tcc.h: Extend search path for include, lib and crt.
[tinycc.git] / x86_64-gen.c
blob6641901ff8e53a4a4a41e54ac2f68802d129d6d9
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
35 #define RC_RAX 0x0004
36 #define RC_RCX 0x0008
37 #define RC_RDX 0x0010
38 #define RC_ST0 0x0080 /* only for long double */
39 #define RC_R8 0x0100
40 #define RC_R9 0x0200
41 #define RC_R10 0x0400
42 #define RC_R11 0x0800
43 #define RC_XMM0 0x1000
44 #define RC_XMM1 0x2000
45 #define RC_XMM2 0x4000
46 #define RC_XMM3 0x8000
47 #define RC_XMM4 0x10000
48 #define RC_XMM5 0x20000
49 #define RC_XMM6 0x40000
50 #define RC_XMM7 0x80000
51 #define RC_IRET RC_RAX /* function return: integer register */
52 #define RC_IRE2 RC_RDX /* function return: second integer register */
53 #define RC_FRET RC_XMM0 /* function return: float register */
54 #define RC_FRE2 RC_XMM1 /* function return: second float register */
56 /* pretty names for the registers */
57 enum {
58 TREG_RAX = 0,
59 TREG_RCX = 1,
60 TREG_RDX = 2,
61 TREG_RSP = 4,
62 TREG_RSI = 6,
63 TREG_RDI = 7,
65 TREG_R8 = 8,
66 TREG_R9 = 9,
67 TREG_R10 = 10,
68 TREG_R11 = 11,
70 TREG_XMM0 = 16,
71 TREG_XMM1 = 17,
72 TREG_XMM2 = 18,
73 TREG_XMM3 = 19,
74 TREG_XMM4 = 20,
75 TREG_XMM5 = 21,
76 TREG_XMM6 = 22,
77 TREG_XMM7 = 23,
79 TREG_ST0 = 24,
81 TREG_MEM = 0x20
84 #define REX_BASE(reg) (((reg) >> 3) & 1)
85 #define REG_VALUE(reg) ((reg) & 7)
87 /* return registers for function */
88 #define REG_IRET TREG_RAX /* single word int return register */
89 #define REG_IRE2 TREG_RDX /* second word return register (for long long) */
90 #define REG_FRET TREG_XMM0 /* float return register */
91 #define REG_FRE2 TREG_XMM1 /* second float return register */
93 /* defined if function parameters must be evaluated in reverse order */
94 #define INVERT_FUNC_PARAMS
96 /* pointer size, in bytes */
97 #define PTR_SIZE 8
99 /* long double size and alignment, in bytes */
100 #define LDOUBLE_SIZE 16
101 #define LDOUBLE_ALIGN 16
102 /* maximum alignment (for aligned attribute support) */
103 #define MAX_ALIGN 16
105 /* define if return values need to be extended explicitely
106 at caller side (for interfacing with non-TCC compilers) */
107 #define PROMOTE_RET
108 /******************************************************/
109 #else /* ! TARGET_DEFS_ONLY */
110 /******************************************************/
111 #define USING_GLOBALS
112 #include "tcc.h"
113 #include <assert.h>
115 ST_DATA const char * const target_machine_defs =
116 "__x86_64__\0"
117 "__amd64__\0"
120 ST_DATA const int reg_classes[NB_REGS] = {
121 /* eax */ RC_INT | RC_RAX,
122 /* ecx */ RC_INT | RC_RCX,
123 /* edx */ RC_INT | RC_RDX,
129 RC_R8,
130 RC_R9,
131 RC_R10,
132 RC_R11,
137 /* xmm0 */ RC_FLOAT | RC_XMM0,
138 /* xmm1 */ RC_FLOAT | RC_XMM1,
139 /* xmm2 */ RC_FLOAT | RC_XMM2,
140 /* xmm3 */ RC_FLOAT | RC_XMM3,
141 /* xmm4 */ RC_FLOAT | RC_XMM4,
142 /* xmm5 */ RC_FLOAT | RC_XMM5,
143 /* xmm6 an xmm7 are included so gv() can be used on them,
144 but they are not tagged with RC_FLOAT because they are
145 callee saved on Windows */
146 RC_XMM6,
147 RC_XMM7,
148 /* st0 */ RC_ST0
151 static unsigned long func_sub_sp_offset;
152 static int func_ret_sub;
154 #if defined(CONFIG_TCC_BCHECK)
155 static addr_t func_bound_offset;
156 static unsigned long func_bound_ind;
157 ST_DATA int func_bound_add_epilog;
158 #endif
160 #ifdef TCC_TARGET_PE
161 static int func_scratch, func_alloca;
162 #endif
164 /* XXX: make it faster ? */
165 ST_FUNC void g(int c)
167 int ind1;
168 if (nocode_wanted)
169 return;
170 ind1 = ind + 1;
171 if (ind1 > cur_text_section->data_allocated)
172 section_realloc(cur_text_section, ind1);
173 cur_text_section->data[ind] = c;
174 ind = ind1;
177 ST_FUNC void o(unsigned int c)
179 while (c) {
180 g(c);
181 c = c >> 8;
185 ST_FUNC void gen_le16(int v)
187 g(v);
188 g(v >> 8);
191 ST_FUNC void gen_le32(int c)
193 g(c);
194 g(c >> 8);
195 g(c >> 16);
196 g(c >> 24);
199 ST_FUNC void gen_le64(int64_t c)
201 g(c);
202 g(c >> 8);
203 g(c >> 16);
204 g(c >> 24);
205 g(c >> 32);
206 g(c >> 40);
207 g(c >> 48);
208 g(c >> 56);
211 static void orex(int ll, int r, int r2, int b)
213 if ((r & VT_VALMASK) >= VT_CONST)
214 r = 0;
215 if ((r2 & VT_VALMASK) >= VT_CONST)
216 r2 = 0;
217 if (ll || REX_BASE(r) || REX_BASE(r2))
218 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
219 o(b);
222 /* output a symbol and patch all calls to it */
223 ST_FUNC void gsym_addr(int t, int a)
225 while (t) {
226 unsigned char *ptr = cur_text_section->data + t;
227 uint32_t n = read32le(ptr); /* next value */
228 write32le(ptr, a < 0 ? -a : a - t - 4);
229 t = n;
233 static int is64_type(int t)
235 return ((t & VT_BTYPE) == VT_PTR ||
236 (t & VT_BTYPE) == VT_FUNC ||
237 (t & VT_BTYPE) == VT_LLONG);
240 /* instruction + 4 bytes data. Return the address of the data */
241 static int oad(int c, int s)
243 int t;
244 if (nocode_wanted)
245 return s;
246 o(c);
247 t = ind;
248 gen_le32(s);
249 return t;
252 /* generate jmp to a label */
253 #define gjmp2(instr,lbl) oad(instr,lbl)
255 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
257 if (r & VT_SYM)
258 greloca(cur_text_section, sym, ind, R_X86_64_32S, c), c=0;
259 gen_le32(c);
262 /* output constant with relocation if 'r & VT_SYM' is true */
263 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
265 if (r & VT_SYM)
266 greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
267 gen_le64(c);
270 /* output constant with relocation if 'r & VT_SYM' is true */
271 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
273 if (r & VT_SYM)
274 greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
275 gen_le32(c-4);
278 /* output got address with relocation */
279 static void gen_gotpcrel(int r, Sym *sym, int c)
281 #ifdef TCC_TARGET_PE
282 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
283 get_tok_str(sym->v, NULL), c, r,
284 cur_text_section->data[ind-3],
285 cur_text_section->data[ind-2],
286 cur_text_section->data[ind-1]
288 #endif
289 greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
290 gen_le32(0);
291 if (c) {
292 /* we use add c, %xxx for displacement */
293 orex(1, r, 0, 0x81);
294 o(0xc0 + REG_VALUE(r));
295 gen_le32(c);
299 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
301 op_reg = REG_VALUE(op_reg) << 3;
302 if ((r & VT_VALMASK) == VT_CONST) {
303 /* constant memory reference */
304 if (!(r & VT_SYM)) {
305 /* Absolute memory reference */
306 o(0x04 | op_reg); /* [sib] | destreg */
307 oad(0x25, c); /* disp32 */
308 } else {
309 o(0x05 | op_reg); /* (%rip)+disp32 | destreg */
310 if (is_got) {
311 gen_gotpcrel(r, sym, c);
312 } else {
313 gen_addrpc32(r, sym, c);
316 } else if ((r & VT_VALMASK) == VT_LOCAL) {
317 /* currently, we use only ebp as base */
318 if (c == (char)c) {
