count */
763 int min_count
= 4; /* min repeat count */
765 /* tree[max_code+1].Len = -1; */ /* guard already set */
766 if (nextlen
== 0) max_count
= 138, min_count
= 3;
768 for (n
= 0; n
<= max_code
; n
++) {
769 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
770 if (++count
< max_count
&& curlen
== nextlen
) {
772 } else if (count
< min_count
) {
773 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
775 } else if (curlen
!= 0) {
776 if (curlen
!= prevlen
) {
777 send_code(s
, curlen
, s
->bl_tree
); count
--;
779 Assert(count
>= 3 && count
<= 6, " 3_6?");
780 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
782 } else if (count
<= 10) {
783 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
786 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
788 count
= 0; prevlen
= curlen
;
790 max_count
= 138, min_count
= 3;
791 } else if (curlen
== nextlen
) {
792 max_count
= 6, min_count
= 3;
794 max_count
= 7, min_count
= 4;
799 /* ===========================================================================
800 * Construct the Huffman tree for the bit lengths and return the index in
801 * bl_order of the last bit length code to send.
803 local
int build_bl_tree(s
)
806 int max_blindex
; /* index of last bit length code of non zero freq */
808 /* Determine the bit length frequencies for literal and distance trees */
809 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
810 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
812 /* Build the bit length tree: */
813 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
814 /* opt_len now includes the length of the tree representations, except
815 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
818 /* Determine the number of bit length codes to send. The pkzip format
819 * requires that at least 4 bit length codes be sent. (appnote.txt says
820 * 3 but the actual value used is 4.)
822 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
823 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
825 /* Update opt_len to include the bit length tree and counts */
826 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
827 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
828 s
->opt_len
, s
->static_len
));
833 /* ===========================================================================
834 * Send the header for a block using dynamic Huffman trees: the counts, the
835 * lengths of the bit length codes, the literal tree and the distance tree.
836 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
838 local
void send_all_trees(s
, lcodes
, dcodes
, blcodes
)
840 int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
842 int rank
; /* index in bl_order */
844 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
845 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
847 Tracev((stderr
, "\nbl counts: "));
848 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
849 send_bits(s
, dcodes
-1, 5);
850 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
851 for (rank
= 0; rank
< blcodes
; rank
++) {
852 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
853 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
855 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
857 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
858 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
860 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
861 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
864 /* ===========================================================================
865 * Send a stored block
867 void _tr_stored_block(s
, buf
, stored_len
, eof
)
869 charf
*buf
; /* input block */
870 ulg stored_len
; /* length of input block */
871 int eof
; /* true if this is the last block for a file */
873 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
875 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
876 s
->compressed_len
+= (stored_len
+ 4) << 3;
878 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
881 /* ===========================================================================
882 * Send one empty static block to give enough lookahead for inflate.
883 * This takes 10 bits, of which 7 may remain in the bit buffer.
884 * The current inflate code requires 9 bits of lookahead. If the
885 * last two codes for the previous block (real code plus EOB) were coded
886 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
887 * the last real code. In this case we send two empty static blocks instead
888 * of one. (There are no problems if the previous block is stored or fixed.)
889 * To simplify the code, we assume the worst case of last real code encoded
895 send_bits(s
, STATIC_TREES
<<1, 3);
896 send_code(s
, END_BLOCK
, static_ltree
);
898 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
901 /* Of the 10 bits for the empty block, we have already sent
902 * (10 - bi_valid) bits. The lookahead for the last real code (before
903 * the EOB of the previous block) was thus at least one plus the length
904 * of the EOB plus what we have just sent of the empty static block.
906 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
907 send_bits(s
, STATIC_TREES
<<1, 3);
908 send_code(s
, END_BLOCK
, static_ltree
);
910 s
->compressed_len
+= 10L;
917 /* ===========================================================================
918 * Determine the best encoding for the current block: dynamic trees, static
919 * trees or store, and output the encoded block to the zip file.
921 void _tr_flush_block(s
, buf
, stored_len
, eof
)
923 charf
*buf
; /* input block, or NULL if too old */
924 ulg stored_len
; /* length of input block */
925 int eof
; /* true if this is the last block for a file */
927 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
928 int max_blindex
= 0; /* index of last bit length code of non zero freq */
930 /* Build the Huffman trees unless a stored block is forced */
933 /* Check if the file is ascii or binary */
934 if (s
->data_type
== Z_UNKNOWN
) set_data_type(s
);
936 /* Construct the literal and distance trees */
937 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
938 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
941 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
942 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
944 /* At this point, opt_len and static_len are the total bit lengths of
945 * the compressed block data, excluding the tree representations.
948 /* Build the bit length tree for the above two trees, and get the index
949 * in bl_order of the last bit length code to send.
951 max_blindex
= build_bl_tree(s
);
953 /* Determine the best encoding. Compute first the block length in bytes*/
954 opt_lenb
= (s
->opt_len
+3+7)>>3;
955 static_lenb
= (s
->static_len
+3+7)>>3;
957 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
958 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
961 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
964 Assert(buf
!= (char*)0, "lost buf");
965 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
969 if (buf
!= (char*)0) { /* force stored block */
971 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
972 /* 4: two words for the lengths */
974 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
975 * Otherwise we can't have processed more than WSIZE input bytes since
976 * the last block flush, because compression would have been
977 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
978 * transform a block into a stored block.
