2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
38 static __init
int __maybe_unused
r45k_bvahwbug(void)
40 /* XXX: We should probe for the presence of this bug, but we don't. */
44 static __init
int __maybe_unused
r4k_250MHZhwbug(void)
46 /* XXX: We should probe for the presence of this bug, but we don't. */
50 static __init
int __maybe_unused
bcm1250_m3_war(void)
52 return BCM1250_M3_WAR
;
55 static __init
int __maybe_unused
r10000_llsc_war(void)
57 return R10000_LLSC_WAR
;
61 * A little micro-assembler, intended for TLB refill handler
62 * synthesizing. It is intentionally kept simple, does only support
63 * a subset of instructions, and does not try to hide pipeline effects
64 * like branch delay slots.
91 #define IMM_MASK 0xffff
93 #define JIMM_MASK 0x3ffffff
95 #define FUNC_MASK 0x2f
102 insn_addu
, insn_addiu
, insn_and
, insn_andi
, insn_beq
,
103 insn_beql
, insn_bgez
, insn_bgezl
, insn_bltz
, insn_bltzl
,
104 insn_bne
, insn_daddu
, insn_daddiu
, insn_dmfc0
, insn_dmtc0
,
105 insn_dsll
, insn_dsll32
, insn_dsra
, insn_dsrl
, insn_dsrl32
,
106 insn_dsubu
, insn_eret
, insn_j
, insn_jal
, insn_jr
, insn_ld
,
107 insn_ll
, insn_lld
, insn_lui
, insn_lw
, insn_mfc0
, insn_mtc0
,
108 insn_ori
, insn_rfe
, insn_sc
, insn_scd
, insn_sd
, insn_sll
,
109 insn_sra
, insn_srl
, insn_subu
, insn_sw
, insn_tlbp
, insn_tlbwi
,
110 insn_tlbwr
, insn_xor
, insn_xori
119 /* This macro sets the non-variable bits of an instruction. */
120 #define M(a, b, c, d, e, f) \
128 static __initdata
struct insn insn_table
[] = {
129 { insn_addiu
, M(addiu_op
,0,0,0,0,0), RS
| RT
| SIMM
},
130 { insn_addu
, M(spec_op
,0,0,0,0,addu_op
), RS
| RT
| RD
},
131 { insn_and
, M(spec_op
,0,0,0,0,and_op
), RS
| RT
| RD
},
132 { insn_andi
, M(andi_op
,0,0,0,0,0), RS
| RT
| UIMM
},
133 { insn_beq
, M(beq_op
,0,0,0,0,0), RS
| RT
| BIMM
},
134 { insn_beql
, M(beql_op
,0,0,0,0,0), RS
| RT
| BIMM
},
135 { insn_bgez
, M(bcond_op
,0,bgez_op
,0,0,0), RS
| BIMM
},
136 { insn_bgezl
, M(bcond_op
,0,bgezl_op
,0,0,0), RS
| BIMM
},
137 { insn_bltz
, M(bcond_op
,0,bltz_op
,0,0,0), RS
| BIMM
},
138 { insn_bltzl
, M(bcond_op
,0,bltzl_op
,0,0,0), RS
| BIMM
},
139 { insn_bne
, M(bne_op
,0,0,0,0,0), RS
| RT
| BIMM
},
140 { insn_daddiu
, M(daddiu_op
,0,0,0,0,0), RS
| RT
| SIMM
},
141 { insn_daddu
, M(spec_op
,0,0,0,0,daddu_op
), RS
| RT
| RD
},
142 { insn_dmfc0
, M(cop0_op
,dmfc_op
,0,0,0,0), RT
| RD
| SET
},
143 { insn_dmtc0
, M(cop0_op
,dmtc_op
,0,0,0,0), RT
| RD
| SET
},
144 { insn_dsll
, M(spec_op
,0,0,0,0,dsll_op
), RT
| RD
| RE
},
145 { insn_dsll32
, M(spec_op
,0,0,0,0,dsll32_op
), RT
| RD
| RE
},
146 { insn_dsra
, M(spec_op
,0,0,0,0,dsra_op
), RT
| RD
| RE
},
147 { insn_dsrl
, M(spec_op
,0,0,0,0,dsrl_op
), RT
| RD
| RE
},
148 { insn_dsrl32
, M(spec_op
,0,0,0,0,dsrl32_op
), RT
| RD
| RE
},
149 { insn_dsubu
, M(spec_op
,0,0,0,0,dsubu_op
), RS
| RT
| RD
},
150 { insn_eret
, M(cop0_op
,cop_op
,0,0,0,eret_op
), 0 },
151 { insn_j
, M(j_op
,0,0,0,0,0), JIMM
},
152 { insn_jal
, M(jal_op
,0,0,0,0,0), JIMM
},
153 { insn_jr
, M(spec_op
,0,0,0,0,jr_op
), RS
},
154 { insn_ld
, M(ld_op
,0,0,0,0,0), RS
| RT
| SIMM
},
155 { insn_ll
, M(ll_op
,0,0,0,0,0), RS
| RT
| SIMM
},
156 { insn_lld
, M(lld_op
,0,0,0,0,0), RS
| RT
| SIMM
},
157 { insn_lui
, M(lui_op
,0,0,0,0,0), RT
| SIMM
},
158 { insn_lw
, M(lw_op
,0,0,0,0,0), RS
| RT
| SIMM
},
159 { insn_mfc0
, M(cop0_op
,mfc_op
,0,0,0,0), RT
| RD
| SET
},
160 { insn_mtc0
, M(cop0_op
,mtc_op
,0,0,0,0), RT
| RD
| SET
},
161 { insn_ori
, M(ori_op
,0,0,0,0,0), RS
| RT
| UIMM
},
162 { insn_rfe
, M(cop0_op
,cop_op
,0,0,0,rfe_op
), 0 },
163 { insn_sc
, M(sc_op
,0,0,0,0,0), RS
| RT
| SIMM
},
164 { insn_scd
, M(scd_op
,0,0,0,0,0), RS
| RT
| SIMM
},
165 { insn_sd
, M(sd_op
,0,0,0,0,0), RS
| RT
| SIMM
},
166 { insn_sll
, M(spec_op
,0,0,0,0,sll_op
), RT
| RD
| RE
},
167 { insn_sra
, M(spec_op
,0,0,0,0,sra_op
), RT
| RD
| RE
},
168 { insn_srl
, M(spec_op
,0,0,0,0,srl_op
), RT
| RD
| RE
},
169 { insn_subu
, M(spec_op
,0,0,0,0,subu_op
), RS
| RT
| RD
},
170 { insn_sw
, M(sw_op
,0,0,0,0,0), RS
| RT
| SIMM
},
171 { insn_tlbp
, M(cop0_op
,cop_op
,0,0,0,tlbp_op
), 0 },
172 { insn_tlbwi
, M(cop0_op
,cop_op
,0,0,0,tlbwi_op
), 0 },
173 { insn_tlbwr
, M(cop0_op
,cop_op
,0,0,0,tlbwr_op
), 0 },
174 { insn_xor
, M(spec_op
,0,0,0,0,xor_op
), RS
| RT
| RD
},
175 { insn_xori
, M(xori_op
,0,0,0,0,0), RS
| RT
| UIMM
},
176 { insn_invalid
, 0, 0 }
181 static __init u32
build_rs(u32 arg
)
184 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
186 return (arg
& RS_MASK
) << RS_SH
;
189 static __init u32
build_rt(u32 arg
)
192 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
194 return (arg
& RT_MASK
) << RT_SH
;
197 static __init u32
build_rd(u32 arg
)
200 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
202 return (arg
& RD_MASK
) << RD_SH
;
205 static __init u32
build_re(u32 arg
)
208 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
210 return (arg
& RE_MASK
) << RE_SH
;
213 static __init u32
build_simm(s32 arg
)
215 if (arg
> 0x7fff || arg
< -0x8000)
216 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
221 static __init u32
build_uimm(u32 arg
)
224 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
226 return arg
& IMM_MASK
;
229 static __init u32
build_bimm(s32 arg
)
231 if (arg
> 0x1ffff || arg
< -0x20000)
232 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
235 printk(KERN_WARNING
"Invalid TLB synthesizer branch target\n");
237 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 2) & 0x7fff);
240 static __init u32
build_jimm(u32 arg
)
242 if (arg
