cosmetics
[tomato.git] / release / src / router / openvpn / crypto.c
blobbf6a86dbfd53bd23b2563d2335d6101dd6666134
1 /*
2 * OpenVPN -- An application to securely tunnel IP networks
3 * over a single TCP/UDP port, with support for SSL/TLS-based
4 * session authentication and key exchange,
5 * packet encryption, packet authentication, and
6 * packet compression.
8 * Copyright (C) 2002-2009 OpenVPN Technologies, Inc. <sales@openvpn.net>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2
12 * as published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program (see the file COPYING included with this
21 * distribution); if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include "syshead.h"
27 #ifdef USE_CRYPTO
29 #include "crypto.h"
30 #include "error.h"
31 #include "misc.h"
32 #include "thread.h"
34 #include "memdbg.h"
37 * Check for key size creepage.
40 #if MAX_CIPHER_KEY_LENGTH < EVP_MAX_KEY_LENGTH
41 #warning Some OpenSSL EVP ciphers now support key lengths greater than MAX_CIPHER_KEY_LENGTH -- consider increasing MAX_CIPHER_KEY_LENGTH
42 #endif
44 #if MAX_HMAC_KEY_LENGTH < EVP_MAX_MD_SIZE
45 #warning Some OpenSSL HMAC message digests now support key lengths greater than MAX_HMAC_KEY_LENGTH -- consider increasing MAX_HMAC_KEY_LENGTH
46 #endif
49 * Encryption and Compression Routines.
51 * On entry, buf contains the input data and length.
52 * On exit, it should be set to the output data and length.
54 * If buf->len is <= 0 we should return
55 * If buf->len is set to 0 on exit it tells the caller to ignore the packet.
57 * work is a workspace buffer we are given of size BUF_SIZE.
58 * work may be used to return output data, or the input buffer
59 * may be modified and returned as output. If output data is
60 * returned in work, the data should start after FRAME_HEADROOM bytes
61 * of padding to leave room for downstream routines to prepend.
63 * Up to a total of FRAME_HEADROOM bytes may be prepended to the input buf
64 * by all routines (encryption, decryption, compression, and decompression).
66 * Note that the buf_prepend return will assert if we try to
67 * make a header bigger than FRAME_HEADROOM. This should not
68 * happen unless the frame parameters are wrong.
71 #define CRYPT_ERROR(format) \
72 do { msg (D_CRYPT_ERRORS, "%s: " format, error_prefix); goto error_exit; } while (false)
74 void
75 openvpn_encrypt (struct buffer *buf, struct buffer work,
76 const struct crypto_options *opt,
77 const struct frame* frame)
79 struct gc_arena gc;
80 gc_init (&gc);
82 if (buf->len > 0 && opt->key_ctx_bi)
84 struct key_ctx *ctx = &opt->key_ctx_bi->encrypt;
86 /* Do Encrypt from buf -> work */
87 if (ctx->cipher)
89 uint8_t iv_buf[EVP_MAX_IV_LENGTH];
90 const int iv_size = EVP_CIPHER_CTX_iv_length (ctx->cipher);
91 const unsigned int mode = EVP_CIPHER_CTX_mode (ctx->cipher);
92 int outlen;
94 if (mode == EVP_CIPH_CBC_MODE)
96 CLEAR (iv_buf);
98 /* generate pseudo-random IV */
99 if (opt->flags & CO_USE_IV)
100 prng_bytes (iv_buf, iv_size);
102 /* Put packet ID in plaintext buffer or IV, depending on cipher mode */
103 if (opt->packet_id)
105 struct packet_id_net pin;
106 packet_id_alloc_outgoing (&opt->packet_id->send, &pin, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM));
107 ASSERT (packet_id_write (&pin, buf, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM), true));
110 else if (mode == EVP_CIPH_CFB_MODE || mode == EVP_CIPH_OFB_MODE)
112 struct packet_id_net pin;
113 struct buffer b;
115 ASSERT (opt->flags & CO_USE_IV); /* IV and packet-ID required */
116 ASSERT (opt->packet_id); /* for this mode. */
118 packet_id_alloc_outgoing (&opt->packet_id->send, &pin, true);
119 memset (iv_buf, 0, iv_size);
120 buf_set_write (&b, iv_buf, iv_size);
121 ASSERT (packet_id_write (&pin, &b, true, false));
123 else /* We only support CBC, CFB, or OFB modes right now */
125 ASSERT (0);
128 /* initialize work buffer with FRAME_HEADROOM bytes of prepend capacity */
129 ASSERT (buf_init (&work, FRAME_HEADROOM (frame)));
131 /* set the IV pseudo-randomly */
132 if (opt->flags & CO_USE_IV)
133 dmsg (D_PACKET_CONTENT, "ENCRYPT IV: %s", format_hex (iv_buf, iv_size, 0, &gc));
135 dmsg (D_PACKET_CONTENT, "ENCRYPT FROM: %s",
136 format_hex (BPTR (buf), BLEN (buf), 80, &gc));
138 /* cipher_ctx was already initialized with key & keylen */
139 ASSERT (EVP_CipherInit_ov (ctx->cipher, NULL, NULL, iv_buf, DO_ENCRYPT));
141 /* Buffer overflow check */
142 if (!buf_safe (&work, buf->len + EVP_CIPHER_CTX_block_size (ctx->cipher)))
144 msg (D_CRYPT_ERRORS, "ENCRYPT: buffer size error, bc=%d bo=%d bl=%d wc=%d wo=%d wl=%d cbs=%d",
145 buf->capacity,
146 buf->offset,
147 buf->len,
148 work.capacity,
149 work.offset,
150 work.len,
151 EVP_CIPHER_CTX_block_size (ctx->cipher));
152 goto err;
155 /* Encrypt packet ID, payload */
156 ASSERT (EVP_CipherUpdate_ov (ctx->cipher, BPTR (&work), &outlen, BPTR (buf), BLEN (buf)));
157 work.len += outlen;
159 /* Flush the encryption buffer */
160 ASSERT (EVP_CipherFinal (ctx->cipher, BPTR (&work) + outlen, &outlen));
161 work.len += outlen;
163 /* prepend the IV to the ciphertext */
164 if (opt->flags & CO_USE_IV)
166 uint8_t *output = buf_prepend (&work, iv_size);
167 ASSERT (output);
168 memcpy (output, iv_buf, iv_size);
171 dmsg (D_PACKET_CONTENT, "ENCRYPT TO: %s",
172 format_hex (BPTR (&work), BLEN (&work), 80, &gc));
174 else /* No Encryption */
176 if (opt->packet_id)
178 struct packet_id_net pin;
179 packet_id_alloc_outgoing (&opt->packet_id->send, &pin, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM));
180 ASSERT (packet_id_write (&pin, buf, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM), true));
182 work = *buf;
185 /* HMAC the ciphertext (or plaintext if !cipher) */
186 if (ctx->hmac)
188 int hmac_len;
189 uint8_t *output;
191 HMAC_Init_ex (ctx->hmac, NULL, 0, NULL, NULL);
192 HMAC_Update (ctx->hmac, BPTR (&work), BLEN (&work));
193 output = buf_prepend (&work, HMAC_size (ctx->hmac));
194 ASSERT (output);
195 HMAC_Final (ctx->hmac, output, (unsigned int *)&hmac_len);
196 ASSERT (hmac_len == HMAC_size (ctx->hmac));
199 *buf = work;
202 gc_free (&gc);
203 return;
205 err:
206 ERR_clear_error ();
207 buf->len = 0;
208 gc_free (&gc);
209 return;
213 * If (opt->flags & CO_USE_IV) is not NULL, we will read an IV from the packet.