319 /* short reference */
320 o(0x45 | op_reg);
321 g(c);
322 } else {
323 oad(0x85 | op_reg, c);
325 } else if ((r & VT_VALMASK) >= TREG_MEM) {
326 if (c) {
327 g(0x80 | op_reg | REG_VALUE(r));
328 gen_le32(c);
329 } else {
330 g(0x00 | op_reg | REG_VALUE(r));
332 } else {
333 g(0x00 | op_reg | REG_VALUE(r));
337 /* generate a modrm reference. 'op_reg' contains the additional 3
338 opcode bits */
339 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
341 gen_modrm_impl(op_reg, r, sym, c, 0);
344 /* generate a modrm reference. 'op_reg' contains the additional 3
345 opcode bits */
346 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
348 int is_got;
349 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
350 orex(1, r, op_reg, opcode);
351 gen_modrm_impl(op_reg, r, sym, c, is_got);
355 /* load 'r' from value 'sv' */
356 void load(int r, SValue *sv)
358 int v, t, ft, fc, fr;
359 SValue v1;
361 #ifdef TCC_TARGET_PE
362 SValue v2;
363 sv = pe_getimport(sv, &v2);
364 #endif
366 fr = sv->r;
367 ft = sv->type.t & ~VT_DEFSIGN;
368 fc = sv->c.i;
369 if (fc != sv->c.i && (fr & VT_SYM))
370 tcc_error("64 bit addend in load");
372 ft &= ~(VT_VOLATILE | VT_CONSTANT);
374 #ifndef TCC_TARGET_PE
375 /* we use indirect access via got */
376 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
377 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
378 /* use the result register as a temporal register */
379 int tr = r | TREG_MEM;
380 if (is_float(ft)) {
381 /* we cannot use float registers as a temporal register */
382 tr = get_reg(RC_INT) | TREG_MEM;
384 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
386 /* load from the temporal register */
387 fr = tr | VT_LVAL;
389 #endif
391 v = fr & VT_VALMASK;
392 if (fr & VT_LVAL) {
393 int b, ll;
394 if (v == VT_LLOCAL) {
395 v1.type.t = VT_PTR;
396 v1.r = VT_LOCAL | VT_LVAL;
397 v1.c.i = fc;
398 fr = r;
399 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
400 fr = get_reg(RC_INT);
401 load(fr, &v1);
403 if (fc != sv->c.i) {
404 /* If the addends doesn't fit into a 32bit signed
405 we must use a 64bit move. We've checked above
406 that this doesn't have a sym associated. */
407 v1.type.t = VT_LLONG;
408 v1.r = VT_CONST;
409 v1.c.i = sv->c.i;
410 fr = r;
411 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
412 fr = get_reg(RC_INT);
413 load(fr, &v1);
414 fc = 0;
416 ll = 0;
417 /* Like GCC we can load from small enough properly sized
418 structs and unions as well.
419 XXX maybe move to generic operand handling, but should
420 occur only with asm, so tccasm.c might also be a better place */
421 if ((ft & VT_BTYPE) == VT_STRUCT) {
422 int align;
423 switch (type_size(&sv->type, &align)) {
424 case 1: ft = VT_BYTE; break;
425 case 2: ft = VT_SHORT; break;
426 case 4: ft = VT_INT; break;
427 case 8: ft = VT_LLONG; break;
428 default:
429 tcc_error("invalid aggregate type for register load");
430 break;
433 if ((ft & VT_BTYPE) == VT_FLOAT) {
434 b = 0x6e0f66;
435 r = REG_VALUE(r); /* movd */
436 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
437 b = 0x7e0ff3; /* movq */
438 r = REG_VALUE(r);
439 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
440 b = 0xdb, r = 5; /* fldt */
441 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
442 b = 0xbe0f; /* movsbl */
443 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
444 b = 0xb60f; /* movzbl */
445 } else if ((ft & VT_TYPE) == VT_SHORT) {
446 b = 0xbf0f; /* movswl */
447 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
448 b = 0xb70f; /* movzwl */
449 } else if ((ft & VT_TYPE) == (VT_VOID)) {
450 /* Can happen with zero size structs */
451 return;
452 } else {
453 assert(((ft & VT_BTYPE) == VT_INT)
454 || ((ft & VT_BTYPE) == VT_LLONG)
455 || ((ft & VT_BTYPE) == VT_PTR)
456 || ((ft & VT_BTYPE) == VT_FUNC)
458 ll = is64_type(ft);
459 b = 0x8b;
461 if (ll) {
462 gen_modrm64(b, r, fr, sv->sym, fc);
463 } else {
464 orex(ll, fr, r, b);
465 gen_modrm(r, fr, sv->sym, fc);
467 } else {
468 if (v == VT_CONST) {
469 if (fr & VT_SYM) {
470 #ifdef TCC_TARGET_PE
471 orex(1,0,r,0x8d);
472 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
473 gen_addrpc32(fr, sv->sym, fc);
474 #else
475 if (sv->sym->type.t & VT_STATIC) {
476 orex(1,0,r,0x8d);
477 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
478 gen_addrpc32(fr, sv->sym, fc);
479 } else {
480 orex(1,0,r,0x8b);
481 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
482 gen_gotpcrel(r, sv->sym, fc);
484 #endif
485 } else if (is64_type(ft)) {
486 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
487 gen_le64(sv->c.i);
488 } else {
489 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
490 gen_le32(fc);
492 } else if (v == VT_LOCAL) {
493 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
494 gen_modrm(r, VT_LOCAL, sv->sym, fc);
495 } else if (v == VT_CMP) {
496 if (fc & 0x100)
498 v = vtop->cmp_r;
499 fc &= ~0x100;
500 /* This was a float compare. If the parity bit is
501 set the result was unordered, meaning false for everything
502 except TOK_NE, and true for TOK_NE. */
503 orex(0, r, 0, 0xb0 + REG_VALUE(r)); /* mov $0/1,%al */
504 g(v ^ fc ^ (v == TOK_NE));
505 o(0x037a + (REX_BASE(r) << 8));
507 orex(0,r,0, 0x0f); /* setxx %br */
508 o(fc);
509 o(0xc0 + REG_VALUE(r));
510 orex(0,r,0, 0x0f);
511 o(0xc0b6 + REG_VALUE(r) * 0x900); /* movzbl %al, %eax */
512 } else if (v == VT_JMP || v == VT_JMPI) {
513 t = v & 1;
514 orex(0,r,0,0);
515 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
516 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
517 gsym(fc);
518 orex(0,r,0,0);
519 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
520 } else if (v != r) {
521 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
522 if (v == TREG_ST0) {
523 /* gen_cvt_ftof(VT_DOUBLE); */
524 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
525 /* movsd -0x10(%rsp),%xmmN */
526 o(0x100ff2);
527 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
528 o(0xf024);
529 } else {
530 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
531 if ((ft & VT_BTYPE) == VT_FLOAT) {
532 o(0x100ff3);
533 } else {
534 assert((ft & VT_BTYPE) == VT_DOUBLE);
535 o(0x100ff2);
537 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
539 } else if (r == TREG_ST0) {
540 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
541 /* gen_cvt_ftof(VT_LDOUBLE); */
542 /* movsd %xmmN,-0x10(%rsp) */
543 o(0x110ff2);
544 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
545 o(0xf024);
546 o(0xf02444dd); /* fldl -0x10(%rsp) */
547 } else {
548 orex(is64_type(ft), r, v, 0x89);
549 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
555 /* store register 'r' in lvalue 'v' */
556 void store(int r, SValue *v)
558 int fr, bt, ft, fc;
559 int op64 = 0;
560 /* store the REX prefix in this variable when PIC is enabled */
