handle post-asm-label attributes on variables
[tinycc/miki.git] / x86_64-gen.c
blob7c64f3bc10eebd4d736376d9192dd8163b9377ca
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 5
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_R8 0x0100
38 #define RC_R9 0x0200
39 #define RC_XMM0 0x0020
40 #define RC_ST0 0x0040 /* only for long double */
41 #define RC_IRET RC_RAX /* function return: integer register */
42 #define RC_LRET RC_RDX /* function return: second integer register */
43 #define RC_FRET RC_XMM0 /* function return: float register */
45 /* pretty names for the registers */
46 enum {
47 TREG_RAX = 0,
48 TREG_RCX = 1,
49 TREG_RDX = 2,
50 TREG_XMM0 = 3,
51 TREG_ST0 = 4,
53 TREG_RSI = 6,
54 TREG_RDI = 7,
55 TREG_R8 = 8,
56 TREG_R9 = 9,
58 TREG_R10 = 10,
59 TREG_R11 = 11,
61 TREG_MEM = 0x10,
64 #define REX_BASE(reg) (((reg) >> 3) & 1)
65 #define REG_VALUE(reg) ((reg) & 7)
67 /* return registers for function */
68 #define REG_IRET TREG_RAX /* single word int return register */
69 #define REG_LRET TREG_RDX /* second word return register (for long long) */
70 #define REG_FRET TREG_XMM0 /* float return register */
72 /* defined if function parameters must be evaluated in reverse order */
73 #define INVERT_FUNC_PARAMS
75 /* pointer size, in bytes */
76 #define PTR_SIZE 8
78 /* long double size and alignment, in bytes */
79 #define LDOUBLE_SIZE 16
80 #define LDOUBLE_ALIGN 8
81 /* maximum alignment (for aligned attribute support) */
82 #define MAX_ALIGN 8
84 ST_FUNC void gen_opl(int op);
85 ST_FUNC void gen_le64(int64_t c);
87 /******************************************************/
88 /* ELF defines */
90 #define EM_TCC_TARGET EM_X86_64
92 /* relocation type for 32 bit data relocation */
93 #define R_DATA_32 R_X86_64_32
94 #define R_DATA_PTR R_X86_64_64
95 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
96 #define R_COPY R_X86_64_COPY
98 #define ELF_START_ADDR 0x08048000
99 #define ELF_PAGE_SIZE 0x1000
101 /******************************************************/
102 #else /* ! TARGET_DEFS_ONLY */
103 /******************************************************/
104 #include "tcc.h"
105 #include <assert.h>
107 ST_DATA const int reg_classes[NB_REGS] = {
108 /* eax */ RC_INT | RC_RAX,
109 /* ecx */ RC_INT | RC_RCX,
110 /* edx */ RC_INT | RC_RDX,
111 /* xmm0 */ RC_FLOAT | RC_XMM0,
112 /* st0 */ RC_ST0,
113 #if NB_REGS == 10
117 RC_INT | RC_R8,
118 RC_INT | RC_R9,
119 #endif
122 static unsigned long func_sub_sp_offset;
123 static int func_ret_sub;
125 /* XXX: make it faster ? */
126 void g(int c)
128 int ind1;
129 ind1 = ind + 1;
130 if (ind1 > cur_text_section->data_allocated)
131 section_realloc(cur_text_section, ind1);
132 cur_text_section->data[ind] = c;
133 ind = ind1;
136 void o(unsigned int c)
138 while (c) {
139 g(c);
140 c = c >> 8;
144 void gen_le16(int v)
146 g(v);
147 g(v >> 8);
150 void gen_le32(int c)
152 g(c);
153 g(c >> 8);
154 g(c >> 16);
155 g(c >> 24);
158 void gen_le64(int64_t c)
160 g(c);
161 g(c >> 8);
162 g(c >> 16);
163 g(c >> 24);
164 g(c >> 32);
165 g(c >> 40);
166 g(c >> 48);
167 g(c >> 56);
170 void orex(int ll, int r, int r2, int b)
172 if ((r & VT_VALMASK) >= VT_CONST)
173 r = 0;
174 if ((r2 & VT_VALMASK) >= VT_CONST)
175 r2 = 0;
176 if (ll || REX_BASE(r) || REX_BASE(r2))
177 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
178 o(b);
181 /* output a symbol and patch all calls to it */
182 void gsym_addr(int t, int a)
184 int n, *ptr;
185 while (t) {
186 ptr = (int *)(cur_text_section->data + t);
187 n = *ptr; /* next value */
188 *ptr = a - t - 4;
189 t = n;
193 void gsym(int t)
195 gsym_addr(t, ind);
198 /* psym is used to put an instruction with a data field which is a
199 reference to a symbol. It is in fact the same as oad ! */
200 #define psym oad
202 static int is64_type(int t)
204 return ((t & VT_BTYPE) == VT_PTR ||
205 (t & VT_BTYPE) == VT_FUNC ||
206 (t & VT_BTYPE) == VT_LLONG);
209 static int is_sse_float(int t) {
210 int bt;
211 bt = t & VT_BTYPE;
212 return bt == VT_DOUBLE || bt == VT_FLOAT;
216 /* instruction + 4 bytes data. Return the address of the data */
217 ST_FUNC int oad(int c, int s)
219 int ind1;
221 o(c);
222 ind1 = ind + 4;
223 if (ind1 > cur_text_section->data_allocated)
224 section_realloc(cur_text_section, ind1);
225 *(int *)(cur_text_section->data + ind) = s;
226 s = ind;
227 ind = ind1;
228 return s;
231 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
233 if (r & VT_SYM)
234 greloc(cur_text_section, sym, ind, R_X86_64_32);
235 gen_le32(c);
238 /* output constant with relocation if 'r & VT_SYM' is true */
239 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
241 if (r & VT_SYM)
242 greloc(cur_text_section, sym, ind, R_X86_64_64);