& ~((JIMM_MASK
) << 2))
243 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
245 return (arg
>> 2) & JIMM_MASK
;
248 static __init u32
build_func(u32 arg
)
250 if (arg
& ~FUNC_MASK
)
251 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
253 return arg
& FUNC_MASK
;
256 static __init u32
build_set(u32 arg
)
259 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
261 return arg
& SET_MASK
;
265 * The order of opcode arguments is implicitly left to right,
266 * starting with RS and ending with FUNC or IMM.
268 static void __init
build_insn(u32
**buf
, enum opcode opc
, ...)
270 struct insn
*ip
= NULL
;
275 for (i
= 0; insn_table
[i
].opcode
!= insn_invalid
; i
++)
276 if (insn_table
[i
].opcode
== opc
) {
282 panic("Unsupported TLB synthesizer instruction %d", opc
);
286 if (ip
->fields
& RS
) op
|= build_rs(va_arg(ap
, u32
));
287 if (ip
->fields
& RT
) op
|= build_rt(va_arg(ap
, u32
));
288 if (ip
->fields
& RD
) op
|= build_rd(va_arg(ap
, u32
));
289 if (ip
->fields
& RE
) op
|= build_re(va_arg(ap
, u32
));
290 if (ip
->fields
& SIMM
) op
|= build_simm(va_arg(ap
, s32
));
291 if (ip
->fields
& UIMM
) op
|= build_uimm(va_arg(ap
, u32
));
292 if (ip
->fields
& BIMM
) op
|= build_bimm(va_arg(ap
, s32
));
293 if (ip
->fields
& JIMM
) op
|= build_jimm(va_arg(ap
, u32
));
294 if (ip
->fields
& FUNC
) op
|= build_func(va_arg(ap
, u32
));
295 if (ip
->fields
& SET
) op
|= build_set(va_arg(ap
, u32
));
302 #define I_u1u2u3(op) \
303 static inline void __init i##op(u32 **buf, unsigned int a, \
304 unsigned int b, unsigned int c) \
306 build_insn(buf, insn##op, a, b, c); \
309 #define I_u2u1u3(op) \
310 static inline void __init i##op(u32 **buf, unsigned int a, \
311 unsigned int b, unsigned int c) \
313 build_insn(buf, insn##op, b, a, c); \
316 #define I_u3u1u2(op) \
317 static inline void __init i##op(u32 **buf, unsigned int a, \
318 unsigned int b, unsigned int c) \
320 build_insn(buf, insn##op, b, c, a); \
323 #define I_u1u2s3(op) \
324 static inline void __init i##op(u32 **buf, unsigned int a, \
325 unsigned int b, signed int c) \
327 build_insn(buf, insn##op, a, b, c); \
330 #define I_u2s3u1(op) \
331 static inline void __init i##op(u32 **buf, unsigned int a, \
332 signed int b, unsigned int c) \
334 build_insn(buf, insn##op, c, a, b); \
337 #define I_u2u1s3(op) \
338 static inline void __init i##op(u32 **buf, unsigned int a, \
339 unsigned int b, signed int c) \
341 build_insn(buf, insn##op, b, a, c); \
345 static inline void __init i##op(u32 **buf, unsigned int a, \
348 build_insn(buf, insn##op, a, b); \
352 static inline void __init i##op(u32 **buf, unsigned int a, \
355 build_insn(buf, insn##op, a, b); \
359 static inline void __init i##op(u32 **buf, unsigned int a) \
361 build_insn(buf, insn##op, a); \
365 static inline void __init i##op(u32 **buf) \
367 build_insn(buf, insn##op); \
436 label_smp_pgtable_change
,
437 label_r3000_write_probe_fail
,
445 static __init
void build_label(struct label
**lab
, u32
*addr
,
454 static inline void l##lb(struct label **lab, u32 *addr) \
456 build_label(lab, addr, label##lb); \
471 L_LA(_smp_pgtable_change
)
472 L_LA(_r3000_write_probe_fail
)
474 /* convenience macros for instructions */
476 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
477 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
478 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
479 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
480 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
481 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
482 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
483 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
484 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
485 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
486 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
487 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
489 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
490 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
491 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
492 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
493 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
494 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
495 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
496 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
497 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
498 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
499 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
500 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
503 #define i_b(buf, off) i_beq(buf, 0, 0, off)
504 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
505 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
506 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
507 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
508 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
509 #define i_nop(buf) i_sll(buf, 0, 0, 0)
510 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
511 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
514 static __init
int __maybe_unused
in_compat_space_p(long addr
)
516 /* Is this address in 32bit compat space? */
517 return (((addr
) & 0xffffffff00000000L
) == 0xffffffff00000000L
);
520 static __init
int __maybe_unused
rel_highest(long val
)
522 return ((((val
+ 0x800080008000L
) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
525 static __init
int __maybe_unused
rel_higher(long val
)
527 return ((((val
+ 0x80008000L
) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
531 static __init
int rel_hi(long val
)
533 return ((((val
+ 0x8000L
) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
536 static __init
int rel_lo(long val
)
538 return ((val
& 0xffff) ^ 0x8000) - 0x8000;
541 static __init
void i_LA_mostly(u32
**buf
, unsigned int rs
, long addr
)
544 if (!in_compat_space_p(addr
)) {
545 i_lui(buf
, rs
, rel_highest(addr
));
546 if (rel_higher(addr
))
547 i_daddiu(buf
, rs
, rs
, rel_higher(addr
));
549 i_dsll(buf
, rs
, rs
, 16);
550 i_daddiu(buf
, rs
, rs
, rel_hi(addr
));
551 i_dsll(buf
, rs
, rs
, 16);
553 i_dsll32(buf
, rs
, rs
, 0);
556 i_lui(buf
, rs
, rel_hi(addr
));
559 static __init
void __maybe_unused
i_LA(u32
**buf
, unsigned int rs
,
562 i_LA_mostly(buf
, rs
, addr
);
564 i_ADDIU(buf
, rs
, rs
, rel_lo(addr
));
577 static __init
void r_mips_pc16(struct reloc
**rel
, u32
*addr
,
581 (*rel
)->type
= R_MIPS_PC16
;
586 static inline void __resolve_relocs(struct reloc
*rel
, struct label
*lab
)
588 long laddr
= (long)lab
->addr
;
589 long raddr
= (long)rel
->addr
;
593 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
597 panic("Unsupported TLB synthesizer relocation %d",
602 static __init
void resolve_relocs(struct reloc
*rel
, struct label
*lab
)
606 for (; rel
->lab
!= label_invalid
; rel
++)
607 for (l
= lab
; l
->lab
!= label_invalid
; l
++)
608 if (rel
->lab
== l
->lab
)
609 __resolve_relocs(rel
, l
);
612 static __init
void move_relocs(struct reloc
*rel
, u32
*first
, u32
*end
,
615 for (; rel
->lab
!= label_invalid
; rel
++)
616 if (rel
->addr
>= first
&& rel
->addr
< end
)
620 static __init
void move_labels(struct label
*lab
, u32
*first
, u32
*end
,
623 for (; lab
->lab
!= label_invalid
; lab
++)
624 if (lab
->addr
>= first
&& lab
->addr
< end
)
628 static __init
void copy_handler(struct reloc
*rel
, struct label
*lab
,
629 u32
*first
, u32
*end
, u32
*target
)
631 long off
= (long)(target
- first
);
633 memcpy(target
, first
, (end
- first
) * sizeof(u32
));
635 move_relocs(rel
, first
, end
, off
);
636 move_labels(lab
, first
, end
, off
);
639 static __init
int __maybe_unused
insn_has_bdelay(struct reloc
*rel
,
642 for (; rel
->lab
!= label_invalid
; rel
++) {
643 if (rel
->addr
== addr
644 && (rel
->type
== R_MIPS_PC16
645 || rel
->type
== R_MIPS_26
))
652 /* convenience functions for labeled branches */
653 static void __init __maybe_unused
654 il_bltz(u32
**p
, struct reloc
**r
, unsigned int reg
, enum label_id l
)
656 r_mips_pc16(r
, *p
, l
);
660 static void __init __maybe_unused
il_b(u32
**p
, struct reloc
**r
,
663 r_mips_pc16(r
, *p
, l
);
667 static void __init
il_beqz(u32
**p
, struct reloc
**r
, unsigned int reg
,
670 r_mips_pc16(r
, *p
, l
);
674 static void __init __maybe_unused
675 il_beqzl(u32
**p
, struct reloc
**r
, unsigned int reg
, enum label_id l
)
677 r_mips_pc16(r
, *p
, l
);
681 static void __init
il_bnez(u32
**p
, struct reloc
**r
, unsigned int reg
,
684 r_mips_pc16(r
, *p
, l
);
688 static void __init
il_bgezl(u32
**p
, struct reloc
**r
, unsigned int reg
,
691 r_mips_pc16(r
, *p
, l
);
695 static void __init __maybe_unused
696 il_bgez(u32
**p
, struct reloc
**r
, unsigned int reg
, enum label_id l
)
698 r_mips_pc16(r
, *p
, l
);
702 /* The only general purpose registers allowed in TLB handlers. */
706 /* Some CP0 registers */
707 #define C0_INDEX 0, 0
708 #define C0_ENTRYLO0 2, 0
709 #define C0_TCBIND 2, 2
710 #define C0_ENTRYLO1 3, 0
711 #define C0_CONTEXT 4, 0
712 #define C0_BADVADDR 8, 0
713 #define C0_ENTRYHI 10, 0
715 #define C0_XCONTEXT 20, 0
718 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
720 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
723 /* The worst case length of the handler is around 18 instructions for
724 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
725 * Maximum space available is 32 instructions for R3000 and 64
726 * instructions for R4000.
728 * We deliberately chose a buffer size of 128, so we won't scribble
729 * over anything important on overflow before we panic.
731 static __initdata u32 tlb_handler
[128];
733 /* simply assume worst case size for labels and relocs */
734 static __initdata
struct label labels
[128];
735 static __initdata
struct reloc relocs
[128];
738 * The R3000 TLB handler is simple.
740 static void __init
build_r3000_tlb_refill_handler(void)
742 long pgdc
= (long)pgd_current
;
746 memset(tlb_handler
, 0, sizeof(tlb_handler
));
749 i_mfc0(&p
, K0
, C0_BADVADDR
);
750 i_lui(&p
, K1
, rel_hi(pgdc
)); /* cp0 delay */
751 i_lw(&p
, K1
, rel_lo(pgdc
), K1
);
752 i_srl(&p
, K0
, K0
, 22); /* load delay */
753 i_sll(&p
, K0
, K0
, 2);
754 i_addu(&p
, K1
, K1
, K0
);
755 i_mfc0(&p
, K0
, C0_CONTEXT
);
756 i_lw(&p
, K1
, 0, K1
); /* cp0 delay */
757 i_andi(&p
, K0
, K0
, 0xffc); /* load delay */
758 i_addu(&p
, K1
, K1
, K0
);
760 i_nop(&p
); /* load delay */
761 i_mtc0(&p
, K0
, C0_ENTRYLO0
);
762 i_mfc0(&p
, K1
, C0_EPC
); /* cp0 delay */
763 i_tlbwr(&p
); /* cp0 delay */
765 i_rfe(&p
); /* branch delay */
767 if (p
> tlb_handler
+ 32)
768 panic("TLB refill handler space exceeded");
770 pr_info("Synthesized TLB refill handler (%u instructions).\n",
771 (unsigned int)(p
- tlb_handler
));
773 pr_debug("\t.set push\n");
774 pr_debug("\t.set noreorder\n");
775 for (i
= 0; i
< (p
- tlb_handler
); i
++)
776 pr_debug("\t.word 0x%08x\n", tlb_handler
[i
]);
777 pr_debug("\t.set pop\n");
779 memcpy((void *)ebase
, tlb_handler
, 0x80);
783 * The R4000 TLB handler is much more complicated. We have two
784 * consecutive handler areas with 32 instructions space each.
