primitive fastcall functions support
[tinycc/miki.git] / i386-gen.c
blobf04084426160a1658f72a19f2573fa7dd43ba316
1 /*
2 * X86 code generator for TCC
3 *
4 * Copyright (c) 2001, 2002, 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* number of available registers */
22 #define NB_REGS 4
24 /* a register can belong to several classes. The classes must be
25 sorted from more general to more precise (see gv2() code which does
26 assumptions on it). */
27 #define RC_INT 0x0001 /* generic integer register */
28 #define RC_FLOAT 0x0002 /* generic float register */
29 #define RC_EAX 0x0004
30 #define RC_ST0 0x0008
31 #define RC_ECX 0x0010
32 #define RC_EDX 0x0020
33 #define RC_IRET RC_EAX /* function return: integer register */
34 #define RC_LRET RC_EDX /* function return: second integer register */
35 #define RC_FRET RC_ST0 /* function return: float register */
37 /* pretty names for the registers */
38 enum {
39 TREG_EAX = 0,
40 TREG_ECX,
41 TREG_EDX,
42 TREG_ST0,
45 int reg_classes[NB_REGS] = {
46 /* eax */ RC_INT | RC_EAX,
47 /* ecx */ RC_INT | RC_ECX,
48 /* edx */ RC_INT | RC_EDX,
49 /* st0 */ RC_FLOAT | RC_ST0,
52 /* return registers for function */
53 #define REG_IRET TREG_EAX /* single word int return register */
54 #define REG_LRET TREG_EDX /* second word return register (for long long) */
55 #define REG_FRET TREG_ST0 /* float return register */
57 /* defined if function parameters must be evaluated in reverse order */
58 #define INVERT_FUNC_PARAMS
60 /* defined if structures are passed as pointers. Otherwise structures
61 are directly pushed on stack. */
62 //#define FUNC_STRUCT_PARAM_AS_PTR
64 /* pointer size, in bytes */
65 #define PTR_SIZE 4
67 /* long double size and alignment, in bytes */
68 #define LDOUBLE_SIZE 12
69 #define LDOUBLE_ALIGN 4
70 /* maximum alignment (for aligned attribute support) */
71 #define MAX_ALIGN 8
73 /******************************************************/
74 /* ELF defines */
76 #define EM_TCC_TARGET EM_386
78 /* relocation type for 32 bit data relocation */
79 #define R_DATA_32 R_386_32
80 #define R_JMP_SLOT R_386_JMP_SLOT
81 #define R_COPY R_386_COPY
83 #define ELF_START_ADDR 0x08048000
84 #define ELF_PAGE_SIZE 0x1000
86 /******************************************************/
88 static unsigned long func_sub_sp_offset;
89 static unsigned long func_bound_offset;
90 static int func_ret_sub;
92 /* XXX: make it faster ? */
93 void g(int c)
95 int ind1;
96 ind1 = ind + 1;
97 if (ind1 > cur_text_section->data_allocated)
98 section_realloc(cur_text_section, ind1);
99 cur_text_section->data[ind] = c;
100 ind = ind1;
103 void o(unsigned int c)
105 while (c) {
106 g(c);
107 c = c >> 8;
111 void gen_le32(int c)
113 g(c);
114 g(c >> 8);
115 g(c >> 16);
116 g(c >> 24);
119 /* output a symbol and patch all calls to it */
120 void gsym_addr(int t, int a)
122 int n, *ptr;
123 while (t) {
124 ptr = (int *)(cur_text_section->data + t);
125 n = *ptr; /* next value */
126 *ptr = a - t - 4;
127 t = n;
131 void gsym(int t)
133 gsym_addr(t, ind);
136 /* psym is used to put an instruction with a data field which is a
137 reference to a symbol. It is in fact the same as oad ! */
138 #define psym oad
140 /* instruction + 4 bytes data. Return the address of the data */
141 static int oad(int c, int s)
143 int ind1;
145 o(c);
146 ind1 = ind + 4;
147 if (ind1 > cur_text_section->data_allocated)
148 section_realloc(cur_text_section, ind1);