243 gen_le64(c);
246 /* output constant with relocation if 'r & VT_SYM' is true */
247 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
249 if (r & VT_SYM)
250 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
251 gen_le32(c-4);
254 /* output got address with relocation */
255 static void gen_gotpcrel(int r, Sym *sym, int c)
257 #ifndef TCC_TARGET_PE
258 Section *sr;
259 ElfW(Rela) *rel;
260 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
261 sr = cur_text_section->reloc;
262 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
263 rel->r_addend = -4;
264 #else
265 printf("picpic: %s %x %x | %02x %02x %02x\n", get_tok_str(sym->v, NULL), c, r,
266 cur_text_section->data[ind-3],
267 cur_text_section->data[ind-2],
268 cur_text_section->data[ind-1]
270 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
271 #endif
272 gen_le32(0);
273 if (c) {
274 /* we use add c, %xxx for displacement */
275 orex(1, r, 0, 0x81);
276 o(0xc0 + REG_VALUE(r));
277 gen_le32(c);
281 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
283 op_reg = REG_VALUE(op_reg) << 3;
284 if ((r & VT_VALMASK) == VT_CONST) {
285 /* constant memory reference */
286 o(0x05 | op_reg);
287 if (is_got) {
288 gen_gotpcrel(r, sym, c);
289 } else {
290 gen_addrpc32(r, sym, c);
292 } else if ((r & VT_VALMASK) == VT_LOCAL) {
293 /* currently, we use only ebp as base */
294 if (c == (char)c) {
295 /* short reference */
296 o(0x45 | op_reg);
297 g(c);
298 } else {
299 oad(0x85 | op_reg, c);
301 } else if ((r & VT_VALMASK) >= TREG_MEM) {
302 if (c) {
303 g(0x80 | op_reg | REG_VALUE(r));
304 gen_le32(c);
305 } else {
306 g(0x00 | op_reg | REG_VALUE(r));
308 } else {
309 g(0x00 | op_reg | REG_VALUE(r));
313 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
314 opcode bits */
315 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
317 gen_modrm_impl(op_reg, r, sym, c, 0);
320 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
321 opcode bits */
322 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
324 int is_got;
325 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
326 orex(1, r, op_reg, opcode);
327 gen_modrm_impl(op_reg, r, sym, c, is_got);
331 /* load 'r' from value 'sv' */
332 void load(int r, SValue *sv)
334 int v, t, ft, fc, fr;
335 SValue v1;
337 #ifdef TCC_TARGET_PE
338 SValue v2;
339 sv = pe_getimport(sv, &v2);
340 #endif
342 fr = sv->r;
343 ft = sv->type.t;
344 fc = sv->c.ul;
346 #ifndef TCC_TARGET_PE
347 /* we use indirect access via got */
348 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
349 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
350 /* use the result register as a temporal register */
351 int tr = r | TREG_MEM;
352 if (is_float(ft)) {
353 /* we cannot use float registers as a temporal register */
354 tr = get_reg(RC_INT) | TREG_MEM;
356 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
358 /* load from the temporal register */
359 fr = tr | VT_LVAL;
361 #endif
363 v = fr & VT_VALMASK;
364 if (fr & VT_LVAL) {
365 int b, ll;
366 if (v == VT_LLOCAL) {
367 v1.type.t = VT_PTR;
368 v1.r = VT_LOCAL | VT_LVAL;
369 v1.c.ul = fc;
370 load(r, &v1);
371 fr = r;
373 ll = 0;
374 if ((ft & VT_BTYPE) == VT_FLOAT) {
375 b = 0x6e0f66, r = 0; /* movd */
376 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
377 b = 0x7e0ff3, r = 0; /* movq */
378 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
379 b = 0xdb, r = 5; /* fldt */
380 } else if ((ft & VT_TYPE) == VT_BYTE) {
381 b = 0xbe0f; /* movsbl */
382 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
383 b = 0xb60f; /* movzbl */
384 } else if ((ft & VT_TYPE) == VT_SHORT) {
385 b = 0xbf0f; /* movswl */
386 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
387 b = 0xb70f; /* movzwl */
388 } else {
389 ll = is64_type(ft);
390 b = 0x8b;
392 if (ll) {
393 gen_modrm64(b, r, fr, sv->sym, fc);
394 } else {
395 orex(ll, fr, r, b);
396 gen_modrm(r, fr, sv->sym, fc);
398 } else {
399 if (v == VT_CONST) {
400 if (fr & VT_SYM) {
401 #ifdef TCC_TARGET_PE
402 orex(1,0,r,0x8d);
403 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
404 gen_addrpc32(fr, sv->sym, fc);
405 #else
406 if (sv->sym->type.t & VT_STATIC) {
407 orex(1,0,r,0x8d);
408 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
409 gen_addrpc32(fr, sv->sym, fc);
410 } else {
411 orex(1,0,r,0x8b);
412 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
413 gen_gotpcrel(fr, sv->sym, fc);
415 #endif
416 } else if (is64_type(ft)) {
417 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
418 gen_le64(sv->c.ull);
419 } else {
420 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
421 gen_le32(fc);
423 } else if (v == VT_LOCAL) {