785 * Since they aren't used at the same time, we can overflow in the
786 * other one.To keep things simple, we first assume linear space,
787 * then we relocate it to the final handler layout as needed.
789 static __initdata u32 final_handler
[64];
794 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
795 * 2. A timing hazard exists for the TLBP instruction.
797 * stalling_instruction
800 * The JTLB is being read for the TLBP throughout the stall generated by the
801 * previous instruction. This is not really correct as the stalling instruction
802 * can modify the address used to access the JTLB. The failure symptom is that
803 * the TLBP instruction will use an address created for the stalling instruction
804 * and not the address held in C0_ENHI and thus report the wrong results.
806 * The software work-around is to not allow the instruction preceding the TLBP
807 * to stall - make it an NOP or some other instruction guaranteed not to stall.
809 * Errata 2 will not be fixed. This errata is also on the R5000.
811 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
813 static __init
void __maybe_unused
build_tlb_probe_entry(u32
**p
)
815 switch (current_cpu_data
.cputype
) {
816 /* Found by experiment: R4600 v2.0 needs this, too. */
832 * Write random or indexed TLB entry, and care about the hazards from
833 * the preceeding mtc0 and for the following eret.
835 enum tlb_write_entry
{ tlb_random
, tlb_indexed
};
837 static __init
void build_tlb_write_entry(u32
**p
, struct label
**l
,
839 enum tlb_write_entry wmode
)
841 void(*tlbw
)(u32
**) = NULL
;
844 case tlb_random
: tlbw
= i_tlbwr
; break;
845 case tlb_indexed
: tlbw
= i_tlbwi
; break;
848 switch (current_cpu_data
.cputype
) {
856 * This branch uses up a mtc0 hazard nop slot and saves
857 * two nops after the tlbw instruction.
859 il_bgezl(p
, r
, 0, label_tlbw_hazard
);
861 l_tlbw_hazard(l
, *p
);
901 i_nop(p
); /* QED specifies 2 nops hazard */
903 * This branch uses up a mtc0 hazard nop slot and saves
904 * a nop after the tlbw instruction.
906 il_bgezl(p
, r
, 0, label_tlbw_hazard
);
908 l_tlbw_hazard(l
, *p
);
930 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
931 * use of the JTLB for instructions should not occur for 4
932 * cpu cycles and use for data translations should not occur
967 panic("No TLB refill handler yet (CPU type: %d)",
968 current_cpu_data
.cputype
);
975 * TMP and PTR are scratch.
976 * TMP will be clobbered, PTR will hold the pmd entry.
979 build_get_pmde64(u32
**p
, struct label
**l
, struct reloc
**r
,
980 unsigned int tmp
, unsigned int ptr
)
982 long pgdc
= (long)pgd_current
;
985 * The vmalloc handling is not in the hotpath.
987 i_dmfc0(p
, tmp
, C0_BADVADDR
);
989 il_bltz(p
, r
, tmp
, label_module_alloc
);
991 il_bltz(p
, r
, tmp
, label_vmalloc
);
993 /* No i_nop needed here, since the next insn doesn't touch TMP. */
996 # ifdef CONFIG_MIPS_MT_SMTC
998 * SMTC uses TCBind value as "CPU" index
1000 i_mfc0(p
, ptr
, C0_TCBIND
);
1001 i_dsrl(p
, ptr
, ptr
, 19);
1004 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
1005 * stored in CONTEXT.
1007 i_dmfc0(p
, ptr
, C0_CONTEXT
);
1008 i_dsrl(p
, ptr
, ptr
, 23);
1010 i_LA_mostly(p
, tmp
, pgdc
);
1011 i_daddu(p
, ptr
, ptr
, tmp
);
1012 i_dmfc0(p
, tmp
, C0_BADVADDR
);
1013 i_ld(p
, ptr
, rel_lo(pgdc
), ptr
);
1015 i_LA_mostly(p
, ptr
, pgdc
);
1016 i_ld(p
, ptr
, rel_lo(pgdc
), ptr
);
1019 l_vmalloc_done(l
, *p
);
1021 if (PGDIR_SHIFT
- 3 < 32) /* get pgd offset in bytes */
1022 i_dsrl(p
, tmp
, tmp
, PGDIR_SHIFT
-3);
1024 i_dsrl32(p
, tmp
, tmp
, PGDIR_SHIFT
- 3 - 32);
1026 i_andi(p
, tmp
, tmp
, (PTRS_PER_PGD
- 1)<<3);
1027 i_daddu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
1028 i_dmfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
1029 i_ld(p
, ptr
, 0, ptr
); /* get pmd pointer */
1030 i_dsrl(p
, tmp
, tmp
, PMD_SHIFT
-3); /* get pmd offset in bytes */
1031 i_andi(p
, tmp
, tmp
, (PTRS_PER_PMD
- 1)<<3);
1032 i_daddu(p
, ptr
, ptr
, tmp
); /* add in pmd offset */
1036 * BVADDR is the faulting address, PTR is scratch.
1037 * PTR will hold the pgd for vmalloc.
1040 build_get_pgd_vmalloc64(u32
**p
, struct label
**l
, struct reloc
**r
,
1041 unsigned int bvaddr
, unsigned int ptr
)
1043 long swpd
= (long)swapper_pg_dir
;
1046 long modd
= (long)module_pg_dir
;
1048 l_module_alloc(l
, *p
);
1051 * VMALLOC_START >= 0xc000000000000000UL
1052 * MODULE_START >= 0xe000000000000000UL
1054 i_SLL(p
, ptr
, bvaddr
, 2);
1055 il_bgez(p
, r
, ptr
, label_vmalloc
);
1057 if (in_compat_space_p(MODULE_START
) && !rel_lo(MODULE_START
)) {
1058 i_lui(p
, ptr
, rel_hi(MODULE_START
)); /* delay slot */
1060 /* unlikely configuration */
1061 i_nop(p
); /* delay slot */
1062 i_LA(p
, ptr
, MODULE_START
);
1064 i_dsubu(p
, bvaddr
, bvaddr
, ptr
);
1066 if (in_compat_space_p(modd
) && !rel_lo(modd
)) {
1067 il_b(p
, r
, label_vmalloc_done
);
1068 i_lui(p
, ptr
, rel_hi(modd
));
1070 i_LA_mostly(p
, ptr
, modd
);
1071 il_b(p
, r
, label_vmalloc_done
);
1072 i_daddiu(p
, ptr
, ptr
, rel_lo(modd
));
1076 if (in_compat_space_p(MODULE_START
) && !rel_lo(MODULE_START
) &&
1077 MODULE_START
<< 32 == VMALLOC_START
)
1078 i_dsll32(p
, ptr
, ptr
, 0); /* typical case */
1080 i_LA(p
, ptr
, VMALLOC_START
);
1083 i_LA(p
, ptr
, VMALLOC_START
);
1085 i_dsubu(p
, bvaddr
, bvaddr
, ptr
);
1087 if (in_compat_space_p(swpd
) && !rel_lo(swpd
)) {
1088 il_b(p
, r
, label_vmalloc_done
);
1089 i_lui(p
, ptr
, rel_hi(swpd
));
1091 i_LA_mostly(p
, ptr
, swpd
);
1092 il_b(p
, r
, label_vmalloc_done
);
1093 i_daddiu(p
, ptr
, ptr
, rel_lo(swpd
));
1097 #else /* !CONFIG_64BIT */
1100 * TMP and PTR are scratch.