149 *(int *)(cur_text_section->data + ind) = s;
150 s = ind;
151 ind = ind1;
152 return s;
155 /* output constant with relocation if 'r & VT_SYM' is true */
156 static void gen_addr32(int r, Sym *sym, int c)
158 if (r & VT_SYM)
159 greloc(cur_text_section, sym, ind, R_386_32);
160 gen_le32(c);
163 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
164 opcode bits */
165 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
167 op_reg = op_reg << 3;
168 if ((r & VT_VALMASK) == VT_CONST) {
169 /* constant memory reference */
170 o(0x05 | op_reg);
171 gen_addr32(r, sym, c);
172 } else if ((r & VT_VALMASK) == VT_LOCAL) {
173 /* currently, we use only ebp as base */
174 if (c == (char)c) {
175 /* short reference */
176 o(0x45 | op_reg);
177 g(c);
178 } else {
179 oad(0x85 | op_reg, c);
181 } else {
182 g(0x00 | op_reg | (r & VT_VALMASK));
187 /* load 'r' from value 'sv' */
188 void load(int r, SValue *sv)
190 int v, t, ft, fc, fr;
191 SValue v1;
193 fr = sv->r;
194 ft = sv->type.t;
195 fc = sv->c.ul;
197 v = fr & VT_VALMASK;
198 if (fr & VT_LVAL) {
199 if (v == VT_LLOCAL) {
200 v1.type.t = VT_INT;
201 v1.r = VT_LOCAL | VT_LVAL;
202 v1.c.ul = fc;
203 load(r, &v1);
204 fr = r;
206 if ((ft & VT_BTYPE) == VT_FLOAT) {
207 o(0xd9); /* flds */
208 r = 0;
209 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
210 o(0xdd); /* fldl */
211 r = 0;
212 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
213 o(0xdb); /* fldt */
214 r = 5;
215 } else if ((ft & VT_TYPE) == VT_BYTE) {
216 o(0xbe0f); /* movsbl */
217 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
218 o(0xb60f); /* movzbl */
219 } else if ((ft & VT_TYPE) == VT_SHORT) {
220 o(0xbf0f); /* movswl */
221 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
222 o(0xb70f); /* movzwl */
223 } else {
224 o(0x8b); /* movl */
226 gen_modrm(r, fr, sv->sym, fc);
227 } else {
228 if (v == VT_CONST) {
229 o(0xb8 + r); /* mov $xx, r */
230 gen_addr32(fr, sv->sym, fc);
231 } else if (v == VT_LOCAL) {
232 o(0x8d); /* lea xxx(%ebp), r */
233 gen_modrm(r, VT_LOCAL, sv->sym, fc);
234 } else if (v == VT_CMP) {
235 oad(0xb8 + r, 0); /* mov $0, r */
236 o(0x0f); /* setxx %br */
237 o(fc);
238 o(0xc0 + r);
239 } else if (v == VT_JMP || v == VT_JMPI) {
240 t = v & 1;
241 oad(0xb8 + r, t); /* mov $1, r */
242 o(0x05eb); /* jmp after */
243 gsym(fc);
244 oad(0xb8 + r, t ^ 1); /* mov $0, r */
245 } else if (v != r) {
246 o(0x89);
247 o(0xc0 + r + v * 8); /* mov v, r */
252 /* store register 'r' in lvalue 'v' */
253 void store(int r, SValue *v)
255 int fr, bt, ft, fc;
257 ft = v->type.t;
258 fc = v->c.ul;
259 fr = v->r & VT_VALMASK;
260 bt = ft & VT_BTYPE;
261 /* XXX: incorrect if float reg to reg */
262 if (bt == VT_FLOAT) {
263 o(0xd9); /* fsts */
264 r = 2;
265 } else if (bt == VT_DOUBLE) {
266 o(0xdd); /* fstpl */
267 r = 2;
268 } else if (bt == VT_LDOUBLE) {
269 o(0xc0d9); /* fld %st(0) */
270 o(0xdb); /* fstpt */
271 r = 7;
272 } else {
273 if (bt == VT_SHORT)
274 o(0x66);
275 if (bt == VT_BYTE)
276 o(0x88);
277 else
278 o(0x89);
280 if (fr == VT_CONST ||
281 fr == VT_LOCAL ||
282 (v->r & VT_LVAL)) {
283 gen_modrm(r, v->r, v->sym, fc);
284 } else if (fr != r) {
285 o(0xc0 + fr + r * 8); /* mov r, fr */
289 static void gadd_sp(int val)
291 if (val == (char)val) {
292 o(0xc483);
293 g(val);
294 } else {
295 oad(0xc481, val); /* add $xxx, %esp */
299 /* 'is_jmp' is '1' if it is a jump */