215 * Set buf->len to 0 and return false on decrypt error.
217 * On success, buf is set to point to plaintext, true
218 * is returned.
220 bool
221 openvpn_decrypt (struct buffer *buf, struct buffer work,
222 const struct crypto_options *opt,
223 const struct frame* frame)
225 static const char error_prefix[] = "Authenticate/Decrypt packet error";
226 struct gc_arena gc;
227 gc_init (&gc);
229 if (buf->len > 0 && opt->key_ctx_bi)
231 struct key_ctx *ctx = &opt->key_ctx_bi->decrypt;
232 struct packet_id_net pin;
233 bool have_pin = false;
235 /* Verify the HMAC */
236 if (ctx->hmac)
238 int hmac_len;
239 uint8_t local_hmac[MAX_HMAC_KEY_LENGTH]; /* HMAC of ciphertext computed locally */
240 int in_hmac_len;
242 HMAC_Init_ex (ctx->hmac, NULL, 0, NULL, NULL);
244 /* Assume the length of the input HMAC */
245 hmac_len = HMAC_size (ctx->hmac);
247 /* Authentication fails if insufficient data in packet for HMAC */
248 if (buf->len < hmac_len)
249 CRYPT_ERROR ("missing authentication info");
251 HMAC_Update (ctx->hmac, BPTR (buf) + hmac_len,
252 BLEN (buf) - hmac_len);
253 HMAC_Final (ctx->hmac, local_hmac, (unsigned int *)&in_hmac_len);
254 ASSERT (hmac_len == in_hmac_len);
256 /* Compare locally computed HMAC with packet HMAC */
257 if (memcmp (local_hmac, BPTR (buf), hmac_len))
258 CRYPT_ERROR ("packet HMAC authentication failed");
260 ASSERT (buf_advance (buf, hmac_len));
263 /* Decrypt packet ID + payload */
265 if (ctx->cipher)
267 const unsigned int mode = EVP_CIPHER_CTX_mode (ctx->cipher);
268 const int iv_size = EVP_CIPHER_CTX_iv_length (ctx->cipher);
269 uint8_t iv_buf[EVP_MAX_IV_LENGTH];
270 int outlen;
272 /* initialize work buffer with FRAME_HEADROOM bytes of prepend capacity */
273 ASSERT (buf_init (&work, FRAME_HEADROOM_ADJ (frame, FRAME_HEADROOM_MARKER_DECRYPT)));
275 /* use IV if user requested it */
276 CLEAR (iv_buf);
277 if (opt->flags & CO_USE_IV)
279 if (buf->len < iv_size)
280 CRYPT_ERROR ("missing IV info");
281 memcpy (iv_buf, BPTR (buf), iv_size);
282 ASSERT (buf_advance (buf, iv_size));
285 /* show the IV's initial state */
286 if (opt->flags & CO_USE_IV)
287 dmsg (D_PACKET_CONTENT, "DECRYPT IV: %s", format_hex (iv_buf, iv_size, 0, &gc));
289 if (buf->len < 1)
290 CRYPT_ERROR ("missing payload");
292 /* ctx->cipher was already initialized with key & keylen */
293 if (!EVP_CipherInit_ov (ctx->cipher, NULL, NULL, iv_buf, DO_DECRYPT))
294 CRYPT_ERROR ("cipher init failed");
296 /* Buffer overflow check (should never happen) */
297 if (!buf_safe (&work, buf->len))
298 CRYPT_ERROR ("buffer overflow");
300 /* Decrypt packet ID, payload */
301 if (!EVP_CipherUpdate_ov (ctx->cipher, BPTR (&work), &outlen, BPTR (buf), BLEN (buf)))
302 CRYPT_ERROR ("cipher update failed");
303 work.len += outlen;
305 /* Flush the decryption buffer */
306 if (!EVP_CipherFinal (ctx->cipher, BPTR (&work) + outlen, &outlen))
307 CRYPT_ERROR ("cipher final failed");
308 work.len += outlen;
310 dmsg (D_PACKET_CONTENT, "DECRYPT TO: %s",
311 format_hex (BPTR (&work), BLEN (&work), 80, &gc));
313 /* Get packet ID from plaintext buffer or IV, depending on cipher mode */
315 if (mode == EVP_CIPH_CBC_MODE)
317 if (opt->packet_id)
319 if (!packet_id_read (&pin, &work, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM)))
320 CRYPT_ERROR ("error reading CBC packet-id");
321 have_pin = true;
324 else if (mode == EVP_CIPH_CFB_MODE || mode == EVP_CIPH_OFB_MODE)
326 struct buffer b;
328 ASSERT (opt->flags & CO_USE_IV); /* IV and packet-ID required */
329 ASSERT (opt->packet_id); /* for this mode. */
331 buf_set_read (&b, iv_buf, iv_size);
332 if (!packet_id_read (&pin, &b, true))
333 CRYPT_ERROR ("error reading CFB/OFB packet-id");
334 have_pin = true;
336 else /* We only support CBC, CFB, or OFB modes right now */
338 ASSERT (0);
342 else
344 work = *buf;
345 if (opt->packet_id)
347 if (!packet_id_read (&pin, &work, BOOL_CAST (opt->flags & CO_PACKET_ID_LONG_FORM)))
348 CRYPT_ERROR ("error reading packet-id");
349 have_pin = !BOOL_CAST (opt->flags & CO_IGNORE_PACKET_ID);
353 if (have_pin)
355 packet_id_reap_test (&opt->packet_id->rec);
356 if (packet_id_test (&opt->packet_id->rec, &pin))
358 packet_id_add (&opt->packet_id->rec, &pin);
359 if (opt->pid_persist && (opt->flags & CO_PACKET_ID_LONG_FORM))
360 packet_id_persist_save_obj (opt->pid_persist, opt->packet_id);
362 else
364 if (!(opt->flags & CO_MUTE_REPLAY_WARNINGS))
365 msg (D_REPLAY_ERRORS, "%s: bad packet ID (may be a replay): %s -- see the man page entry for --no-replay and --replay-window for more info or silence this warning with --mute-replay-warnings",
366 error_prefix, packet_id_net_print (&pin, true, &gc));
367 goto error_exit;
370 *buf = work;
373 gc_free (&gc);
374 return true;
376 error_exit:
377 ERR_clear_error ();
378 buf->len = 0;
379 gc_free (&gc);
380 return false;
384 * How many bytes will we add to frame buffer for a given
385 * set of crypto options?