1101 * TMP will be clobbered, PTR will hold the pgd entry.
1103 static __init
void __maybe_unused
1104 build_get_pgde32(u32
**p
, unsigned int tmp
, unsigned int ptr
)
1106 long pgdc
= (long)pgd_current
;
1108 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1110 #ifdef CONFIG_MIPS_MT_SMTC
1112 * SMTC uses TCBind value as "CPU" index
1114 i_mfc0(p
, ptr
, C0_TCBIND
);
1115 i_LA_mostly(p
, tmp
, pgdc
);
1116 i_srl(p
, ptr
, ptr
, 19);
1119 * smp_processor_id() << 3 is stored in CONTEXT.
1121 i_mfc0(p
, ptr
, C0_CONTEXT
);
1122 i_LA_mostly(p
, tmp
, pgdc
);
1123 i_srl(p
, ptr
, ptr
, 23);
1125 i_addu(p
, ptr
, tmp
, ptr
);
1127 i_LA_mostly(p
, ptr
, pgdc
);
1129 i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
1130 i_lw(p
, ptr
, rel_lo(pgdc
), ptr
);
1131 i_srl(p
, tmp
, tmp
, PGDIR_SHIFT
); /* get pgd only bits */
1132 i_sll(p
, tmp
, tmp
, PGD_T_LOG2
);
1133 i_addu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
1136 #endif /* !CONFIG_64BIT */
1138 static __init
void build_adjust_context(u32
**p
, unsigned int ctx
)
1140 unsigned int shift
= 4 - (PTE_T_LOG2
+ 1) + PAGE_SHIFT
- 12;
1141 unsigned int mask
= (PTRS_PER_PTE
/ 2 - 1) << (PTE_T_LOG2
+ 1);
1143 switch (current_cpu_data
.cputype
) {
1160 i_SRL(p
, ctx
, ctx
, shift
);
1161 i_andi(p
, ctx
, ctx
, mask
);
1164 static __init
void build_get_ptep(u32
**p
, unsigned int tmp
, unsigned int ptr
)
1167 * Bug workaround for the Nevada. It seems as if under certain
1168 * circumstances the move from cp0_context might produce a
1169 * bogus result when the mfc0 instruction and its consumer are
1170 * in a different cacheline or a load instruction, probably any
1171 * memory reference, is between them.
1173 switch (current_cpu_data
.cputype
) {
1175 i_LW(p
, ptr
, 0, ptr
);
1176 GET_CONTEXT(p
, tmp
); /* get context reg */
1180 GET_CONTEXT(p
, tmp
); /* get context reg */
1181 i_LW(p
, ptr
, 0, ptr
);
1185 build_adjust_context(p
, tmp
);
1186 i_ADDU(p
, ptr
, ptr
, tmp
); /* add in offset */
1189 static __init
void build_update_entries(u32
**p
, unsigned int tmp
,
1193 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1194 * Kernel is a special case. Only a few CPUs use it.
1196 #ifdef CONFIG_64BIT_PHYS_ADDR
1197 if (cpu_has_64bits
) {
1198 i_ld(p
, tmp
, 0, ptep
); /* get even pte */
1199 i_ld(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1200 i_dsrl(p
, tmp
, tmp
, 6); /* convert to entrylo0 */
1201 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1202 i_dsrl(p
, ptep
, ptep
, 6); /* convert to entrylo1 */
1203 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1205 int pte_off_even
= sizeof(pte_t
) / 2;
1206 int pte_off_odd
= pte_off_even
+ sizeof(pte_t
);
1208 /* The pte entries are pre-shifted */
1209 i_lw(p
, tmp
, pte_off_even
, ptep
); /* get even pte */
1210 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1211 i_lw(p
, ptep
, pte_off_odd
, ptep
); /* get odd pte */
1212 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1215 i_LW(p
, tmp
, 0, ptep
); /* get even pte */
1216 i_LW(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1217 if (r45k_bvahwbug())
1218 build_tlb_probe_entry(p
);
1219 i_SRL(p
, tmp
, tmp
, 6); /* convert to entrylo0 */
1220 if (r4k_250MHZhwbug())
1221 i_mtc0(p
, 0, C0_ENTRYLO0
);
1222 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1223 i_SRL(p
, ptep
, ptep
, 6); /* convert to entrylo1 */
1224 if (r45k_bvahwbug())
1225 i_mfc0(p
, tmp
, C0_INDEX
);
1226 if (r4k_250MHZhwbug())
1227 i_mtc0(p
, 0, C0_ENTRYLO1
);
1228 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1232 static void __init
build_r4000_tlb_refill_handler(void)
1234 u32
*p
= tlb_handler
;
1235 struct label
*l
= labels
;
1236 struct reloc
*r
= relocs
;
1238 unsigned int final_len
;
1241 memset(tlb_handler
, 0, sizeof(tlb_handler
));
1242 memset(labels
, 0, sizeof(labels
));
1243 memset(relocs
, 0, sizeof(relocs
));
1244 memset(final_handler
, 0, sizeof(final_handler
));
1247 * create the plain linear handler
1249 if (bcm1250_m3_war()) {
1250 i_MFC0(&p
, K0
, C0_BADVADDR
);
1251 i_MFC0(&p
, K1
, C0_ENTRYHI
);
1252 i_xor(&p
, K0
, K0
, K1
);
1253 i_SRL(&p
, K0
, K0
, PAGE_SHIFT
+ 1);
1254 il_bnez(&p
, &r
, K0
, label_leave
);
1255 /* No need for i_nop */
1259 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
1261 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
1264 build_get_ptep(&p
, K0
, K1
);
1265 build_update_entries(&p
, K0
, K1
);
1266 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
1268 i_eret(&p
); /* return from trap */
1271 build_get_pgd_vmalloc64(&p
, &l
, &r
, K0
, K1
);
1275 * Overflow check: For the 64bit handler, we need at least one
1276 * free instruction slot for the wrap-around branch. In worst
1277 * case, if the intended insertion point is a delay slot, we
1278 * need three, with the second nop'ed and the third being
1282 if ((p
- tlb_handler
) > 64)
1283 panic("TLB refill handler space exceeded");
1285 if (((p
- tlb_handler
) > 63)
1286 || (((p
- tlb_handler
) > 61)
1287 && insn_has_bdelay(relocs
, tlb_handler
+ 29)))
1288 panic("TLB refill handler space exceeded");
1292 * Now fold the handler in the TLB refill handler space.