300 static void gcall_or_jmp(int is_jmp)
302 int r;
303 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
304 /* constant case */
305 if (vtop->r & VT_SYM) {
306 /* relocation case */
307 greloc(cur_text_section, vtop->sym,
308 ind + 1, R_386_PC32);
309 } else {
310 /* put an empty PC32 relocation */
311 put_elf_reloc(symtab_section, cur_text_section,
312 ind + 1, R_386_PC32, 0);
314 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
315 } else {
316 /* otherwise, indirect call */
317 r = gv(RC_INT);
318 o(0xff); /* call/jmp *r */
319 o(0xd0 + r + (is_jmp << 4));
323 static uint8_t fastcall_regs[3] = { TREG_EAX, TREG_EDX, TREG_ECX };
325 /* Generate function call. The function address is pushed first, then
326 all the parameters in call order. This functions pops all the
327 parameters and the function address. */
328 void gfunc_call(int nb_args)
330 int size, align, r, args_size, i, func_call;
331 Sym *func_sym;
333 args_size = 0;
334 for(i = 0;i < nb_args; i++) {
335 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
336 size = type_size(&vtop->type, &align);
337 /* align to stack align size */
338 size = (size + 3) & ~3;
339 /* allocate the necessary size on stack */
340 oad(0xec81, size); /* sub $xxx, %esp */
341 /* generate structure store */
342 r = get_reg(RC_INT);
343 o(0x89); /* mov %esp, r */
344 o(0xe0 + r);
345 vset(&vtop->type, r | VT_LVAL, 0);
346 vswap();
347 vstore();
348 args_size += size;
349 } else if (is_float(vtop->type.t)) {
350 gv(RC_FLOAT); /* only one float register */
351 if ((vtop->type.t & VT_BTYPE) == VT_FLOAT)
352 size = 4;
353 else if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
354 size = 8;
355 else
356 size = 12;
357 oad(0xec81, size); /* sub $xxx, %esp */
358 if (size == 12)
359 o(0x7cdb);
360 else
361 o(0x5cd9 + size - 4); /* fstp[s|l] 0(%esp) */
362 g(0x24);
363 g(0x00);
364 args_size += size;
365 } else {
366 /* simple type (currently always same size) */
367 /* XXX: implicit cast ? */
368 r = gv(RC_INT);
369 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
370 size = 8;
371 o(0x50 + vtop->r2); /* push r */
372 } else {
373 size = 4;
375 o(0x50 + r); /* push r */
376 args_size += size;
378 vtop--;
380 save_regs(0); /* save used temporary registers */
381 func_sym = vtop->type.ref;
382 func_call = func_sym->r;
383 /* fast call case */
384 if (func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) {
385 int fastcall_nb_regs;
386 fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
387 for(i = 0;i < fastcall_nb_regs; i++) {
388 if (args_size <= 0)
389 break;
390 o(0x58 + fastcall_regs[i]); /* pop r */
391 /* XXX: incorrect for struct/floats */
392 args_size -= 4;
395 gcall_or_jmp(0);
396 if (args_size && func_sym->r != FUNC_STDCALL)
397 gadd_sp(args_size);
398 vtop--;
401 /* generate function prolog of type 't' */
402 void gfunc_prolog(CType *func_type)
404 int addr, align, size, func_call, fastcall_nb_regs;
405 int param_index, param_addr;
406 Sym *sym;
407 CType *type;
409 sym = func_type->ref;
410 func_call = sym->r;
411 addr = 8;
412 loc = 0;
413 if (func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) {
414 fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
415 } else {
416 fastcall_nb_regs = 0;
418 param_index = 0;
420 o(0xe58955); /* push %ebp, mov %esp, %ebp */
421 func_sub_sp_offset = oad(0xec81, 0); /* sub $xxx, %esp */
423 /* if the function returns a structure, then add an