387 void
388 crypto_adjust_frame_parameters(struct frame *frame,
389 const struct key_type* kt,
390 bool cipher_defined,
391 bool use_iv,
392 bool packet_id,
393 bool packet_id_long_form)
395 frame_add_to_extra_frame (frame,
396 (packet_id ? packet_id_size (packet_id_long_form) : 0) +
397 ((cipher_defined && use_iv) ? EVP_CIPHER_iv_length (kt->cipher) : 0) +
398 (cipher_defined ? EVP_CIPHER_block_size (kt->cipher) : 0) + /* worst case padding expansion */
399 kt->hmac_length);
402 static const EVP_CIPHER *
403 get_cipher (const char *ciphername)
405 const EVP_CIPHER *cipher = NULL;
406 ASSERT (ciphername);
407 cipher = EVP_get_cipherbyname (ciphername);
408 if ( !(cipher && cipher_ok (OBJ_nid2sn (EVP_CIPHER_nid (cipher)))))
409 msg (M_SSLERR, "Cipher algorithm '%s' not found", ciphername);
410 if (EVP_CIPHER_key_length (cipher) > MAX_CIPHER_KEY_LENGTH)
411 msg (M_FATAL, "Cipher algorithm '%s' uses a default key size (%d bytes) which is larger than " PACKAGE_NAME "'s current maximum key size (%d bytes)",
412 ciphername,
413 EVP_CIPHER_key_length (cipher),
414 MAX_CIPHER_KEY_LENGTH);
415 return cipher;
418 static const EVP_MD *
419 get_md (const char *digest)
421 const EVP_MD *md = NULL;
422 ASSERT (digest);
423 md = EVP_get_digestbyname (digest);
424 if (!md)
425 msg (M_SSLERR, "Message hash algorithm '%s' not found", digest);
426 if (EVP_MD_size (md) > MAX_HMAC_KEY_LENGTH)
427 msg (M_FATAL, "Message hash algorithm '%s' uses a default hash size (%d bytes) which is larger than " PACKAGE_NAME "'s current maximum hash size (%d bytes)",
428 digest,
429 EVP_MD_size (md),
430 MAX_HMAC_KEY_LENGTH);
431 return md;
434 static void
435 init_cipher (EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
436 struct key *key, const struct key_type *kt, int enc,
437 const char *prefix)
439 struct gc_arena gc = gc_new ();
441 EVP_CIPHER_CTX_init (ctx);
442 if (!EVP_CipherInit_ov (ctx, cipher, NULL, NULL, enc))
443 msg (M_SSLERR, "EVP cipher init #1");
444 #ifdef HAVE_EVP_CIPHER_CTX_SET_KEY_LENGTH
445 if (!EVP_CIPHER_CTX_set_key_length (ctx, kt->cipher_length))
446 msg (M_SSLERR, "EVP set key size");
447 #endif
448 if (!EVP_CipherInit_ov (ctx, NULL, key->cipher, NULL, enc))
449 msg (M_SSLERR, "EVP cipher init #2");
451 msg (D_HANDSHAKE, "%s: Cipher '%s' initialized with %d bit key",
452 prefix,
453 OBJ_nid2sn (EVP_CIPHER_CTX_nid (ctx)),
454 EVP_CIPHER_CTX_key_length (ctx) * 8);
456 /* make sure we used a big enough key */
457 ASSERT (EVP_CIPHER_CTX_key_length (ctx) <= kt->cipher_length);
459 dmsg (D_SHOW_KEYS, "%s: CIPHER KEY: %s", prefix,
460 format_hex (key->cipher, kt->cipher_length, 0, &gc));
461 dmsg (D_CRYPTO_DEBUG, "%s: CIPHER block_size=%d iv_size=%d",
462 prefix,
463 EVP_CIPHER_CTX_block_size (ctx),
464 EVP_CIPHER_CTX_iv_length (ctx));
466 gc_free (&gc);
469 static void
470 init_hmac (HMAC_CTX *ctx, const EVP_MD *digest,
471 struct key *key, const struct key_type *kt, const char *prefix)
473 struct gc_arena gc = gc_new ();
475 HMAC_CTX_init (ctx);
476 HMAC_Init_ex (ctx, key->hmac, kt->hmac_length, digest, NULL);
477 msg (D_HANDSHAKE,
478 "%s: Using %d bit message hash '%s' for HMAC authentication",
479 prefix, HMAC_size (ctx) * 8, OBJ_nid2sn (EVP_MD_type (digest)));
481 /* make sure we used a big enough key */
482 ASSERT (HMAC_size (ctx) <= kt->hmac_length);
484 dmsg (D_SHOW_KEYS, "%s: HMAC KEY: %s", prefix,
485 format_hex (key->hmac, kt->hmac_length, 0, &gc));
486 dmsg (D_CRYPTO_DEBUG, "%s: HMAC size=%d block_size=%d",
487 prefix,
488 EVP_MD_size (digest),
489 EVP_MD_block_size (digest));
491 gc_free (&gc);
495 * Build a struct key_type.
497 void
498 init_key_type (struct key_type *kt, const char *ciphername,
499 bool ciphername_defined, const char *authname,
500 bool authname_defined, int keysize,
501 bool cfb_ofb_allowed, bool warn)
503 CLEAR (*kt);
504 if (ciphername && ciphername_defined)
506 kt->cipher = get_cipher (ciphername);
507 kt->cipher_length = EVP_CIPHER_key_length (kt->cipher);
508 if (keysize > 0 && keysize <= MAX_CIPHER_KEY_LENGTH)
509 kt->cipher_length = keysize;
511 /* check legal cipher mode */
513 const unsigned int mode = EVP_CIPHER_mode (kt->cipher);
514 if (!(mode == EVP_CIPH_CBC_MODE
515 #ifdef ALLOW_NON_CBC_CIPHERS
516 || (cfb_ofb_allowed && (mode == EVP_CIPH_CFB_MODE || mode == EVP_CIPH_OFB_MODE))
517 #endif
519 #ifdef ENABLE_SMALL
520 msg (M_FATAL, "Cipher '%s' mode not supported", ciphername);
521 #else
522 msg (M_FATAL, "Cipher '%s' uses a mode not supported by " PACKAGE_NAME " in your current configuration. CBC mode is always supported, while CFB and OFB modes are supported only when using SSL/TLS authentication and key exchange mode, and when " PACKAGE_NAME " has been built with ALLOW_NON_CBC_CIPHERS.", ciphername);
523 #endif
526 else
528 if (warn)
529 msg (M_WARN, "******* WARNING *******: null cipher specified, no encryption will be used");
531 if (authname && authname_defined)
533 kt->digest = get_md (authname);
534 kt->hmac_length = EVP_MD_size (kt->digest);
536 else
538 if (warn)
539 msg (M_WARN, "******* WARNING *******: null MAC specified, no authentication will be used");
543 const char *
544 kt_cipher_name (const struct key_type *kt)
546 if (kt->cipher)
547 return EVP_CIPHER_name (kt->cipher);
548 else
549 return "[null-cipher]";
552 const char *
553 kt_digest_name (const struct key_type *kt)
555 if (kt->digest)
556 return EVP_MD_name (kt->digest);
557 else
558 return "[null-digest]";
562 kt_key_size (const struct key_type *kt)
564 if (kt->cipher_length)
565 return kt->cipher_length * 8;
566 else if (kt->cipher)
567 return EVP_CIPHER_key_length (kt->cipher) * 8;
568 else
569 return 0;
572 /* given a key and key_type, build a key_ctx */
573 void
574 init_key_ctx (struct key_ctx *ctx, struct key *key,
575 const struct key_type *kt, int enc,
576 const char *prefix)
578 CLEAR (*ctx);
579 if (kt->cipher && kt->cipher_length > 0)
581 ALLOC_OBJ (ctx->cipher, EVP_CIPHER_CTX);
582 init_cipher (ctx->cipher, kt->cipher, key, kt, enc, prefix);
584 if (kt->digest && kt->hmac_length > 0)
586 ALLOC_OBJ (ctx->hmac, HMAC_CTX);
587 init_hmac (ctx->hmac, kt->digest, key, kt, prefix);
591 void
592 free_key_ctx (struct key_ctx *ctx)
594 if (ctx->cipher)
596 EVP_CIPHER_CTX_cleanup (ctx->cipher);
597 free (ctx->cipher);
598 ctx->cipher = NULL;
600 if (ctx->hmac)
602 HMAC_CTX_cleanup (ctx->hmac);
603 free (ctx->hmac);
604 ctx->hmac = NULL;
608 void
609 free_key_ctx_bi (struct key_ctx_bi *ctx)
611 free_key_ctx(&ctx->encrypt);
612 free_key_ctx(&ctx->decrypt);
616 * Return number of DES cblocks for the current
617 * key type or 0 if not a DES cipher.
