2 * ARMv4 code generator for TCC
4 * Copyright (c) 2003 Daniel Glöckner
5 * Copyright (c) 2012 Thomas Preud'homme
7 * Based on i386-gen.c by Fabrice Bellard
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef TARGET_DEFS_ONLY
26 #if defined(TCC_ARM_EABI) && !defined(TCC_ARM_VFP)
27 #error "Currently TinyCC only supports float computation with VFP instructions"
30 /* number of available registers */
37 #ifndef TCC_ARM_VERSION
38 # define TCC_ARM_VERSION 5
41 /* a register can belong to several classes. The classes must be
42 sorted from more general to more precise (see gv2() code which does
43 assumptions on it). */
44 #define RC_INT 0x0001 /* generic integer register */
45 #define RC_FLOAT 0x0002 /* generic float register */
61 #define RC_IRET RC_R0 /* function return: integer register */
62 #define RC_LRET RC_R1 /* function return: second integer register */
63 #define RC_FRET RC_F0 /* function return: float register */
65 /* pretty names for the registers */
87 #define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0)
90 /* return registers for function */
91 #define REG_IRET TREG_R0 /* single word int return register */
92 #define REG_LRET TREG_R1 /* second word return register (for long long) */
93 #define REG_FRET TREG_F0 /* float return register */
96 #define TOK___divdi3 TOK___aeabi_ldivmod
97 #define TOK___moddi3 TOK___aeabi_ldivmod
98 #define TOK___udivdi3 TOK___aeabi_uldivmod
99 #define TOK___umoddi3 TOK___aeabi_uldivmod
102 /* defined if function parameters must be evaluated in reverse order */
103 #define INVERT_FUNC_PARAMS
105 /* defined if structures are passed as pointers. Otherwise structures
106 are directly pushed on stack. */
107 /* #define FUNC_STRUCT_PARAM_AS_PTR */
109 /* pointer size, in bytes */
112 /* long double size and alignment, in bytes */
114 #define LDOUBLE_SIZE 8
118 #define LDOUBLE_SIZE 8
122 #define LDOUBLE_ALIGN 8
124 #define LDOUBLE_ALIGN 4
127 /* maximum alignment (for aligned attribute support) */
130 #define CHAR_IS_UNSIGNED
132 /******************************************************/
133 #else /* ! TARGET_DEFS_ONLY */
134 /******************************************************/
137 enum float_abi float_abi
;
139 ST_DATA
const int reg_classes
[NB_REGS
] = {
140 /* r0 */ RC_INT
| RC_R0
,
141 /* r1 */ RC_INT
| RC_R1
,
142 /* r2 */ RC_INT
| RC_R2
,
143 /* r3 */ RC_INT
| RC_R3
,
144 /* r12 */ RC_INT
| RC_R12
,
145 /* f0 */ RC_FLOAT
| RC_F0
,
146 /* f1 */ RC_FLOAT
| RC_F1
,
147 /* f2 */ RC_FLOAT
| RC_F2
,
148 /* f3 */ RC_FLOAT
| RC_F3
,
150 /* d4/s8 */ RC_FLOAT
| RC_F4
,
151 /* d5/s10 */ RC_FLOAT
| RC_F5
,
152 /* d6/s12 */ RC_FLOAT
| RC_F6
,
153 /* d7/s14 */ RC_FLOAT
| RC_F7
,
157 static int func_sub_sp_offset
, last_itod_magic
;
160 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
161 static CType float_type
, double_type
, func_float_type
, func_double_type
;
162 ST_FUNC
void arm_init(struct TCCState
*s
)
164 float_type
.t
= VT_FLOAT
;
165 double_type
.t
= VT_DOUBLE
;
166 func_float_type
.t
= VT_FUNC
;
167 func_float_type
.ref
= sym_push(SYM_FIELD
, &float_type
, FUNC_CDECL
, FUNC_OLD
);
168 func_double_type
.t
= VT_FUNC
;
169 func_double_type
.ref
= sym_push(SYM_FIELD
, &double_type
, FUNC_CDECL
, FUNC_OLD
);
171 float_abi
= s
->float_abi
;
172 #ifndef TCC_ARM_HARDFLOAT
173 tcc_warning("soft float ABI currently not supported: default to softfp");
177 #define func_float_type func_old_type
178 #define func_double_type func_old_type
179 #define func_ldouble_type func_old_type
180 ST_FUNC
void arm_init(struct TCCState
*s
)
182 #if !defined (TCC_ARM_VFP)
183 tcc_warning("Support for FPA is deprecated and will be removed in next"
186 #if !defined (TCC_ARM_EABI)
187 tcc_warning("Support for OABI is deprecated and will be removed in next"
193 static int two2mask(int a
,int b
) {
194 return (reg_classes
[a
]|reg_classes
[b
])&~(RC_INT
|RC_FLOAT
);
197 static int regmask(int r
) {
198 return reg_classes
[r
]&~(RC_INT
|RC_FLOAT
);
201 /******************************************************/
203 #if defined(TCC_ARM_EABI) && !defined(CONFIG_TCC_ELFINTERP)
204 char *default_elfinterp(struct TCCState
*s
)
206 if (s
->float_abi
== ARM_HARD_FLOAT
)
207 return "/lib/ld-linux-armhf.so.3";
209 return "/lib/ld-linux.so.3";
215 /* this is a good place to start adding big-endian support*/
220 if (!cur_text_section
)
221 tcc_error("compiler error! This happens f.ex. if the compiler\n"
222 "can't evaluate constant expressions outside of a function.");
223 if (ind1
> cur_text_section
->data_allocated
)
224 section_realloc(cur_text_section
, ind1
);
225 cur_text_section
->data
[ind
++] = i
&255;
227 cur_text_section
->data
[ind
++] = i
&255;
229 cur_text_section
->data
[ind
++] = i
&255;
231 cur_text_section
->data
[ind
++] = i
;
234 static uint32_t stuff_const(uint32_t op
, uint32_t c
)
237 uint32_t nc
= 0, negop