424 implicit pointer parameter */
425 func_vt = sym->type;
426 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
427 /* XXX: fastcall case ? */
428 func_vc = addr;
429 addr += 4;
430 param_index++;
432 /* define parameters */
433 while ((sym = sym->next) != NULL) {
434 type = &sym->type;
435 size = type_size(type, &align);
436 size = (size + 3) & ~3;
437 #ifdef FUNC_STRUCT_PARAM_AS_PTR
438 /* structs are passed as pointer */
439 if ((type->t & VT_BTYPE) == VT_STRUCT) {
440 size = 4;
442 #endif
443 if (param_index < fastcall_nb_regs) {
444 /* save FASTCALL register */
445 loc -= 4;
446 o(0x89); /* movl */
447 gen_modrm(fastcall_regs[param_index], VT_LOCAL, NULL, loc);
448 param_addr = loc;
449 } else {
450 param_addr = addr;
451 addr += size;
453 sym_push(sym->v & ~SYM_FIELD, type,
454 VT_LOCAL | VT_LVAL, param_addr);
455 param_index++;
457 func_ret_sub = 0;
458 /* pascal type call ? */
459 if (func_call == FUNC_STDCALL)
460 func_ret_sub = addr - 8;
462 /* leave some room for bound checking code */
463 if (do_bounds_check) {
464 oad(0xb8, 0); /* lbound section pointer */
465 oad(0xb8, 0); /* call to function */
466 func_bound_offset = lbounds_section->data_offset;
470 /* generate function epilog */
471 void gfunc_epilog(void)
473 #ifdef CONFIG_TCC_BCHECK
474 if (do_bounds_check && func_bound_offset != lbounds_section->data_offset) {
475 int saved_ind;
476 int *bounds_ptr;
477 Sym *sym, *sym_data;
478 /* add end of table info */
479 bounds_ptr = section_ptr_add(lbounds_section, sizeof(int));
480 *bounds_ptr = 0;
481 /* generate bound local allocation */
482 saved_ind = ind;
483 ind = func_sub_sp_offset + 4;
484 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
485 func_bound_offset, lbounds_section->data_offset);
486 greloc(cur_text_section, sym_data,
487 ind + 1, R_386_32);
488 oad(0xb8, 0); /* mov %eax, xxx */
489 sym = external_global_sym(TOK___bound_local_new, &func_old_type, 0);
490 greloc(cur_text_section, sym,
491 ind + 1, R_386_PC32);
492 oad(0xe8, -4);
493 ind = saved_ind;
494 /* generate bound check local freeing */
495 o(0x5250); /* save returned value, if any */
496 greloc(cur_text_section, sym_data,
497 ind + 1, R_386_32);
498 oad(0xb8, 0); /* mov %eax, xxx */
499 sym = external_global_sym(TOK___bound_local_delete, &func_old_type, 0);
500 greloc(cur_text_section, sym,
501 ind + 1, R_386_PC32);
502 oad(0xe8, -4);
503 o(0x585a); /* restore returned value, if any */
505 #endif
506 o(0xc9); /* leave */
507 if (func_ret_sub == 0) {
508 o(0xc3); /* ret */
509 } else {
510 o(0xc2); /* ret n */
511 g(func_ret_sub);
512 g(func_ret_sub >> 8);
514 /* align local size to word & save local variables */
515 *(int *)(cur_text_section->data + func_sub_sp_offset) = (-loc + 3) & -4;
518 /* generate a jump to a label */
519 int gjmp(int t)
521 return psym(0xe9, t);
524 /* generate a jump to a fixed address */
525 void gjmp_addr(int a)
527 int r;
528 r = a - ind - 2;
529 if (r == (char)r) {
530 g(0xeb);
531 g(r);
532 } else {
533 oad(0xe9, a - ind - 5);
537 /* generate a test. set 'inv' to invert test. Stack entry is popped */
538 int gtst(int inv, int t)
540 int v, *p;
542 v = vtop->r & VT_VALMASK;
543 if (v == VT_CMP) {
544 /* fast case : can jump directly since flags are set */
545 g(0x0f);
546 t = psym((vtop->c.i - 16) ^ inv, t);
547 } else if (v == VT_JMP || v == VT_JMPI) {
548 /* && or || optimization */
549 if ((v & 1) == inv) {