619 static int
620 n_DES_cblocks (const struct key_type *kt)
622 int ret = 0;
623 const char *name = OBJ_nid2sn (EVP_CIPHER_nid (kt->cipher));
624 if (name)
626 if (!strncmp (name, "DES-", 4))
628 ret = EVP_CIPHER_key_length (kt->cipher) / sizeof (DES_cblock);
630 else if (!strncmp (name, "DESX-", 5))
632 ret = 1;
635 dmsg (D_CRYPTO_DEBUG, "CRYPTO INFO: n_DES_cblocks=%d", ret);
636 return ret;
639 static bool
640 check_key_DES (struct key *key, const struct key_type *kt, int ndc)
642 int i;
643 struct buffer b;
645 buf_set_read (&b, key->cipher, kt->cipher_length);
647 for (i = 0; i < ndc; ++i)
649 DES_cblock *dc = (DES_cblock*) buf_read_alloc (&b, sizeof (DES_cblock));
650 if (!dc)
652 msg (D_CRYPT_ERRORS, "CRYPTO INFO: check_key_DES: insufficient key material");
653 goto err;
655 if (DES_is_weak_key(dc))
657 msg (D_CRYPT_ERRORS, "CRYPTO INFO: check_key_DES: weak key detected");
658 goto err;
660 if (!DES_check_key_parity (dc))
662 msg (D_CRYPT_ERRORS, "CRYPTO INFO: check_key_DES: bad parity detected");
663 goto err;
666 return true;
668 err:
669 ERR_clear_error ();
670 return false;
673 static void
674 fixup_key_DES (struct key *key, const struct key_type *kt, int ndc)
676 int i;
677 struct buffer b;
679 buf_set_read (&b, key->cipher, kt->cipher_length);
680 for (i = 0; i < ndc; ++i)
682 DES_cblock *dc = (DES_cblock*) buf_read_alloc(&b, sizeof(DES_cblock));
683 if (!dc)
685 msg (D_CRYPT_ERRORS, "CRYPTO INFO: fixup_key_DES: insufficient key material");
686 ERR_clear_error ();
687 return;
689 DES_set_odd_parity (dc);
693 static bool
694 key_is_zero (struct key *key, const struct key_type *kt)
696 int i;
697 for (i = 0; i < kt->cipher_length; ++i)
698 if (key->cipher[i])
699 return false;
700 msg (D_CRYPT_ERRORS, "CRYPTO INFO: WARNING: zero key detected");
701 return true;
705 * Make sure that cipher key is a valid key for current key_type.
707 bool
708 check_key (struct key *key, const struct key_type *kt)
710 if (kt->cipher)
713 * Check for zero key
715 if (key_is_zero(key, kt))
716 return false;
719 * Check for weak or semi-weak DES keys.
722 const int ndc = n_DES_cblocks (kt);
723 if (ndc)
724 return check_key_DES (key, kt, ndc);
725 else
726 return true;
729 return true;
733 * Make safe mutations to key to ensure it is valid,
734 * such as ensuring correct parity on DES keys.
736 * This routine cannot guarantee it will generate a good
737 * key. You must always call check_key after this routine
738 * to make sure.
740 void
741 fixup_key (struct key *key, const struct key_type *kt)
743 struct gc_arena gc = gc_new ();
744 if (kt->cipher)
746 #ifdef ENABLE_DEBUG
747 const struct key orig = *key;
748 #endif
749 const int ndc = n_DES_cblocks (kt);
751 if (ndc)
752 fixup_key_DES (key, kt, ndc);
754 #ifdef ENABLE_DEBUG
755 if (check_debug_level (D_CRYPTO_DEBUG))
757 if (memcmp (orig.cipher, key->cipher, kt->cipher_length))
758 dmsg (D_CRYPTO_DEBUG, "CRYPTO INFO: fixup_key: before=%s after=%s",
759 format_hex (orig.cipher, kt->cipher_length, 0, &gc),
760 format_hex (key->cipher, kt->cipher_length, 0, &gc));
762 #endif
764 gc_free (&gc);
767 void
768 check_replay_iv_consistency (const struct key_type *kt, bool packet_id, bool use_iv)
770 if (cfb_ofb_mode (kt) && !(packet_id && use_iv))
771 msg (M_FATAL, "--no-replay or --no-iv cannot be used with a CFB or OFB mode cipher");
774 bool
775 cfb_ofb_mode (const struct key_type* kt)
777 if (kt->cipher) {
778 const unsigned int mode = EVP_CIPHER_mode (kt->cipher);
779 return mode == EVP_CIPH_CFB_MODE || mode == EVP_CIPH_OFB_MODE;
780 } else
781 return false;
785 * Generate a random key. If key_type is provided, make
786 * sure generated key is valid for key_type.
788 void
789 generate_key_random (struct key *key, const struct key_type *kt)
791 int cipher_len = MAX_CIPHER_KEY_LENGTH;
792 int hmac_len = MAX_HMAC_KEY_LENGTH;
794 struct gc_arena gc = gc_new ();
796 do {
797 CLEAR (*key);
798 if (kt)
800 if (kt->cipher && kt->cipher_length > 0 && kt->cipher_length <= cipher_len)
801 cipher_len = kt->cipher_length;
803 if (kt->digest && kt->hmac_length > 0 && kt->hmac_length <= hmac_len)
804 hmac_len = kt->hmac_length;
806 if (!RAND_bytes (key->cipher, cipher_len)
807 || !RAND_bytes (key->hmac, hmac_len))
808 msg (M_FATAL, "ERROR: Random number generator cannot obtain entropy for key generation");
810 dmsg (D_SHOW_KEY_SOURCE, "Cipher source entropy: %s", format_hex (key->cipher, cipher_len, 0, &gc));
811 dmsg (D_SHOW_KEY_SOURCE, "HMAC source entropy: %s", format_hex (key->hmac, hmac_len, 0, &gc));
813 if (kt)
814 fixup_key (key, kt);
815 } while (kt && !check_key (key, kt));
817 gc_free (&gc);
821 * Print key material
823 void
824 key2_print (const struct key2* k,
825 const struct key_type *kt,
826 const char* prefix0,
827 const char* prefix1)
829 struct gc_arena gc = gc_new ();
830 ASSERT (k->n == 2);
831 dmsg (D_SHOW_KEY_SOURCE, "%s (cipher): %s",
832 prefix0,
833 format_hex (k->keys[0].cipher, kt->cipher_length, 0, &gc));
834 dmsg (D_SHOW_KEY_SOURCE, "%s (hmac): %s",
835 prefix0,
836 format_hex (k->keys[0].hmac, kt->hmac_length, 0, &gc));
837 dmsg (D_SHOW_KEY_SOURCE, "%s (cipher): %s",
838 prefix1,
839 format_hex (k->keys[1].cipher, kt->cipher_length, 0, &gc));
840 dmsg (D_SHOW_KEY_SOURCE, "%s (hmac): %s",
841 prefix1,
842 format_hex (k->keys[1].hmac, kt->hmac_length, 0, &gc));
843 gc_free (&gc);
846 void
847 test_crypto (const struct crypto_options *co, struct frame* frame)
849 int i, j;
850 struct gc_arena gc = gc_new ();
851 struct buffer src = alloc_buf_gc (TUN_MTU_SIZE (frame), &gc);
852 struct buffer work = alloc_buf_gc (BUF_SIZE (frame), &gc);
853 struct buffer encrypt_workspace = alloc_buf_gc (BUF_SIZE (frame), &gc);
854 struct buffer decrypt_workspace = alloc_buf_gc (BUF_SIZE (frame), &gc);
855 struct buffer buf = clear_buf();
857 /* init work */
858 ASSERT (buf_init (&work, FRAME_HEADROOM (frame)));
860 msg (M_INFO, "Entering " PACKAGE_NAME " crypto self-test mode.");
861 for (i = 1; i <= TUN_MTU_SIZE (frame); ++i)
863 update_time ();
865 msg (M_INFO, "TESTING ENCRYPT/DECRYPT of packet length=%d", i);
868 * Load src with random data.