= 0;
247 case 0x1A00000: //mov
248 case 0x1E00000: //mvn
255 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1E00000;
259 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1A00000;
260 case 0x1C00000: //bic
265 case 0x1800000: //orr
267 return (op
&0xFFF0FFFF)|0x1E00000;
273 if(c
<256) /* catch undefined <<32 */
276 m
=(0xff>>i
)|(0xff<<(32-i
));
278 return op
|(i
<<7)|(c
<<i
)|(c
>>(32-i
));
288 void stuff_const_harder(uint32_t op
, uint32_t v
) {
294 uint32_t a
[16], nv
, no
, o2
, n2
;
297 o2
=(op
&0xfff0ffff)|((op
&0xf000)<<4);;
299 a
[i
]=(a
[i
-1]>>2)|(a
[i
-1]<<30);
301 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
302 if((v
&(a
[i
]|a
[j
]))==v
) {
303 o(stuff_const(op
,v
&a
[i
]));
304 o(stuff_const(o2
,v
&a
[j
]));
311 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
312 if((nv
&(a
[i
]|a
[j
]))==nv
) {
313 o(stuff_const(no
,nv
&a
[i
]));
314 o(stuff_const(n2
,nv
&a
[j
]));
319 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
320 if((v
&(a
[i
]|a
[j
]|a
[k
]))==v
) {
321 o(stuff_const(op
,v
&a
[i
]));
322 o(stuff_const(o2
,v
&a
[j
]));
323 o(stuff_const(o2
,v
&a
[k
]));
330 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
331 if((nv
&(a
[i
]|a
[j
]|a
[k
]))==nv
) {
332 o(stuff_const(no
,nv
&a
[i
]));
333 o(stuff_const(n2
,nv
&a
[j
]));
334 o(stuff_const(n2
,nv
&a
[k
]));
337 o(stuff_const(op
,v
&a
[0]));
338 o(stuff_const(o2
,v
&a
[4]));
339 o(stuff_const(o2
,v
&a
[8]));
340 o(stuff_const(o2
,v
&a
[12]));
344 uint32_t encbranch(int pos
, int addr
, int fail
)
348 if(addr
>=0x1000000 || addr
<-0x1000000) {
350 tcc_error("FIXME: function bigger than 32MB");
353 return 0x0A000000|(addr
&0xffffff);
356 int decbranch(int pos
)
359 x
=*(uint32_t *)(cur_text_section
->data
+ pos
);
366 /* output a symbol and patch all calls to it */
367 void gsym_addr(int t
, int a
)
372 x
=(uint32_t *)(cur_text_section
->data
+ t
);
375 *x
=0xE1A00000; // nop
378 *x
|= encbranch(lt
,a
,1);
389 static uint32_t vfpr(int r
)
391 if(r
<TREG_F0
|| r
>TREG_F7
)
392 tcc_error("compiler error! register %i is no vfp register",r
);
396 static uint32_t fpr(int r
)
398 if(r
<TREG_F0
|| r
>TREG_F3
)
399 tcc_error("compiler error! register %i is no fpa register",r
);
404 static uint32_t intr(int r
)
408 if(r
>= TREG_R0
&& r
<= TREG_R3
)
410 if (r
>= TREG_SP
&& r
<= TREG_LR
)
411 return r
+ (13 - TREG_SP
);
412 tcc_error("compiler error! register %i is no int register",r
);
415 static void calcaddr(uint32_t *base
, int *off
, int *sgn
, int maxoff
, unsigned shift
)
417 if(*off
>maxoff
|| *off
&((1<<shift
)-1)) {
424 y
=stuff_const(x
,*off
&~maxoff
);
430 y
=stuff_const(x
,(*off
+maxoff
)&~maxoff
);
434 *off
=((*off
+maxoff
)&~maxoff
)-*off
;
437 stuff_const_harder(x
,*off
&~maxoff
);
442 static uint32_t mapcc(int cc
)
447 return 0x30000000; /* CC/LO */
449 return 0x20000000; /* CS/HS */
451 return 0x00000000; /* EQ */
453 return 0x10000000; /* NE */
455 return 0x90000000; /* LS */
457 return 0x80000000; /* HI */
459 return 0x40000000; /* MI */
461 return 0x50000000; /* PL */
463 return 0xB0000000; /* LT */
465 return 0xA0000000; /* GE */
467 return 0xD0000000; /* LE */
469 return 0xC0000000; /* GT */
471 tcc_error("unexpected condition code");
472 return 0xE0000000; /* AL */
475 static int negcc(int cc
)
504 tcc_error("unexpected condition code");
508 /* load 'r' from value 'sv' */
509 void load(int r
, SValue
*sv
)
511 int v
, ft
, fc
, fr
, sign
;
528 uint32_t base
= 0xB; // fp
531 v1
.r
= VT_LOCAL
| VT_LVAL
;
537 } else if(v
== VT_CONST
) {
546 } else if(v
< VT_CONST
) {
553 calcaddr(&base
,&fc
,&sign
,1020,2);
555 op
=0xED100A00; /* flds */
558 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
559 op
|=0x100; /* flds -> fldd */
560 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
565 #if LDOUBLE_SIZE == 8
566 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
569 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
571 else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
574 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
576 } else if((ft
& (VT_BTYPE
|VT_UNSIGNED
)) == VT_BYTE
577 || (ft
& VT_BTYPE
) == VT_SHORT
) {
578 calcaddr(&base
,&fc
,&sign
,255,0);
580 if ((ft
& VT_BTYPE
) == VT_SHORT
)
582 if ((ft
& VT_UNSIGNED
) == 0)
586 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
588 calcaddr(&base
,&fc
,&sign
,4095,0);
592 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
594 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
600 op
=stuff_const(0xE3A00000|(intr(r
)<<12),sv
->c
.i
);
601 if (fr
& VT_SYM
|| !op
) {
602 o(0xE59F0000|(intr(r
)<<12));
605 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
610 } else if (v
== VT_LOCAL
) {
611 op
=stuff_const(0xE28B0000|(intr(r
)<<12),sv
->c
.i
);
612 if (fr
& VT_SYM
|| !op
) {
613 o(0xE59F0000|(intr(r
)<<12));
615 if(fr
& VT_SYM
) // needed ?