424 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
425 gen_modrm(r, VT_LOCAL, sv->sym, fc);
426 } else if (v == VT_CMP) {
427 orex(0,r,0,0);
428 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
429 orex(0,r,0, 0x0f); /* setxx %br */
430 o(fc);
431 o(0xc0 + REG_VALUE(r));
432 } else if (v == VT_JMP || v == VT_JMPI) {
433 t = v & 1;
434 orex(0,r,0,0);
435 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
436 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
437 gsym(fc);
438 orex(0,r,0,0);
439 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
440 } else if (v != r) {
441 if (r == TREG_XMM0) {
442 assert(v == TREG_ST0);
443 /* gen_cvt_ftof(VT_DOUBLE); */
444 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
445 /* movsd -0x10(%rsp),%xmm0 */
446 o(0x44100ff2);
447 o(0xf024);
448 } else if (r == TREG_ST0) {
449 assert(v == TREG_XMM0);
450 /* gen_cvt_ftof(VT_LDOUBLE); */
451 /* movsd %xmm0,-0x10(%rsp) */
452 o(0x44110ff2);
453 o(0xf024);
454 o(0xf02444dd); /* fldl -0x10(%rsp) */
455 } else {
456 orex(1,r,v, 0x89);
457 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
463 /* store register 'r' in lvalue 'v' */
464 void store(int r, SValue *v)
466 int fr, bt, ft, fc;
467 int op64 = 0;
468 /* store the REX prefix in this variable when PIC is enabled */
469 int pic = 0;
471 #ifdef TCC_TARGET_PE
472 SValue v2;
473 v = pe_getimport(v, &v2);
474 #endif
476 ft = v->type.t;
477 fc = v->c.ul;
478 fr = v->r & VT_VALMASK;
479 bt = ft & VT_BTYPE;
481 #ifndef TCC_TARGET_PE
482 /* we need to access the variable via got */
483 if (fr == VT_CONST && (v->r & VT_SYM)) {
484 /* mov xx(%rip), %r11 */
485 o(0x1d8b4c);
486 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
487 pic = is64_type(bt) ? 0x49 : 0x41;
489 #endif
491 /* XXX: incorrect if float reg to reg */
492 if (bt == VT_FLOAT) {
493 o(0x66);
494 o(pic);
495 o(0x7e0f); /* movd */
496 r = 0;
497 } else if (bt == VT_DOUBLE) {
498 o(0x66);
499 o(pic);
500 o(0xd60f); /* movq */
501 r = 0;
502 } else if (bt == VT_LDOUBLE) {
503 o(0xc0d9); /* fld %st(0) */
504 o(pic);
505 o(0xdb); /* fstpt */
506 r = 7;
507 } else {
508 if (bt == VT_SHORT)
509 o(0x66);
510 o(pic);
511 if (bt == VT_BYTE || bt == VT_BOOL)
512 orex(0, 0, r, 0x88);
513 else if (is64_type(bt))
514 op64 = 0x89;
515 else
516 orex(0, 0, r, 0x89);
518 if (pic) {
519 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
520 if (op64)
521 o(op64);
522 o(3 + (r << 3));
523 } else if (op64) {
524 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
525 gen_modrm64(op64, r, v->r, v->sym, fc);
526 } else if (fr != r) {
527 /* XXX: don't we really come here? */
528 abort();
529 o(0xc0 + fr + r * 8); /* mov r, fr */
531 } else {
532 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
533 gen_modrm(r, v->r, v->sym, fc);
534 } else if (fr != r) {
535 /* XXX: don't we really come here? */
536 abort();
537 o(0xc0 + fr + r * 8); /* mov r, fr */
542 /* 'is_jmp' is '1' if it is a jump */
543 static void gcall_or_jmp(int is_jmp)
545 int r;
546 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
547 /* constant case */
548 if (vtop->r & VT_SYM) {
549 /* relocation case */
550 greloc(cur_text_section, vtop->sym,
551 ind + 1, R_X86_64_PC32);
552 } else {
553 /* put an empty PC32 relocation */
554 put_elf_reloc(symtab_section, cur_text_section,
555 ind + 1, R_X86_64_PC32, 0);
557 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
558 } else {
559 /* otherwise, indirect call */
560 r = TREG_R11;
561 load(r, vtop);
562 o(0x41); /* REX */
563 o(0xff); /* call/jmp *r */
564 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
568 #ifdef TCC_TARGET_PE
570 #define REGN 4
571 static const uint8_t arg_regs[] = {
572 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
575 static int func_scratch;
577 /* Generate function call. The function address is pushed first, then
578 all the parameters in call order. This functions pops all the
579 parameters and the function address. */
581 void gen_offs_sp(int b, int r, int d)
583 orex(1,0,r & 0x100 ? 0 : r, b);
584 if (d == (char)d) {
585 o(0x2444 | (REG_VALUE(r) << 3));
586 g(d);
587 } else {
588 o(0x2484 | (REG_VALUE(r) << 3));
589 gen_le32(d);
593 void gfunc_call(int nb_args)
595 int size, align, r, args_size, i, d, j, bt;
596 int nb_reg_args, gen_reg;
598 /* calculate the number of integer/float arguments */
599 nb_reg_args = 0;
600 for(i = 0; i < nb_args; i++) {
601 bt = (vtop[-i].type.t & VT_BTYPE);
602 if (bt != VT_STRUCT && bt != VT_LDOUBLE)
603 nb_reg_args++;
606 args_size = (nb_reg_args < REGN ? REGN : nb_reg_args) * PTR_SIZE;
608 /* for struct arguments, we need to call memcpy and the function
609 call breaks register passing arguments we are preparing.