561 int pic = 0;
563 #ifdef TCC_TARGET_PE
564 SValue v2;
565 v = pe_getimport(v, &v2);
566 #endif
568 fr = v->r & VT_VALMASK;
569 ft = v->type.t;
570 fc = v->c.i;
571 if (fc != v->c.i && (fr & VT_SYM))
572 tcc_error("64 bit addend in store");
573 ft &= ~(VT_VOLATILE | VT_CONSTANT);
574 bt = ft & VT_BTYPE;
576 #ifndef TCC_TARGET_PE
577 /* we need to access the variable via got */
578 if (fr == VT_CONST
579 && (v->r & VT_SYM)
580 && !(v->sym->type.t & VT_STATIC)) {
581 /* mov xx(%rip), %r11 */
582 o(0x1d8b4c);
583 gen_gotpcrel(TREG_R11, v->sym, v->c.i);
584 pic = is64_type(bt) ? 0x49 : 0x41;
586 #endif
588 /* XXX: incorrect if float reg to reg */
589 if (bt == VT_FLOAT) {
590 o(0x66);
591 o(pic);
592 o(0x7e0f); /* movd */
593 r = REG_VALUE(r);
594 } else if (bt == VT_DOUBLE) {
595 o(0x66);
596 o(pic);
597 o(0xd60f); /* movq */
598 r = REG_VALUE(r);
599 } else if (bt == VT_LDOUBLE) {
600 o(0xc0d9); /* fld %st(0) */
601 o(pic);
602 o(0xdb); /* fstpt */
603 r = 7;
604 } else {
605 if (bt == VT_SHORT)
606 o(0x66);
607 o(pic);
608 if (bt == VT_BYTE || bt == VT_BOOL)
609 orex(0, 0, r, 0x88);
610 else if (is64_type(bt))
611 op64 = 0x89;
612 else
613 orex(0, 0, r, 0x89);
615 if (pic) {
616 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
617 if (op64)
618 o(op64);
619 o(3 + (r << 3));
620 } else if (op64) {
621 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
622 gen_modrm64(op64, r, v->r, v->sym, fc);
623 } else if (fr != r) {
624 orex(1, fr, r, op64);
625 o(0xc0 + fr + r * 8); /* mov r, fr */
627 } else {
628 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
629 gen_modrm(r, v->r, v->sym, fc);
630 } else if (fr != r) {
631 o(0xc0 + fr + r * 8); /* mov r, fr */
636 /* 'is_jmp' is '1' if it is a jump */
637 static void gcall_or_jmp(int is_jmp)
639 int r;
640 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
641 ((vtop->r & VT_SYM) && (vtop->c.i-4) == (int)(vtop->c.i-4))) {
642 /* constant symbolic case -> simple relocation */
643 #ifdef TCC_TARGET_PE
644 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
645 #else
646 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
647 #endif
648 oad(0xe8 + is_jmp, 0); /* call/jmp im */
649 } else {
650 /* otherwise, indirect call */
651 r = TREG_R11;
652 load(r, vtop);
653 o(0x41); /* REX */
654 o(0xff); /* call/jmp *r */
655 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
659 #if defined(CONFIG_TCC_BCHECK)
661 static void gen_bounds_call(int v)
663 Sym *sym = external_helper_sym(v);
664 oad(0xe8, 0);
665 #ifdef TCC_TARGET_PE
666 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
667 #else
668 greloca(cur_text_section, sym, ind-4, R_X86_64_PLT32, -4);
669 #endif
672 #ifdef TCC_TARGET_PE
673 # define TREG_FASTCALL_1 TREG_RCX
674 #else
675 # define TREG_FASTCALL_1 TREG_RDI
676 #endif
678 static void gen_bounds_prolog(void)
680 /* leave some room for bound checking code */
681 func_bound_offset = lbounds_section->data_offset;
682 func_bound_ind = ind;
683 func_bound_add_epilog = 0;
684 o(0x0d8d48 + ((TREG_FASTCALL_1 == TREG_RDI) * 0x300000)); /*lbound section pointer */
685 gen_le32 (0);
686 oad(0xb8, 0); /* call to function */
689 static void gen_bounds_epilog(void)
691 addr_t saved_ind;
692 addr_t *bounds_ptr;
693 Sym *sym_data;
694 int offset_modified = func_bound_offset != lbounds_section->data_offset;
696 if (!offset_modified && !func_bound_add_epilog)
697 return;
699 /* add end of table info */
700 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
701 *bounds_ptr = 0;
703 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
704 func_bound_offset, lbounds_section->data_offset);
706 /* generate bound local allocation */
707 if (offset_modified) {
708 saved_ind = ind;
709 ind = func_bound_ind;
710 greloca(cur_text_section, sym_data, ind + 3, R_X86_64_PC32, -4);
711 ind = ind + 7;
712 gen_bounds_call(TOK___bound_local_new);
713 ind = saved_ind;
716 /* generate bound check local freeing */
717 o(0x5250); /* save returned value, if any */
718 o(0x20ec8348); /* sub $32,%rsp */
719 o(0x290f); /* movaps %xmm0,0x10(%rsp) */
720 o(0x102444);
721 o(0x240c290f); /* movaps %xmm1,(%rsp) */
722 greloca(cur_text_section, sym_data, ind + 3, R_X86_64_PC32, -4);
723 o(0x0d8d48 + ((TREG_FASTCALL_1 == TREG_RDI) * 0x300000)); /* lea xxx(%rip), %rcx/rdi */
724 gen_le32 (0);
725 gen_bounds_call(TOK___bound_local_delete);
726 o(0x280f); /* movaps 0x10(%rsp),%xmm0 */
727 o(0x102444);
728 o(0x240c280f); /* movaps (%rsp),%xmm1 */
729 o(0x20c48348); /* add $32,%rsp */
730 o(0x585a); /* restore returned value, if any */
732 #endif
734 #ifdef TCC_TARGET_PE
736 #define REGN 4
737 static const uint8_t arg_regs[REGN] = {
738 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
741 /* Prepare arguments in R10 and R11 rather than RCX and RDX
742 because gv() will not ever use these */
743 static int arg_prepare_reg(int idx) {
744 if (idx == 0 || idx == 1)
745 /* idx=0: r10, idx=1: r11 */
746 return idx + 10;
747 else
748 return idx >= 0 && idx < REGN ? arg_regs[idx] : 0;
751 /* Generate function call. The function address is pushed first, then
752 all the parameters in call order. This functions pops all the
753 parameters and the function address. */
755 static void gen_offs_sp(int b, int r, int d)
757 orex(1,0,r & 0x100 ? 0 : r, b);
758 if (d == (char)d) {
759 o(0x2444 | (REG_VALUE(r) << 3));
760 g(d);
761 } else {
762 o(0x2484 | (REG_VALUE(r) << 3));
763 gen_le32(d);
767 static int using_regs(int size)
769 return !(size > 8 || (size & (size - 1)));
772 /* Return the number of registers needed to return the struct, or 0 if
773 returning via struct pointer. */
774 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
776 int size, align;
777 *ret_align = 1; // Never have to re-align return values for x86-64
778 *regsize = 8;
779 size = type_size(vt, &align);
780 if (!using_regs(size))
781 return 0;
782 if (size == 8)
783 ret->t = VT_LLONG;
784 else if (size == 4)
785 ret->t = VT_INT;
786 else if (size == 2)
787 ret->t = VT_SHORT;
788 else
789 ret->t = VT_BYTE;
790 ret->ref = NULL;
791 return 1;
794 static int is_sse_float(int t) {
795 int bt;
796 bt = t & VT_BTYPE;
797 return bt == VT_DOUBLE || bt == VT_FLOAT;
800 static int gfunc_arg_size(CType *type) {
801 int align;
802 if (type->t & (VT_ARRAY|VT_BITFIELD))
803 return 8;
804 return type_size(type, &align);
807 void gfunc_call(int nb_args)
809 int size, r, args_size, i, d, bt, struct_size;
810 int arg;
812 #ifdef CONFIG_TCC_BCHECK
813 if (tcc_state->do_bounds_check)
814 gbound_args(nb_args);
815 #endif
817 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
818 arg = nb_args;
820 /* for struct arguments, we need to call memcpy and the function
821 call breaks register passing arguments we are preparing.