616 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
618 o(0xE08B0000|(intr(r
)<<12)|intr(r
));
622 } else if(v
== VT_CMP
) {
623 o(mapcc(sv
->c
.i
)|0x3A00001|(intr(r
)<<12));
624 o(mapcc(negcc(sv
->c
.i
))|0x3A00000|(intr(r
)<<12));
626 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
629 o(0xE3A00000|(intr(r
)<<12)|t
);
632 o(0xE3A00000|(intr(r
)<<12)|(t
^1));
634 } else if (v
< VT_CONST
) {
637 o(0xEEB00A40|(vfpr(r
)<<12)|vfpr(v
)|T2CPR(ft
)); /* fcpyX */
639 o(0xEE008180|(fpr(r
)<<12)|fpr(v
));
642 o(0xE1A00000|(intr(r
)<<12)|intr(v
));
646 tcc_error("load unimplemented!");
649 /* store register 'r' in lvalue 'v' */
650 void store(int r
, SValue
*sv
)
653 int v
, ft
, fc
, fr
, sign
;
668 if (fr
& VT_LVAL
|| fr
== VT_LOCAL
) {
669 uint32_t base
= 0xb; /* fp */
674 } else if(v
== VT_CONST
) {
686 calcaddr(&base
,&fc
,&sign
,1020,2);
688 op
=0xED000A00; /* fsts */
691 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
692 op
|=0x100; /* fsts -> fstd */
693 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
698 #if LDOUBLE_SIZE == 8
699 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
702 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
704 if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
707 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
710 } else if((ft
& VT_BTYPE
) == VT_SHORT
) {
711 calcaddr(&base
,&fc
,&sign
,255,0);
715 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
717 calcaddr(&base
,&fc
,&sign
,4095,0);
721 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
723 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
728 tcc_error("store unimplemented");
731 static void gadd_sp(int val
)
733 stuff_const_harder(0xE28DD000,val
);
736 /* 'is_jmp' is '1' if it is a jump */
737 static void gcall_or_jmp(int is_jmp
)
740 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
743 x
=encbranch(ind
,ind
+vtop
->c
.i
,0);
745 if (vtop
->r
& VT_SYM
) {
746 /* relocation case */
747 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_PC24
);
749 put_elf_reloc(symtab_section
, cur_text_section
, ind
, R_ARM_PC24
, 0);
750 o(x
|(is_jmp
?0xE0000000:0xE1000000));
753 o(0xE28FE004); // add lr,pc,#4
754 o(0xE51FF004); // ldr pc,[pc,#-4]
755 if (vtop
->r
& VT_SYM
)
756 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_ABS32
);
760 /* otherwise, indirect call */
763 o(0xE1A0E00F); // mov lr,pc
764 o(0xE1A0F000|intr(r
)); // mov pc,r
768 static int unalias_ldbl(int btype
)
770 #if LDOUBLE_SIZE == 8
771 if (btype
== VT_LDOUBLE
)
777 /* Return whether a structure is an homogeneous float aggregate or not.
778 The answer is true if all the elements of the structure are of the same
779 primitive float type and there is less than 4 elements.
781 type: the type corresponding to the structure to be tested */
782 static int is_hgen_float_aggr(CType
*type
)
784 if ((type
->t
& VT_BTYPE
) == VT_STRUCT
) {
786 int btype
, nb_fields
= 0;
788 ref
= type
->ref
->next
;
789 btype
= unalias_ldbl(ref
->type
.t
& VT_BTYPE
);
790 if (btype
== VT_FLOAT
|| btype
== VT_DOUBLE
) {
791 for(; ref
&& btype
== unalias_ldbl(ref
->type
.t
& VT_BTYPE
); ref
= ref
->next
, nb_fields
++);
792 return !ref
&& nb_fields
<= 4;
799 signed char avail
[3]; /* 3 holes max with only float and double alignments */
800 int first_hole
; /* first available hole */
801 int last_hole
; /* last available hole (none if equal to first_hole) */
802 int first_free_reg
; /* next free register in the sequence, hole excluded */
805 #define AVAIL_REGS_INITIALIZER (struct avail_regs) { { 0, 0, 0}, 0, 0, 0 }
807 /* Find suitable registers for a VFP Co-Processor Register Candidate (VFP CPRC
808 param) according to the rules described in the procedure call standard for
809 the ARM architecture (AAPCS). If found, the registers are assigned to this
810 VFP CPRC parameter. Registers are allocated in sequence unless a hole exists
811 and the parameter is a single float.
813 avregs: opaque structure to keep track of available VFP co-processor regs
814 align: alignment contraints for the param, as returned by type_size()
815 size: size of the parameter, as returned by type_size() */
816 int assign_vfpreg(struct avail_regs
*avregs
, int align
, int size
)
820 if (avregs
->first_free_reg
== -1)
822 if (align
>> 3) { /* double alignment */
823 first_reg
= avregs
->first_free_reg
;
824 /* alignment contraint not respected so use next reg and record hole */
826 avregs
->avail
[avregs
->last_hole
++] = first_reg
++;
827 } else { /* no special alignment (float or array of float) */
828 /* if single float and a hole is available, assign the param to it */
829 if (size
== 4 && avregs
->first_hole
!= avregs
->last_hole
)
830 return avregs
->avail
[avregs
->first_hole
++];
832 first_reg
= avregs
->first_free_reg
;
834 if (first_reg
+ size
/ 4 <= 16) {
835 avregs
->first_free_reg
= first_reg
+ size
/ 4;
838 avregs
->first_free_reg
= -1;
842 /* Returns whether all params need to be passed in core registers or not.
