x86-64: Fix calls via absolute function pointers
[tinycc.git] / x86_64-gen.c
blob045dd2c589da45619537a6f539614b196834f2b8
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
35 #define RC_RAX 0x0004
36 #define RC_RCX 0x0008
37 #define RC_RDX 0x0010
38 #define RC_ST0 0x0080 /* only for long double */
39 #define RC_R8 0x0100
40 #define RC_R9 0x0200
41 #define RC_R10 0x0400
42 #define RC_R11 0x0800
43 #define RC_XMM0 0x1000
44 #define RC_XMM1 0x2000
45 #define RC_XMM2 0x4000
46 #define RC_XMM3 0x8000
47 #define RC_XMM4 0x10000
48 #define RC_XMM5 0x20000
49 #define RC_XMM6 0x40000
50 #define RC_XMM7 0x80000
51 #define RC_IRET RC_RAX /* function return: integer register */
52 #define RC_LRET RC_RDX /* function return: second integer register */
53 #define RC_FRET RC_XMM0 /* function return: float register */
54 #define RC_QRET RC_XMM1 /* function return: second float register */
56 /* pretty names for the registers */
57 enum {
58 TREG_RAX = 0,
59 TREG_RCX = 1,
60 TREG_RDX = 2,
61 TREG_RSP = 4,
62 TREG_RSI = 6,
63 TREG_RDI = 7,
65 TREG_R8 = 8,
66 TREG_R9 = 9,
67 TREG_R10 = 10,
68 TREG_R11 = 11,
70 TREG_XMM0 = 16,
71 TREG_XMM1 = 17,
72 TREG_XMM2 = 18,
73 TREG_XMM3 = 19,
74 TREG_XMM4 = 20,
75 TREG_XMM5 = 21,
76 TREG_XMM6 = 22,
77 TREG_XMM7 = 23,
79 TREG_ST0 = 24,
81 TREG_MEM = 0x20
84 #define REX_BASE(reg) (((reg) >> 3) & 1)
85 #define REG_VALUE(reg) ((reg) & 7)
87 /* return registers for function */
88 #define REG_IRET TREG_RAX /* single word int return register */
89 #define REG_LRET TREG_RDX /* second word return register (for long long) */
90 #define REG_FRET TREG_XMM0 /* float return register */
91 #define REG_QRET TREG_XMM1 /* second float return register */
93 /* defined if function parameters must be evaluated in reverse order */
94 #define INVERT_FUNC_PARAMS
96 /* pointer size, in bytes */
97 #define PTR_SIZE 8
99 /* long double size and alignment, in bytes */
100 #define LDOUBLE_SIZE 16
101 #define LDOUBLE_ALIGN 16
102 /* maximum alignment (for aligned attribute support) */
103 #define MAX_ALIGN 16
105 /******************************************************/
106 #else /* ! TARGET_DEFS_ONLY */
107 /******************************************************/
108 #include "tcc.h"
109 #include <assert.h>
111 ST_DATA const int reg_classes[NB_REGS] = {
112 /* eax */ RC_INT | RC_RAX,
113 /* ecx */ RC_INT | RC_RCX,
114 /* edx */ RC_INT | RC_RDX,
120 RC_R8,
121 RC_R9,
122 RC_R10,
123 RC_R11,
128 /* xmm0 */ RC_FLOAT | RC_XMM0,
129 /* xmm1 */ RC_FLOAT | RC_XMM1,
130 /* xmm2 */ RC_FLOAT | RC_XMM2,
131 /* xmm3 */ RC_FLOAT | RC_XMM3,
132 /* xmm4 */ RC_FLOAT | RC_XMM4,
133 /* xmm5 */ RC_FLOAT | RC_XMM5,
134 /* xmm6 an xmm7 are included so gv() can be used on them,
135 but they are not tagged with RC_FLOAT because they are
136 callee saved on Windows */
137 RC_XMM6,
138 RC_XMM7,
139 /* st0 */ RC_ST0
142 static unsigned long func_sub_sp_offset;
143 static int func_ret_sub;