1296 /* Simplest case, just copy the handler. */
1297 copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1298 final_len
= p
- tlb_handler
;
1299 #else /* CONFIG_64BIT */
1300 f
= final_handler
+ 32;
1301 if ((p
- tlb_handler
) <= 32) {
1302 /* Just copy the handler. */
1303 copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1304 final_len
= p
- tlb_handler
;
1306 u32
*split
= tlb_handler
+ 30;
1309 * Find the split point.
1311 if (insn_has_bdelay(relocs
, split
- 1))
1314 /* Copy first part of the handler. */
1315 copy_handler(relocs
, labels
, tlb_handler
, split
, f
);
1316 f
+= split
- tlb_handler
;
1318 /* Insert branch. */
1319 l_split(&l
, final_handler
);
1320 il_b(&f
, &r
, label_split
);
1321 if (insn_has_bdelay(relocs
, split
))
1324 copy_handler(relocs
, labels
, split
, split
+ 1, f
);
1325 move_labels(labels
, f
, f
+ 1, -1);
1330 /* Copy the rest of the handler. */
1331 copy_handler(relocs
, labels
, split
, p
, final_handler
);
1332 final_len
= (f
- (final_handler
+ 32)) + (p
- split
);
1334 #endif /* CONFIG_64BIT */
1336 resolve_relocs(relocs
, labels
);
1337 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1345 f
= final_handler
+ 32;
1346 #endif /* CONFIG_64BIT */
1347 pr_debug("\t.set push\n");
1348 pr_debug("\t.set noreorder\n");
1349 for (i
= 0; i
< final_len
; i
++)
1350 pr_debug("\t.word 0x%08x\n", f
[i
]);
1351 pr_debug("\t.set pop\n");
1353 memcpy((void *)ebase
, final_handler
, 0x100);
1357 * TLB load/store/modify handlers.
1359 * Only the fastpath gets synthesized at runtime, the slowpath for
1360 * do_page_fault remains normal asm.
1362 extern void tlb_do_page_fault_0(void);
1363 extern void tlb_do_page_fault_1(void);
1365 #define __tlb_handler_align \
1366 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1369 * 128 instructions for the fastpath handler is generous and should
1370 * never be exceeded.
1372 #define FASTPATH_SIZE 128
1374 u32 __tlb_handler_align handle_tlbl
[FASTPATH_SIZE
];
1375 u32 __tlb_handler_align handle_tlbs
[FASTPATH_SIZE
];
1376 u32 __tlb_handler_align handle_tlbm
[FASTPATH_SIZE
];
1379 iPTE_LW(u32
**p
, struct label
**l
, unsigned int pte
, unsigned int ptr
)
1382 # ifdef CONFIG_64BIT_PHYS_ADDR
1384 i_lld(p
, pte
, 0, ptr
);
1387 i_LL(p
, pte
, 0, ptr
);
1389 # ifdef CONFIG_64BIT_PHYS_ADDR
1391 i_ld(p
, pte
, 0, ptr
);
1394 i_LW(p
, pte
, 0, ptr
);
1399 iPTE_SW(u32
**p
, struct reloc
**r
, unsigned int pte
, unsigned int ptr
,
1402 #ifdef CONFIG_64BIT_PHYS_ADDR
1403 unsigned int hwmode
= mode
& (_PAGE_VALID
| _PAGE_DIRTY
);
1406 i_ori(p
, pte
, pte
, mode
);
1408 # ifdef CONFIG_64BIT_PHYS_ADDR
1410 i_scd(p
, pte
, 0, ptr
);
1413 i_SC(p
, pte
, 0, ptr
);
1415 if (r10000_llsc_war())
1416 il_beqzl(p
, r
, pte
, label_smp_pgtable_change
);
1418 il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1420 # ifdef CONFIG_64BIT_PHYS_ADDR
1421 if (!cpu_has_64bits
) {
1422 /* no i_nop needed */
1423 i_ll(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1424 i_ori(p
, pte
, pte
, hwmode
);
1425 i_sc(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1426 il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1427 /* no i_nop needed */
1428 i_lw(p
, pte
, 0, ptr
);
1435 # ifdef CONFIG_64BIT_PHYS_ADDR
1437 i_sd(p
, pte
, 0, ptr
);
1440 i_SW(p
, pte
, 0, ptr
);
1442 # ifdef CONFIG_64BIT_PHYS_ADDR
1443 if (!cpu_has_64bits
) {
1444 i_lw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1445 i_ori(p
, pte
, pte
, hwmode
);
1446 i_sw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1447 i_lw(p
, pte
, 0, ptr
);
1454 * Check if PTE is present, if not then jump to LABEL. PTR points to
1455 * the page table where this PTE is located, PTE will be re-loaded
1456 * with it's original value.
1459 build_pte_present(u32
**p
, struct label
**l
, struct reloc
**r
,
1460 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1462 i_andi(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1463 i_xori(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1464 il_bnez(p
, r
, pte
, lid
);
1465 iPTE_LW(p
, l
, pte
, ptr
);
1468 /* Make PTE valid, store result in PTR. */
1470 build_make_valid(u32
**p
, struct reloc
**r
, unsigned int pte
,
1473 unsigned int mode
= _PAGE_VALID
| _PAGE_ACCESSED
;
1475 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1479 * Check if PTE can be written to, if not branch to LABEL. Regardless
1480 * restore PTE with value from PTR when done.
1483 build_pte_writable(u32
**p
, struct label
**l
, struct reloc
**r
,
1484 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1486 i_andi(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1487 i_xori(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1488 il_bnez(p
, r
, pte
, lid
);
1489 iPTE_LW(p
, l
, pte
, ptr
);
1492 /* Make PTE writable, update software status bits as well, then store
1496 build_make_write(u32
**p
, struct reloc
**r
, unsigned int pte
,
1499 unsigned int mode
= (_PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
1502 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1506 * Check if PTE can be modified, if not branch to LABEL. Regardless
1507 * restore PTE with value from PTR when done.