550 /* insert vtop->c jump list in t */
551 p = &vtop->c.i;
552 while (*p != 0)
553 p = (int *)(cur_text_section->data + *p);
554 *p = t;
555 t = vtop->c.i;
556 } else {
557 t = gjmp(t);
558 gsym(vtop->c.i);
560 } else {
561 if (is_float(vtop->type.t)) {
562 vpushi(0);
563 gen_op(TOK_NE);
565 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
566 /* constant jmp optimization */
567 if ((vtop->c.i != 0) != inv)
568 t = gjmp(t);
569 } else {
570 v = gv(RC_INT);
571 o(0x85);
572 o(0xc0 + v * 9);
573 g(0x0f);
574 t = psym(0x85 ^ inv, t);
577 vtop--;
578 return t;
581 /* generate an integer binary operation */
582 void gen_opi(int op)
584 int r, fr, opc, c;
586 switch(op) {
587 case '+':
588 case TOK_ADDC1: /* add with carry generation */
589 opc = 0;
590 gen_op8:
591 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
592 /* constant case */
593 vswap();
594 r = gv(RC_INT);
595 vswap();
596 c = vtop->c.i;
597 if (c == (char)c) {
598 /* XXX: generate inc and dec for smaller code ? */
599 o(0x83);
600 o(0xc0 | (opc << 3) | r);
601 g(c);
602 } else {
603 o(0x81);
604 oad(0xc0 | (opc << 3) | r, c);
606 } else {
607 gv2(RC_INT, RC_INT);
608 r = vtop[-1].r;
609 fr = vtop[0].r;
610 o((opc << 3) | 0x01);
611 o(0xc0 + r + fr * 8);
613 vtop--;
614 if (op >= TOK_ULT && op <= TOK_GT) {
615 vtop->r = VT_CMP;
616 vtop->c.i = op;
618 break;
619 case '-':
620 case TOK_SUBC1: /* sub with carry generation */
621 opc = 5;
622 goto gen_op8;
623 case TOK_ADDC2: /* add with carry use */
624 opc = 2;
625 goto gen_op8;
626 case TOK_SUBC2: /* sub with carry use */
627 opc = 3;
628 goto gen_op8;
629 case '&':
630 opc = 4;
631 goto gen_op8;
632 case '^':
633 opc = 6;
634 goto gen_op8;
635 case '|':
636 opc = 1;
637 goto gen_op8;
638 case '*':
639 gv2(RC_INT, RC_INT);
640 r = vtop[-1].r;
641 fr = vtop[0].r;
642 vtop--;
643 o(0xaf0f); /* imul fr, r */
644 o(0xc0 + fr + r * 8);
645 break;
646 case TOK_SHL:
647 opc = 4;
648 goto gen_shift;
649 case TOK_SHR:
650 opc = 5;
651 goto gen_shift;
652 case TOK_SAR:
653 opc = 7;
654 gen_shift:
655 opc = 0xc0 | (opc << 3);
656 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
657 /* constant case */
658 vswap();
659 r = gv(RC_INT);
660 vswap();
661 c = vtop->c.i & 0x1f;
662 o(0xc1); /* shl/shr/sar $xxx, r */
663 o(opc | r);
664 g(c);
665 } else {
666 /* we generate the shift in ecx */
667 gv2(RC_INT, RC_ECX);
668 r = vtop[-1].r;
669 o(0xd3); /* shl/shr/sar %cl, r */
670 o(opc | r);
672 vtop--;
673 break;
674 case '/':
675 case TOK_UDIV:
676 case TOK_PDIV:
677 case '%':
678 case TOK_UMOD:
679 case TOK_UMULL:
680 /* first operand must be in eax */
681 /* XXX: need better constraint for second operand */
682 gv2(RC_EAX, RC_ECX);
683 r = vtop[-1].r;
684 fr = vtop[0].r;
685 vtop--;
686 save_reg(TREG_EDX);
687 if (op == TOK_UMULL) {
688 o(0xf7); /* mul fr */
689 o(0xe0 + fr);
690 vtop->r2 = TREG_EDX;
691 r = TREG_EAX;
692 } else {
693 if (op == TOK_UDIV || op == TOK_UMOD) {
694 o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
695 o(0xf0 + fr);
696 } else {
697 o(0xf799); /* cltd, idiv fr, %eax */
698 o(0xf8 + fr);
700 if (op == '%' || op == TOK_UMOD)
701 r = TREG_EDX;
702 else
703 r = TREG_EAX;
705 vtop->r = r;
706 break;
707 default:
708 opc = 7;
709 goto gen_op8;
713 /* generate a floating point operation 'v = t1 op t2' instruction. The
714 two operands are guaranted to have the same floating point type */
715 /* XXX: need to use ST1 too */