145 /* XXX: make it faster ? */
146 ST_FUNC void g(int c)
148 int ind1;
149 if (nocode_wanted)
150 return;
151 ind1 = ind + 1;
152 if (ind1 > cur_text_section->data_allocated)
153 section_realloc(cur_text_section, ind1);
154 cur_text_section->data[ind] = c;
155 ind = ind1;
158 ST_FUNC void o(unsigned int c)
160 while (c) {
161 g(c);
162 c = c >> 8;
166 ST_FUNC void gen_le16(int v)
168 g(v);
169 g(v >> 8);
172 ST_FUNC void gen_le32(int c)
174 g(c);
175 g(c >> 8);
176 g(c >> 16);
177 g(c >> 24);
180 ST_FUNC void gen_le64(int64_t c)
182 g(c);
183 g(c >> 8);
184 g(c >> 16);
185 g(c >> 24);
186 g(c >> 32);
187 g(c >> 40);
188 g(c >> 48);
189 g(c >> 56);
192 static void orex(int ll, int r, int r2, int b)
194 if ((r & VT_VALMASK) >= VT_CONST)
195 r = 0;
196 if ((r2 & VT_VALMASK) >= VT_CONST)
197 r2 = 0;
198 if (ll || REX_BASE(r) || REX_BASE(r2))
199 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
200 o(b);
203 /* output a symbol and patch all calls to it */
204 ST_FUNC void gsym_addr(int t, int a)
206 while (t) {
207 unsigned char *ptr = cur_text_section->data + t;
208 uint32_t n = read32le(ptr); /* next value */
209 write32le(ptr, a - t - 4);
210 t = n;
214 void gsym(int t)
216 gsym_addr(t, ind);
220 static int is64_type(int t)
222 return ((t & VT_BTYPE) == VT_PTR ||
223 (t & VT_BTYPE) == VT_FUNC ||
224 (t & VT_BTYPE) == VT_LLONG);
227 /* instruction + 4 bytes data. Return the address of the data */
228 static int oad(int c, int s)
230 int t;
231 if (nocode_wanted)
232 return s;
233 o(c);
234 t = ind;
235 gen_le32(s);
236 return t;
239 /* generate jmp to a label */
240 #define gjmp2(instr,lbl) oad(instr,lbl)
242 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
244 if (r & VT_SYM)
245 greloca(cur_text_section, sym, ind, R_X86_64_32S, c), c=0;
246 gen_le32(c);
249 /* output constant with relocation if 'r & VT_SYM' is true */
250 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
252 if (r & VT_SYM)
253 greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
254 gen_le64(c);
257 /* output constant with relocation if 'r & VT_SYM' is true */
258 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
260 if (r & VT_SYM)
261 greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
262 gen_le32(c-4);
265 /* output got address with relocation */
266 static void gen_gotpcrel(int r, Sym *sym, int c)
268 #ifdef TCC_TARGET_PE
269 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
270 get_tok_str(sym->v, NULL), c, r,
271 cur_text_section->data[ind-3],
272 cur_text_section->data[ind-2],
273 cur_text_section->data[ind-1]
275 #endif
276 greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
277 gen_le32(0);
278 if (c) {
279 /* we use add c, %xxx for displacement */
280 orex(1, r, 0, 0x81);
281 o(0xc0 + REG_VALUE(r));
282 gen_le32(c);
286 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
288 op_reg = REG_VALUE(op_reg) << 3;
289 if ((r & VT_VALMASK) == VT_CONST) {
