drop alloca #define
[tinycc/kirr.git] / i386-gen.c
blobf958ab547b0ad7d26095d5048cbd1da2a68240fb
1 /*
2 * X86 code generator for TCC
3 *
4 * Copyright (c) 2001-2004 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* number of available registers */
22 #define NB_REGS 4
24 /* a register can belong to several classes. The classes must be
25 sorted from more general to more precise (see gv2() code which does
26 assumptions on it). */
27 #define RC_INT 0x0001 /* generic integer register */
28 #define RC_FLOAT 0x0002 /* generic float register */
29 #define RC_EAX 0x0004
30 #define RC_ST0 0x0008
31 #define RC_ECX 0x0010
32 #define RC_EDX 0x0020
33 #define RC_IRET RC_EAX /* function return: integer register */
34 #define RC_LRET RC_EDX /* function return: second integer register */
35 #define RC_FRET RC_ST0 /* function return: float register */
37 /* pretty names for the registers */
38 enum {
39 TREG_EAX = 0,
40 TREG_ECX,
41 TREG_EDX,
42 TREG_ST0,
45 int reg_classes[NB_REGS] = {
46 /* eax */ RC_INT | RC_EAX,
47 /* ecx */ RC_INT | RC_ECX,
48 /* edx */ RC_INT | RC_EDX,
49 /* st0 */ RC_FLOAT | RC_ST0,
52 /* return registers for function */
53 #define REG_IRET TREG_EAX /* single word int return register */
54 #define REG_LRET TREG_EDX /* second word return register (for long long) */
55 #define REG_FRET TREG_ST0 /* float return register */
57 /* defined if function parameters must be evaluated in reverse order */
58 #define INVERT_FUNC_PARAMS
60 /* defined if structures are passed as pointers. Otherwise structures
61 are directly pushed on stack. */
62 //#define FUNC_STRUCT_PARAM_AS_PTR
64 /* pointer size, in bytes */
65 #define PTR_SIZE 4
67 /* long double size and alignment, in bytes */
68 #define LDOUBLE_SIZE 12
69 #define LDOUBLE_ALIGN 4
70 /* maximum alignment (for aligned attribute support) */
71 #define MAX_ALIGN 8
73 /******************************************************/
74 /* ELF defines */
76 #define EM_TCC_TARGET EM_386
78 /* relocation type for 32 bit data relocation */
79 #define R_DATA_32 R_386_32
80 #define R_JMP_SLOT R_386_JMP_SLOT
81 #define R_COPY R_386_COPY
83 #define ELF_START_ADDR 0x08048000
84 #define ELF_PAGE_SIZE 0x1000
86 /******************************************************/
88 static unsigned long func_sub_sp_offset;
89 static unsigned long func_bound_offset;
90 static int func_ret_sub;
92 /* XXX: make it faster ? */
93 void g(int c)
95 int ind1;
96 ind1 = ind + 1;
97 if (ind1 > cur_text_section->data_allocated)
98 section_realloc(cur_text_section, ind1);
99 cur_text_section->data[ind] = c;
100 ind = ind1;
103 void o(unsigned int c)
105 while (c) {
106 g(c);
107 c = c >> 8;
111 void gen_le32(int c)
113 g(c);
114 g(c >> 8);
115 g(c >> 16);
116 g(c >> 24);
119 /* output a symbol and patch all calls to it */
120 void gsym_addr(int t, int a)
122 int n, *ptr;
123 while (t) {
124 ptr = (int *)(cur_text_section->data + t);
125 n = *ptr; /* next value */
126 *ptr = a - t - 4;
127 t = n;
131 void gsym(int t)
133 gsym_addr(t, ind);
136 /* psym is used to put an instruction with a data field which is a
137 reference to a symbol. It is in fact the same as oad ! */