980 _tr_stored_block(s
, buf
, stored_len
, eof
);
983 } else if (static_lenb
>= 0) { /* force static trees */
985 } else if (static_lenb
== opt_lenb
) {
987 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
988 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
990 s
->compressed_len
+= 3 + s
->static_len
;
993 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
994 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
996 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
998 s
->compressed_len
+= 3 + s
->opt_len
;
1001 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
1002 /* The above check is made mod 2^32, for files larger than 512 MB
1003 * and uLong implemented on 32 bits.
1010 s
->compressed_len
+= 7; /* align on byte boundary */
1013 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
1014 s
->compressed_len
-7*eof
));
1017 /* ===========================================================================
1018 * Save the match info and tally the frequency counts. Return true if
1019 * the current block must be flushed.
1021 int _tr_tally (s
, dist
, lc
)
1023 unsigned dist
; /* distance of matched string */
1024 unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1026 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
1027 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
1029 /* lc is the unmatched char */
1030 s
->dyn_ltree
[lc
].Freq
++;
1033 /* Here, lc is the match length - MIN_MATCH */
1034 dist
--; /* dist = match distance - 1 */
1035 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
1036 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
1037 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
1039 s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++;
1040 s
->dyn_dtree
[d_code(dist
)].Freq
++;
1043 #ifdef TRUNCATE_BLOCK
1044 /* Try to guess if it is profitable to stop the current block here */
1045 if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
1046 /* Compute an upper bound for the compressed length */
1047 ulg out_length
= (ulg
)s
->last_lit
*8L;
1048 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
1050 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1051 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1052 (5L+extra_dbits
[dcode
]);
1055 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1056 s
->last_lit
, in_length
, out_length
,
1057 100L - out_length
*100L/in_length
));
1058 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1061 return (s
->last_lit
== s
->lit_bufsize
-1);
1062 /* We avoid equality with lit_bufsize because of wraparound at 64K
1063 * on 16 bit machines and because stored blocks are restricted to
1068 /* ===========================================================================
1069 * Send the block data compressed using the given Huffman trees
1071 local
void compress_block(s
, ltree
, dtree
)
1073 ct_data
*ltree
; /* literal tree */
1074 ct_data
*dtree
; /* distance tree */
1076 unsigned dist
; /* distance of matched string */
1077 int lc
; /* match length or unmatched char (if dist == 0) */
1078 unsigned lx
= 0; /* running index in l_buf */
1079 unsigned code
; /* the code to send */
1080 int extra
; /* number of extra bits to send */
1082 if (s
->last_lit
!= 0) do {
1083 dist
= s
->d_buf
[lx
];
1084 lc
= s
->l_buf
[lx
++];
1086 send_code(s
, lc
, ltree
); /* send a literal byte */
1087 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1089 /* Here, lc is the match length - MIN_MATCH */
1090 code
= _length_code
[lc
];
1091 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1092 extra
= extra_lbits
[code
];
1094 lc
-= base_length
[code
];
1095 send_bits(s
, lc
, extra
); /* send the extra length bits */
1097 dist
--; /* dist is now the match distance - 1 */
1098 code
= d_code(dist
);
1099 Assert (code
< D_CODES
, "bad d_code");
1101 send_code(s
, code
, dtree
); /* send the distance code */
1102 extra
= extra_dbits
[code
];
1104 dist
-= base_dist
[code
];
1105 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1107 } /* literal or match pair ? */
1109 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1110 Assert(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
1112 } while (lx
< s
->last_lit
);
1114 send_code(s
, END_BLOCK
, ltree
);
1115 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1118 /* ===========================================================================
1119 * Set the data type to ASCII or BINARY, using a crude approximation:
1120 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1121 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1122 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1124 local
void set_data_type(s
)
1128 unsigned ascii_freq
= 0;
1129 unsigned bin_freq
= 0;
1130 while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1131 while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].Freq
;
1132 while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1133 s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
1136 /* ===========================================================================
1137 * Reverse the first len bits of a code, using straightforward code (a faster
1138 * method would use a table)
1139 * IN assertion: 1 <= len <= 15
1141 local
unsigned bi_reverse(code
, len
)
1142 unsigned code
; /* the value to invert */
1143 int len
; /* its bit length */
1145 register unsigned res
= 0;
1148 code
>>= 1, res
<<= 1;
1149 } while (--len
> 0);
1153 /* ===========================================================================
1154 * Flush the bit buffer, keeping at most 7 bits in it.
1156 local
void bi_flush(s
)
1159 if (s
->bi_valid
== 16) {
1160 put_short(s
, s
->bi_buf
);
1163 } else if (s
->bi_valid
>= 8) {
1164 put_byte(s
, (Byte
)s
->bi_buf
);
1170 /* ===========================================================================
1171 * Flush the bit buffer and align the output on a byte boundary
1173 local
void bi_windup(s
)
1176 if (s
->bi_valid
> 8) {
1177 put_short(s
, s
->bi_buf
);
1178 } else if (s
->bi_valid
> 0) {
1179 put_byte(s
, (Byte
)s
->bi_buf
);
1184 s
->bits_sent
= (s
->bits_sent
+7) & ~7;
1188 /* ===========================================================================
1189 * Copy a stored block, storing first the length and its
1190 * one's complement if requested.
1192 local
void copy_block(s
, buf
, len
, header
)
1194 charf
*buf
; /* the input data */
1195 unsigned len
; /* its length */
1196 int header
; /* true if block header must be written */
1198 bi_windup(s
); /* align on byte boundary */
1199 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1202 put_short(s
, (ush
)len
);
1203 put_short(s
, (ush
)~len
);
1205 s
->bits_sent
+= 2*16;
1209 s
->bits_sent
+= (ulg
)len
<<3;
1212 put_byte(s
, *buf
++);