610 So, we process arguments which will be passed by stack first. */
611 for(i = 0; i < nb_args; i++) {
612 SValue *sv = &vtop[-i];
613 bt = (sv->type.t & VT_BTYPE);
614 if (bt == VT_STRUCT) {
615 size = type_size(&sv->type, &align);
616 /* align to stack align size */
617 size = (size + 15) & ~15;
618 /* generate structure store */
619 r = get_reg(RC_INT);
620 gen_offs_sp(0x8d, r, args_size);
621 args_size += size;
623 /* generate memcpy call */
624 vset(&sv->type, r | VT_LVAL, 0);
625 vpushv(sv);
626 vstore();
627 --vtop;
629 } else if (bt == VT_LDOUBLE) {
631 gv(RC_ST0);
632 gen_offs_sp(0xdb, 0x107, args_size);
633 args_size += 16;
638 if (func_scratch < args_size)
639 func_scratch = args_size;
641 for (i = 0; i < REGN; ++i)
642 save_reg(arg_regs[i]);
644 gen_reg = nb_reg_args;
645 for(i = 0; i < nb_args; i++) {
646 bt = (vtop->type.t & VT_BTYPE);
647 if (bt == VT_STRUCT || bt == VT_LDOUBLE) {
648 ; /* done */
649 } else if (is_sse_float(vtop->type.t)) {
650 gv(RC_FLOAT); /* only one float register */
651 j = --gen_reg;
652 if (j >= REGN) {
653 /* movq %xmm0, j*8(%rsp) */
654 gen_offs_sp(0xd60f66, 0x100, j*8);
655 } else {
656 /* movaps %xmm0, %xmmN */
657 o(0x280f);
658 o(0xc0 + (j << 3));
659 d = arg_regs[j];
660 /* mov %xmm0, %rxx */
661 o(0x66);
662 orex(1,d,0, 0x7e0f);
663 o(0xc0 + REG_VALUE(d));
665 } else {
666 j = --gen_reg;
667 if (j >= REGN) {
668 r = gv(RC_INT);
669 gen_offs_sp(0x89, r, j*8);
670 } else {
671 d = arg_regs[j];
672 if (d < NB_REGS) {
673 gv(reg_classes[d] & ~RC_INT);
674 } else {
675 r = gv(RC_INT);
676 if (d != r) {
677 orex(1,d,r, 0x89);
678 o(0xc0 + REG_VALUE(d) + REG_VALUE(r) * 8);
684 vtop--;
686 save_regs(0);
687 gcall_or_jmp(0);
688 vtop--;
692 #define FUNC_PROLOG_SIZE 11
694 /* generate function prolog of type 't' */
695 void gfunc_prolog(CType *func_type)
697 int addr, align, size, reg_param_index, bt;
698 Sym *sym;
699 CType *type;
701 func_ret_sub = 0;
702 func_scratch = 0;
703 loc = 0;
705 addr = PTR_SIZE * 2;
706 ind += FUNC_PROLOG_SIZE;
707 func_sub_sp_offset = ind;
708 reg_param_index = 0;
710 sym = func_type->ref;
712 /* if the function returns a structure, then add an
713 implicit pointer parameter */
714 func_vt = sym->type;
715 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
716 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
717 reg_param_index++;
718 addr += PTR_SIZE;
721 /* define parameters */
722 while ((sym = sym->next) != NULL) {
723 type = &sym->type;
724 bt = type->t & VT_BTYPE;
725 if (bt == VT_STRUCT || bt == VT_LDOUBLE)
726 continue;
727 if (reg_param_index < REGN) {
728 /* save arguments passed by register */
729 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
731 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
732 reg_param_index++;
733 addr += PTR_SIZE;
736 while (reg_param_index < REGN) {
737 if (func_type->ref->c == FUNC_ELLIPSIS)
738 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
739 reg_param_index++;
740 addr += PTR_SIZE;
743 sym = func_type->ref;
744 while ((sym = sym->next) != NULL) {
745 type = &sym->type;
746 bt = type->t & VT_BTYPE;
747 if (bt == VT_STRUCT || bt == VT_LDOUBLE) {
748 size = type_size(type, &align);
749 size = (size + 15) & -16;
750 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
751 addr += size;
756 /* generate function epilog */
757 void gfunc_epilog(void)
759 int v, saved_ind;
761 o(0xc9); /* leave */
762 if (func_ret_sub == 0) {
763 o(0xc3); /* ret */
764 } else {
765 o(0xc2); /* ret n */
766 g(func_ret_sub);
767 g(func_ret_sub >> 8);
770 saved_ind = ind;
771 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
772 /* align local size to word & save local variables */
773 v = (func_scratch + -loc + 15) & -16;
775 pe_add_unwind_data(ind, saved_ind, v);
777 if (v >= 4096) {
778 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
779 oad(0xb8, v); /* mov stacksize, %eax */
780 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
781 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
782 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
783 } else {
784 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
785 o(0xec8148); /* sub rsp, stacksize */
786 gen_le32(v);
788 ind = saved_ind;
791 #else
793 static void gadd_sp(int val)
795 if (val == (char)val) {
796 o(0xc48348);
797 g(val);
798 } else {
799 oad(0xc48148, val); /* add $xxx, %rsp */
803 #define REGN 6
804 static const uint8_t arg_regs[REGN] = {
805 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
808 /* Generate function call. The function address is pushed first, then
809 all the parameters in call order. This functions pops all the
810 parameters and the function address. */
811 void gfunc_call(int nb_args)
813 int size, align, r, args_size, i;
814 SValue *orig_vtop;
815 int nb_reg_args = 0;
816 int nb_sse_args = 0;
817 int sse_reg, gen_reg;
819 /* calculate the number of integer/float arguments */
820 args_size = 0;
821 for(i = 0; i < nb_args; i++) {
822 if ((vtop[-i].type.t & VT_BTYPE) == VT_STRUCT) {
823 args_size += type_size(&vtop[-i].type, &align);
824 args_size = (args_size + 7) & ~7;
825 } else if ((vtop[-i].type.t & VT_BTYPE) == VT_LDOUBLE) {
826 args_size += 16;
827 } else if (is_sse_float(vtop[-i].type.t)) {
828 nb_sse_args++;
829 if (nb_sse_args > 8) args_size += 8;
830 } else {
831 nb_reg_args++;
832 if (nb_reg_args > REGN) args_size += 8;
836 /* for struct arguments, we need to call memcpy and the function
837 call breaks register passing arguments we are preparing.