870 ASSERT (buf_init (&src, 0));
871 ASSERT (i <= src.capacity);
872 src.len = i;
873 ASSERT (RAND_pseudo_bytes (BPTR (&src), BLEN (&src)));
875 /* copy source to input buf */
876 buf = work;
877 memcpy (buf_write_alloc (&buf, BLEN (&src)), BPTR (&src), BLEN (&src));
879 /* encrypt */
880 openvpn_encrypt (&buf, encrypt_workspace, co, frame);
882 /* decrypt */
883 openvpn_decrypt (&buf, decrypt_workspace, co, frame);
885 /* compare */
886 if (buf.len != src.len)
887 msg (M_FATAL, "SELF TEST FAILED, src.len=%d buf.len=%d", src.len, buf.len);
888 for (j = 0; j < i; ++j)
890 const uint8_t in = *(BPTR (&src) + j);
891 const uint8_t out = *(BPTR (&buf) + j);
892 if (in != out)
893 msg (M_FATAL, "SELF TEST FAILED, pos=%d in=%d out=%d", j, in, out);
896 msg (M_INFO, PACKAGE_NAME " crypto self-test mode SUCCEEDED.");
897 gc_free (&gc);
900 #ifdef USE_SSL
902 void
903 get_tls_handshake_key (const struct key_type *key_type,
904 struct key_ctx_bi *ctx,
905 const char *passphrase_file,
906 const int key_direction,
907 const unsigned int flags)
909 if (passphrase_file && key_type->hmac_length)
911 struct key2 key2;
912 struct key_type kt = *key_type;
913 struct key_direction_state kds;
915 /* for control channel we are only authenticating, not encrypting */
916 kt.cipher_length = 0;
917 kt.cipher = NULL;
919 #if ENABLE_INLINE_FILES
920 if (flags & GHK_INLINE)
922 /* key was specified inline, key text is in passphrase_file */
923 read_key_file (&key2, passphrase_file, RKF_INLINE|RKF_MUST_SUCCEED);
925 /* succeeded? */
926 if (key2.n == 2)
927 msg (M_INFO, "Control Channel Authentication: tls-auth using INLINE static key file");
928 else
929 msg (M_FATAL, "INLINE tls-auth file lacks the requisite 2 keys");
931 else
932 #endif
934 /* first try to parse as an OpenVPN static key file */
935 read_key_file (&key2, passphrase_file, 0);
937 /* succeeded? */
938 if (key2.n == 2)
940 msg (M_INFO,
941 "Control Channel Authentication: using '%s' as a " PACKAGE_NAME " static key file",
942 passphrase_file);
944 else
946 int hash_size;
948 CLEAR (key2);
950 /* failed, now try to get hash from a freeform file */
951 hash_size = read_passphrase_hash (passphrase_file,
952 kt.digest,
953 key2.keys[0].hmac,
954 MAX_HMAC_KEY_LENGTH);
955 ASSERT (hash_size == kt.hmac_length);
957 /* suceeded */
958 key2.n = 1;
960 msg (M_INFO,
961 "Control Channel Authentication: using '%s' as a free-form passphrase file",
962 passphrase_file);
965 /* handle key direction */
967 key_direction_state_init (&kds, key_direction);
968 must_have_n_keys (passphrase_file, "tls-auth", &key2, kds.need_keys);
970 /* initialize hmac key in both directions */
972 init_key_ctx (&ctx->encrypt, &key2.keys[kds.out_key], &kt, DO_ENCRYPT,
973 "Outgoing Control Channel Authentication");
974 init_key_ctx (&ctx->decrypt, &key2.keys[kds.in_key], &kt, DO_DECRYPT,
975 "Incoming Control Channel Authentication");
977 CLEAR (key2);
979 else
981 CLEAR (*ctx);
984 #endif
986 /* header and footer for static key file */
987 static const char static_key_head[] = "-----BEGIN " PACKAGE_NAME " Static key V1-----";
988 static const char static_key_foot[] = "-----END " PACKAGE_NAME " Static key V1-----";
990 static const char printable_char_fmt[] =
991 "Non-Hex character ('%c') found at line %d in key file '%s' (%d/%d/%d bytes found/min/max)";
993 static const char unprintable_char_fmt[] =
994 "Non-Hex, unprintable character (0x%02x) found at line %d in key file '%s' (%d/%d/%d bytes found/min/max)";
996 /* read key from file */
998 void
999 read_key_file (struct key2 *key2, const char *file, const unsigned int flags)
1001 struct gc_arena gc = gc_new ();
1002 struct buffer in;
1003 int fd, size;
1004 uint8_t hex_byte[3] = {0, 0, 0};
1005 const char *error_filename = file;
1007 /* parse info */
1008 const unsigned char *cp;
1009 int hb_index = 0;
1010 int line_num = 1;
1011 int line_index = 0;
1012 int match = 0;
1014 /* output */
1015 uint8_t* out = (uint8_t*) &key2->keys;
1016 const int keylen = sizeof (key2->keys);
1017 int count = 0;
1019 /* parse states */
1020 # define PARSE_INITIAL 0
1021 # define PARSE_HEAD 1
1022 # define PARSE_DATA 2
1023 # define PARSE_DATA_COMPLETE 3
1024 # define PARSE_FOOT 4
1025 # define PARSE_FINISHED 5
1026 int state = PARSE_INITIAL;
1028 /* constants */
1029 const int hlen = strlen (static_key_head);
1030 const int flen = strlen (static_key_foot);
1031 const int onekeylen = sizeof (key2->keys[0]);
1033 CLEAR (*key2);
1036 * Key can be provided as a filename in 'file' or if RKF_INLINE
1037 * is set, the actual key data itself in ascii form.