843 This is the case for function part of the runtime ABI. */
844 int floats_in_core_regs(SValue
*sval
)
849 switch (sval
->sym
->v
) {
850 case TOK___floatundisf
:
851 case TOK___floatundidf
:
852 case TOK___fixunssfdi
:
853 case TOK___fixunsdfdi
:
855 case TOK___fixunsxfdi
:
857 case TOK___floatdisf
:
858 case TOK___floatdidf
:
868 /* Return the number of registers needed to return the struct, or 0 if
869 returning via struct pointer. */
870 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
) {
873 size
= type_size(vt
, &align
);
874 if (float_abi
== ARM_HARD_FLOAT
&& !variadic
&&
875 (is_float(vt
->t
) || is_hgen_float_aggr(vt
))) {
880 return (size
+ 7) >> 3;
881 } else if (size
<= 4) {
894 /* Parameters are classified according to how they are copied to their final
895 destination for the function call. Because the copying is performed class
896 after class according to the order in the union below, it is important that
897 some constraints about the order of the members of this union are respected:
898 - CORE_STRUCT_CLASS must come after STACK_CLASS;
899 - CORE_CLASS must come after STACK_CLASS, CORE_STRUCT_CLASS and
901 - VFP_STRUCT_CLASS must come after VFP_CLASS.
902 See the comment for the main loop in copy_params() for the reason. */
913 int start
; /* first reg or addr used depending on the class */
914 int end
; /* last reg used or next free addr depending on the class */
915 SValue
*sval
; /* pointer to SValue on the value stack */
916 struct param_plan
*prev
; /* previous element in this class */
920 struct param_plan
*pplans
; /* array of all the param plans */
921 struct param_plan
*clsplans
[NB_CLASSES
]; /* per class lists of param plans */
924 #define add_param_plan(plan,pplan,class) \
926 pplan.prev = plan->clsplans[class]; \
927 plan->pplans[plan ## _nb] = pplan; \
928 plan->clsplans[class] = &plan->pplans[plan ## _nb++]; \
931 /* Assign parameters to registers and stack with alignment according to the
932 rules in the procedure call standard for the ARM architecture (AAPCS).
933 The overall assignment is recorded in an array of per parameter structures
934 called parameter plans. The parameter plans are also further organized in a
935 number of linked lists, one per class of parameter (see the comment for the
936 definition of union reg_class).
938 nb_args: number of parameters of the function for which a call is generated
939 float_abi: float ABI in use for this function call
940 plan: the structure where the overall assignment is recorded
941 todo: a bitmap that record which core registers hold a parameter
943 Returns the amount of stack space needed for parameter passing
945 Note: this function allocated an array in plan->pplans with tcc_malloc. It
946 is the responsibility of the caller to free this array once used (ie not
947 before copy_params). */
948 static int assign_regs(int nb_args
, int float_abi
, struct plan
*plan
, int *todo
)
951 int ncrn
/* next core register number */, nsaa
/* next stacked argument address*/;
953 struct param_plan pplan
;
954 struct avail_regs avregs
= AVAIL_REGS_INITIALIZER
;
958 plan
->pplans
= tcc_malloc(nb_args
* sizeof(*plan
->pplans
));
959 memset(plan
->clsplans
, 0, sizeof(plan
->clsplans
));
960 for(i
= nb_args
; i
-- ;) {
961 int j
, start_vfpreg
= 0;
962 CType type
= vtop
[-i
].type
;
964 size
= type_size(&type
, &align
);
965 size
= (size
+ 3) & ~3;
966 align
= (align
+ 3) & ~3;
967 switch(vtop
[-i
].type
.t
& VT_BTYPE
) {
972 if (float_abi
== ARM_HARD_FLOAT
) {
973 int is_hfa
= 0; /* Homogeneous float aggregate */
975 if (is_float(vtop
[-i
].type
.t
)
976 || (is_hfa
= is_hgen_float_aggr(&vtop
[-i
].type
))) {
979 start_vfpreg
= assign_vfpreg(&avregs
, align
, size
);
980 end_vfpreg
= start_vfpreg
+ ((size
- 1) >> 2);
981 if (start_vfpreg
>= 0) {
982 pplan
= (struct param_plan
) {start_vfpreg
, end_vfpreg
, &vtop
[-i
]};
984 add_param_plan(plan
, pplan
, VFP_STRUCT_CLASS
);
986 add_param_plan(plan
, pplan
, VFP_CLASS
);
992 ncrn
= (ncrn
+ (align
-1)/4) & ~((align
/4) - 1);
993 if (ncrn
+ size
/4 <= 4 || (ncrn
< 4 && start_vfpreg
!= -1)) {
994 /* The parameter is allocated both in core register and on stack. As
995 * such, it can be of either class: it would either be the last of
996 * CORE_STRUCT_CLASS or the first of STACK_CLASS. */
997 for (j
= ncrn
; j
< 4 && j
< ncrn
+ size
/ 4; j
++)
999 pplan
= (struct param_plan
) {ncrn
, j
, &vtop
[-i
]};
1000 add_param_plan(plan
, pplan
, CORE_STRUCT_CLASS
);
1003 nsaa
= (ncrn
- 4) * 4;
1011 int is_long
= (vtop
[-i
].type
.t
& VT_BTYPE
) == VT_LLONG
;
1014 ncrn
= (ncrn
+ 1) & -2;
1018 pplan
= (struct param_plan
) {ncrn
, ncrn
, &vtop
[-i
]};
1022 add_param_plan(plan
, pplan
, CORE_CLASS
);
1026 nsaa
= (nsaa
+ (align
- 1)) & ~(align
- 1);
1027 pplan
= (struct param_plan
) {nsaa
, nsaa
+ size
, &vtop
[-i
]};
1028 add_param_plan(plan
, pplan
, STACK_CLASS
);
1029 nsaa
+= size
; /* size already rounded up before */
1034 #undef add_param_plan
1036 /* Copy parameters to their final destination (core reg, VFP reg or stack) for
1039 nb_args: number of parameters the function take
1040 plan: the overall assignment plan for parameters
1041 todo: a bitmap indicating what core reg will hold a parameter
1043 Returns the number of SValue added by this function on the value stack */
1044 static int copy_params(int nb_args
, struct plan
*plan
, int todo
)
1046 int size
, align
, r
, i
, nb_extra_sval
= 0;
1047 struct param_plan
*pplan
;
1050 /* Several constraints require parameters to be copied in a specific order:
1051 - structures are copied to the stack before being loaded in a reg;
1052 - floats loaded to an odd numbered VFP reg are first copied to the
1053 preceding even numbered VFP reg and then moved to the next VFP reg.