822 So, we process arguments which will be passed by stack first. */
823 struct_size = args_size;
824 for(i = 0; i < nb_args; i++) {
825 SValue *sv;
827 --arg;
828 sv = &vtop[-i];
829 bt = (sv->type.t & VT_BTYPE);
830 size = gfunc_arg_size(&sv->type);
832 if (using_regs(size))
833 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
835 if (bt == VT_STRUCT) {
836 /* align to stack align size */
837 size = (size + 15) & ~15;
838 /* generate structure store */
839 r = get_reg(RC_INT);
840 gen_offs_sp(0x8d, r, struct_size);
841 struct_size += size;
843 /* generate memcpy call */
844 vset(&sv->type, r | VT_LVAL, 0);
845 vpushv(sv);
846 vstore();
847 --vtop;
848 } else if (bt == VT_LDOUBLE) {
849 gv(RC_ST0);
850 gen_offs_sp(0xdb, 0x107, struct_size);
851 struct_size += 16;
855 if (func_scratch < struct_size)
856 func_scratch = struct_size;
858 arg = nb_args;
859 struct_size = args_size;
861 for(i = 0; i < nb_args; i++) {
862 --arg;
863 bt = (vtop->type.t & VT_BTYPE);
865 size = gfunc_arg_size(&vtop->type);
866 if (!using_regs(size)) {
867 /* align to stack align size */
868 size = (size + 15) & ~15;
869 if (arg >= REGN) {
870 d = get_reg(RC_INT);
871 gen_offs_sp(0x8d, d, struct_size);
872 gen_offs_sp(0x89, d, arg*8);
873 } else {
874 d = arg_prepare_reg(arg);
875 gen_offs_sp(0x8d, d, struct_size);
877 struct_size += size;
878 } else {
879 if (is_sse_float(vtop->type.t)) {
880 if (tcc_state->nosse)
881 tcc_error("SSE disabled");
882 if (arg >= REGN) {
883 gv(RC_XMM0);
884 /* movq %xmm0, j*8(%rsp) */
885 gen_offs_sp(0xd60f66, 0x100, arg*8);
886 } else {
887 /* Load directly to xmmN register */
888 gv(RC_XMM0 << arg);
889 d = arg_prepare_reg(arg);
890 /* mov %xmmN, %rxx */
891 o(0x66);
892 orex(1,d,0, 0x7e0f);
893 o(0xc0 + arg*8 + REG_VALUE(d));
895 } else {
896 if (bt == VT_STRUCT) {
897 vtop->type.ref = NULL;
898 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
899 : size > 1 ? VT_SHORT : VT_BYTE;
902 r = gv(RC_INT);
903 if (arg >= REGN) {
904 gen_offs_sp(0x89, r, arg*8);
905 } else {
906 d = arg_prepare_reg(arg);
907 orex(1,d,r,0x89); /* mov */
908 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
912 vtop--;
914 save_regs(0);
915 /* Copy R10 and R11 into RCX and RDX, respectively */
916 if (nb_args > 0) {
917 o(0xd1894c); /* mov %r10, %rcx */
918 if (nb_args > 1) {
919 o(0xda894c); /* mov %r11, %rdx */
923 gcall_or_jmp(0);
925 if ((vtop->r & VT_SYM) && vtop->sym->v == TOK_alloca) {
926 /* need to add the "func_scratch" area after alloca */
927 o(0x48); func_alloca = oad(0x05, func_alloca); /* add $NN, %rax */
928 #ifdef CONFIG_TCC_BCHECK
929 if (tcc_state->do_bounds_check)
930 gen_bounds_call(TOK___bound_alloca_nr); /* new region */
931 #endif
933 vtop--;
937 #define FUNC_PROLOG_SIZE 11
939 /* generate function prolog of type 't' */
940 void gfunc_prolog(Sym *func_sym)
942 CType *func_type = &func_sym->type;
943 int addr, reg_param_index, bt, size;
944 Sym *sym;
945 CType *type;
947 func_ret_sub = 0;
948 func_scratch = 32;
949 func_alloca = 0;
950 loc = 0;
952 addr = PTR_SIZE * 2;
953 ind += FUNC_PROLOG_SIZE;
954 func_sub_sp_offset = ind;
955 reg_param_index = 0;
957 sym = func_type->ref;
959 /* if the function returns a structure, then add an
960 implicit pointer parameter */
961 size = gfunc_arg_size(&func_vt);
962 if (!using_regs(size)) {
963 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
964 func_vc = addr;
965 reg_param_index++;
966 addr += 8;
969 /* define parameters */
970 while ((sym = sym->next) != NULL) {
971 type = &sym->type;
972 bt = type->t & VT_BTYPE;
973 size = gfunc_arg_size(type);
974 if (!using_regs(size)) {
975 if (reg_param_index < REGN) {
976 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
978 sym_push(sym->v & ~SYM_FIELD, type,
979 VT_LLOCAL | VT_LVAL, addr);
980 } else {
981 if (reg_param_index < REGN) {
982 /* save arguments passed by register */
983 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
984 if (tcc_state->nosse)
985 tcc_error("SSE disabled");
986 o(0xd60f66); /* movq */
987 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
988 } else {
989 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
992 sym_push(sym->v & ~SYM_FIELD, type,
993 VT_LOCAL | VT_LVAL, addr);
995 addr += 8;
996 reg_param_index++;
999 while (reg_param_index < REGN) {
1000 if (func_var) {
1001 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
1002 addr += 8;
1004 reg_param_index++;
1006 #ifdef CONFIG_TCC_BCHECK
1007 if (tcc_state->do_bounds_check)
1008 gen_bounds_prolog();
1009 #endif
1012 /* generate function epilog */
1013 void gfunc_epilog(void)
1015 int v, saved_ind;
1017 /* align local size to word & save local variables */
1018 func_scratch = (func_scratch + 15) & -16;
1019 loc = (loc & -16) - func_scratch;
1021 #ifdef CONFIG_TCC_BCHECK
1022 if (tcc_state->do_bounds_check)
1023 gen_bounds_epilog();
1024 #endif
1026 o(0xc9); /* leave */
1027 if (func_ret_sub == 0) {
1028 o(0xc3); /* ret */
1029 } else {
1030 o(0xc2); /* ret n */
1031 g(func_ret_sub);
1032 g(func_ret_sub >> 8);
1035 saved_ind = ind;
1036 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1037 v = -loc;
1039 if (v >= 4096) {
1040 Sym *sym = external_helper_sym(TOK___chkstk);
1041 oad(0xb8, v); /* mov stacksize, %eax */
1042 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1043 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
1044 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1045 } else {
1046 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1047 o(0xec8148); /* sub rsp, stacksize */
1048 gen_le32(v);
1051 /* add the "func_scratch" area after each alloca seen */
1052 gsym_addr(func_alloca, -func_scratch);
1054 cur_text_section->data_offset = saved_ind;
1055 pe_add_unwind_data(ind, saved_ind, v);
1056 ind = cur_text_section->data_offset;
1059 #else
1061 static void gadd_sp(int val)
1063 if (val == (char)val) {
1064 o(0xc48348);
1065 g(val);
1066 } else {
1067 oad(0xc48148, val); /* add $xxx, %rsp */
1071 typedef enum X86_64_Mode {
1072 x86_64_mode_none,
1073 x86_64_mode_memory,
1074 x86_64_mode_integer,
1075 x86_64_mode_sse,
1076 x86_64_mode_x87
1077 } X86_64_Mode;
1079 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1081 if (a == b)
1082 return a;
1083 else if (a == x86_64_mode_none)
1084 return b;
1085 else if (b == x86_64_mode_none)
1086 return a;
1087 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1088 return x86_64_mode_memory;
1089 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1090 return x86_64_mode_integer;
1091 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1092 return x86_64_mode_memory;
1093 else
1094 return x86_64_mode_sse;
1097 static X86_64_Mode classify_x86_64_inner(CType *ty)
1099 X86_64_Mode mode;
1100 Sym *f;
1102 switch (ty->t & VT_BTYPE) {
1103 case VT_VOID: return x86_64_mode_none;
1105 case VT_INT:
1106 case VT_BYTE:
1107 case VT_SHORT:
1108 case VT_LLONG:
1109 case VT_BOOL:
1110 case VT_PTR:
1111 case VT_FUNC:
1112 return x86_64_mode_integer;
1114 case VT_FLOAT:
1115 case VT_DOUBLE: return x86_64_mode_sse;
1117 case VT_LDOUBLE: return x86_64_mode_x87;
1119 case VT_STRUCT:
1120 f = ty->ref;
1122 mode = x86_64_mode_none;
1123 for (f = f->next; f; f = f->next)
1124 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1126 return mode;
1128 assert(0);
1129 return 0;
1132 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1134 X86_64_Mode mode;
1135 int size, align, ret_t = 0;
1137 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1138 *psize = 8;
1139 *palign = 8;
1140 *reg_count = 1;
1141 ret_t = ty->t;
1142 mode = x86_64_mode_integer;
1143 } else {
1144 size = type_size(ty, &align);
1145 *psize = (size + 7) & ~7;
1146 *palign = (align + 7) & ~7;
1148 if (size > 16) {
1149 mode = x86_64_mode_memory;
1150 } else {