838 So, we process arguments which will be passed by stack first. */
839 orig_vtop = vtop;
840 gen_reg = nb_reg_args;
841 sse_reg = nb_sse_args;
843 /* adjust stack to align SSE boundary */
844 if (args_size &= 15) {
845 /* fetch cpu flag before the following sub will change the value */
846 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
847 gv(RC_INT);
849 args_size = 16 - args_size;
850 o(0x48);
851 oad(0xec81, args_size); /* sub $xxx, %rsp */
854 for(i = 0; i < nb_args; i++) {
855 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
856 size = type_size(&vtop->type, &align);
857 /* align to stack align size */
858 size = (size + 7) & ~7;
859 /* allocate the necessary size on stack */
860 o(0x48);
861 oad(0xec81, size); /* sub $xxx, %rsp */
862 /* generate structure store */
863 r = get_reg(RC_INT);
864 orex(1, r, 0, 0x89); /* mov %rsp, r */
865 o(0xe0 + REG_VALUE(r));
867 /* following code breaks vtop[1], vtop[2], and vtop[3] */
868 SValue tmp1 = vtop[1];
869 SValue tmp2 = vtop[2];
870 SValue tmp3 = vtop[3];
871 vset(&vtop->type, r | VT_LVAL, 0);
872 vswap();
873 vstore();
874 vtop[1] = tmp1;
875 vtop[2] = tmp2;
876 vtop[3] = tmp3;
878 args_size += size;
879 } else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
880 gv(RC_ST0);
881 size = LDOUBLE_SIZE;
882 oad(0xec8148, size); /* sub $xxx, %rsp */
883 o(0x7cdb); /* fstpt 0(%rsp) */
884 g(0x24);
885 g(0x00);
886 args_size += size;
887 } else if (is_sse_float(vtop->type.t)) {
888 int j = --sse_reg;
889 if (j >= 8) {
890 gv(RC_FLOAT);
891 o(0x50); /* push $rax */
892 /* movq %xmm0, (%rsp) */
893 o(0x04d60f66);
894 o(0x24);
895 args_size += 8;
897 } else {
898 int j = --gen_reg;
899 /* simple type */
900 /* XXX: implicit cast ? */
901 if (j >= REGN) {
902 r = gv(RC_INT);
903 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
904 args_size += 8;
907 vtop--;
909 vtop = orig_vtop;
911 save_regs(0); /* save used temporary registers */
913 /* then, we prepare register passing arguments.
914 Note that we cannot set RDX and RCX in this loop because gv()
915 may break these temporary registers. Let's use R10 and R11
916 instead of them */
917 gen_reg = nb_reg_args;
918 sse_reg = nb_sse_args;
919 for(i = 0; i < nb_args; i++) {
920 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT ||
921 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
922 } else if (is_sse_float(vtop->type.t)) {
923 int j = --sse_reg;
924 if (j < 8) {
925 gv(RC_FLOAT); /* only one float register */
926 /* movaps %xmm0, %xmmN */
927 o(0x280f);
928 o(0xc0 + (sse_reg << 3));
930 } else {
931 int j = --gen_reg;
932 /* simple type */
933 /* XXX: implicit cast ? */
934 if (j < REGN) {
935 int d = arg_regs[j];
936 r = gv(RC_INT);
937 if (j == 2 || j == 3)
938 /* j=2: r10, j=3: r11 */
939 d = j + 8;
940 orex(1,d,r,0x89); /* mov */
941 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
944 vtop--;
947 /* Copy R10 and R11 into RDX and RCX, respectively */
948 if (nb_reg_args > 2) {
949 o(0xd2894c); /* mov %r10, %rdx */
950 if (nb_reg_args > 3) {
951 o(0xd9894c); /* mov %r11, %rcx */
955 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
956 gcall_or_jmp(0);
957 if (args_size)
958 gadd_sp(args_size);
959 vtop--;
963 #define FUNC_PROLOG_SIZE 11
965 static void push_arg_reg(int i) {
966 loc -= 8;
967 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
970 /* generate function prolog of type 't' */
971 void gfunc_prolog(CType *func_type)
973 int i, addr, align, size;
974 int param_index, param_addr, reg_param_index, sse_param_index;
975 Sym *sym;
976 CType *type;
978 sym = func_type->ref;
979 addr = PTR_SIZE * 2;
980 loc = 0;
981 ind += FUNC_PROLOG_SIZE;
982 func_sub_sp_offset = ind;
983 func_ret_sub = 0;
985 if (func_type->ref->c == FUNC_ELLIPSIS) {
986 int seen_reg_num, seen_sse_num, seen_stack_size;
987 seen_reg_num = seen_sse_num = 0;
988 /* frame pointer and return address */
989 seen_stack_size = PTR_SIZE * 2;
990 /* count the number of seen parameters */
991 sym = func_type->ref;
992 while ((sym = sym->next) != NULL) {
993 type = &sym->type;
994 if (is_sse_float(type->t)) {
995 if (seen_sse_num < 8) {
996 seen_sse_num++;
997 } else {
998 seen_stack_size += 8;
1000 } else if ((type->t & VT_BTYPE) == VT_STRUCT) {
1001 size = type_size(type, &align);
1002 size = (size + 7) & ~7;
1003 seen_stack_size += size;
1004 } else if ((type->t & VT_BTYPE) == VT_LDOUBLE) {
1005 seen_stack_size += LDOUBLE_SIZE;
1006 } else {
1007 if (seen_reg_num < REGN) {
1008 seen_reg_num++;
1009 } else {
1010 seen_stack_size += 8;
1015 loc -= 16;
1016 /* movl $0x????????, -0x10(%rbp) */
1017 o(0xf045c7);
1018 gen_le32(seen_reg_num * 8);
1019 /* movl $0x????????, -0xc(%rbp) */
1020 o(0xf445c7);
1021 gen_le32(seen_sse_num * 16 + 48);
1022 /* movl $0x????????, -0x8(%rbp) */
1023 o(0xf845c7);
1024 gen_le32(seen_stack_size);
1026 /* save all register passing arguments */
1027 for (i = 0; i < 8; i++) {
1028 loc -= 16;