1055 It is thus important that:
1056 - structures assigned to core regs must be copied after parameters
1057 assigned to the stack but before structures assigned to VFP regs because
1058 a structure can lie partly in core registers and partly on the stack;
1059 - parameters assigned to the stack and all structures be copied before
1060 parameters assigned to a core reg since copying a parameter to the stack
1061 require using a core reg;
1062 - parameters assigned to VFP regs be copied before structures assigned to
1063 VFP regs as the copy might use an even numbered VFP reg that already
1064 holds part of a structure. */
1066 for(i
= 0; i
< NB_CLASSES
; i
++) {
1067 for(pplan
= plan
->clsplans
[i
]; pplan
; pplan
= pplan
->prev
) {
1070 && (i
!= CORE_CLASS
|| pplan
->sval
->r
< VT_CONST
))
1073 vpushv(pplan
->sval
);
1074 pplan
->sval
->r
= pplan
->sval
->r2
= VT_CONST
; /* disable entry */
1077 case CORE_STRUCT_CLASS
:
1078 case VFP_STRUCT_CLASS
:
1079 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_STRUCT
) {
1081 size
= type_size(&pplan
->sval
->type
, &align
);
1082 /* align to stack align size */
1083 size
= (size
+ 3) & ~3;
1084 if (i
== STACK_CLASS
&& pplan
->prev
)
1085 padding
= pplan
->start
- pplan
->prev
->end
;
1086 size
+= padding
; /* Add padding if any */
1087 /* allocate the necessary size on stack */
1089 /* generate structure store */
1090 r
= get_reg(RC_INT
);
1091 o(0xE28D0000|(intr(r
)<<12)|padding
); /* add r, sp, padding */
1092 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1094 vstore(); /* memcpy to current sp + potential padding */
1096 /* Homogeneous float aggregate are loaded to VFP registers
1097 immediately since there is no way of loading data in multiple
1098 non consecutive VFP registers as what is done for other
1099 structures (see the use of todo). */
1100 if (i
== VFP_STRUCT_CLASS
) {
1101 int first
= pplan
->start
, nb
= pplan
->end
- first
+ 1;
1102 /* vpop.32 {pplan->start, ..., pplan->end} */
1103 o(0xECBD0A00|(first
&1)<<22|(first
>>1)<<12|nb
);
1104 /* No need to write the register used to a SValue since VFP regs
1105 cannot be used for gcall_or_jmp */
1108 if (is_float(pplan
->sval
->type
.t
)) {
1110 r
= vfpr(gv(RC_FLOAT
)) << 12;
1111 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1115 r
|= 0x101; /* vpush.32 -> vpush.64 */
1117 o(0xED2D0A01 + r
); /* vpush */
1119 r
= fpr(gv(RC_FLOAT
)) << 12;
1120 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1122 else if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1125 size
= LDOUBLE_SIZE
;
1132 o(0xED2D0100|r
|(size
>>2)); /* some kind of vpush for FPA */
1135 /* simple type (currently always same size) */
1136 /* XXX: implicit cast ? */
1138 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1142 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1146 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1148 if (i
== STACK_CLASS
&& pplan
->prev
)
1149 gadd_sp(pplan
->prev
->end
- pplan
->start
); /* Add padding if any */
1154 gv(regmask(TREG_F0
+ (pplan
->start
>> 1)));
1155 if (pplan
->start
& 1) { /* Must be in upper part of double register */
1156 o(0xEEF00A40|((pplan
->start
>>1)<<12)|(pplan
->start
>>1)); /* vmov.f32 s(n+1), sn */
1157 vtop
->r
= VT_CONST
; /* avoid being saved on stack by gv for next float */
1162 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1164 gv(regmask(pplan
->end
));
1165 pplan
->sval
->r2
= vtop
->r
;
1168 gv(regmask(pplan
->start
));
1169 /* Mark register as used so that gcall_or_jmp use another one
1170 (regs >=4 are free as never used to pass parameters) */
1171 pplan
->sval
->r
= vtop
->r
;
1178 /* second pass to restore registers that were saved on stack by accident.
1179 Maybe redundant after the "lvalue_save" patch in tccgen.c:gv() */
1183 /* Manually free remaining registers since next parameters are loaded
1184 * manually, without the help of gv(int). */
1188 o(0xE8BD0000|todo
); /* pop {todo} */
1189 for(pplan
= plan
->clsplans
[CORE_STRUCT_CLASS
]; pplan
; pplan
= pplan
->prev
) {
1191 pplan
->sval
->r
= pplan
->start
;
1192 /* An SValue can only pin 2 registers at best (r and r2) but a structure
1193 can occupy more than 2 registers. Thus, we need to push on the value
1194 stack some fake parameter to have on SValue for each registers used
1195 by a structure (r2 is not used). */
1196 for (r
= pplan
->start
+ 1; r
<= pplan
->end
; r
++) {
1197 if (todo
& (1 << r
)) {
1205 return nb_extra_sval
;
1208 /* Generate function call. The function address is pushed first, then
1209 all the parameters in call order. This functions pops all the
1210 parameters and the function address. */
1211 void gfunc_call(int nb_args
)