1151 mode = classify_x86_64_inner(ty);
1152 switch (mode) {
1153 case x86_64_mode_integer:
1154 if (size > 8) {
1155 *reg_count = 2;
1156 ret_t = VT_QLONG;
1157 } else {
1158 *reg_count = 1;
1159 if (size > 4)
1160 ret_t = VT_LLONG;
1161 else if (size > 2)
1162 ret_t = VT_INT;
1163 else if (size > 1)
1164 ret_t = VT_SHORT;
1165 else
1166 ret_t = VT_BYTE;
1167 if ((ty->t & VT_BTYPE) == VT_STRUCT || (ty->t & VT_UNSIGNED))
1168 ret_t |= VT_UNSIGNED;
1170 break;
1172 case x86_64_mode_x87:
1173 *reg_count = 1;
1174 ret_t = VT_LDOUBLE;
1175 break;
1177 case x86_64_mode_sse:
1178 if (size > 8) {
1179 *reg_count = 2;
1180 ret_t = VT_QFLOAT;
1181 } else {
1182 *reg_count = 1;
1183 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1185 break;
1186 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1191 if (ret) {
1192 ret->ref = NULL;
1193 ret->t = ret_t;
1196 return mode;
1199 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1201 /* This definition must be synced with stdarg.h */
1202 enum __va_arg_type {
1203 __va_gen_reg, __va_float_reg, __va_stack
1205 int size, align, reg_count;
1206 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1207 switch (mode) {
1208 default: return __va_stack;
1209 case x86_64_mode_integer: return __va_gen_reg;
1210 case x86_64_mode_sse: return __va_float_reg;
1214 /* Return the number of registers needed to return the struct, or 0 if
1215 returning via struct pointer. */
1216 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1218 int size, align, reg_count;
1219 *ret_align = 1; // Never have to re-align return values for x86-64
1220 *regsize = 8;
1221 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1224 #define REGN 6
1225 static const uint8_t arg_regs[REGN] = {
1226 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1229 static int arg_prepare_reg(int idx) {
1230 if (idx == 2 || idx == 3)
1231 /* idx=2: r10, idx=3: r11 */
1232 return idx + 8;
1233 else
1234 return idx >= 0 && idx < REGN ? arg_regs[idx] : 0;
1237 /* Generate function call. The function address is pushed first, then
1238 all the parameters in call order. This functions pops all the
1239 parameters and the function address. */
1240 void gfunc_call(int nb_args)
1242 X86_64_Mode mode;
1243 CType type;
1244 int size, align, r, args_size, stack_adjust, i, reg_count, k;
1245 int nb_reg_args = 0;
1246 int nb_sse_args = 0;
1247 int sse_reg, gen_reg;
1248 char *onstack = tcc_malloc((nb_args + 1) * sizeof (char));
1250 #ifdef CONFIG_TCC_BCHECK
1251 if (tcc_state->do_bounds_check)
1252 gbound_args(nb_args);
1253 #endif
1255 /* calculate the number of integer/float register arguments, remember
1256 arguments to be passed via stack (in onstack[]), and also remember
1257 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1258 to be done in a left-to-right pass over arguments. */
1259 stack_adjust = 0;
1260 for(i = nb_args - 1; i >= 0; i--) {
1261 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1262 if (size == 0) continue;
1263 if (mode == x86_64_mode_sse && nb_sse_args + reg_count <= 8) {
1264 nb_sse_args += reg_count;
1265 onstack[i] = 0;
1266 } else if (mode == x86_64_mode_integer && nb_reg_args + reg_count <= REGN) {
1267 nb_reg_args += reg_count;
1268 onstack[i] = 0;
1269 } else if (mode == x86_64_mode_none) {
1270 onstack[i] = 0;
1271 } else {
1272 if (align == 16 && (stack_adjust &= 15)) {
1273 onstack[i] = 2;
1274 stack_adjust = 0;
1275 } else
1276 onstack[i] = 1;
1277 stack_adjust += size;
1281 if (nb_sse_args && tcc_state->nosse)
1282 tcc_error("SSE disabled but floating point arguments passed");
1284 /* fetch cpu flag before generating any code */
1285 if ((vtop->r & VT_VALMASK) == VT_CMP)
1286 gv(RC_INT);
1288 /* for struct arguments, we need to call memcpy and the function
1289 call breaks register passing arguments we are preparing.
1290 So, we process arguments which will be passed by stack first. */
1291 gen_reg = nb_reg_args;
1292 sse_reg = nb_sse_args;
1293 args_size = 0;
1294 stack_adjust &= 15;
1295 for (i = k = 0; i < nb_args;) {
1296 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1297 if (size) {
1298 if (!onstack[i + k]) {
1299 ++i;
1300 continue;
1302 /* Possibly adjust stack to align SSE boundary. We're processing
1303 args from right to left while allocating happens left to right
1304 (stack grows down), so the adjustment needs to happen _after_
1305 an argument that requires it. */
1306 if (stack_adjust) {
1307 o(0x50); /* push %rax; aka sub $8,%rsp */
1308 args_size += 8;
1309 stack_adjust = 0;
1311 if (onstack[i + k] == 2)
1312 stack_adjust = 1;
1315 vrotb(i+1);
1317 switch (vtop->type.t & VT_BTYPE) {
1318 case VT_STRUCT:
1319 /* allocate the necessary size on stack */
1320 o(0x48);
1321 oad(0xec81, size); /* sub $xxx, %rsp */
1322 /* generate structure store */
1323 r = get_reg(RC_INT);
1324 orex(1, r, 0, 0x89); /* mov %rsp, r */
1325 o(0xe0 + REG_VALUE(r));
1326 vset(&vtop->type, r | VT_LVAL, 0);
1327 vswap();
1328 /* keep stack aligned for (__bound_)memmove call */
1329 o(0x10ec8348); /* sub $16,%rsp */
1330 o(0xf0e48348); /* and $-16,%rsp */
1331 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r (last %rsp) */
1332 o(0x08ec8348); /* sub $8,%rsp */
1333 vstore();
1334 o(0x08c48348); /* add $8,%rsp */
1335 o(0x5c); /* pop %rsp */
1336 break;
1338 case VT_LDOUBLE:
1339 gv(RC_ST0);
1340 oad(0xec8148, size); /* sub $xxx, %rsp */
1341 o(0x7cdb); /* fstpt 0(%rsp) */
1342 g(0x24);
1343 g(0x00);
1344 break;
1346 case VT_FLOAT:
1347 case VT_DOUBLE:
1348 assert(mode == x86_64_mode_sse);
1349 r = gv(RC_FLOAT);
1350 o(0x50); /* push $rax */
1351 /* movq %xmmN, (%rsp) */
1352 o(0xd60f66);
1353 o(0x04 + REG_VALUE(r)*8);
1354 o(0x24);
1355 break;
1357 default:
1358 assert(mode == x86_64_mode_integer);
1359 /* simple type */
1360 /* XXX: implicit cast ? */
1361 r = gv(RC_INT);
1362 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1363 break;
1365 args_size += size;
1367 vpop();
1368 --nb_args;
1369 k++;
1372 tcc_free(onstack);
1374 /* XXX This should be superfluous. */
1375 save_regs(0); /* save used temporary registers */
1377 /* then, we prepare register passing arguments.
1378 Note that we cannot set RDX and RCX in this loop because gv()
1379 may break these temporary registers. Let's use R10 and R11
1380 instead of them */
1381 assert(gen_reg <= REGN);
1382 assert(sse_reg <= 8);
1383 for(i = 0; i < nb_args; i++) {
1384 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1385 if (size == 0) continue;
1386 /* Alter stack entry type so that gv() knows how to treat it */
1387 vtop->type = type;
1388 if (mode == x86_64_mode_sse) {
1389 if (reg_count == 2) {
1390 sse_reg -= 2;
1391 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1392 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1393 /* movaps %xmm1, %xmmN */
1394 o(0x280f);
1395 o(0xc1 + ((sse_reg+1) << 3));
1396 /* movaps %xmm0, %xmmN */
1397 o(0x280f);
1398 o(0xc0 + (sse_reg << 3));
1400 } else {
1401 assert(reg_count == 1);
1402 --sse_reg;
1403 /* Load directly to register */
1404 gv(RC_XMM0 << sse_reg);
1406 } else if (mode == x86_64_mode_integer) {
1407 /* simple type */
1408 /* XXX: implicit cast ? */
1409 int d;
1410 gen_reg -= reg_count;
1411 r = gv(RC_INT);
1412 d = arg_prepare_reg(gen_reg);
1413 orex(1,d,r,0x89); /* mov */
1414 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1415 if (reg_count == 2) {
1416 d = arg_prepare_reg(gen_reg+1);
1417 orex(1,d,vtop->r2,0x89); /* mov */
1418 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1421 vtop--;
1423 assert(gen_reg == 0);
1424 assert(sse_reg == 0);
1426 /* We shouldn't have many operands on the stack anymore, but the
1427 call address itself is still there, and it might be in %eax
1428 (or edx/ecx) currently, which the below writes would clobber.