138 #define psym oad
140 /* instruction + 4 bytes data. Return the address of the data */
141 static int oad(int c, int s)
143 int ind1;
145 o(c);
146 ind1 = ind + 4;
147 if (ind1 > cur_text_section->data_allocated)
148 section_realloc(cur_text_section, ind1);
149 *(int *)(cur_text_section->data + ind) = s;
150 s = ind;
151 ind = ind1;
152 return s;
155 /* output constant with relocation if 'r & VT_SYM' is true */
156 static void gen_addr32(int r, Sym *sym, int c)
158 if (r & VT_SYM)
159 greloc(cur_text_section, sym, ind, R_386_32);
160 gen_le32(c);
163 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
164 opcode bits */
165 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
167 op_reg = op_reg << 3;
168 if ((r & VT_VALMASK) == VT_CONST) {
169 /* constant memory reference */
170 o(0x05 | op_reg);
171 gen_addr32(r, sym, c);
172 } else if ((r & VT_VALMASK) == VT_LOCAL) {
173 /* currently, we use only ebp as base */
174 if (c == (char)c) {
175 /* short reference */
176 o(0x45 | op_reg);
177 g(c);
178 } else {
179 oad(0x85 | op_reg, c);
181 } else {
182 g(0x00 | op_reg | (r & VT_VALMASK));
187 /* load 'r' from value 'sv' */
188 void load(int r, SValue *sv)
190 int v, t, ft, fc, fr;
191 SValue v1;
193 fr = sv->r;
194 ft = sv->type.t;
195 fc = sv->c.ul;
197 v = fr & VT_VALMASK;
198 if (fr & VT_LVAL) {
199 if (v == VT_LLOCAL) {
200 v1.type.t = VT_INT;
201 v1.r = VT_LOCAL | VT_LVAL;
202 v1.c.ul = fc;
203 load(r, &v1);
204 fr = r;
206 if ((ft & VT_BTYPE) == VT_FLOAT) {
207 o(0xd9); /* flds */
208 r = 0;
209 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
210 o(0xdd); /* fldl */
211 r = 0;
212 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
213 o(0xdb); /* fldt */
214 r = 5;
215 } else if ((ft & VT_TYPE) == VT_BYTE) {
216 o(0xbe0f); /* movsbl */
217 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
218 o(0xb60f); /* movzbl */
219 } else if ((ft & VT_TYPE) == VT_SHORT) {
220 o(0xbf0f); /* movswl */
221 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
222 o(0xb70f); /* movzwl */
223 } else {
224 o(0x8b); /* movl */
226 gen_modrm(r, fr, sv->sym, fc);
227 } else {
228 if (v == VT_CONST) {
229 o(0xb8 + r); /* mov $xx, r */
230 gen_addr32(fr, sv->sym, fc);
231 } else if (v == VT_LOCAL) {
232 o(0x8d); /* lea xxx(%ebp), r */
233 gen_modrm(r, VT_LOCAL, sv->sym, fc);
234 } else if (v == VT_CMP) {
235 oad(0xb8 + r, 0); /* mov $0, r */
236 o(0x0f); /* setxx %br */
237 o(fc);
238 o(0xc0 + r);
239 } else if (v == VT_JMP || v == VT_JMPI) {
240 t = v & 1;
241 oad(0xb8 + r, t); /* mov $1, r */
242 o(0x05eb); /* jmp after */
243 gsym(fc);
244 oad(0xb8 + r, t ^ 1); /* mov $0, r */
245 } else if (v != r) {
246 o(0x89);
247 o(0xc0 + r + v * 8); /* mov v, r */
252 /* store register 'r' in lvalue 'v' */
253 void store(int r, SValue *v)
255 int fr, bt, ft, fc;
257 ft = v->type.t;
258 fc = v->c.ul;
259 fr = v->r & VT_VALMASK;
260 bt = ft & VT_BTYPE;
261 /* XXX: incorrect if float reg to reg */
262 if (bt == VT_FLOAT) {
263 o(0xd9); /* fsts */
264 r = 2;
265 } else if (bt == VT_DOUBLE) {
266 o(0xdd); /* fstpl */
267 r = 2;
268 } else if (bt == VT_LDOUBLE) {
269 o(0xc0d9); /* fld %st(0) */