1214 int def_float_abi
= float_abi
;
1221 if (float_abi
== ARM_HARD_FLOAT
) {
1222 variadic
= (vtop
[-nb_args
].type
.ref
->c
== FUNC_ELLIPSIS
);
1223 if (variadic
|| floats_in_core_regs(&vtop
[-nb_args
]))
1224 float_abi
= ARM_SOFTFP_FLOAT
;
1227 /* cannot let cpu flags if other instruction are generated. Also avoid leaving
1228 VT_JMP anywhere except on the top of the stack because it would complicate
1229 the code generator. */
1230 r
= vtop
->r
& VT_VALMASK
;
1231 if (r
== VT_CMP
|| (r
& ~1) == VT_JMP
)
1234 args_size
= assign_regs(nb_args
, float_abi
, &plan
, &todo
);
1237 if (args_size
& 7) { /* Stack must be 8 byte aligned at fct call for EABI */
1238 args_size
= (args_size
+ 7) & ~7;
1239 o(0xE24DD004); /* sub sp, sp, #4 */
1243 nb_args
+= copy_params(nb_args
, &plan
, todo
);
1244 tcc_free(plan
.pplans
);
1246 /* Move fct SValue on top as required by gcall_or_jmp */
1250 gadd_sp(args_size
); /* pop all parameters passed on the stack */
1251 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1252 if(float_abi
== ARM_SOFTFP_FLOAT
&& is_float(vtop
->type
.ref
->type
.t
)) {
1253 if((vtop
->type
.ref
->type
.t
& VT_BTYPE
) == VT_FLOAT
) {
1254 o(0xEE000A10); /*vmov s0, r0 */
1256 o(0xEE000B10); /* vmov.32 d0[0], r0 */
1257 o(0xEE201B10); /* vmov.32 d0[1], r1 */
1261 vtop
-= nb_args
+ 1; /* Pop all params and fct address from value stack */
1262 leaffunc
= 0; /* we are calling a function, so we aren't in a leaf function */
1263 float_abi
= def_float_abi
;
1266 /* generate function prolog of type 't' */
1267 void gfunc_prolog(CType
*func_type
)
1270 int n
, nf
, size
, align
, rs
, struct_ret
= 0;
1271 int addr
, pn
, sn
; /* pn=core, sn=stack */
1275 struct avail_regs avregs
= AVAIL_REGS_INITIALIZER
;
1278 sym
= func_type
->ref
;
1279 func_vt
= sym
->type
;
1280 func_var
= (func_type
->ref
->c
== FUNC_ELLIPSIS
);
1283 if ((func_vt
.t
& VT_BTYPE
) == VT_STRUCT
&&
1284 !gfunc_sret(&func_vt
, func_var
, &ret_type
, &align
, &rs
))
1288 func_vc
= 12; /* Offset from fp of the place to store the result */
1290 for(sym2
= sym
->next
; sym2
&& (n
< 4 || nf
< 16); sym2
= sym2
->next
) {
1291 size
= type_size(&sym2
->type
, &align
);
1293 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&&
1294 (is_float(sym2
->type
.t
) || is_hgen_float_aggr(&sym2
->type
))) {
1295 int tmpnf
= assign_vfpreg(&avregs
, align
, size
);
1296 tmpnf
+= (size
+ 3) / 4;
1297 nf
= (tmpnf
> nf
) ? tmpnf
: nf
;
1301 n
+= (size
+ 3) / 4;
1303 o(0xE1A0C00D); /* mov ip,sp */
1312 o(0xE92D0000|((1<<n
)-1)); /* save r0-r4 on stack if needed */
1317 nf
=(nf
+1)&-2; /* nf => HARDFLOAT => EABI */
1318 o(0xED2D0A00|nf
); /* save s0-s15 on stack if needed */
1320 o(0xE92D5800); /* save fp, ip, lr */
1321 o(0xE1A0B00D); /* mov fp, sp */
1322 func_sub_sp_offset
= ind
;
1323 o(0xE1A00000); /* nop, leave space for stack adjustment in epilog */
1326 if (float_abi
== ARM_HARD_FLOAT
) {
1328 avregs
= AVAIL_REGS_INITIALIZER
;
1331 pn
= struct_ret
, sn
= 0;
1332 while ((sym
= sym
->next
)) {
1335 size
= type_size(type
, &align
);
1336 size
= (size
+ 3) >> 2;
1337 align
= (align
+ 3) & ~3;
1339 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&& (is_float(sym
->type
.t
)
1340 || is_hgen_float_aggr(&sym
->type
))) {
1341 int fpn
= assign_vfpreg(&avregs
, align
, size
<< 2);
1350 pn
= (pn
+ (align
-1)/4) & -(align
/4);
1352 addr
= (nf
+ pn
) * 4;
1359 sn
= (sn
+ (align
-1)/4) & -(align
/4);
1361 addr
= (n
+ nf
+ sn
) * 4;
1364 sym_push(sym
->v
& ~SYM_FIELD
, type
, VT_LOCAL
| lvalue_type(type
->t
),
1372 /* generate function epilog */
1373 void gfunc_epilog(void)
1377 /* Copy float return value to core register if base standard is used and
1378 float computation is made with VFP */
1379 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1380 if ((float_abi
== ARM_SOFTFP_FLOAT
|| func_var
) && is_float(func_vt
.t
)) {
1381 if((func_vt
.t
& VT_BTYPE
) == VT_FLOAT
)
1382 o(0xEE100A10); /* fmrs r0, s0 */
1384 o(0xEE100B10); /* fmrdl r0, d0 */
1385 o(0xEE301B10); /* fmrdh r1, d0 */
1389 o(0xE89BA800); /* restore fp, sp, pc */
1390 diff
= (-loc
+ 3) & -4;
1393 diff
= ((diff
+ 11) & -8) - 4;
1396 x
=stuff_const(0xE24BD000, diff
); /* sub sp,fp,# */
1398 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = x
;
1402 o(0xE59FC004); /* ldr ip,[pc+4] */
1403 o(0xE04BD00C); /* sub sp,fp,ip */
1404 o(0xE1A0F00E); /* mov pc,lr */
1406 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = 0xE1000000|encbranch(func_sub_sp_offset
,addr
,1);
1411 /* generate a jump to a label */
1418 o(0xE0000000|encbranch(r
,t
,1));
1422 /* generate a jump to a fixed address */
1423 void gjmp_addr(int a
)
1428 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1429 int gtst(int inv