1429 So evict all remaining operands here. */
1430 save_regs(0);
1432 /* Copy R10 and R11 into RDX and RCX, respectively */
1433 if (nb_reg_args > 2) {
1434 o(0xd2894c); /* mov %r10, %rdx */
1435 if (nb_reg_args > 3) {
1436 o(0xd9894c); /* mov %r11, %rcx */
1440 if (vtop->type.ref->f.func_type != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1441 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1442 gcall_or_jmp(0);
1443 if (args_size)
1444 gadd_sp(args_size);
1445 vtop--;
1448 #define FUNC_PROLOG_SIZE 11
1450 static void push_arg_reg(int i) {
1451 loc -= 8;
1452 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1455 /* generate function prolog of type 't' */
1456 void gfunc_prolog(Sym *func_sym)
1458 CType *func_type = &func_sym->type;
1459 X86_64_Mode mode, ret_mode;
1460 int i, addr, align, size, reg_count;
1461 int param_addr = 0, reg_param_index, sse_param_index;
1462 Sym *sym;
1463 CType *type;
1465 sym = func_type->ref;
1466 addr = PTR_SIZE * 2;
1467 loc = 0;
1468 ind += FUNC_PROLOG_SIZE;
1469 func_sub_sp_offset = ind;
1470 func_ret_sub = 0;
1471 ret_mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1473 if (func_var) {
1474 int seen_reg_num, seen_sse_num, seen_stack_size;
1475 seen_reg_num = ret_mode == x86_64_mode_memory;
1476 seen_sse_num = 0;
1477 /* frame pointer and return address */
1478 seen_stack_size = PTR_SIZE * 2;
1479 /* count the number of seen parameters */
1480 sym = func_type->ref;
1481 while ((sym = sym->next) != NULL) {
1482 type = &sym->type;
1483 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1484 switch (mode) {
1485 default:
1486 stack_arg:
1487 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1488 break;
1490 case x86_64_mode_integer:
1491 if (seen_reg_num + reg_count > REGN)
1492 goto stack_arg;
1493 seen_reg_num += reg_count;
1494 break;
1496 case x86_64_mode_sse:
1497 if (seen_sse_num + reg_count > 8)
1498 goto stack_arg;
1499 seen_sse_num += reg_count;
1500 break;
1504 loc -= 24;
1505 /* movl $0x????????, -0x18(%rbp) */
1506 o(0xe845c7);
1507 gen_le32(seen_reg_num * 8);
1508 /* movl $0x????????, -0x14(%rbp) */
1509 o(0xec45c7);
1510 gen_le32(seen_sse_num * 16 + 48);
1511 /* leaq $0x????????, %r11 */
1512 o(0x9d8d4c);
1513 gen_le32(seen_stack_size);
1514 /* movq %r11, -0x10(%rbp) */
1515 o(0xf05d894c);
1516 /* leaq $-192(%rbp), %r11 */
1517 o(0x9d8d4c);
1518 gen_le32(-176 - 24);
1519 /* movq %r11, -0x8(%rbp) */
1520 o(0xf85d894c);
1522 /* save all register passing arguments */
1523 for (i = 0; i < 8; i++) {
1524 loc -= 16;
1525 if (!tcc_state->nosse) {
1526 o(0xd60f66); /* movq */
1527 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1529 /* movq $0, loc+8(%rbp) */
1530 o(0x85c748);
1531 gen_le32(loc + 8);
1532 gen_le32(0);
1534 for (i = 0; i < REGN; i++) {
1535 push_arg_reg(REGN-1-i);
1539 sym = func_type->ref;
1540 reg_param_index = 0;
1541 sse_param_index = 0;
1543 /* if the function returns a structure, then add an
1544 implicit pointer parameter */
1545 if (ret_mode == x86_64_mode_memory) {
1546 push_arg_reg(reg_param_index);
1547 func_vc = loc;
1548 reg_param_index++;
1550 /* define parameters */
1551 while ((sym = sym->next) != NULL) {
1552 type = &sym->type;
1553 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1554 switch (mode) {
1555 case x86_64_mode_sse:
1556 if (tcc_state->nosse)
1557 tcc_error("SSE disabled but floating point arguments used");
1558 if (sse_param_index + reg_count <= 8) {
1559 /* save arguments passed by register */
1560 loc -= reg_count * 8;
1561 param_addr = loc;
1562 for (i = 0; i < reg_count; ++i) {
1563 o(0xd60f66); /* movq */
1564 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1565 ++sse_param_index;
1567 } else {
1568 addr = (addr + align - 1) & -align;
1569 param_addr = addr;
1570 addr += size;
1572 break;
1574 case x86_64_mode_memory:
1575 case x86_64_mode_x87:
1576 addr = (addr + align - 1) & -align;
1577 param_addr = addr;
1578 addr += size;
1579 break;
1581 case x86_64_mode_integer: {
1582 if (reg_param_index + reg_count <= REGN) {
1583 /* save arguments passed by register */
1584 loc -= reg_count * 8;
1585 param_addr = loc;
1586 for (i = 0; i < reg_count; ++i) {
1587 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1588 ++reg_param_index;
1590 } else {
1591 addr = (addr + align - 1) & -align;
1592 param_addr = addr;
1593 addr += size;
1595 break;
1597 default: break; /* nothing to be done for x86_64_mode_none */
1599 sym_push(sym->v & ~SYM_FIELD, type,
1600 VT_LOCAL | VT_LVAL, param_addr);
1603 #ifdef CONFIG_TCC_BCHECK
1604 if (tcc_state->do_bounds_check)
1605 gen_bounds_prolog();
1606 #endif
1609 /* generate function epilog */
1610 void gfunc_epilog(void)
1612 int v, saved_ind;
1614 #ifdef CONFIG_TCC_BCHECK
1615 if (tcc_state->do_bounds_check)
1616 gen_bounds_epilog();
1617 #endif
1618 o(0xc9); /* leave */
1619 if (func_ret_sub == 0) {
1620 o(0xc3); /* ret */
1621 } else {
1622 o(0xc2); /* ret n */
1623 g(func_ret_sub);
1624 g(func_ret_sub >> 8);
1626 /* align local size to word & save local variables */
1627 v = (-loc + 15) & -16;
1628 saved_ind = ind;
1629 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1630 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1631 o(0xec8148); /* sub rsp, stacksize */
1632 gen_le32(v);
1633 ind = saved_ind;
1636 #endif /* not PE */
1638 ST_FUNC void gen_fill_nops(int bytes)
1640 while (bytes--)
1641 g(0x90);
1644 /* generate a jump to a label */
1645 int gjmp(int t)
1647 return gjmp2(0xe9, t);
1650 /* generate a jump to a fixed address */
1651 void gjmp_addr(int a)
1653 int r;
1654 r = a - ind - 2;
1655 if (r == (char)r) {
1656 g(0xeb);
1657 g(r);
1658 } else {
1659 oad(0xe9, a - ind - 5);
1663 ST_FUNC int gjmp_append(int n, int t)
1665 void *p;
1666 /* insert vtop->c jump list in t */
1667 if (n) {
1668 uint32_t n1 = n, n2;
1669 while ((n2 = read32le(p = cur_text_section->data + n1)))
1670 n1 = n2;
1671 write32le(p, t);
1672 t = n;
1674 return t;
1677 ST_FUNC int gjmp_cond(int op, int t)
1679 if (op & 0x100)
1681 /* This was a float compare. If the parity flag is set
1682 the result was unordered. For anything except != this
1683 means false and we don't jump (anding both conditions).