270 o(0xdb); /* fstpt */
271 r = 7;
272 } else {
273 if (bt == VT_SHORT)
274 o(0x66);
275 if (bt == VT_BYTE || bt == VT_BOOL)
276 o(0x88);
277 else
278 o(0x89);
280 if (fr == VT_CONST ||
281 fr == VT_LOCAL ||
282 (v->r & VT_LVAL)) {
283 gen_modrm(r, v->r, v->sym, fc);
284 } else if (fr != r) {
285 o(0xc0 + fr + r * 8); /* mov r, fr */
289 static void gadd_sp(int val)
291 if (val == (char)val) {
292 o(0xc483);
293 g(val);
294 } else {
295 oad(0xc481, val); /* add $xxx, %esp */
299 /* 'is_jmp' is '1' if it is a jump */
300 static void gcall_or_jmp(int is_jmp)
302 int r;
303 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
304 /* constant case */
305 if (vtop->r & VT_SYM) {
306 /* relocation case */
307 greloc(cur_text_section, vtop->sym,
308 ind + 1, R_386_PC32);
309 } else {
310 /* put an empty PC32 relocation */
311 put_elf_reloc(symtab_section, cur_text_section,
312 ind + 1, R_386_PC32, 0);
314 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
315 } else {
316 /* otherwise, indirect call */
317 r = gv(RC_INT);
318 o(0xff); /* call/jmp *r */
319 o(0xd0 + r + (is_jmp << 4));
323 static uint8_t fastcall_regs[3] = { TREG_EAX, TREG_EDX, TREG_ECX };
324 static uint8_t fastcallw_regs[2] = { TREG_ECX, TREG_EDX };
326 /* Generate function call. The function address is pushed first, then
327 all the parameters in call order. This functions pops all the
328 parameters and the function address. */
329 void gfunc_call(int nb_args)
331 int size, align, r, args_size, i, func_call;
332 Sym *func_sym;
334 args_size = 0;
335 for(i = 0;i < nb_args; i++) {
336 if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
337 size = type_size(&vtop->type, &align);
338 /* align to stack align size */
339 size = (size + 3) & ~3;
340 /* allocate the necessary size on stack */
341 oad(0xec81, size); /* sub $xxx, %esp */
342 /* generate structure store */
343 r = get_reg(RC_INT);
344 o(0x89); /* mov %esp, r */
345 o(0xe0 + r);
346 vset(&vtop->type, r | VT_LVAL, 0);
347 vswap();
348 vstore();
349 args_size += size;
350 } else if (is_float(vtop->type.t)) {
351 gv(RC_FLOAT); /* only one float register */
352 if ((vtop->type.t & VT_BTYPE) == VT_FLOAT)
353 size = 4;
354 else if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
355 size = 8;
356 else
357 size = 12;
358 oad(0xec81, size); /* sub $xxx, %esp */
359 if (size == 12)
360 o(0x7cdb);
361 else
362 o(0x5cd9 + size - 4); /* fstp[s|l] 0(%esp) */
363 g(0x24);
364 g(0x00);
365 args_size += size;
366 } else {
367 /* simple type (currently always same size) */
368 /* XXX: implicit cast ? */
369 r = gv(RC_INT);
370 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
371 size = 8;
372 o(0x50 + vtop->r2); /* push r */
373 } else {
374 size = 4;
376 o(0x50 + r); /* push r */
377 args_size += size;
379 vtop--;
381 save_regs(0); /* save used temporary registers */
382 func_sym = vtop->type.ref;
383 func_call = FUNC_CALL(func_sym->r);
384 /* fast call case */
385 if ((func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) ||
386 func_call == FUNC_FASTCALLW) {
387 int fastcall_nb_regs;
388 uint8_t *fastcall_regs_ptr;
389 if (func_call == FUNC_FASTCALLW) {