1029 o(0xd60f66); /* movq */
1030 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1031 /* movq $0, loc+8(%rbp) */
1032 o(0x85c748);
1033 gen_le32(loc + 8);
1034 gen_le32(0);
1036 for (i = 0; i < REGN; i++) {
1037 push_arg_reg(REGN-1-i);
1041 sym = func_type->ref;
1042 param_index = 0;
1043 reg_param_index = 0;
1044 sse_param_index = 0;
1046 /* if the function returns a structure, then add an
1047 implicit pointer parameter */
1048 func_vt = sym->type;
1049 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
1050 push_arg_reg(reg_param_index);
1051 param_addr = loc;
1053 func_vc = loc;
1054 param_index++;
1055 reg_param_index++;
1057 /* define parameters */
1058 while ((sym = sym->next) != NULL) {
1059 type = &sym->type;
1060 size = type_size(type, &align);
1061 size = (size + 7) & ~7;
1062 if (is_sse_float(type->t)) {
1063 if (sse_param_index < 8) {
1064 /* save arguments passed by register */
1065 loc -= 8;
1066 o(0xd60f66); /* movq */
1067 gen_modrm(sse_param_index, VT_LOCAL, NULL, loc);
1068 param_addr = loc;
1069 } else {
1070 param_addr = addr;
1071 addr += size;
1073 sse_param_index++;
1075 } else if ((type->t & VT_BTYPE) == VT_STRUCT ||
1076 (type->t & VT_BTYPE) == VT_LDOUBLE) {
1077 param_addr = addr;
1078 addr += size;
1079 } else {
1080 if (reg_param_index < REGN) {
1081 /* save arguments passed by register */
1082 push_arg_reg(reg_param_index);
1083 param_addr = loc;
1084 } else {
1085 param_addr = addr;
1086 addr += 8;
1088 reg_param_index++;
1090 sym_push(sym->v & ~SYM_FIELD, type,
1091 VT_LOCAL | VT_LVAL, param_addr);
1092 param_index++;
1096 /* generate function epilog */
1097 void gfunc_epilog(void)
1099 int v, saved_ind;
1101 o(0xc9); /* leave */
1102 if (func_ret_sub == 0) {
1103 o(0xc3); /* ret */
1104 } else {
1105 o(0xc2); /* ret n */
1106 g(func_ret_sub);
1107 g(func_ret_sub >> 8);
1109 /* align local size to word & save local variables */
1110 v = (-loc + 15) & -16;
1111 saved_ind = ind;
1112 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1113 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1114 o(0xec8148); /* sub rsp, stacksize */
1115 gen_le32(v);
1116 ind = saved_ind;
1119 #endif /* not PE */
1121 /* generate a jump to a label */
1122 int gjmp(int t)
1124 return psym(0xe9, t);
1127 /* generate a jump to a fixed address */
1128 void gjmp_addr(int a)
1130 int r;
1131 r = a - ind - 2;
1132 if (r == (char)r) {
1133 g(0xeb);
1134 g(r);
1135 } else {
1136 oad(0xe9, a - ind - 5);
1140 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1141 int gtst(int inv, int t)
1143 int v, *p;
1145 v = vtop->r & VT_VALMASK;
1146 if (v == VT_CMP) {
1147 /* fast case : can jump directly since flags are set */
1148 g(0x0f);
1149 t = psym((vtop->c.i - 16) ^ inv, t);
1150 } else if (v == VT_JMP || v == VT_JMPI) {
1151 /* && or || optimization */
1152 if ((v & 1) == inv) {
1153 /* insert vtop->c jump list in t */
1154 p = &vtop->c.i;
1155 while (*p != 0)
1156 p = (int *)(cur_text_section->data + *p);
1157 *p = t;
1158 t = vtop->c.i;
1159 } else {
1160 t = gjmp(t);
1161 gsym(vtop->c.i);
1163 } else {
1164 if (is_float(vtop->type.t) ||
1165 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1166 vpushi(0);
1167 gen_op(TOK_NE);
1169 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1170 /* constant jmp optimization */
1171 if ((vtop->c.i != 0) != inv)
1172 t = gjmp(t);
1173 } else {
1174 v = gv(RC_INT);
1175 orex(0,v,v,0x85);
1176 o(0xc0 + REG_VALUE(v) * 9);
1177 g(0x0f);
1178 t = psym(0x85 ^ inv, t);
1181 vtop--;
1182 return t;
1185 /* generate an integer binary operation */
1186 void gen_opi(int op)
1188 int r, fr, opc, c;
1189 int ll, uu, cc;
1191 ll = is64_type(vtop[-1].type.t);
1192 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1193 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1195 switch(op) {
1196 case '+':
1197 case TOK_ADDC1: /* add with carry generation */
1198 opc = 0;
1199 gen_op8:
1200 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1201 /* constant case */
1202 vswap();
1203 r = gv(RC_INT);
1204 vswap();
1205 c = vtop->c.i;
1206 if (c == (char)c) {
1207 /* XXX: generate inc and dec for smaller code ? */
1208 orex(ll, r, 0, 0x83);
1209 o(0xc0 | (opc << 3) | REG_VALUE(r));
1210 g(c);
1211 } else {
1212 orex(ll, r, 0, 0x81);
1213 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1215 } else {
1216 gv2(RC_INT, RC_INT);
1217 r = vtop[-1].r;
1218 fr = vtop[0].r;
1219 orex(ll, r, fr, (opc << 3) | 0x01);
1220 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1222 vtop--;
1223 if (op >= TOK_ULT && op <= TOK_GT) {
1224 vtop->r = VT_CMP;
1225 vtop->c.i = op;
1227 break;
1228 case '-':
1229 case TOK_SUBC1: /* sub with carry generation */
1230 opc = 5;
1231 goto gen_op8;
1232 case TOK_ADDC2: /* add with carry use */
1233 opc = 2;
1234 goto gen_op8;
1235 case TOK_SUBC2: /* sub with carry use */
1236 opc = 3;
1237 goto gen_op8;
1238 case '&':
1239 opc = 4;