290 /* constant memory reference */
291 if (!(r & VT_SYM)) {
292 /* Absolute memory reference */
293 o(0x04 | op_reg); /* [sib] | destreg */
294 oad(0x25, c); /* disp32 */
295 } else {
296 o(0x05 | op_reg); /* (%rip)+disp32 | destreg */
297 if (is_got) {
298 gen_gotpcrel(r, sym, c);
299 } else {
300 gen_addrpc32(r, sym, c);
303 } else if ((r & VT_VALMASK) == VT_LOCAL) {
304 /* currently, we use only ebp as base */
305 if (c == (char)c) {
306 /* short reference */
307 o(0x45 | op_reg);
308 g(c);
309 } else {
310 oad(0x85 | op_reg, c);
312 } else if ((r & VT_VALMASK) >= TREG_MEM) {
313 if (c) {
314 g(0x80 | op_reg | REG_VALUE(r));
315 gen_le32(c);
316 } else {
317 g(0x00 | op_reg | REG_VALUE(r));
319 } else {
320 g(0x00 | op_reg | REG_VALUE(r));
324 /* generate a modrm reference. 'op_reg' contains the additional 3
325 opcode bits */
326 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
328 gen_modrm_impl(op_reg, r, sym, c, 0);
331 /* generate a modrm reference. 'op_reg' contains the additional 3
332 opcode bits */
333 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
335 int is_got;
336 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
337 orex(1, r, op_reg, opcode);
338 gen_modrm_impl(op_reg, r, sym, c, is_got);
342 /* load 'r' from value 'sv' */
343 void load(int r, SValue *sv)
345 int v, t, ft, fc, fr;
346 SValue v1;
348 #ifdef TCC_TARGET_PE
349 SValue v2;
350 sv = pe_getimport(sv, &v2);
351 #endif
353 fr = sv->r;
354 ft = sv->type.t & ~VT_DEFSIGN;
355 fc = sv->c.i;
356 if (fc != sv->c.i && (fr & VT_SYM))
357 tcc_error("64 bit addend in load");
359 ft &= ~(VT_VOLATILE | VT_CONSTANT);
361 #ifndef TCC_TARGET_PE
362 /* we use indirect access via got */
363 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
364 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
365 /* use the result register as a temporal register */
366 int tr = r | TREG_MEM;
367 if (is_float(ft)) {
368 /* we cannot use float registers as a temporal register */
369 tr = get_reg(RC_INT) | TREG_MEM;
371 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
373 /* load from the temporal register */
374 fr = tr | VT_LVAL;
376 #endif
378 v = fr & VT_VALMASK;
379 if (fr & VT_LVAL) {
380 int b, ll;
381 if (v == VT_LLOCAL) {
382 v1.type.t = VT_PTR;
383 v1.r = VT_LOCAL | VT_LVAL;
384 v1.c.i = fc;
385 fr = r;
386 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
387 fr = get_reg(RC_INT);
388 load(fr, &v1);
390 if (fc != sv->c.i) {
391 /* If the addends doesn't fit into a 32bit signed
392 we must use a 64bit move. We've checked above
393 that this doesn't have a sym associated. */
394 v1.type.t = VT_LLONG;
395 v1.r = VT_CONST;
396 v1.c.i = sv->c.i;
397 fr = r;
398 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
399 fr = get_reg(RC_INT);
400 load(fr, &v1);
401 fc = 0;
403 ll = 0;
404 /* Like GCC we can load from small enough properly sized
405 structs and unions as well.