716 void gen_opf(int op)
718 int a, ft, fc, swapped, r;
720 /* convert constants to memory references */
721 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
722 vswap();
723 gv(RC_FLOAT);
724 vswap();
726 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
727 gv(RC_FLOAT);
729 /* must put at least one value in the floating point register */
730 if ((vtop[-1].r & VT_LVAL) &&
731 (vtop[0].r & VT_LVAL)) {
732 vswap();
733 gv(RC_FLOAT);
734 vswap();
736 swapped = 0;
737 /* swap the stack if needed so that t1 is the register and t2 is
738 the memory reference */
739 if (vtop[-1].r & VT_LVAL) {
740 vswap();
741 swapped = 1;
743 if (op >= TOK_ULT && op <= TOK_GT) {
744 /* load on stack second operand */
745 load(TREG_ST0, vtop);
746 save_reg(TREG_EAX); /* eax is used by FP comparison code */
747 if (op == TOK_GE || op == TOK_GT)
748 swapped = !swapped;
749 else if (op == TOK_EQ || op == TOK_NE)
750 swapped = 0;
751 if (swapped)
752 o(0xc9d9); /* fxch %st(1) */
753 o(0xe9da); /* fucompp */
754 o(0xe0df); /* fnstsw %ax */
755 if (op == TOK_EQ) {
756 o(0x45e480); /* and $0x45, %ah */
757 o(0x40fC80); /* cmp $0x40, %ah */
758 } else if (op == TOK_NE) {
759 o(0x45e480); /* and $0x45, %ah */
760 o(0x40f480); /* xor $0x40, %ah */
761 op = TOK_NE;
762 } else if (op == TOK_GE || op == TOK_LE) {
763 o(0x05c4f6); /* test $0x05, %ah */
764 op = TOK_EQ;
765 } else {
766 o(0x45c4f6); /* test $0x45, %ah */
767 op = TOK_EQ;
769 vtop--;
770 vtop->r = VT_CMP;
771 vtop->c.i = op;
772 } else {
773 /* no memory reference possible for long double operations */
774 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
775 load(TREG_ST0, vtop);
776 swapped = !swapped;
779 switch(op) {
780 default:
781 case '+':
782 a = 0;
783 break;
784 case '-':
785 a = 4;
786 if (swapped)
787 a++;
788 break;
789 case '*':
790 a = 1;
791 break;
792 case '/':
793 a = 6;
794 if (swapped)
795 a++;
796 break;
798 ft = vtop->type.t;
799 fc = vtop->c.ul;
800 if ((ft & VT_BTYPE) == VT_LDOUBLE) {
801 o(0xde); /* fxxxp %st, %st(1) */
802 o(0xc1 + (a << 3));
803 } else {
804 /* if saved lvalue, then we must reload it */
805 r = vtop->r;
806 if ((r & VT_VALMASK) == VT_LLOCAL) {
807 SValue v1;
808 r = get_reg(RC_INT);
809 v1.type.t = VT_INT;
810 v1.r = VT_LOCAL | VT_LVAL;
811 v1.c.ul = fc;
812 load(r, &v1);
813 fc = 0;
816 if ((ft & VT_BTYPE) == VT_DOUBLE)
817 o(0xdc);
818 else
819 o(0xd8);
820 gen_modrm(a, r, vtop->sym, fc);
822 vtop--;
826 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
827 and 'long long' cases. */
828 void gen_cvt_itof(int t)
830 save_reg(TREG_ST0);
831 gv(RC_INT);
832 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
833 /* signed long long to float/double/long double (unsigned case
834 is handled generically) */
835 o(0x50 + vtop->r2); /* push r2 */
836 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
837 o(0x242cdf); /* fildll (%esp) */
838 o(0x08c483); /* add $8, %esp */
839 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
840 (VT_INT | VT_UNSIGNED)) {
841 /* unsigned int to float/double/long double */
842 o(0x6a); /* push $0 */
843 g(0x00);
844 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
845 o(0x242cdf); /* fildll (%esp) */
846 o(0x08c483); /* add $8, %esp */
847 } else {
848 /* int to float/double/long double */
849 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
850 o(0x2404db); /* fildl (%esp) */