390 fastcall_regs_ptr = fastcallw_regs;
391 fastcall_nb_regs = 2;
392 } else {
393 fastcall_regs_ptr = fastcall_regs;
394 fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
396 for(i = 0;i < fastcall_nb_regs; i++) {
397 if (args_size <= 0)
398 break;
399 o(0x58 + fastcall_regs_ptr[i]); /* pop r */
400 /* XXX: incorrect for struct/floats */
401 args_size -= 4;
404 gcall_or_jmp(0);
405 if (args_size && func_call != FUNC_STDCALL)
406 gadd_sp(args_size);
407 vtop--;
410 #ifdef TCC_TARGET_PE
411 #define FUNC_PROLOG_SIZE 10
412 #else
413 #define FUNC_PROLOG_SIZE 9
414 #endif
416 /* generate function prolog of type 't' */
417 void gfunc_prolog(CType *func_type)
419 int addr, align, size, func_call, fastcall_nb_regs;
420 int param_index, param_addr;
421 uint8_t *fastcall_regs_ptr;
422 Sym *sym;
423 CType *type;
425 sym = func_type->ref;
426 func_call = FUNC_CALL(sym->r);
427 addr = 8;
428 loc = 0;
429 if (func_call >= FUNC_FASTCALL1 && func_call <= FUNC_FASTCALL3) {
430 fastcall_nb_regs = func_call - FUNC_FASTCALL1 + 1;
431 fastcall_regs_ptr = fastcall_regs;
432 } else if (func_call == FUNC_FASTCALLW) {
433 fastcall_nb_regs = 2;
434 fastcall_regs_ptr = fastcallw_regs;
435 } else {
436 fastcall_nb_regs = 0;
437 fastcall_regs_ptr = NULL;
439 param_index = 0;
441 ind += FUNC_PROLOG_SIZE;
442 func_sub_sp_offset = ind;
443 /* if the function returns a structure, then add an
444 implicit pointer parameter */
445 func_vt = sym->type;
446 if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
447 /* XXX: fastcall case ? */
448 func_vc = addr;
449 addr += 4;
450 param_index++;
452 /* define parameters */
453 while ((sym = sym->next) != NULL) {
454 type = &sym->type;
455 size = type_size(type, &align);
456 size = (size + 3) & ~3;
457 #ifdef FUNC_STRUCT_PARAM_AS_PTR
458 /* structs are passed as pointer */
459 if ((type->t & VT_BTYPE) == VT_STRUCT) {
460 size = 4;
462 #endif
463 if (param_index < fastcall_nb_regs) {
464 /* save FASTCALL register */
465 loc -= 4;
466 o(0x89); /* movl */
467 gen_modrm(fastcall_regs_ptr[param_index], VT_LOCAL, NULL, loc);
468 param_addr = loc;
469 } else {
470 param_addr = addr;
471 addr += size;
473 sym_push(sym->v & ~SYM_FIELD, type,
474 VT_LOCAL | lvalue_type(type->t), param_addr);
475 param_index++;
477 func_ret_sub = 0;
478 /* pascal type call ? */
479 if (func_call == FUNC_STDCALL)
480 func_ret_sub = addr - 8;
482 /* leave some room for bound checking code */
483 if (tcc_state->do_bounds_check) {
484 oad(0xb8, 0); /* lbound section pointer */
485 oad(0xb8, 0); /* call to function */
486 func_bound_offset = lbounds_section->data_offset;
490 /* generate function epilog */
491 void gfunc_epilog(void)
493 int v, saved_ind;
495 #ifdef CONFIG_TCC_BCHECK
496 if (tcc_state->do_bounds_check
497 && func_bound_offset != lbounds_section->data_offset) {
498 int saved_ind;
499 int *bounds_ptr;
500 Sym *sym, *sym_data;
501 /* add end of table info */
502 bounds_ptr = section_ptr_add(lbounds_section, sizeof(int));
503 *bounds_ptr = 0;
504 /* generate bound local allocation */
505 saved_ind = ind;
506 ind = func_sub_sp_offset;
507 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