406 XXX maybe move to generic operand handling, but should
407 occur only with asm, so tccasm.c might also be a better place */
408 if ((ft & VT_BTYPE) == VT_STRUCT) {
409 int align;
410 switch (type_size(&sv->type, &align)) {
411 case 1: ft = VT_BYTE; break;
412 case 2: ft = VT_SHORT; break;
413 case 4: ft = VT_INT; break;
414 case 8: ft = VT_LLONG; break;
415 default:
416 tcc_error("invalid aggregate type for register load");
417 break;
420 if ((ft & VT_BTYPE) == VT_FLOAT) {
421 b = 0x6e0f66;
422 r = REG_VALUE(r); /* movd */
423 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
424 b = 0x7e0ff3; /* movq */
425 r = REG_VALUE(r);
426 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
427 b = 0xdb, r = 5; /* fldt */
428 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
429 b = 0xbe0f; /* movsbl */
430 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
431 b = 0xb60f; /* movzbl */
432 } else if ((ft & VT_TYPE) == VT_SHORT) {
433 b = 0xbf0f; /* movswl */
434 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
435 b = 0xb70f; /* movzwl */
436 } else {
437 assert(((ft & VT_BTYPE) == VT_INT)
438 || ((ft & VT_BTYPE) == VT_LLONG)
439 || ((ft & VT_BTYPE) == VT_PTR)
440 || ((ft & VT_BTYPE) == VT_FUNC)
442 ll = is64_type(ft);
443 b = 0x8b;
445 if (ll) {
446 gen_modrm64(b, r, fr, sv->sym, fc);
447 } else {
448 orex(ll, fr, r, b);
449 gen_modrm(r, fr, sv->sym, fc);
451 } else {
452 if (v == VT_CONST) {
453 if (fr & VT_SYM) {
454 #ifdef TCC_TARGET_PE
455 orex(1,0,r,0x8d);
456 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
457 gen_addrpc32(fr, sv->sym, fc);
458 #else
459 if (sv->sym->type.t & VT_STATIC) {
460 orex(1,0,r,0x8d);
461 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
462 gen_addrpc32(fr, sv->sym, fc);
463 } else {
464 orex(1,0,r,0x8b);
465 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
466 gen_gotpcrel(r, sv->sym, fc);
468 #endif
469 } else if (is64_type(ft)) {
470 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
471 gen_le64(sv->c.i);
472 } else {
473 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
474 gen_le32(fc);
476 } else if (v == VT_LOCAL) {
477 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
478 gen_modrm(r, VT_LOCAL, sv->sym, fc);
479 } else if (v == VT_CMP) {
480 orex(0,r,0,0);
481 if ((fc & ~0x100) != TOK_NE)
482 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
483 else
484 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
485 if (fc & 0x100)
487 /* This was a float compare. If the parity bit is
488 set the result was unordered, meaning false for everything
489 except TOK_NE, and true for TOK_NE. */
490 fc &= ~0x100;
491 o(0x037a + (REX_BASE(r) << 8));
493 orex(0,r,0, 0x0f); /* setxx %br */
494 o(fc);
495 o(0xc0 + REG_VALUE(r));
496 } else if (v == VT_JMP || v == VT_JMPI) {
497 t = v & 1;
498 orex(0,r,0,0);
499 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
500 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
501 gsym(fc);
502 orex(0,r,0,0);
503 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
504 } else if (v != r) {
505 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
506 if (v == TREG_ST0) {
507 /* gen_cvt_ftof(VT_DOUBLE); */
508 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
509 /* movsd -0x10(%rsp),%xmmN */
510 o(0x100ff2);
511 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
512 o(0xf024);
513 } else {
514 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
515 if ((ft & VT_BTYPE) == VT_FLOAT) {
516 o(0x100ff3);
517 } else {
518 assert((ft & VT_BTYPE) == VT_DOUBLE);
519 o(0x100ff2);
521 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