1039 #if ENABLE_INLINE_FILES
1040 if (flags & RKF_INLINE) /* 'file' is a string containing ascii representation of key */
1042 size = strlen (file) + 1;
1043 buf_set_read (&in, (const uint8_t *)file, size);
1044 error_filename = INLINE_FILE_TAG;
1046 else /* 'file' is a filename which refers to a file containing the ascii key */
1047 #endif
1049 in = alloc_buf_gc (2048, &gc);
1050 fd = open (file, O_RDONLY);
1051 if (fd == -1)
1052 msg (M_ERR, "Cannot open file key file '%s'", file);
1053 size = read (fd, in.data, in.capacity);
1054 if (size < 0)
1055 msg (M_FATAL, "Read error on key file ('%s')", file);
1056 if (size == in.capacity)
1057 msg (M_FATAL, "Key file ('%s') can be a maximum of %d bytes", file, (int)in.capacity);
1058 close (fd);
1061 cp = (unsigned char *)in.data;
1062 while (size > 0)
1064 const unsigned char c = *cp;
1066 #if 0
1067 msg (M_INFO, "char='%c' s=%d ln=%d li=%d m=%d c=%d",
1068 c, state, line_num, line_index, match, count);
1069 #endif
1071 if (c == '\n')
1073 line_index = match = 0;
1074 ++line_num;
1076 else
1078 /* first char of new line */
1079 if (!line_index)
1081 /* first char of line after header line? */
1082 if (state == PARSE_HEAD)
1083 state = PARSE_DATA;
1085 /* first char of footer */
1086 if ((state == PARSE_DATA || state == PARSE_DATA_COMPLETE) && c == '-')
1087 state = PARSE_FOOT;
1090 /* compare read chars with header line */
1091 if (state == PARSE_INITIAL)
1093 if (line_index < hlen && c == static_key_head[line_index])
1095 if (++match == hlen)
1096 state = PARSE_HEAD;
1100 /* compare read chars with footer line */
1101 if (state == PARSE_FOOT)
1103 if (line_index < flen && c == static_key_foot[line_index])
1105 if (++match == flen)
1106 state = PARSE_FINISHED;
1110 /* reading key */
1111 if (state == PARSE_DATA)
1113 if (isxdigit(c))
1115 ASSERT (hb_index >= 0 && hb_index < 2);
1116 hex_byte[hb_index++] = c;
1117 if (hb_index == 2)
1119 unsigned int u;
1120 ASSERT(sscanf((const char *)hex_byte, "%x", &u) == 1);
1121 *out++ = u;
1122 hb_index = 0;
1123 if (++count == keylen)
1124 state = PARSE_DATA_COMPLETE;
1127 else if (isspace(c))
1129 else
1131 msg (M_FATAL,
1132 (isprint (c) ? printable_char_fmt : unprintable_char_fmt),
1133 c, line_num, error_filename, count, onekeylen, keylen);
1136 ++line_index;
1138 ++cp;
1139 --size;
1143 * Normally we will read either 1 or 2 keys from file.
1145 key2->n = count / onekeylen;
1147 ASSERT (key2->n >= 0 && key2->n <= (int) SIZE (key2->keys));
1149 if (flags & RKF_MUST_SUCCEED)
1151 if (!key2->n)
1152 msg (M_FATAL, "Insufficient key material or header text not found found in file '%s' (%d/%d/%d bytes found/min/max)",
1153 error_filename, count, onekeylen, keylen);
1155 if (state != PARSE_FINISHED)
1156 msg (M_FATAL, "Footer text not found in file '%s' (%d/%d/%d bytes found/min/max)",
1157 error_filename, count, onekeylen, keylen);
1160 /* zero file read buffer if not an inline file */
1161 #if ENABLE_INLINE_FILES
1162 if (!(flags & RKF_INLINE))
1163 #endif
1164 buf_clear (&in);
1166 if (key2->n)
1167 warn_if_group_others_accessible (error_filename);
1169 #if 0
1170 /* DEBUGGING */
1172 int i;
1173 printf ("KEY READ, n=%d\n", key2->n);
1174 for (i = 0; i < (int) SIZE (key2->keys); ++i)
1176 /* format key as ascii */
1177 const char *fmt = format_hex_ex ((const uint8_t*)&key2->keys[i],
1178 sizeof (key2->keys[i]),
1181 "\n",
1182 &gc);
1183 printf ("[%d]\n%s\n\n", i, fmt);
1186 #endif
1188 /* pop our garbage collection level */
1189 gc_free (&gc);
1193 read_passphrase_hash (const char *passphrase_file,
1194 const EVP_MD *digest,
1195 uint8_t *output,
1196 int len)
1198 unsigned int outlen = 0;
1199 EVP_MD_CTX md;
1201 ASSERT (len >= EVP_MD_size (digest));
1202 memset (output, 0, len);
1204 EVP_DigestInit (&md, digest);
1206 /* read passphrase file */
1208 const int min_passphrase_size = 8;
1209 uint8_t buf[64];
1210 int total_size = 0;
1211 int fd = open (passphrase_file, O_RDONLY);
1213 if (fd == -1)
1214 msg (M_ERR, "Cannot open passphrase file: '%s'", passphrase_file);
1216 for (;;)
1218 int size = read (fd, buf, sizeof (buf));
1219 if (size == 0)
1220 break;
1221 if (size == -1)
1222 msg (M_ERR, "Read error on passphrase file: '%s'",
1223 passphrase_file);
1224 EVP_DigestUpdate (&md, buf, size);
1225 total_size += size;
1227 close (fd);
1229 warn_if_group_others_accessible (passphrase_file);
1231 if (total_size < min_passphrase_size)
1232 msg (M_FATAL,
1233 "Passphrase file '%s' is too small (must have at least %d characters)",
1234 passphrase_file, min_passphrase_size);
1237 EVP_DigestFinal (&md, output, &outlen);
1238 EVP_MD_CTX_cleanup (&md);
1239 return outlen;
1243 * Write key to file, return number of random bits
1244 * written.
1247 write_key_file (const int nkeys, const char *filename)
1249 struct gc_arena gc = gc_new ();
1251 int fd, i;
1252 int nbits = 0;
1254 /* must be large enough to hold full key file */
1255 struct buffer out = alloc_buf_gc (2048, &gc);
1256 struct buffer nbits_head_text = alloc_buf_gc (128, &gc);
1258 /* how to format the ascii file representation of key */
1259 const int bytes_per_line = 16;
1261 /* open key file */
1262 fd = open (filename, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR);
1264 if (fd == -1)
1265 msg (M_ERR, "Cannot open shared secret file '%s' for write", filename);
1267 buf_printf (&out, "%s\n", static_key_head);
1269 for (i = 0; i < nkeys; ++i)
1271 struct key key;
1272 char* fmt;
1274 /* generate random bits */
1275 generate_key_random (&key, NULL);
1277 /* format key as ascii */
1278 fmt = format_hex_ex ((const uint8_t*)&key,
1279 sizeof (key),
1281 bytes_per_line,
1282 "\n",
1283 &gc);
1285 /* increment random bits counter */
1286 nbits += sizeof (key) * 8;
1288 /* write to holding buffer */
1289 buf_printf (&out, "%s\n", fmt);
1291 /* zero memory which held key component (will be freed by GC) */
1292 memset (fmt, 0, strlen(fmt));
1293 CLEAR (key);
1296 buf_printf (&out, "%s\n", static_key_foot);
1298 /* write number of bits */
1299 buf_printf (&nbits_head_text, "#\n# %d bit " PACKAGE_NAME " static key\n#\n", nbits);
1300 buf_write_string_file (&nbits_head_text, filename, fd);
1302 /* write key file, now formatted in out, to file */
1303 buf_write_string_file (&out, filename, fd);
1305 if (close (fd))
1306 msg (M_ERR, "Close error on shared secret file %s", filename);
1308 /* zero memory which held file content (memory will be freed by GC) */
1309 buf_clear (&out);
1311 /* pop our garbage collection level */
1312 gc_free (&gc);
1314 return nbits;
1317 void
1318 must_have_n_keys (const char *filename, const char *option, const struct key2 *key2, int n)
1320 if (key2->n < n)
1322 #ifdef ENABLE_SMALL
1323 msg (M_FATAL, "Key file '%s' used in --%s contains insufficient key material [keys found=%d required=%d]", filename, option, key2->n, n);
1324 #else
1325 msg (M_FATAL, "Key file '%s' used in --%s contains insufficient key material [keys found=%d required=%d] -- try generating a new key file with '" PACKAGE " --genkey --secret [file]', or use the existing key file in bidirectional mode by specifying --%s without a key direction parameter", filename, option, key2->n, n, option);
1326 #endif