508 func_bound_offset, lbounds_section->data_offset);
509 greloc(cur_text_section, sym_data,
510 ind + 1, R_386_32);
511 oad(0xb8, 0); /* mov %eax, xxx */
512 sym = external_global_sym(TOK___bound_local_new, &func_old_type, 0);
513 greloc(cur_text_section, sym,
514 ind + 1, R_386_PC32);
515 oad(0xe8, -4);
516 ind = saved_ind;
517 /* generate bound check local freeing */
518 o(0x5250); /* save returned value, if any */
519 greloc(cur_text_section, sym_data,
520 ind + 1, R_386_32);
521 oad(0xb8, 0); /* mov %eax, xxx */
522 sym = external_global_sym(TOK___bound_local_delete, &func_old_type, 0);
523 greloc(cur_text_section, sym,
524 ind + 1, R_386_PC32);
525 oad(0xe8, -4);
526 o(0x585a); /* restore returned value, if any */
528 #endif
529 o(0xc9); /* leave */
530 if (func_ret_sub == 0) {
531 o(0xc3); /* ret */
532 } else {
533 o(0xc2); /* ret n */
534 g(func_ret_sub);
535 g(func_ret_sub >> 8);
537 /* align local size to word & save local variables */
539 v = (-loc + 3) & -4;
540 saved_ind = ind;
541 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
542 #ifdef TCC_TARGET_PE
543 if (v >= 4096) {
544 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
545 oad(0xb8, v); /* mov stacksize, %eax */
546 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
547 greloc(cur_text_section, sym, ind-4, R_386_PC32);
548 } else
549 #endif
551 o(0xe58955); /* push %ebp, mov %esp, %ebp */
552 o(0xec81); /* sub esp, stacksize */
553 gen_le32(v);
554 #if FUNC_PROLOG_SIZE == 10
555 o(0x90); /* adjust to FUNC_PROLOG_SIZE */
556 #endif
558 ind = saved_ind;
561 /* generate a jump to a label */
562 int gjmp(int t)
564 return psym(0xe9, t);
567 /* generate a jump to a fixed address */
568 void gjmp_addr(int a)
570 int r;
571 r = a - ind - 2;
572 if (r == (char)r) {
573 g(0xeb);
574 g(r);
575 } else {
576 oad(0xe9, a - ind - 5);
580 /* generate a test. set 'inv' to invert test. Stack entry is popped */
581 int gtst(int inv, int t)
583 int v, *p;
585 v = vtop->r & VT_VALMASK;
586 if (v == VT_CMP) {
587 /* fast case : can jump directly since flags are set */
588 g(0x0f);
589 t = psym((vtop->c.i - 16) ^ inv, t);
590 } else if (v == VT_JMP || v == VT_JMPI) {
591 /* && or || optimization */
592 if ((v & 1) == inv) {
593 /* insert vtop->c jump list in t */
594 p = &vtop->c.i;
595 while (*p != 0)
596 p = (int *)(cur_text_section->data + *p);
597 *p = t;
598 t = vtop->c.i;
599 } else {
600 t = gjmp(t);
601 gsym(vtop->c.i);
603 } else {
604 if (is_float(vtop->type.t) ||
605 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
606 vpushi(0);
607 gen_op(TOK_NE);
609 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
610 /* constant jmp optimization */
611 if ((vtop->c.i != 0) != inv)
612 t = gjmp(t);
613 } else {
614 v = gv(RC_INT);
615 o(0x85);
616 o(0xc0 + v * 9);
617 g(0x0f);
618 t = psym(0x85 ^ inv, t);
621 vtop--;
622 return t;
625 /* generate an integer binary operation */
626 void gen_opi(int op)
628 int r, fr, opc, c;
630 switch(op) {
631 case '+':
632 case TOK_ADDC1: /* add with carry generation */
633 opc = 0;
634 gen_op8:
635 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