523 } else if (r == TREG_ST0) {
524 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
525 /* gen_cvt_ftof(VT_LDOUBLE); */
526 /* movsd %xmmN,-0x10(%rsp) */
527 o(0x110ff2);
528 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
529 o(0xf024);
530 o(0xf02444dd); /* fldl -0x10(%rsp) */
531 } else {
532 orex(1,r,v, 0x89);
533 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
539 /* store register 'r' in lvalue 'v' */
540 void store(int r, SValue *v)
542 int fr, bt, ft, fc;
543 int op64 = 0;
544 /* store the REX prefix in this variable when PIC is enabled */
545 int pic = 0;
547 #ifdef TCC_TARGET_PE
548 SValue v2;
549 v = pe_getimport(v, &v2);
550 #endif
552 fr = v->r & VT_VALMASK;
553 ft = v->type.t;
554 fc = v->c.i;
555 if (fc != v->c.i && (fr & VT_SYM))
556 tcc_error("64 bit addend in store");
557 ft &= ~(VT_VOLATILE | VT_CONSTANT);
558 bt = ft & VT_BTYPE;
560 #ifndef TCC_TARGET_PE
561 /* we need to access the variable via got */
562 if (fr == VT_CONST && (v->r & VT_SYM)) {
563 /* mov xx(%rip), %r11 */
564 o(0x1d8b4c);
565 gen_gotpcrel(TREG_R11, v->sym, v->c.i);
566 pic = is64_type(bt) ? 0x49 : 0x41;
568 #endif
570 /* XXX: incorrect if float reg to reg */
571 if (bt == VT_FLOAT) {
572 o(0x66);
573 o(pic);
574 o(0x7e0f); /* movd */
575 r = REG_VALUE(r);
576 } else if (bt == VT_DOUBLE) {
577 o(0x66);
578 o(pic);
579 o(0xd60f); /* movq */
580 r = REG_VALUE(r);
581 } else if (bt == VT_LDOUBLE) {
582 o(0xc0d9); /* fld %st(0) */
583 o(pic);
584 o(0xdb); /* fstpt */
585 r = 7;
586 } else {
587 if (bt == VT_SHORT)
588 o(0x66);
589 o(pic);
590 if (bt == VT_BYTE || bt == VT_BOOL)
591 orex(0, 0, r, 0x88);
592 else if (is64_type(bt))
593 op64 = 0x89;
594 else
595 orex(0, 0, r, 0x89);
597 if (pic) {
598 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
599 if (op64)
600 o(op64);
601 o(3 + (r << 3));
602 } else if (op64) {
603 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
604 gen_modrm64(op64, r, v->r, v->sym, fc);
605 } else if (fr != r) {
606 /* XXX: don't we really come here? */
607 abort();
608 o(0xc0 + fr + r * 8); /* mov r, fr */
610 } else {
611 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
612 gen_modrm(r, v->r, v->sym, fc);
613 } else if (fr != r) {
614 /* XXX: don't we really come here? */
615 abort();
616 o(0xc0 + fr + r * 8); /* mov r, fr */
621 /* 'is_jmp' is '1' if it is a jump */
622 static void gcall_or_jmp(int is_jmp)
624 int r;
625 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
626 ((vtop->r & VT_SYM) && (vtop->c.i-4) == (int)(vtop->c.i-4))) {
627 /* constant symbolic case -> simple relocation */
628 #ifdef TCC_TARGET_PE
629 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
630 #else
631 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
632 #endif
633 oad(0xe8 + is_jmp, 0); /* call/jmp im */
634 } else {
635 /* otherwise, indirect call */
636 r = TREG_R11;
637 load(r, vtop);
638 o(0x41); /* REX */
639 o(0xff); /* call/jmp *r */
640 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
644 #if defined(CONFIG_TCC_BCHECK)
645 #ifndef TCC_TARGET_PE
646 static addr_t func_bound_offset;
647 static unsigned long func_bound_ind;
648 #endif
650 static void gen_static_call(int v)
652 Sym *sym = external_global_sym(v, &func_old_type, 0);
653 oad(0xe8, 0);
654 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
657 /* generate a bounded pointer addition */
658 ST_FUNC void gen_bounded_ptr_add(void)
660 /* save all temporary registers */
661 save_regs(0);
663 /* prepare fast x86_64 function call */
664 gv(RC_RAX);
665 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
666 vtop--;
668 gv(RC_RAX);