1331 ascii2keydirection (int msglevel, const char *str)
1333 if (!str)
1334 return KEY_DIRECTION_BIDIRECTIONAL;
1335 else if (!strcmp (str, "0"))
1336 return KEY_DIRECTION_NORMAL;
1337 else if (!strcmp (str, "1"))
1338 return KEY_DIRECTION_INVERSE;
1339 else
1341 msg (msglevel, "Unknown key direction '%s' -- must be '0' or '1'", str);
1342 return -1;
1344 return KEY_DIRECTION_BIDIRECTIONAL; /* NOTREACHED */
1347 const char *
1348 keydirection2ascii (int kd, bool remote)
1350 if (kd == KEY_DIRECTION_BIDIRECTIONAL)
1351 return NULL;
1352 else if (kd == KEY_DIRECTION_NORMAL)
1353 return remote ? "1" : "0";
1354 else if (kd == KEY_DIRECTION_INVERSE)
1355 return remote ? "0" : "1";
1356 else
1358 ASSERT (0);
1360 return NULL; /* NOTREACHED */
1363 void
1364 key_direction_state_init (struct key_direction_state *kds, int key_direction)
1366 CLEAR (*kds);
1367 switch (key_direction)
1369 case KEY_DIRECTION_NORMAL:
1370 kds->out_key = 0;
1371 kds->in_key = 1;
1372 kds->need_keys = 2;
1373 break;
1374 case KEY_DIRECTION_INVERSE:
1375 kds->out_key = 1;
1376 kds->in_key = 0;
1377 kds->need_keys = 2;
1378 break;
1379 case KEY_DIRECTION_BIDIRECTIONAL:
1380 kds->out_key = 0;
1381 kds->in_key = 0;
1382 kds->need_keys = 1;
1383 break;
1384 default:
1385 ASSERT (0);
1389 void
1390 verify_fix_key2 (struct key2 *key2, const struct key_type *kt, const char *shared_secret_file)
1392 int i;
1394 for (i = 0; i < key2->n; ++i)
1396 /* Fix parity for DES keys and make sure not a weak key */
1397 fixup_key (&key2->keys[i], kt);
1399 /* This should be a very improbable failure */
1400 if (!check_key (&key2->keys[i], kt))
1401 msg (M_FATAL, "Key #%d in '%s' is bad. Try making a new key with --genkey.",
1402 i+1, shared_secret_file);
1406 /* given a key and key_type, write key to buffer */
1407 bool
1408 write_key (const struct key *key, const struct key_type *kt,
1409 struct buffer *buf)
1411 ASSERT (kt->cipher_length <= MAX_CIPHER_KEY_LENGTH
1412 && kt->hmac_length <= MAX_HMAC_KEY_LENGTH);
1414 if (!buf_write (buf, &kt->cipher_length, 1))
1415 return false;
1416 if (!buf_write (buf, &kt->hmac_length, 1))
1417 return false;
1418 if (!buf_write (buf, key->cipher, kt->cipher_length))
1419 return false;
1420 if (!buf_write (buf, key->hmac, kt->hmac_length))
1421 return false;
1423 return true;
1427 * Given a key_type and buffer, read key from buffer.
1428 * Return: 1 on success
1429 * -1 read failure
1430 * 0 on key length mismatch
1433 read_key (struct key *key, const struct key_type *kt, struct buffer *buf)
1435 uint8_t cipher_length;
1436 uint8_t hmac_length;
1438 CLEAR (*key);
1439 if (!buf_read (buf, &cipher_length, 1))
1440 goto read_err;
1441 if (!buf_read (buf, &hmac_length, 1))
1442 goto read_err;
1444 if (!buf_read (buf, key->cipher, cipher_length))
1445 goto read_err;
1446 if (!buf_read (buf, key->hmac, hmac_length))
1447 goto read_err;
1449 if (cipher_length != kt->cipher_length || hmac_length != kt->hmac_length)
1450 goto key_len_err;
1452 return 1;
1454 read_err:
1455 msg (D_TLS_ERRORS, "TLS Error: error reading key from remote");
1456 return -1;
1458 key_len_err:
1459 msg (D_TLS_ERRORS,
1460 "TLS Error: key length mismatch, local cipher/hmac %d/%d, remote cipher/hmac %d/%d",
1461 kt->cipher_length, kt->hmac_length, cipher_length, hmac_length);
1462 return 0;
1465 void
1466 show_available_ciphers ()
1468 int nid;
1471 #ifndef ENABLE_SMALL
1472 printf ("The following ciphers and cipher modes are available\n"
1473 "for use with " PACKAGE_NAME ". Each cipher shown below may be\n"
1474 "used as a parameter to the --cipher option. The default\n"
1475 "key size is shown as well as whether or not it can be\n"
1476 "changed with the --keysize directive. Using a CBC mode\n"
1477 "is recommended.\n\n");
1478 #endif
1480 for (nid = 0; nid < 10000; ++nid) /* is there a better way to get the size of the nid list? */
1482 const EVP_CIPHER *cipher = EVP_get_cipherbynid (nid);
1483 if (cipher && cipher_ok (OBJ_nid2sn (nid)))
1485 const unsigned int mode = EVP_CIPHER_mode (cipher);
1486 if (mode == EVP_CIPH_CBC_MODE
1487 #ifdef ALLOW_NON_CBC_CIPHERS
1488 || mode == EVP_CIPH_CFB_MODE || mode == EVP_CIPH_OFB_MODE
1489 #endif
1491 printf ("%s %d bit default key (%s)\n",
1492 OBJ_nid2sn (nid),
1493 EVP_CIPHER_key_length (cipher) * 8,
1494 ((EVP_CIPHER_flags (cipher) & EVP_CIPH_VARIABLE_LENGTH) ?
1495 "variable" : "fixed"));
1498 printf ("\n");
1501 void
1502 show_available_digests ()
1504 int nid;
1506 #ifndef ENABLE_SMALL
1507 printf ("The following message digests are available for use with\n"
1508 PACKAGE_NAME ". A message digest is used in conjunction with\n"
1509 "the HMAC function, to authenticate received packets.\n"
1510 "You can specify a message digest as parameter to\n"
1511 "the --auth option.\n\n");
1512 #endif
1514 for (nid = 0; nid < 10000; ++nid)
1516 const EVP_MD *digest = EVP_get_digestbynid (nid);
1517 if (digest)
1519 printf ("%s %d bit digest size\n",
1520 OBJ_nid2sn (nid), EVP_MD_size (digest) * 8);
1523 printf ("\n");
1526 void
1527 show_available_engines ()
1529 #if CRYPTO_ENGINE
1530 ENGINE *e;
1532 printf ("OpenSSL Crypto Engines\n\n");
1534 ENGINE_load_builtin_engines ();
1536 e = ENGINE_get_first ();
1537 while (e)
1539 printf ("%s [%s]\n",
1540 ENGINE_get_name (e),
1541 ENGINE_get_id (e));
1542 e = ENGINE_get_next (e);
1544 ENGINE_cleanup ();
1545 #else
1546 printf ("Sorry, OpenSSL hardware crypto engine functionality is not available.\n");
1547 #endif
1551 * Enable crypto acceleration, if available
1554 static bool engine_initialized = false; /* GLOBAL */
1556 #if CRYPTO_ENGINE
1558 static ENGINE *engine_persist = NULL; /* GLOBAL */
1560 /* Try to load an engine in a shareable library */
1561 static ENGINE *
1562 try_load_engine (const char *engine)
1564 ENGINE *e = ENGINE_by_id ("dynamic");
1565 if (e)
1567 if (!ENGINE_ctrl_cmd_string (e, "SO_PATH", engine, 0)
1568 || !ENGINE_ctrl_cmd_string (e, "LOAD", NULL, 0))
1570 ENGINE_free (e);
1571 e = NULL;
1574 return e;
1577 static ENGINE *
1578 setup_engine (const char *engine)
1580 ENGINE *e = NULL;
1582 ENGINE_load_builtin_engines ();
1584 if (engine)
1586 if (strcmp (engine, "auto") == 0)
1588 msg (M_INFO, "Initializing OpenSSL auto engine support");
1589 ENGINE_register_all_complete ();
1590 return NULL;
1592 if ((e = ENGINE_by_id (engine)) == NULL
1593 && (e = try_load_engine (engine)) == NULL)
1595 msg (M_FATAL, "OpenSSL error: cannot load engine '%s'", engine);
1598 if (!ENGINE_set_default (e, ENGINE_METHOD_ALL))
1600 msg (M_FATAL, "OpenSSL error: ENGINE_set_default failed on engine '%s'",
1601 engine);
1604 msg (M_INFO, "Initializing OpenSSL support for engine '%s'",
1605 ENGINE_get_id (e));
1607 return e;
1609 #endif
1611 void
1612 init_crypto_lib_engine (const char *engine_name)
1614 if (!engine_initialized)
1616 #if CRYPTO_ENGINE
1617 ASSERT (engine_name);
1618 ASSERT (!engine_persist);
1619 engine_persist = setup_engine (engine_name);
1620 #else
1621 msg (M_WARN, "Note: OpenSSL hardware crypto engine functionality is not available");
1622 #endif
1623 engine_initialized = true;
1628 * This routine should have additional OpenSSL crypto library initialisations
1629 * used by both crypto and ssl components of OpenVPN.