1240 goto gen_op8;
1241 case '^':
1242 opc = 6;
1243 goto gen_op8;
1244 case '|':
1245 opc = 1;
1246 goto gen_op8;
1247 case '*':
1248 gv2(RC_INT, RC_INT);
1249 r = vtop[-1].r;
1250 fr = vtop[0].r;
1251 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1252 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1253 vtop--;
1254 break;
1255 case TOK_SHL:
1256 opc = 4;
1257 goto gen_shift;
1258 case TOK_SHR:
1259 opc = 5;
1260 goto gen_shift;
1261 case TOK_SAR:
1262 opc = 7;
1263 gen_shift:
1264 opc = 0xc0 | (opc << 3);
1265 if (cc) {
1266 /* constant case */
1267 vswap();
1268 r = gv(RC_INT);
1269 vswap();
1270 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1271 o(opc | REG_VALUE(r));
1272 g(vtop->c.i & (ll ? 63 : 31));
1273 } else {
1274 /* we generate the shift in ecx */
1275 gv2(RC_INT, RC_RCX);
1276 r = vtop[-1].r;
1277 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1278 o(opc | REG_VALUE(r));
1280 vtop--;
1281 break;
1282 case TOK_UDIV:
1283 case TOK_UMOD:
1284 uu = 1;
1285 goto divmod;
1286 case '/':
1287 case '%':
1288 case TOK_PDIV:
1289 uu = 0;
1290 divmod:
1291 /* first operand must be in eax */
1292 /* XXX: need better constraint for second operand */
1293 gv2(RC_RAX, RC_RCX);
1294 r = vtop[-1].r;
1295 fr = vtop[0].r;
1296 vtop--;
1297 save_reg(TREG_RDX);
1298 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1299 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1300 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1301 if (op == '%' || op == TOK_UMOD)
1302 r = TREG_RDX;
1303 else
1304 r = TREG_RAX;
1305 vtop->r = r;
1306 break;
1307 default:
1308 opc = 7;
1309 goto gen_op8;
1313 void gen_opl(int op)
1315 gen_opi(op);
1318 /* generate a floating point operation 'v = t1 op t2' instruction. The
1319 two operands are guaranted to have the same floating point type */
1320 /* XXX: need to use ST1 too */
1321 void gen_opf(int op)
1323 int a, ft, fc, swapped, r;
1324 int float_type =
1325 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1327 /* convert constants to memory references */
1328 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1329 vswap();
1330 gv(float_type);
1331 vswap();
1333 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1334 gv(float_type);
1336 /* must put at least one value in the floating point register */
1337 if ((vtop[-1].r & VT_LVAL) &&
1338 (vtop[0].r & VT_LVAL)) {
1339 vswap();
1340 gv(float_type);
1341 vswap();
1343 swapped = 0;
1344 /* swap the stack if needed so that t1 is the register and t2 is
1345 the memory reference */
1346 if (vtop[-1].r & VT_LVAL) {
1347 vswap();
1348 swapped = 1;
1350 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1351 if (op >= TOK_ULT && op <= TOK_GT) {
1352 /* load on stack second operand */
1353 load(TREG_ST0, vtop);
1354 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1355 if (op == TOK_GE || op == TOK_GT)
1356 swapped = !swapped;
1357 else if (op == TOK_EQ || op == TOK_NE)
1358 swapped = 0;
1359 if (swapped)
1360 o(0xc9d9); /* fxch %st(1) */
1361 o(0xe9da); /* fucompp */
1362 o(0xe0df); /* fnstsw %ax */
1363 if (op == TOK_EQ) {
1364 o(0x45e480); /* and $0x45, %ah */
1365 o(0x40fC80); /* cmp $0x40, %ah */
1366 } else if (op == TOK_NE) {
1367 o(0x45e480); /* and $0x45, %ah */
1368 o(0x40f480); /* xor $0x40, %ah */
1369 op = TOK_NE;
1370 } else if (op == TOK_GE || op == TOK_LE) {
1371 o(0x05c4f6); /* test $0x05, %ah */
1372 op = TOK_EQ;
1373 } else {
1374 o(0x45c4f6); /* test $0x45, %ah */
1375 op = TOK_EQ;
1377 vtop--;
1378 vtop->r = VT_CMP;
1379 vtop->c.i = op;
1380 } else {
1381 /* no memory reference possible for long double operations */
1382 load(TREG_ST0, vtop);
1383 swapped = !swapped;
1385 switch(op) {
1386 default:
1387 case '+':
1388 a = 0;
1389 break;
1390 case '-':
1391 a = 4;
1392 if (swapped)
1393 a++;
1394 break;
1395 case '*':
1396 a = 1;
1397 break;
1398 case '/':
1399 a = 6;
1400 if (swapped)
1401 a++;
1402 break;
1404 ft = vtop->type.t;
1405 fc = vtop->c.ul;
1406 o(0xde); /* fxxxp %st, %st(1) */
1407 o(0xc1 + (a << 3));
1408 vtop--;
1410 } else {
1411 if (op >= TOK_ULT && op <= TOK_GT) {
1412 /* if saved lvalue, then we must reload it */
1413 r = vtop->r;
1414 fc = vtop->c.ul;
1415 if ((r & VT_VALMASK) == VT_LLOCAL) {
1416 SValue v1;
1417 r = get_reg(RC_INT);
1418 v1.type.t = VT_INT;
1419 v1.r = VT_LOCAL | VT_LVAL;
1420 v1.c.ul = fc;
1421 load(r, &v1);
1422 fc = 0;
1425 if (op == TOK_EQ || op == TOK_NE) {
1426 swapped = 0;
1427 } else {
1428 if (op == TOK_LE || op == TOK_LT)
1429 swapped = !swapped;
1430 if (op == TOK_LE || op == TOK_GE) {
1431 op = 0x93; /* setae */
1432 } else {
1433 op = 0x97; /* seta */
1437 if (swapped) {
1438 o(0x7e0ff3); /* movq */
1439 gen_modrm(1, r, vtop->sym, fc);
1441 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
1442 o(0x66);
1444 o(0x2e0f); /* ucomisd %xmm0, %xmm1 */
1445 o(0xc8);
1446 } else {
1447 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