669 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
670 vtop--;
672 /* do a fast function call */
673 gen_static_call(TOK___bound_ptr_add);
675 /* returned pointer is in rax */
676 vtop++;
677 vtop->r = TREG_RAX | VT_BOUNDED;
680 /* relocation offset of the bounding function call point */
681 vtop->c.i = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
684 /* patch pointer addition in vtop so that pointer dereferencing is
685 also tested */
686 ST_FUNC void gen_bounded_ptr_deref(void)
688 addr_t func;
689 int size, align;
690 ElfW(Rela) *rel;
691 Sym *sym;
693 size = 0;
694 /* XXX: put that code in generic part of tcc */
695 if (!is_float(vtop->type.t)) {
696 if (vtop->r & VT_LVAL_BYTE)
697 size = 1;
698 else if (vtop->r & VT_LVAL_SHORT)
699 size = 2;
701 if (!size)
702 size = type_size(&vtop->type, &align);
703 switch(size) {
704 case 1: func = TOK___bound_ptr_indir1; break;
705 case 2: func = TOK___bound_ptr_indir2; break;
706 case 4: func = TOK___bound_ptr_indir4; break;
707 case 8: func = TOK___bound_ptr_indir8; break;
708 case 12: func = TOK___bound_ptr_indir12; break;
709 case 16: func = TOK___bound_ptr_indir16; break;
710 default:
711 tcc_error("unhandled size when dereferencing bounded pointer");
712 func = 0;
713 break;
716 sym = external_global_sym(func, &func_old_type, 0);
717 if (!sym->c)
718 put_extern_sym(sym, NULL, 0, 0);
720 /* patch relocation */
721 /* XXX: find a better solution ? */
723 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.i);
724 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
726 #endif
728 #ifdef TCC_TARGET_PE
730 #define REGN 4
731 static const uint8_t arg_regs[REGN] = {
732 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
735 /* Prepare arguments in R10 and R11 rather than RCX and RDX
736 because gv() will not ever use these */
737 static int arg_prepare_reg(int idx) {
738 if (idx == 0 || idx == 1)
739 /* idx=0: r10, idx=1: r11 */
740 return idx + 10;
741 else
742 return arg_regs[idx];
745 static int func_scratch, func_alloca;
747 /* Generate function call. The function address is pushed first, then
748 all the parameters in call order. This functions pops all the
749 parameters and the function address. */
751 static void gen_offs_sp(int b, int r, int d)
753 orex(1,0,r & 0x100 ? 0 : r, b);
754 if (d == (char)d) {
755 o(0x2444 | (REG_VALUE(r) << 3));
756 g(d);
757 } else {
758 o(0x2484 | (REG_VALUE(r) << 3));
759 gen_le32(d);
763 static int using_regs(int size)
765 return !(size > 8 || (size & (size - 1)));
768 /* Return the number of registers needed to return the struct, or 0 if
769 returning via struct pointer. */
770 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
772 int size, align;
773 *ret_align = 1; // Never have to re-align return values for x86-64
774 *regsize = 8;
775 size = type_size(vt, &align);
776 if (!using_regs(size))
777 return 0;
778 if (size == 8)
779 ret->t = VT_LLONG;
780 else if (size == 4)
781 ret->t = VT_INT;
782 else if (size == 2)
783 ret->t = VT_SHORT;
784 else
785 ret->t = VT_BYTE;
786 ret->ref = NULL;
787 return 1;
790 static int is_sse_float(int t) {
791 int bt;
792 bt = t & VT_BTYPE;
793 return bt == VT_DOUBLE || bt == VT_FLOAT;
796 static int gfunc_arg_size(CType *type) {
797 int align;
798 if (type->t & (VT_ARRAY|VT_BITFIELD))
799 return 8;
800 return type_size(type, &align);
803 void gfunc_call(int nb_args)
805 int size, r, args_size, i, d, bt, struct_size;
806 int arg;
808 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
809 arg = nb_args;
811 /* for struct arguments, we need to call memcpy and the function
812 call breaks register passing arguments we are preparing.