1510 build_pte_modifiable(u32
**p
, struct label
**l
, struct reloc
**r
,
1511 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1513 i_andi(p
, pte
, pte
, _PAGE_WRITE
);
1514 il_beqz(p
, r
, pte
, lid
);
1515 iPTE_LW(p
, l
, pte
, ptr
);
1519 * R3000 style TLB load/store/modify handlers.
1523 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1527 build_r3000_pte_reload_tlbwi(u32
**p
, unsigned int pte
, unsigned int tmp
)
1529 i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1530 i_mfc0(p
, tmp
, C0_EPC
); /* cp0 delay */
1533 i_rfe(p
); /* branch delay */
1537 * This places the pte into ENTRYLO0 and writes it with tlbwi
1538 * or tlbwr as appropriate. This is because the index register
1539 * may have the probe fail bit set as a result of a trap on a
1540 * kseg2 access, i.e. without refill. Then it returns.
1543 build_r3000_tlb_reload_write(u32
**p
, struct label
**l
, struct reloc
**r
,
1544 unsigned int pte
, unsigned int tmp
)
1546 i_mfc0(p
, tmp
, C0_INDEX
);
1547 i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1548 il_bltz(p
, r
, tmp
, label_r3000_write_probe_fail
); /* cp0 delay */
1549 i_mfc0(p
, tmp
, C0_EPC
); /* branch delay */
1550 i_tlbwi(p
); /* cp0 delay */
1552 i_rfe(p
); /* branch delay */
1553 l_r3000_write_probe_fail(l
, *p
);
1554 i_tlbwr(p
); /* cp0 delay */
1556 i_rfe(p
); /* branch delay */
1560 build_r3000_tlbchange_handler_head(u32
**p
, unsigned int pte
,
1563 long pgdc
= (long)pgd_current
;
1565 i_mfc0(p
, pte
, C0_BADVADDR
);
1566 i_lui(p
, ptr
, rel_hi(pgdc
)); /* cp0 delay */
1567 i_lw(p
, ptr
, rel_lo(pgdc
), ptr
);
1568 i_srl(p
, pte
, pte
, 22); /* load delay */
1569 i_sll(p
, pte
, pte
, 2);
1570 i_addu(p
, ptr
, ptr
, pte
);
1571 i_mfc0(p
, pte
, C0_CONTEXT
);
1572 i_lw(p
, ptr
, 0, ptr
); /* cp0 delay */
1573 i_andi(p
, pte
, pte
, 0xffc); /* load delay */
1574 i_addu(p
, ptr
, ptr
, pte
);
1575 i_lw(p
, pte
, 0, ptr
);
1576 i_tlbp(p
); /* load delay */
1579 static void __init
build_r3000_tlb_load_handler(void)
1581 u32
*p
= handle_tlbl
;
1582 struct label
*l
= labels
;
1583 struct reloc
*r
= relocs
;
1586 memset(handle_tlbl
, 0, sizeof(handle_tlbl
));
1587 memset(labels
, 0, sizeof(labels
));
1588 memset(relocs
, 0, sizeof(relocs
));
1590 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1591 build_pte_present(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbl
);
1592 i_nop(&p
); /* load delay */
1593 build_make_valid(&p
, &r
, K0
, K1
);
1594 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1596 l_nopage_tlbl(&l
, p
);
1597 i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1600 if ((p
- handle_tlbl
) > FASTPATH_SIZE
)
1601 panic("TLB load handler fastpath space exceeded");
1603 resolve_relocs(relocs
, labels
);
1604 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1605 (unsigned int)(p
- handle_tlbl
));
1607 pr_debug("\t.set push\n");
1608 pr_debug("\t.set noreorder\n");
1609 for (i
= 0; i
< (p
- handle_tlbl
); i
++)
1610 pr_debug("\t.word 0x%08x\n", handle_tlbl
[i
]);
1611 pr_debug("\t.set pop\n");
1614 static void __init
build_r3000_tlb_store_handler(void)
1616 u32
*p
= handle_tlbs
;
1617 struct label
*l
= labels
;
1618 struct reloc
*r
= relocs
;
1621 memset(handle_tlbs
, 0, sizeof(handle_tlbs
));
1622 memset(labels
, 0, sizeof(labels
));
1623 memset(relocs
, 0, sizeof(relocs
));
1625 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1626 build_pte_writable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbs
);
1627 i_nop(&p
); /* load delay */
1628 build_make_write(&p
, &r
, K0
, K1
);
1629 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1631 l_nopage_tlbs(&l
, p
);
1632 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1635 if ((p
- handle_tlbs
) > FASTPATH_SIZE
)
1636 panic("TLB store handler fastpath space exceeded");
1638 resolve_relocs(relocs
, labels
);
1639 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1640 (unsigned int)(p
- handle_tlbs
));
1642 pr_debug("\t.set push\n");
1643 pr_debug("\t.set noreorder\n");
1644 for (i
= 0; i
< (p
- handle_tlbs
); i
++)
1645 pr_debug("\t.word 0x%08x\n", handle_tlbs
[i
]);
1646 pr_debug("\t.set pop\n");
1649 static void __init
build_r3000_tlb_modify_handler(void)
1651 u32
*p
= handle_tlbm
;
1652 struct label
*l
= labels
;
1653 struct reloc
*r
= relocs
;
1656 memset(handle_tlbm
, 0, sizeof(handle_tlbm
));
1657 memset(labels
, 0, sizeof(labels
));
1658 memset(relocs
, 0, sizeof(relocs
));
1660 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1661 build_pte_modifiable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbm
);
1662 i_nop(&p
); /* load delay */
1663 build_make_write(&p
, &r
, K0
, K1
);
1664 build_r3000_pte_reload_tlbwi(&p
, K0
, K1
);
1666 l_nopage_tlbm(&l
, p
);
1667 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1670 if ((p
- handle_tlbm
) > FASTPATH_SIZE
)
1671 panic("TLB modify handler fastpath space exceeded");
1673 resolve_relocs(relocs
, labels
);
1674 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1675 (unsigned int)(p
- handle_tlbm
));
1677 pr_debug("\t.set push\n");
1678 pr_debug("\t.set noreorder\n");
1679 for (i
= 0; i
< (p
- handle_tlbm
); i
++)
1680 pr_debug("\t.word 0x%08x\n", handle_tlbm
[i
]);
1681 pr_debug("\t.set pop\n");
1685 * R4000 style TLB load/store/modify handlers.