636 /* constant case */
637 vswap();
638 r = gv(RC_INT);
639 vswap();
640 c = vtop->c.i;
641 if (c == (char)c) {
642 /* XXX: generate inc and dec for smaller code ? */
643 o(0x83);
644 o(0xc0 | (opc << 3) | r);
645 g(c);
646 } else {
647 o(0x81);
648 oad(0xc0 | (opc << 3) | r, c);
650 } else {
651 gv2(RC_INT, RC_INT);
652 r = vtop[-1].r;
653 fr = vtop[0].r;
654 o((opc << 3) | 0x01);
655 o(0xc0 + r + fr * 8);
657 vtop--;
658 if (op >= TOK_ULT && op <= TOK_GT) {
659 vtop->r = VT_CMP;
660 vtop->c.i = op;
662 break;
663 case '-':
664 case TOK_SUBC1: /* sub with carry generation */
665 opc = 5;
666 goto gen_op8;
667 case TOK_ADDC2: /* add with carry use */
668 opc = 2;
669 goto gen_op8;
670 case TOK_SUBC2: /* sub with carry use */
671 opc = 3;
672 goto gen_op8;
673 case '&':
674 opc = 4;
675 goto gen_op8;
676 case '^':
677 opc = 6;
678 goto gen_op8;
679 case '|':
680 opc = 1;
681 goto gen_op8;
682 case '*':
683 gv2(RC_INT, RC_INT);
684 r = vtop[-1].r;
685 fr = vtop[0].r;
686 vtop--;
687 o(0xaf0f); /* imul fr, r */
688 o(0xc0 + fr + r * 8);
689 break;
690 case TOK_SHL:
691 opc = 4;
692 goto gen_shift;
693 case TOK_SHR:
694 opc = 5;
695 goto gen_shift;
696 case TOK_SAR:
697 opc = 7;
698 gen_shift:
699 opc = 0xc0 | (opc << 3);
700 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
701 /* constant case */
702 vswap();
703 r = gv(RC_INT);
704 vswap();
705 c = vtop->c.i & 0x1f;
706 o(0xc1); /* shl/shr/sar $xxx, r */
707 o(opc | r);
708 g(c);
709 } else {
710 /* we generate the shift in ecx */
711 gv2(RC_INT, RC_ECX);
712 r = vtop[-1].r;
713 o(0xd3); /* shl/shr/sar %cl, r */
714 o(opc | r);
716 vtop--;
717 break;
718 case '/':
719 case TOK_UDIV:
720 case TOK_PDIV:
721 case '%':
722 case TOK_UMOD:
723 case TOK_UMULL:
724 /* first operand must be in eax */
725 /* XXX: need better constraint for second operand */
726 gv2(RC_EAX, RC_ECX);
727 r = vtop[-1].r;
728 fr = vtop[0].r;
729 vtop--;
730 save_reg(TREG_EDX);
731 if (op == TOK_UMULL) {
732 o(0xf7); /* mul fr */
733 o(0xe0 + fr);
734 vtop->r2 = TREG_EDX;
735 r = TREG_EAX;
736 } else {
737 if (op == TOK_UDIV || op == TOK_UMOD) {
738 o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
739 o(0xf0 + fr);
740 } else {
741 o(0xf799); /* cltd, idiv fr, %eax */
742 o(0xf8 + fr);
744 if (op == '%' || op == TOK_UMOD)
745 r = TREG_EDX;
746 else
747 r = TREG_EAX;
749 vtop->r = r;
750 break;
751 default:
752 opc = 7;
753 goto gen_op8;
757 /* generate a floating point operation 'v = t1 op t2' instruction. The
758 two operands are guaranted to have the same floating point type */
759 /* XXX: need to use ST1 too */
760 void gen_opf(int op)
762 int a, ft, fc, swapped, r;
764 /* convert constants to memory references */
765 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
766 vswap();
767 gv(RC_FLOAT);
768 vswap();
770 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
771 gv(RC_FLOAT);
773 /* must put at least one value in the floating point register */
774 if ((vtop[-1].r & VT_LVAL) &&
775 (vtop[0].r & VT_LVAL)) {
776 vswap();
777 gv(RC_FLOAT);
778 vswap();
780 swapped = 0;
781 /* swap the stack if needed so that t1 is the register and t2 is