, int t
)
1434 v
= vtop
->r
& VT_VALMASK
;
1437 if (nocode_wanted
) {
1439 } else if (v
== VT_CMP
) {
1440 op
=mapcc(inv
?negcc(vtop
->c
.i
):vtop
->c
.i
);
1441 op
|=encbranch(r
,t
,1);
1444 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
1445 if ((v
& 1) == inv
) {
1454 p
= decbranch(lp
=p
);
1456 x
= (uint32_t *)(cur_text_section
->data
+ lp
);
1458 *x
|= encbranch(lp
,t
,1);
1471 /* generate an integer binary operation */
1472 void gen_opi(int op
)
1475 uint32_t opc
= 0, r
, fr
;
1476 unsigned short retreg
= REG_IRET
;
1484 case TOK_ADDC1
: /* add with carry generation */
1492 case TOK_SUBC1
: /* sub with carry generation */
1496 case TOK_ADDC2
: /* add with carry use */
1500 case TOK_SUBC2
: /* sub with carry use */
1517 gv2(RC_INT
, RC_INT
);
1521 o(0xE0000090|(intr(r
)<<16)|(intr(r
)<<8)|intr(fr
));
1546 func
=TOK___aeabi_idivmod
;
1555 func
=TOK___aeabi_uidivmod
;
1563 gv2(RC_INT
, RC_INT
);
1564 r
=intr(vtop
[-1].r2
=get_reg(RC_INT
));
1566 vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(c
));
1568 o(0xE0800090|(r
<<16)|(intr(vtop
->r
)<<12)|(intr(c
)<<8)|intr(vtop
[1].r
));
1577 if((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1578 if(opc
== 4 || opc
== 5 || opc
== 0xc) {
1580 opc
|=2; // sub -> rsb
1583 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1584 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1589 opc
=0xE0000000|(opc
<<20)|(c
<<16);
1590 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1592 x
=stuff_const(opc
|0x2000000,vtop
->c
.i
);
1594 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1599 fr
=intr(gv(RC_INT
));
1600 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1604 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1610 opc
=0xE1A00000|(opc
<<5);
1611 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1612 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1618 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1619 fr
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1620 c
= vtop
->c
.i
& 0x1f;
1621 o(opc
|(c
<<7)|(fr
<<12));
1623 fr
=intr(gv(RC_INT
));
1624 c
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1625 o(opc
|(c
<<12)|(fr
<<8)|0x10);
1630 vpush_global_sym(&func_old_type
, func
);
1637 tcc_error("gen_opi %i unimplemented!",op
);
1642 static int is_zero(int i
)
1644 if((vtop
[i
].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1646 if (vtop
[i
].type
.t
== VT_FLOAT
)
1647 return (vtop
[i
].c
.f
== 0.f
);
1648 else if (vtop
[i
].type
.t
== VT_DOUBLE
)
1649 return (vtop
[i
].c
.d
== 0.0);
1650 return (vtop
[i
].c
.ld
== 0.l
);
1653 /* generate a floating point operation 'v = t1 op t2' instruction. The
1654 * two operands are guaranted to have the same floating point type */
1655 void gen_opf(int op
)
1659 x
=0xEE000A00|T2CPR(vtop
->type
.t
);
1677 x
|=0x810000; /* fsubX -> fnegX */
1690 if(op
< TOK_ULT
|| op
> TOK_GT
) {
1691 tcc_error("unknown fp op %x!",op
);
1697 case TOK_LT
: op
=TOK_GT
; break;
1698 case TOK_GE
: op
=TOK_ULE
; break;
1699 case TOK_LE
: op
=TOK_GE
; break;
1700 case TOK_GT
: op
=TOK_ULT
; break;
1703 x
|=0xB40040; /* fcmpX */
1704 if(op
!=TOK_EQ
&& op
!=TOK_NE
)
1705 x
|=0x80; /* fcmpX -> fcmpeX */
1708 o(x
|0x10000|(vfpr(gv(RC_FLOAT
))<<12)); /* fcmp(e)X -> fcmp(e)zX */
1710 x
|=vfpr(gv(RC_FLOAT
));
1712 o(x
|(vfpr(gv(RC_FLOAT
))<<12));
1715 o(0xEEF1FA10); /* fmstat */
1718 case TOK_LE
: op
=TOK_ULE
; break;
1719 case TOK_LT
: op
=TOK_ULT
; break;
1720 case TOK_UGE
: op
=TOK_GE
; break;
1721 case TOK_UGT
: op
=TOK_GT
; break;
1738 vtop
->r
=get_reg_ex(RC_FLOAT
,r
);
1741 o(x
|(vfpr(vtop
->r
)<<12));
1745 static uint32_t is_fconst()
1749 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1751 if (vtop
->type
.t
== VT_FLOAT
)
1753 else if (vtop
->type
.t
== VT_DOUBLE
)
1783 /* generate a floating point operation 'v = t1 op t2' instruction. The
1784 two operands are guaranted to have the same floating point type */
1785 void gen_opf(int op
)
1787 uint32_t x
, r
, r2
, c1
, c2
;
1788 //fputs("gen_opf\n",stderr);
1794 #if LDOUBLE_SIZE == 8
1795 if ((vtop
->type
.t
& VT_BTYPE
) != VT_FLOAT
)
1798 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1800 else if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
)
1811 r
=fpr(gv(RC_FLOAT
));
1818 r2
=fpr(gv(RC_FLOAT
));
1827 r
=fpr(gv(RC_FLOAT
));
1829 } else if(c1
&& c1
<=0xf) {
1832 r
=fpr(gv(RC_FLOAT
));
1837 r
=fpr(gv(RC_FLOAT
));
1839 r2
=fpr(gv(RC_FLOAT
));
1848 r
=fpr(gv(RC_FLOAT
));
1853 r2
=fpr(gv(RC_FLOAT
));
1861 r
=fpr(gv(RC_FLOAT
));
1863 } else if(c1
&& c1
<=0xf) {
1866 r
=fpr(gv(RC_FLOAT
));
1871 r
=fpr(gv(RC_FLOAT
));
1873 r2
=fpr(gv(RC_FLOAT
));
1877 if(op
>= TOK_ULT
&& op
<= TOK_GT
) {
1878 x