1688 build_r4000_tlbchange_handler_head(u32
**p
, struct label
**l
,
1689 struct reloc
**r
, unsigned int pte
,
1693 build_get_pmde64(p
, l
, r
, pte
, ptr
); /* get pmd in ptr */
1695 build_get_pgde32(p
, pte
, ptr
); /* get pgd in ptr */
1698 i_MFC0(p
, pte
, C0_BADVADDR
);
1699 i_LW(p
, ptr
, 0, ptr
);
1700 i_SRL(p
, pte
, pte
, PAGE_SHIFT
+ PTE_ORDER
- PTE_T_LOG2
);
1701 i_andi(p
, pte
, pte
, (PTRS_PER_PTE
- 1) << PTE_T_LOG2
);
1702 i_ADDU(p
, ptr
, ptr
, pte
);
1705 l_smp_pgtable_change(l
, *p
);
1707 iPTE_LW(p
, l
, pte
, ptr
); /* get even pte */
1708 build_tlb_probe_entry(p
);
1712 build_r4000_tlbchange_handler_tail(u32
**p
, struct label
**l
,
1713 struct reloc
**r
, unsigned int tmp
,
1716 i_ori(p
, ptr
, ptr
, sizeof(pte_t
));
1717 i_xori(p
, ptr
, ptr
, sizeof(pte_t
));
1718 build_update_entries(p
, tmp
, ptr
);
1719 build_tlb_write_entry(p
, l
, r
, tlb_indexed
);
1721 i_eret(p
); /* return from trap */
1724 build_get_pgd_vmalloc64(p
, l
, r
, tmp
, ptr
);
1728 static void __init
build_r4000_tlb_load_handler(void)
1730 u32
*p
= handle_tlbl
;
1731 struct label
*l
= labels
;
1732 struct reloc
*r
= relocs
;
1735 memset(handle_tlbl
, 0, sizeof(handle_tlbl
));
1736 memset(labels
, 0, sizeof(labels
));
1737 memset(relocs
, 0, sizeof(relocs
));
1739 if (bcm1250_m3_war()) {
1740 i_MFC0(&p
, K0
, C0_BADVADDR
);
1741 i_MFC0(&p
, K1
, C0_ENTRYHI
);
1742 i_xor(&p
, K0
, K0
, K1
);
1743 i_SRL(&p
, K0
, K0
, PAGE_SHIFT
+ 1);
1744 il_bnez(&p
, &r
, K0
, label_leave
);
1745 /* No need for i_nop */
1748 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1749 build_pte_present(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbl
);
1750 build_make_valid(&p
, &r
, K0
, K1
);
1751 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1753 l_nopage_tlbl(&l
, p
);
1754 i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1757 if ((p
- handle_tlbl
) > FASTPATH_SIZE
)
1758 panic("TLB load handler fastpath space exceeded");
1760 resolve_relocs(relocs
, labels
);
1761 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1762 (unsigned int)(p
- handle_tlbl
));
1764 pr_debug("\t.set push\n");
1765 pr_debug("\t.set noreorder\n");
1766 for (i
= 0; i
< (p
- handle_tlbl
); i
++)
1767 pr_debug("\t.word 0x%08x\n", handle_tlbl
[i
]);
1768 pr_debug("\t.set pop\n");
1771 static void __init
build_r4000_tlb_store_handler(void)
1773 u32
*p
= handle_tlbs
;
1774 struct label
*l
= labels
;
1775 struct reloc
*r
= relocs
;
1778 memset(handle_tlbs
, 0, sizeof(handle_tlbs
));
1779 memset(labels
, 0, sizeof(labels
));
1780 memset(relocs
, 0, sizeof(relocs
));
1782 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1783 build_pte_writable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbs
);
1784 build_make_write(&p
, &r
, K0
, K1
);
1785 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1787 l_nopage_tlbs(&l
, p
);
1788 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1791 if ((p
- handle_tlbs
) > FASTPATH_SIZE
)
1792 panic("TLB store handler fastpath space exceeded");
1794 resolve_relocs(relocs
, labels
);
1795 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1796 (unsigned int)(p
- handle_tlbs
));
1798 pr_debug("\t.set push\n");
1799 pr_debug("\t.set noreorder\n");
1800 for (i
= 0; i
< (p
- handle_tlbs
); i
++)
1801 pr_debug("\t.word 0x%08x\n", handle_tlbs
[i
]);
1802 pr_debug("\t.set pop\n");
1805 static void __init
build_r4000_tlb_modify_handler(void)
1807 u32
*p
= handle_tlbm
;
1808 struct label
*l
= labels
;
1809 struct reloc
*r
= relocs
;
1812 memset(handle_tlbm
, 0, sizeof(handle_tlbm
));
1813 memset(labels
, 0, sizeof(labels
));
1814 memset(relocs
, 0, sizeof(relocs
));
1816 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1817 build_pte_modifiable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbm
);
1818 /* Present and writable bits set, set accessed and dirty bits. */
1819 build_make_write(&p
, &r
, K0
, K1
);
1820 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1822 l_nopage_tlbm(&l
, p
);
1823 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1826 if ((p
- handle_tlbm
) > FASTPATH_SIZE
)
1827 panic("TLB modify handler fastpath space exceeded");
1829 resolve_relocs(relocs
, labels
);
1830 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1831 (unsigned int)(p
- handle_tlbm
));
1833 pr_debug("\t.set push\n");
1834 pr_debug("\t.set noreorder\n");
1835 for (i
= 0; i
< (p
- handle_tlbm
); i
++)
1836 pr_debug("\t.word 0x%08x\n", handle_tlbm
[i
]);
1837 pr_debug("\t.set pop\n");
1840 void __init
build_tlb_refill_handler(void)
1843 * The refill handler is generated per-CPU, multi-node systems
1844 * may have local storage for it. The other handlers are only
1847 static int run_once
= 0;
1849 switch (current_cpu_data
.cputype
) {
1857 build_r3000_tlb_refill_handler();
1859 build_r3000_tlb_load_handler();
1860 build_r3000_tlb_store_handler();
1861 build_r3000_tlb_modify_handler();
1868 panic("No R6000 TLB refill handler yet");
1872 panic("No R8000 TLB refill handler yet");
1876 build_r4000_tlb_refill_handler();
1878 build_r4000_tlb_load_handler();
1879 build_r4000_tlb_store_handler();
1880 build_r4000_tlb_modify_handler();
1886 void __init
flush_tlb_handlers(void)
1888 flush_icache_range((unsigned long)handle_tlbl
,
1889 (unsigned long)handle_tlbl
+ sizeof(handle_tlbl
));
1890 flush_icache_range((unsigned long)handle_tlbs
,
1891 (unsigned long)handle_tlbs
+ sizeof(handle_tlbs
));
1892 flush_icache_range((unsigned long)handle_tlbm
,
1893 (unsigned long)handle_tlbm
+ sizeof(handle_tlbm
));