1684 For != this means true (oring both).
1685 Take care about inverting the test. We need to jump
1686 to our target if the result was unordered and test wasn't NE,
1687 otherwise if unordered we don't want to jump. */
1688 int v = vtop->cmp_r;
1689 op &= ~0x100;
1690 if (op ^ v ^ (v != TOK_NE))
1691 o(0x067a); /* jp +6 */
1692 else
1694 g(0x0f);
1695 t = gjmp2(0x8a, t); /* jp t */
1698 g(0x0f);
1699 t = gjmp2(op - 16, t);
1700 return t;
1703 /* generate an integer binary operation */
1704 void gen_opi(int op)
1706 int r, fr, opc, c;
1707 int ll, uu, cc;
1709 ll = is64_type(vtop[-1].type.t);
1710 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1711 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1713 switch(op) {
1714 case '+':
1715 case TOK_ADDC1: /* add with carry generation */
1716 opc = 0;
1717 gen_op8:
1718 if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
1719 /* constant case */
1720 vswap();
1721 r = gv(RC_INT);
1722 vswap();
1723 c = vtop->c.i;
1724 if (c == (char)c) {
1725 /* XXX: generate inc and dec for smaller code ? */
1726 orex(ll, r, 0, 0x83);
1727 o(0xc0 | (opc << 3) | REG_VALUE(r));
1728 g(c);
1729 } else {
1730 orex(ll, r, 0, 0x81);
1731 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1733 } else {
1734 gv2(RC_INT, RC_INT);
1735 r = vtop[-1].r;
1736 fr = vtop[0].r;
1737 orex(ll, r, fr, (opc << 3) | 0x01);
1738 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1740 vtop--;
1741 if (op >= TOK_ULT && op <= TOK_GT)
1742 vset_VT_CMP(op);
1743 break;
1744 case '-':
1745 case TOK_SUBC1: /* sub with carry generation */
1746 opc = 5;
1747 goto gen_op8;
1748 case TOK_ADDC2: /* add with carry use */
1749 opc = 2;
1750 goto gen_op8;
1751 case TOK_SUBC2: /* sub with carry use */
1752 opc = 3;
1753 goto gen_op8;
1754 case '&':
1755 opc = 4;
1756 goto gen_op8;
1757 case '^':
1758 opc = 6;
1759 goto gen_op8;
1760 case '|':
1761 opc = 1;
1762 goto gen_op8;
1763 case '*':
1764 gv2(RC_INT, RC_INT);
1765 r = vtop[-1].r;
1766 fr = vtop[0].r;
1767 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1768 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1769 vtop--;
1770 break;
1771 case TOK_SHL:
1772 opc = 4;
1773 goto gen_shift;
1774 case TOK_SHR:
1775 opc = 5;
1776 goto gen_shift;
1777 case TOK_SAR:
1778 opc = 7;
1779 gen_shift:
1780 opc = 0xc0 | (opc << 3);
1781 if (cc) {
1782 /* constant case */
1783 vswap();
1784 r = gv(RC_INT);
1785 vswap();
1786 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1787 o(opc | REG_VALUE(r));
1788 g(vtop->c.i & (ll ? 63 : 31));
1789 } else {
1790 /* we generate the shift in ecx */
1791 gv2(RC_INT, RC_RCX);
1792 r = vtop[-1].r;
1793 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1794 o(opc | REG_VALUE(r));
1796 vtop--;
1797 break;
1798 case TOK_UDIV:
1799 case TOK_UMOD:
1800 uu = 1;
1801 goto divmod;
1802 case '/':
1803 case '%':
1804 case TOK_PDIV:
1805 uu = 0;
1806 divmod:
1807 /* first operand must be in eax */
1808 /* XXX: need better constraint for second operand */
1809 gv2(RC_RAX, RC_RCX);
1810 r = vtop[-1].r;
1811 fr = vtop[0].r;
1812 vtop--;
1813 save_reg(TREG_RDX);
1814 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1815 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1816 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1817 if (op == '%' || op == TOK_UMOD)
1818 r = TREG_RDX;
1819 else
1820 r = TREG_RAX;
1821 vtop->r = r;
1822 break;
1823 default:
1824 opc = 7;
1825 goto gen_op8;
1829 void gen_opl(int op)
1831 gen_opi(op);
1834 void vpush_const(int t, int v)
1836 CType ctype = { t | VT_CONSTANT, 0 };
1837 vpushsym(&ctype, external_global_sym(v, &ctype));
1838 vtop->r |= VT_LVAL;
1841 /* generate a floating point operation 'v = t1 op t2' instruction. The
1842 two operands are guaranteed to have the same floating point type */
1843 /* XXX: need to use ST1 too */
1844 void gen_opf(int op)
1846 int a, ft, fc, swapped, r;
1847 int bt = vtop->type.t & VT_BTYPE;
1848 int float_type = bt == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1850 if (op == TOK_NEG) { /* unary minus */
1851 gv(float_type);
1852 if (float_type == RC_ST0) {
1853 o(0xe0d9); /* fchs */
1854 } else {
1855 /* -0.0, in libtcc1.c */
1856 vpush_const(bt, bt == VT_FLOAT ? TOK___mzerosf : TOK___mzerodf);
1857 gv(RC_FLOAT);
1858 if (bt == VT_DOUBLE)
1859 o(0x66);
1860 /* xorp[sd] %xmm1, %xmm0 */
1861 o(0xc0570f | (REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8) << 16);
1862 vtop--;
1864 return;
1867 /* convert constants to memory references */
1868 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1869 vswap();
1870 gv(float_type);
1871 vswap();
1873 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1874 gv(float_type);
1876 /* must put at least one value in the floating point register */
1877 if ((vtop[-1].r & VT_LVAL) &&
1878 (vtop[0].r & VT_LVAL)) {
1879 vswap();
1880 gv(float_type);
1881 vswap();
1883 swapped = 0;
1884 /* swap the stack if needed so that t1 is the register and t2 is
1885 the memory reference */
1886 if (vtop[-1].r & VT_LVAL) {
1887 vswap();
1888 swapped = 1;
1890 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1891 if (op >= TOK_ULT && op <= TOK_GT) {
1892 /* load on stack second operand */
1893 load(TREG_ST0, vtop);
1894 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1895 if (op == TOK_GE || op == TOK_GT)
1896 swapped = !swapped;
1897 else if (op == TOK_EQ || op == TOK_NE)
1898 swapped = 0;
1899 if (swapped)
1900 o(0xc9d9); /* fxch %st(1) */
1901 if (op == TOK_EQ || op == TOK_NE)
1902 o(0xe9da); /* fucompp */
1903 else
1904 o(0xd9de); /* fcompp */
1905 o(0xe0df); /* fnstsw %ax */
1906 if (op == TOK_EQ) {
1907 o(0x45e480); /* and $0x45, %ah */
1908 o(0x40fC80); /* cmp $0x40, %ah */
1909 } else if (op == TOK_NE) {
1910 o(0x45e480); /* and $0x45, %ah */
1911 o(0x40f480); /* xor $0x40, %ah */
1912 op = TOK_NE;
1913 } else if (op == TOK_GE || op == TOK_LE) {
1914 o(0x05c4f6); /* test $0x05, %ah */
1915 op = TOK_EQ;
1916 } else {
1917 o(0x45c4f6); /* test $0x45, %ah */
1918 op = TOK_EQ;
1920 vtop--;
1921 vset_VT_CMP(op);
1922 } else {
1923 /* no memory reference possible for long double operations */
1924 load(TREG_ST0, vtop);
1925 swapped = !swapped;
1927 switch(op) {
1928 default:
1929 case '+':
1930 a = 0;
1931 break;
1932 case '-':
1933 a = 4;
1934 if (swapped)
1935 a++;
1936 break;
1937 case '*':
1938 a = 1;
1939 break;
1940 case '/':
1941 a = 6;
1942 if (swapped)
1943 a++;
1944 break;
1946 ft = vtop->type.t;
1947 fc = vtop->c.i;
1948 o(0xde); /* fxxxp %st, %st(1) */
1949 o(0xc1 + (a << 3));
1950 vtop--;
1952 } else {
1953 if (op >= TOK_ULT && op <= TOK_GT) {
1954 /* if saved lvalue, then we must reload it */
1955 r = vtop->r;
1956 fc = vtop->c.i;
1957 if ((r & VT_VALMASK) == VT_LLOCAL) {
1958 SValue v1;
1959 r = get_reg(RC_INT);
1960 v1.type.t = VT_PTR;
1961 v1.r = VT_LOCAL | VT_LVAL;
1962 v1.c.i = fc;
1963 load(r, &v1);
1964 fc = 0;
1965 vtop->r = r = r | VT_LVAL;
1968 if (op == TOK_EQ || op == TOK_NE) {
1969 swapped = 0;
1970 } else {
1971 if (op == TOK_LE || op == TOK_LT)
1972 swapped = !swapped;
1973 if (op == TOK_LE || op == TOK_GE) {
1974 op = 0x93; /* setae */
1975 } else {
1976 op = 0x97; /* seta */
1980 if (swapped) {
1981 gv(RC_FLOAT);
1982 vswap();
1984 assert(!(vtop[-1].r & VT_LVAL));
1986 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1987 o(0x66);
1988 if (op == TOK_EQ || op == TOK_NE)
1989 o(0x2e0f); /* ucomisd */