782 the memory reference */
783 if (vtop[-1].r & VT_LVAL) {
784 vswap();
785 swapped = 1;
787 if (op >= TOK_ULT && op <= TOK_GT) {
788 /* load on stack second operand */
789 load(TREG_ST0, vtop);
790 save_reg(TREG_EAX); /* eax is used by FP comparison code */
791 if (op == TOK_GE || op == TOK_GT)
792 swapped = !swapped;
793 else if (op == TOK_EQ || op == TOK_NE)
794 swapped = 0;
795 if (swapped)
796 o(0xc9d9); /* fxch %st(1) */
797 o(0xe9da); /* fucompp */
798 o(0xe0df); /* fnstsw %ax */
799 if (op == TOK_EQ) {
800 o(0x45e480); /* and $0x45, %ah */
801 o(0x40fC80); /* cmp $0x40, %ah */
802 } else if (op == TOK_NE) {
803 o(0x45e480); /* and $0x45, %ah */
804 o(0x40f480); /* xor $0x40, %ah */
805 op = TOK_NE;
806 } else if (op == TOK_GE || op == TOK_LE) {
807 o(0x05c4f6); /* test $0x05, %ah */
808 op = TOK_EQ;
809 } else {
810 o(0x45c4f6); /* test $0x45, %ah */
811 op = TOK_EQ;
813 vtop--;
814 vtop->r = VT_CMP;
815 vtop->c.i = op;
816 } else {
817 /* no memory reference possible for long double operations */
818 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
819 load(TREG_ST0, vtop);
820 swapped = !swapped;
823 switch(op) {
824 default:
825 case '+':
826 a = 0;
827 break;
828 case '-':
829 a = 4;
830 if (swapped)
831 a++;
832 break;
833 case '*':
834 a = 1;
835 break;
836 case '/':
837 a = 6;
838 if (swapped)
839 a++;
840 break;
842 ft = vtop->type.t;
843 fc = vtop->c.ul;
844 if ((ft & VT_BTYPE) == VT_LDOUBLE) {
845 o(0xde); /* fxxxp %st, %st(1) */
846 o(0xc1 + (a << 3));
847 } else {
848 /* if saved lvalue, then we must reload it */
849 r = vtop->r;
850 if ((r & VT_VALMASK) == VT_LLOCAL) {
851 SValue v1;
852 r = get_reg(RC_INT);
853 v1.type.t = VT_INT;
854 v1.r = VT_LOCAL | VT_LVAL;
855 v1.c.ul = fc;
856 load(r, &v1);
857 fc = 0;
860 if ((ft & VT_BTYPE) == VT_DOUBLE)
861 o(0xdc);
862 else
863 o(0xd8);
864 gen_modrm(a, r, vtop->sym, fc);
866 vtop--;
870 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
871 and 'long long' cases. */
872 void gen_cvt_itof(int t)
874 save_reg(TREG_ST0);
875 gv(RC_INT);
876 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
877 /* signed long long to float/double/long double (unsigned case
878 is handled generically) */
879 o(0x50 + vtop->r2); /* push r2 */
880 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
881 o(0x242cdf); /* fildll (%esp) */
882 o(0x08c483); /* add $8, %esp */
883 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
884 (VT_INT | VT_UNSIGNED)) {
885 /* unsigned int to float/double/long double */
886 o(0x6a); /* push $0 */
887 g(0x00);
888 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
889 o(0x242cdf); /* fildll (%esp) */
890 o(0x08c483); /* add $8, %esp */
891 } else {
892 /* int to float/double/long double */
893 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
894 o(0x2404db); /* fildl (%esp) */
895 o(0x04c483); /* add $4, %esp */
897 vtop->r = TREG_ST0;
900 /* convert fp to int 't' type */
901 /* XXX: handle long long case */
902 void gen_cvt_ftoi(int t)
904 int r, r2, size;
905 Sym *sym;
906 CType ushort_type;
908 ushort_type.t = VT_SHORT | VT_UNSIGNED;
910 gv(RC_FLOAT);
911 if (t != VT_INT)
912 size = 8;