1631 void init_crypto_lib ()
1635 void uninit_crypto_lib ()
1637 #if CRYPTO_ENGINE
1638 if (engine_initialized)
1640 ENGINE_cleanup ();
1641 engine_persist = NULL;
1642 engine_initialized = false;
1644 #endif
1645 prng_uninit ();
1649 * Random number functions, used in cases where we want
1650 * reasonably strong cryptographic random number generation
1651 * without depleting our entropy pool. Used for random
1652 * IV values and a number of other miscellaneous tasks.
1655 static uint8_t *nonce_data; /* GLOBAL */
1656 static const EVP_MD *nonce_md = NULL; /* GLOBAL */
1657 static int nonce_secret_len; /* GLOBAL */
1659 void
1660 prng_init (const char *md_name, const int nonce_secret_len_parm)
1662 prng_uninit ();
1663 nonce_md = md_name ? get_md (md_name) : NULL;
1664 if (nonce_md)
1666 ASSERT (nonce_secret_len_parm >= NONCE_SECRET_LEN_MIN && nonce_secret_len_parm <= NONCE_SECRET_LEN_MAX);
1667 nonce_secret_len = nonce_secret_len_parm;
1669 const int size = EVP_MD_size (nonce_md) + nonce_secret_len;
1670 dmsg (D_CRYPTO_DEBUG, "PRNG init md=%s size=%d", EVP_MD_name (nonce_md), size);
1671 nonce_data = (uint8_t*) malloc (size);
1672 check_malloc_return (nonce_data);
1673 #if 1 /* Must be 1 for real usage */
1674 if (!RAND_bytes (nonce_data, size))
1675 msg (M_FATAL, "ERROR: Random number generator cannot obtain entropy for PRNG");
1676 #else
1677 /* Only for testing -- will cause a predictable PRNG sequence */
1679 int i;
1680 for (i = 0; i < size; ++i)
1681 nonce_data[i] = (uint8_t) i;
1683 #endif
1688 void
1689 prng_uninit (void)
1691 free (nonce_data);
1692 nonce_data = NULL;
1693 nonce_md = NULL;
1694 nonce_secret_len = 0;
1697 void
1698 prng_bytes (uint8_t *output, int len)
1700 if (nonce_md)
1702 EVP_MD_CTX ctx;
1703 const int md_size = EVP_MD_size (nonce_md);
1704 mutex_lock_static (L_PRNG);
1705 while (len > 0)
1707 unsigned int outlen = 0;
1708 const int blen = min_int (len, md_size);
1709 EVP_DigestInit (&ctx, nonce_md);
1710 EVP_DigestUpdate (&ctx, nonce_data, md_size + nonce_secret_len);
1711 EVP_DigestFinal (&ctx, nonce_data, &outlen);
1712 ASSERT (outlen == md_size);
1713 EVP_MD_CTX_cleanup (&ctx);
1714 memcpy (output, nonce_data, blen);
1715 output += blen;
1716 len -= blen;
1718 mutex_unlock_static (L_PRNG);
1720 else
1721 RAND_bytes (output, len);
1724 /* an analogue to the random() function, but use prng_bytes */
1725 long int
1726 get_random()
1728 long int l;
1729 prng_bytes ((unsigned char *)&l, sizeof(l));
1730 if (l < 0)
1731 l = -l;
1732 return l;
1735 const char *
1736 md5sum (uint8_t *buf, int len, int n_print_chars, struct gc_arena *gc)
1738 uint8_t digest[MD5_DIGEST_LENGTH];
1739 MD5 (buf, len, digest);
1740 return format_hex (digest, MD5_DIGEST_LENGTH, n_print_chars, gc);
1744 * OpenSSL memory debugging. If dmalloc debugging is enabled, tell
1745 * OpenSSL to use our private malloc/realloc/free functions so that
1746 * we can dispatch them to dmalloc.
1749 #ifdef DMALLOC
1751 static void *
1752 crypto_malloc (size_t size, const char *file, int line)
1754 return dmalloc_malloc(file, line, size, DMALLOC_FUNC_MALLOC, 0, 0);
1757 static void *
1758 crypto_realloc (void *ptr, size_t size, const char *file, int line)
1760 return dmalloc_realloc(file, line, ptr, size, DMALLOC_FUNC_REALLOC, 0);
1763 static void
1764 crypto_free (void *ptr)
1766 dmalloc_free (__FILE__, __LINE__, ptr, DMALLOC_FUNC_FREE);
1769 void
1770 openssl_dmalloc_init (void)
1772 CRYPTO_set_mem_ex_functions (crypto_malloc,
1773 crypto_realloc,
1774 crypto_free);
1777 #endif /* DMALLOC */
1779 #ifndef USE_SSL
1781 void
1782 init_ssl_lib (void)
1784 ERR_load_crypto_strings ();
1785 OpenSSL_add_all_algorithms ();
1786 init_crypto_lib ();
1789 void
1790 free_ssl_lib (void)
1792 uninit_crypto_lib ();
1793 EVP_cleanup ();
1794 ERR_free_strings ();
1797 #endif /* USE_SSL */
1800 * md5 functions
1803 void
1804 md5_state_init (struct md5_state *s)
1806 MD5_Init (&s->ctx);
1809 void
1810 md5_state_update (struct md5_state *s, void *data, size_t len)
1812 MD5_Update (&s->ctx, data, len);
1815 void
1816 md5_state_final (struct md5_state *s, struct md5_digest *out)
1818 MD5_Final (out->digest, &s->ctx);
1821 void
1822 md5_digest_clear (struct md5_digest *digest)
1824 CLEAR (*digest);
1827 bool
1828 md5_digest_defined (const struct md5_digest *digest)
1830 int i;
1831 for (i = 0; i < MD5_DIGEST_LENGTH; ++i)
1832 if (digest->digest[i])
1833 return true;
1834 return false;
1837 bool
1838 md5_digest_equal (const struct md5_digest *d1, const struct md5_digest *d2)
1840 return memcmp(d1->digest, d2->digest, MD5_DIGEST_LENGTH) == 0;
1843 #endif /* USE_CRYPTO */