1990 else
1991 o(0x2f0f); /* comisd */
1993 if (vtop->r & VT_LVAL) {
1994 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
1995 } else {
1996 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
1999 vtop--;
2000 vset_VT_CMP(op | 0x100);
2001 vtop->cmp_r = op;
2002 } else {
2003 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2004 switch(op) {
2005 default:
2006 case '+':
2007 a = 0;
2008 break;
2009 case '-':
2010 a = 4;
2011 break;
2012 case '*':
2013 a = 1;
2014 break;
2015 case '/':
2016 a = 6;
2017 break;
2019 ft = vtop->type.t;
2020 fc = vtop->c.i;
2021 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2023 r = vtop->r;
2024 /* if saved lvalue, then we must reload it */
2025 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2026 SValue v1;
2027 r = get_reg(RC_INT);
2028 v1.type.t = VT_PTR;
2029 v1.r = VT_LOCAL | VT_LVAL;
2030 v1.c.i = fc;
2031 load(r, &v1);
2032 fc = 0;
2033 vtop->r = r = r | VT_LVAL;
2036 assert(!(vtop[-1].r & VT_LVAL));
2037 if (swapped) {
2038 assert(vtop->r & VT_LVAL);
2039 gv(RC_FLOAT);
2040 vswap();
2043 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2044 o(0xf2);
2045 } else {
2046 o(0xf3);
2048 o(0x0f);
2049 o(0x58 + a);
2051 if (vtop->r & VT_LVAL) {
2052 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2053 } else {
2054 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2057 vtop--;
2062 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2063 and 'long long' cases. */
2064 void gen_cvt_itof(int t)
2066 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2067 save_reg(TREG_ST0);
2068 gv(RC_INT);
2069 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2070 /* signed long long to float/double/long double (unsigned case
2071 is handled generically) */
2072 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2073 o(0x242cdf); /* fildll (%rsp) */
2074 o(0x08c48348); /* add $8, %rsp */
2075 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2076 (VT_INT | VT_UNSIGNED)) {
2077 /* unsigned int to float/double/long double */
2078 o(0x6a); /* push $0 */
2079 g(0x00);
2080 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2081 o(0x242cdf); /* fildll (%rsp) */
2082 o(0x10c48348); /* add $16, %rsp */
2083 } else {
2084 /* int to float/double/long double */
2085 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2086 o(0x2404db); /* fildl (%rsp) */
2087 o(0x08c48348); /* add $8, %rsp */
2089 vtop->r = TREG_ST0;
2090 } else {
2091 int r = get_reg(RC_FLOAT);
2092 gv(RC_INT);
2093 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2094 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2095 (VT_INT | VT_UNSIGNED) ||
2096 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2097 o(0x48); /* REX */
2099 o(0x2a0f);
2100 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2101 vtop->r = r;
2105 /* convert from one floating point type to another */
2106 void gen_cvt_ftof(int t)
2108 int ft, bt, tbt;
2110 ft = vtop->type.t;
2111 bt = ft & VT_BTYPE;
2112 tbt = t & VT_BTYPE;
2114 if (bt == VT_FLOAT) {
2115 gv(RC_FLOAT);
2116 if (tbt == VT_DOUBLE) {
2117 o(0x140f); /* unpcklps */
2118 o(0xc0 + REG_VALUE(vtop->r)*9);
2119 o(0x5a0f); /* cvtps2pd */
2120 o(0xc0 + REG_VALUE(vtop->r)*9);
2121 } else if (tbt == VT_LDOUBLE) {
2122 save_reg(RC_ST0);
2123 /* movss %xmm0,-0x10(%rsp) */
2124 o(0x110ff3);
2125 o(0x44 + REG_VALUE(vtop->r)*8);
2126 o(0xf024);
2127 o(0xf02444d9); /* flds -0x10(%rsp) */
2128 vtop->r = TREG_ST0;
2130 } else if (bt == VT_DOUBLE) {
2131 gv(RC_FLOAT);
2132 if (tbt == VT_FLOAT) {
2133 o(0x140f66); /* unpcklpd */
2134 o(0xc0 + REG_VALUE(vtop->r)*9);
2135 o(0x5a0f66); /* cvtpd2ps */
2136 o(0xc0 + REG_VALUE(vtop->r)*9);
2137 } else if (tbt == VT_LDOUBLE) {
2138 save_reg(RC_ST0);
2139 /* movsd %xmm0,-0x10(%rsp) */
2140 o(0x110ff2);
2141 o(0x44 + REG_VALUE(vtop->r)*8);
2142 o(0xf024);
2143 o(0xf02444dd); /* fldl -0x10(%rsp) */
2144 vtop->r = TREG_ST0;
2146 } else {
2147 int r;
2148 gv(RC_ST0);
2149 r = get_reg(RC_FLOAT);
2150 if (tbt == VT_DOUBLE) {
2151 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2152 /* movsd -0x10(%rsp),%xmm0 */
2153 o(0x100ff2);
2154 o(0x44 + REG_VALUE(r)*8);
2155 o(0xf024);
2156 vtop->r = r;
2157 } else if (tbt == VT_FLOAT) {
2158 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2159 /* movss -0x10(%rsp),%xmm0 */
2160 o(0x100ff3);
2161 o(0x44 + REG_VALUE(r)*8);
2162 o(0xf024);
2163 vtop->r = r;
2168 /* convert fp to int 't' type */
2169 void gen_cvt_ftoi(int t)
2171 int ft, bt, size, r;
2172 ft = vtop->type.t;
2173 bt = ft & VT_BTYPE;
2174 if (bt == VT_LDOUBLE) {
2175 gen_cvt_ftof(VT_DOUBLE);
2176 bt = VT_DOUBLE;
2179 gv(RC_FLOAT);
2180 if (t != VT_INT)
2181 size = 8;
2182 else
2183 size = 4;
2185 r = get_reg(RC_INT);
2186 if (bt == VT_FLOAT) {
2187 o(0xf3);
2188 } else if (bt == VT_DOUBLE) {
2189 o(0xf2);
2190 } else {
2191 assert(0);
2193 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2194 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2195 vtop->r = r;
2198 // Generate sign extension from 32 to 64 bits:
2199 ST_FUNC void gen_cvt_sxtw(void)
2201 int r = gv(RC_INT);
2202 /* x86_64 specific: movslq */
2203 o(0x6348);
2204 o(0xc0 + (REG_VALUE(r) << 3) + REG_VALUE(r));
2207 /* char/short to int conversion */
2208 ST_FUNC void gen_cvt_csti(int t)
2210 int r, sz, xl, ll;
2211 r = gv(RC_INT);
2212 sz = !(t & VT_UNSIGNED);
2213 xl = (t & VT_BTYPE) == VT_SHORT;
2214 ll = (vtop->type.t & VT_BTYPE) == VT_LLONG;
2215 orex(ll, r, 0, 0xc0b60f /* mov[sz] %a[xl], %eax */
2216 | (sz << 3 | xl) << 8
2217 | (REG_VALUE(r) << 3 | REG_VALUE(r)) << 16
2221 /* increment tcov counter */
2222 ST_FUNC void gen_increment_tcov (SValue *sv)
2224 o(0x058348); /* addq $1, xxx(%rip) */
2225 greloca(cur_text_section, sv->sym, ind, R_X86_64_PC32, -5);
2226 gen_le32(0);
2227 o(1);
2230 /* computed goto support */
2231 void ggoto(void)
2233 gcall_or_jmp(1);
2234 vtop--;
2237 /* Save the stack pointer onto the stack and return the location of its address */
2238 ST_FUNC void gen_vla_sp_save(int addr) {
2239 /* mov %rsp,addr(%rbp)*/
2240 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2243 /* Restore the SP from a location on the stack */
2244 ST_FUNC void gen_vla_sp_restore(int addr) {
2245 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2248 #ifdef TCC_TARGET_PE
2249 /* Save result of gen_vla_alloc onto the stack */
2250 ST_FUNC void gen_vla_result(int addr) {
2251 /* mov %rax,addr(%rbp)*/
2252 gen_modrm64(0x89, TREG_RAX, VT_LOCAL, NULL, addr);
2254 #endif
2256 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2257 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2258 int use_call = 0;
2260 #if defined(CONFIG_TCC_BCHECK)
2261 use_call = tcc_state->do_bounds_check;
2262 #endif
2263 #ifdef TCC_TARGET_PE /* alloca does more than just adjust %rsp on Windows */
2264 use_call = 1;
2265 #endif
2266 if (use_call)
2268 vpush_helper_func(TOK_alloca);
2269 vswap(); /* Move alloca ref past allocation size */
2270 gfunc_call(1);
2272 else {
2273 int r;
2274 r = gv(RC_INT); /* allocation size */
2275 /* sub r,%rsp */
2276 o(0x2b48);
2277 o(0xe0 | REG_VALUE(r));
2278 /* We align to 16 bytes rather than align */
2279 /* and ~15, %rsp */
2280 o(0xf0e48348);
2281 vpop();
2286 /* end of x86-64 code generator */
2287 /*************************************************************/
2288 #endif /* ! TARGET_DEFS_ONLY */
2289 /******************************************************/