913 else
914 size = 4;
916 o(0x2dd9); /* ldcw xxx */
917 sym = external_global_sym(TOK___tcc_int_fpu_control,
918 &ushort_type, VT_LVAL);
919 greloc(cur_text_section, sym,
920 ind, R_386_32);
921 gen_le32(0);
923 oad(0xec81, size); /* sub $xxx, %esp */
924 if (size == 4)
925 o(0x1cdb); /* fistpl */
926 else
927 o(0x3cdf); /* fistpll */
928 o(0x24);
929 o(0x2dd9); /* ldcw xxx */
930 sym = external_global_sym(TOK___tcc_fpu_control,
931 &ushort_type, VT_LVAL);
932 greloc(cur_text_section, sym,
933 ind, R_386_32);
934 gen_le32(0);
936 r = get_reg(RC_INT);
937 o(0x58 + r); /* pop r */
938 if (size == 8) {
939 if (t == VT_LLONG) {
940 vtop->r = r; /* mark reg as used */
941 r2 = get_reg(RC_INT);
942 o(0x58 + r2); /* pop r2 */
943 vtop->r2 = r2;
944 } else {
945 o(0x04c483); /* add $4, %esp */
948 vtop->r = r;
951 /* convert from one floating point type to another */
952 void gen_cvt_ftof(int t)
954 /* all we have to do on i386 is to put the float in a register */
955 gv(RC_FLOAT);
958 /* computed goto support */
959 void ggoto(void)
961 gcall_or_jmp(1);
962 vtop--;
965 /* bound check support functions */
966 #ifdef CONFIG_TCC_BCHECK
968 /* generate a bounded pointer addition */
969 void gen_bounded_ptr_add(void)
971 Sym *sym;
973 /* prepare fast i386 function call (args in eax and edx) */
974 gv2(RC_EAX, RC_EDX);
975 /* save all temporary registers */
976 vtop -= 2;
977 save_regs(0);
978 /* do a fast function call */
979 sym = external_global_sym(TOK___bound_ptr_add, &func_old_type, 0);
980 greloc(cur_text_section, sym,
981 ind + 1, R_386_PC32);
982 oad(0xe8, -4);
983 /* returned pointer is in eax */
984 vtop++;
985 vtop->r = TREG_EAX | VT_BOUNDED;
986 /* address of bounding function call point */
987 vtop->c.ul = (cur_text_section->reloc->data_offset - sizeof(Elf32_Rel));
990 /* patch pointer addition in vtop so that pointer dereferencing is
991 also tested */
992 void gen_bounded_ptr_deref(void)
994 int func;
995 int size, align;
996 Elf32_Rel *rel;
997 Sym *sym;
999 size = 0;
1000 /* XXX: put that code in generic part of tcc */
1001 if (!is_float(vtop->type.t)) {
1002 if (vtop->r & VT_LVAL_BYTE)
1003 size = 1;
1004 else if (vtop->r & VT_LVAL_SHORT)
1005 size = 2;
1007 if (!size)
1008 size = type_size(&vtop->type, &align);
1009 switch(size) {
1010 case 1: func = TOK___bound_ptr_indir1; break;
1011 case 2: func = TOK___bound_ptr_indir2; break;
1012 case 4: func = TOK___bound_ptr_indir4; break;
1013 case 8: func = TOK___bound_ptr_indir8; break;
1014 case 12: func = TOK___bound_ptr_indir12; break;
1015 case 16: func = TOK___bound_ptr_indir16; break;
1016 default:
1017 error("unhandled size when derefencing bounded pointer");
1018 func = 0;
1019 break;
1022 /* patch relocation */
1023 /* XXX: find a better solution ? */
1024 rel = (Elf32_Rel *)(cur_text_section->reloc->data + vtop->c.ul);
1025 sym = external_global_sym(func, &func_old_type, 0);
1026 if (!sym->c)
1027 put_extern_sym(sym, NULL, 0, 0);
1028 rel->r_info = ELF32_R_INFO(sym->c, ELF32_R_TYPE(rel->r_info));
1030 #endif
1032 /* end of X86 code generator */
1033 /*************************************************************/