|=0xd0f110; // cmfe
1879 /* bug (intention?) in Linux FPU emulator
1880 doesn't set carry if equal */
1886 tcc_error("unsigned comparison on floats?");
1892 op
=TOK_ULE
; /* correct in unordered case only if AC bit in FPSR set */
1896 x
&=~0x400000; // cmfe -> cmf
1918 r
=fpr(gv(RC_FLOAT
));
1925 r2
=fpr(gv(RC_FLOAT
));
1927 vtop
[-1].r
= VT_CMP
;
1930 tcc_error("unknown fp op %x!",op
);
1934 if(vtop
[-1].r
== VT_CMP
)
1940 vtop
[-1].r
=get_reg_ex(RC_FLOAT
,two2mask(vtop
[-1].r
,c1
));
1944 o(x
|(r
<<16)|(c1
<<12)|r2
);
1948 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1949 and 'long long' cases. */
1950 ST_FUNC
void gen_cvt_itof1(int t
)
1954 bt
=vtop
->type
.t
& VT_BTYPE
;
1955 if(bt
== VT_INT
|| bt
== VT_SHORT
|| bt
== VT_BYTE
) {
1961 r2
=vfpr(vtop
->r
=get_reg(RC_FLOAT
));
1962 o(0xEE000A10|(r
<<12)|(r2
<<16)); /* fmsr */
1964 if(!(vtop
->type
.t
& VT_UNSIGNED
))
1965 r2
|=0x80; /* fuitoX -> fsituX */
1966 o(0xEEB80A40|r2
|T2CPR(t
)); /* fYitoX*/
1968 r2
=fpr(vtop
->r
=get_reg(RC_FLOAT
));
1969 if((t
& VT_BTYPE
) != VT_FLOAT
)
1970 dsize
=0x80; /* flts -> fltd */
1971 o(0xEE000110|dsize
|(r2
<<16)|(r
<<12)); /* flts */
1972 if((vtop
->type
.t
& (VT_UNSIGNED
|VT_BTYPE
)) == (VT_UNSIGNED
|VT_INT
)) {
1974 o(0xE3500000|(r
<<12)); /* cmp */
1975 r
=fpr(get_reg(RC_FLOAT
));
1976 if(last_itod_magic
) {
1977 off
=ind
+8-last_itod_magic
;
1982 o(0xBD1F0100|(r
<<12)|off
); /* ldflts */
1984 o(0xEA000000); /* b */
1985 last_itod_magic
=ind
;
1986 o(0x4F800000); /* 4294967296.0f */
1988 o(0xBE000100|dsize
|(r2
<<16)|(r2
<<12)|r
); /* adflt */
1992 } else if(bt
== VT_LLONG
) {
1994 CType
*func_type
= 0;
1995 if((t
& VT_BTYPE
) == VT_FLOAT
) {
1996 func_type
= &func_float_type
;
1997 if(vtop
->type
.t
& VT_UNSIGNED
)
1998 func
=TOK___floatundisf
;
2000 func
=TOK___floatdisf
;
2001 #if LDOUBLE_SIZE != 8
2002 } else if((t
& VT_BTYPE
) == VT_LDOUBLE
) {
2003 func_type
= &func_ldouble_type
;
2004 if(vtop
->type
.t
& VT_UNSIGNED
)
2005 func
=TOK___floatundixf
;
2007 func
=TOK___floatdixf
;
2008 } else if((t
& VT_BTYPE
) == VT_DOUBLE
) {
2010 } else if((t
& VT_BTYPE
) == VT_DOUBLE
|| (t
& VT_BTYPE
) == VT_LDOUBLE
) {
2012 func_type
= &func_double_type
;
2013 if(vtop
->type
.t
& VT_UNSIGNED
)
2014 func
=TOK___floatundidf
;
2016 func
=TOK___floatdidf
;
2019 vpush_global_sym(func_type
, func
);
2027 tcc_error("unimplemented gen_cvt_itof %x!",vtop
->type
.t
);
2030 /* convert fp to int 't' type */
2031 void gen_cvt_ftoi(int t
)
2037 r2
=vtop
->type
.t
& VT_BTYPE
;
2040 r
=vfpr(gv(RC_FLOAT
));
2042 o(0xEEBC0AC0|(r
<<12)|r
|T2CPR(r2
)|u
); /* ftoXizY */
2043 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2044 o(0xEE100A10|(r
<<16)|(r2
<<12));
2049 func
=TOK___fixunssfsi
;
2050 #if LDOUBLE_SIZE != 8
2051 else if(r2
== VT_LDOUBLE
)
2052 func
=TOK___fixunsxfsi
;
2053 else if(r2
== VT_DOUBLE
)
2055 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2057 func
=TOK___fixunsdfsi
;
2059 r
=fpr(gv(RC_FLOAT
));
2060 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2061 o(0xEE100170|(r2
<<12)|r
);
2065 } else if(t
== VT_LLONG
) { // unsigned handled in gen_cvt_ftoi1
2068 #if LDOUBLE_SIZE != 8
2069 else if(r2
== VT_LDOUBLE
)
2071 else if(r2
== VT_DOUBLE
)
2073 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2078 vpush_global_sym(&func_old_type
, func
);
2083 vtop
->r2
= REG_LRET
;
2087 tcc_error("unimplemented gen_cvt_ftoi!");
2090 /* convert from one floating point type to another */
2091 void gen_cvt_ftof(int t
)
2094 if(((vtop
->type
.t
& VT_BTYPE
) == VT_FLOAT
) != ((t
& VT_BTYPE
) == VT_FLOAT
)) {
2095 uint32_t r
= vfpr(gv(RC_FLOAT
));
2096 o(0xEEB70AC0|(r
<<12)|r
|T2CPR(vtop
->type
.t
));
2099 /* all we have to do on i386 and FPA ARM is to put the float in a register */
2104 /* computed goto support */
2111 /* Save the stack pointer onto the stack and return the location of its address */
2112 ST_FUNC
void gen_vla_sp_save(int addr
) {
2115 v
.r
= VT_LOCAL
| VT_LVAL
;
2120 /* Restore the SP from a location on the stack */
2121 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2124 v
.r
= VT_LOCAL
| VT_LVAL
;
2129 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2130 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2131 int r
= intr(gv(RC_INT
));
2132 o(0xE04D0000|(r
<<12)|r
); /* sub r, sp, r */
2140 if (align
& (align
- 1))
2141 tcc_error("alignment is not a power of 2: %i", align
);
2142 o(stuff_const(0xE3C0D000|(r
<<16), align
- 1)); /* bic sp, r, #align-1 */
2146 /* end of ARM code generator */
2147 /*************************************************************/
2149 /*************************************************************/
2151 #ifndef TCC_IS_NATIVE
2152 #include "arm-asm.c"