1448 o(0x66);
1450 o(0x2e0f); /* ucomisd */
1451 gen_modrm(0, r, vtop->sym, fc);
1454 vtop--;
1455 vtop->r = VT_CMP;
1456 vtop->c.i = op;
1457 } else {
1458 /* no memory reference possible for long double operations */
1459 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1460 load(TREG_XMM0, vtop);
1461 swapped = !swapped;
1463 switch(op) {
1464 default:
1465 case '+':
1466 a = 0;
1467 break;
1468 case '-':
1469 a = 4;
1470 break;
1471 case '*':
1472 a = 1;
1473 break;
1474 case '/':
1475 a = 6;
1476 break;
1478 ft = vtop->type.t;
1479 fc = vtop->c.ul;
1480 if ((ft & VT_BTYPE) == VT_LDOUBLE) {
1481 o(0xde); /* fxxxp %st, %st(1) */
1482 o(0xc1 + (a << 3));
1483 } else {
1484 /* if saved lvalue, then we must reload it */
1485 r = vtop->r;
1486 if ((r & VT_VALMASK) == VT_LLOCAL) {
1487 SValue v1;
1488 r = get_reg(RC_INT);
1489 v1.type.t = VT_INT;
1490 v1.r = VT_LOCAL | VT_LVAL;
1491 v1.c.ul = fc;
1492 load(r, &v1);
1493 fc = 0;
1495 if (swapped) {
1496 /* movq %xmm0,%xmm1 */
1497 o(0x7e0ff3);
1498 o(0xc8);
1499 load(TREG_XMM0, vtop);
1500 /* subsd %xmm1,%xmm0 (f2 0f 5c c1) */
1501 if ((ft & VT_BTYPE) == VT_DOUBLE) {
1502 o(0xf2);
1503 } else {
1504 o(0xf3);
1506 o(0x0f);
1507 o(0x58 + a);
1508 o(0xc1);
1509 } else {
1510 if ((ft & VT_BTYPE) == VT_DOUBLE) {
1511 o(0xf2);
1512 } else {
1513 o(0xf3);
1515 o(0x0f);
1516 o(0x58 + a);
1517 gen_modrm(0, r, vtop->sym, fc);
1520 vtop--;
1525 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1526 and 'long long' cases. */
1527 void gen_cvt_itof(int t)
1529 if ((t & VT_BTYPE) == VT_LDOUBLE) {
1530 save_reg(TREG_ST0);
1531 gv(RC_INT);
1532 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
1533 /* signed long long to float/double/long double (unsigned case
1534 is handled generically) */
1535 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1536 o(0x242cdf); /* fildll (%rsp) */
1537 o(0x08c48348); /* add $8, %rsp */
1538 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1539 (VT_INT | VT_UNSIGNED)) {
1540 /* unsigned int to float/double/long double */
1541 o(0x6a); /* push $0 */
1542 g(0x00);
1543 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1544 o(0x242cdf); /* fildll (%rsp) */
1545 o(0x10c48348); /* add $16, %rsp */
1546 } else {
1547 /* int to float/double/long double */
1548 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1549 o(0x2404db); /* fildl (%rsp) */
1550 o(0x08c48348); /* add $8, %rsp */
1552 vtop->r = TREG_ST0;
1553 } else {
1554 save_reg(TREG_XMM0);
1555 gv(RC_INT);
1556 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT));
1557 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1558 (VT_INT | VT_UNSIGNED) ||
1559 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1560 o(0x48); /* REX */
1562 o(0x2a0f);
1563 o(0xc0 + (vtop->r & VT_VALMASK)); /* cvtsi2sd */
1564 vtop->r = TREG_XMM0;
1568 /* convert from one floating point type to another */
1569 void gen_cvt_ftof(int t)
1571 int ft, bt, tbt;
1573 ft = vtop->type.t;
1574 bt = ft & VT_BTYPE;
1575 tbt = t & VT_BTYPE;
1577 if (bt == VT_FLOAT) {
1578 gv(RC_FLOAT);
1579 if (tbt == VT_DOUBLE) {
1580 o(0xc0140f); /* unpcklps */
1581 o(0xc05a0f); /* cvtps2pd */
1582 } else if (tbt == VT_LDOUBLE) {
1583 /* movss %xmm0,-0x10(%rsp) */
1584 o(0x44110ff3);
1585 o(0xf024);
1586 o(0xf02444d9); /* flds -0x10(%rsp) */
1587 vtop->r = TREG_ST0;
1589 } else if (bt == VT_DOUBLE) {
1590 gv(RC_FLOAT);
1591 if (tbt == VT_FLOAT) {
1592 o(0xc0140f66); /* unpcklpd */
1593 o(0xc05a0f66); /* cvtpd2ps */
1594 } else if (tbt == VT_LDOUBLE) {
1595 /* movsd %xmm0,-0x10(%rsp) */
1596 o(0x44110ff2);
1597 o(0xf024);
1598 o(0xf02444dd); /* fldl -0x10(%rsp) */
1599 vtop->r = TREG_ST0;
1601 } else {
1602 gv(RC_ST0);
1603 if (tbt == VT_DOUBLE) {
1604 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
1605 /* movsd -0x10(%rsp),%xmm0 */
1606 o(0x44100ff2);
1607 o(0xf024);
1608 vtop->r = TREG_XMM0;
1609 } else if (tbt == VT_FLOAT) {
1610 o(0xf0245cd9); /* fstps -0x10(%rsp) */
1611 /* movss -0x10(%rsp),%xmm0 */
1612 o(0x44100ff3);
1613 o(0xf024);
1614 vtop->r = TREG_XMM0;
1619 /* convert fp to int 't' type */
1620 void gen_cvt_ftoi(int t)
1622 int ft, bt, size, r;
1623 ft = vtop->type.t;
1624 bt = ft & VT_BTYPE;
1625 if (bt == VT_LDOUBLE) {
1626 gen_cvt_ftof(VT_DOUBLE);
1627 bt = VT_DOUBLE;
1630 gv(RC_FLOAT);
1631 if (t != VT_INT)
1632 size = 8;
1633 else
1634 size = 4;
1636 r = get_reg(RC_INT);
1637 if (bt == VT_FLOAT) {
1638 o(0xf3);
1639 } else if (bt == VT_DOUBLE) {
1640 o(0xf2);
1641 } else {
1642 assert(0);
1644 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
1645 o(0xc0 + (REG_VALUE(r) << 3));
1646 vtop->r = r;
1649 /* computed goto support */
1650 void ggoto(void)
1652 gcall_or_jmp(1);
1653 vtop--;
1656 /* end of x86-64 code generator */
1657 /*************************************************************/
1658 #endif /* ! TARGET_DEFS_ONLY */
1659 /******************************************************/