851 o(0x04c483); /* add $4, %esp */
853 vtop->r = TREG_ST0;
856 /* convert fp to int 't' type */
857 /* XXX: handle long long case */
858 void gen_cvt_ftoi(int t)
860 int r, r2, size;
861 Sym *sym;
862 CType ushort_type;
864 ushort_type.t = VT_SHORT | VT_UNSIGNED;
866 gv(RC_FLOAT);
867 if (t != VT_INT)
868 size = 8;
869 else
870 size = 4;
872 o(0x2dd9); /* ldcw xxx */
873 sym = external_global_sym(TOK___tcc_int_fpu_control,
874 &ushort_type, VT_LVAL);
875 greloc(cur_text_section, sym,
876 ind, R_386_32);
877 gen_le32(0);
879 oad(0xec81, size); /* sub $xxx, %esp */
880 if (size == 4)
881 o(0x1cdb); /* fistpl */
882 else
883 o(0x3cdf); /* fistpll */
884 o(0x24);
885 o(0x2dd9); /* ldcw xxx */
886 sym = external_global_sym(TOK___tcc_fpu_control,
887 &ushort_type, VT_LVAL);
888 greloc(cur_text_section, sym,
889 ind, R_386_32);
890 gen_le32(0);
892 r = get_reg(RC_INT);
893 o(0x58 + r); /* pop r */
894 if (size == 8) {
895 if (t == VT_LLONG) {
896 vtop->r = r; /* mark reg as used */
897 r2 = get_reg(RC_INT);
898 o(0x58 + r2); /* pop r2 */
899 vtop->r2 = r2;
900 } else {
901 o(0x04c483); /* add $4, %esp */
904 vtop->r = r;
907 /* convert from one floating point type to another */
908 void gen_cvt_ftof(int t)
910 /* all we have to do on i386 is to put the float in a register */
911 gv(RC_FLOAT);
914 /* computed goto support */
915 void ggoto(void)
917 gcall_or_jmp(1);
918 vtop--;
921 /* bound check support functions */
922 #ifdef CONFIG_TCC_BCHECK
924 /* generate a bounded pointer addition */
925 void gen_bounded_ptr_add(void)
927 Sym *sym;
929 /* prepare fast i386 function call (args in eax and edx) */
930 gv2(RC_EAX, RC_EDX);
931 /* save all temporary registers */
932 vtop -= 2;
933 save_regs(0);
934 /* do a fast function call */
935 sym = external_global_sym(TOK___bound_ptr_add, &func_old_type, 0);
936 greloc(cur_text_section, sym,
937 ind + 1, R_386_PC32);
938 oad(0xe8, -4);
939 /* returned pointer is in eax */
940 vtop++;
941 vtop->r = TREG_EAX | VT_BOUNDED;
942 /* address of bounding function call point */
943 vtop->c.ul = (cur_text_section->reloc->data_offset - sizeof(Elf32_Rel));
946 /* patch pointer addition in vtop so that pointer dereferencing is
947 also tested */
948 void gen_bounded_ptr_deref(void)
950 int func;
951 int size, align;
952 Elf32_Rel *rel;
953 Sym *sym;
955 size = 0;
956 /* XXX: put that code in generic part of tcc */
957 if (!is_float(vtop->type.t)) {
958 if (vtop->r & VT_LVAL_BYTE)
959 size = 1;
960 else if (vtop->r & VT_LVAL_SHORT)
961 size = 2;
963 if (!size)
964 size = type_size(&vtop->type, &align);
965 switch(size) {
966 case 1: func = TOK___bound_ptr_indir1; break;
967 case 2: func = TOK___bound_ptr_indir2; break;
968 case 4: func = TOK___bound_ptr_indir4; break;
969 case 8: func = TOK___bound_ptr_indir8; break;
970 case 12: func = TOK___bound_ptr_indir12; break;
971 case 16: func = TOK___bound_ptr_indir16; break;
972 default:
973 error("unhandled size when derefencing bounded pointer");
974 func = 0;
975 break;
978 /* patch relocation */
979 /* XXX: find a better solution ? */
980 rel = (Elf32_Rel *)(cur_text_section->reloc->data + vtop->c.ul);
981 sym = external_global_sym(func, &func_old_type, 0);
982 if (!sym->c)
983 put_extern_sym(sym, NULL, 0, 0);
984 rel->r_info = ELF32_R_INFO(sym->c, ELF32_R_TYPE(rel->r_info));
986 #endif
988 /* end of X86 code generator */
989 /*************************************************************/