813 So, we process arguments which will be passed by stack first. */
814 struct_size = args_size;
815 for(i = 0; i < nb_args; i++) {
816 SValue *sv;
818 --arg;
819 sv = &vtop[-i];
820 bt = (sv->type.t & VT_BTYPE);
821 size = gfunc_arg_size(&sv->type);
823 if (using_regs(size))
824 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
826 if (bt == VT_STRUCT) {
827 /* align to stack align size */
828 size = (size + 15) & ~15;
829 /* generate structure store */
830 r = get_reg(RC_INT);
831 gen_offs_sp(0x8d, r, struct_size);
832 struct_size += size;
834 /* generate memcpy call */
835 vset(&sv->type, r | VT_LVAL, 0);
836 vpushv(sv);
837 vstore();
838 --vtop;
839 } else if (bt == VT_LDOUBLE) {
840 gv(RC_ST0);
841 gen_offs_sp(0xdb, 0x107, struct_size);
842 struct_size += 16;
846 if (func_scratch < struct_size)
847 func_scratch = struct_size;
849 arg = nb_args;
850 struct_size = args_size;
852 for(i = 0; i < nb_args; i++) {
853 --arg;
854 bt = (vtop->type.t & VT_BTYPE);
856 size = gfunc_arg_size(&vtop->type);
857 if (!using_regs(size)) {
858 /* align to stack align size */
859 size = (size + 15) & ~15;
860 if (arg >= REGN) {
861 d = get_reg(RC_INT);
862 gen_offs_sp(0x8d, d, struct_size);
863 gen_offs_sp(0x89, d, arg*8);
864 } else {
865 d = arg_prepare_reg(arg);
866 gen_offs_sp(0x8d, d, struct_size);
868 struct_size += size;
869 } else {
870 if (is_sse_float(vtop->type.t)) {
871 if (tcc_state->nosse)
872 tcc_error("SSE disabled");
873 if (arg >= REGN) {
874 gv(RC_XMM0);
875 /* movq %xmm0, j*8(%rsp) */
876 gen_offs_sp(0xd60f66, 0x100, arg*8);
877 } else {
878 /* Load directly to xmmN register */
879 gv(RC_XMM0 << arg);
880 d = arg_prepare_reg(arg);
881 /* mov %xmmN, %rxx */
882 o(0x66);
883 orex(1,d,0, 0x7e0f);
884 o(0xc0 + arg*8 + REG_VALUE(d));
886 } else {
887 if (bt == VT_STRUCT) {
888 vtop->type.ref = NULL;
889 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
890 : size > 1 ? VT_SHORT : VT_BYTE;
893 r = gv(RC_INT);
894 if (arg >= REGN) {
895 gen_offs_sp(0x89, r, arg*8);
896 } else {
897 d = arg_prepare_reg(arg);
898 orex(1,d,r,0x89); /* mov */
899 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
903 vtop--;
905 save_regs(0);
907 /* Copy R10 and R11 into RCX and RDX, respectively */
908 if (nb_args > 0) {
909 o(0xd1894c); /* mov %r10, %rcx */
910 if (nb_args > 1) {
911 o(0xda894c); /* mov %r11, %rdx */
915 gcall_or_jmp(0);
917 if ((vtop->r & VT_SYM) && vtop->sym->v == TOK_alloca) {
918 /* need to add the "func_scratch" area after alloca */
919 o(0x0548), gen_le32(func_alloca), func_alloca = ind - 4;
922 /* other compilers don't clear the upper bits when returning char/short */
923 bt = vtop->type.ref->type.t & (VT_BTYPE | VT_UNSIGNED);
924 if (bt == (VT_BYTE | VT_UNSIGNED))
925 o(0xc0b60f); /* movzbl %al, %eax */
926 else if (bt == VT_BYTE)
927 o(0xc0be0f); /* movsbl %al, %eax */
928 else if (bt == VT_SHORT)
929 o(0x98); /* cwtl */
930 else if (bt == (VT_SHORT | VT_UNSIGNED))
931 o(0xc0b70f); /* movzbl %al, %eax */
932 #if 0 /* handled in gen_cast() */
933 else if (bt == VT_INT)
934 o(0x9848); /* cltq */
935 else if (bt == (VT_INT | VT_UNSIGNED))
936 o(0xc089); /* mov %eax,%eax */
937 #endif
938 vtop--;
942 #define FUNC_PROLOG_SIZE 11
944 /* generate function prolog of type 't' */
945 void gfunc_prolog(CType *func_type)
947 int addr, reg_param_index, bt, size;
948 Sym *sym;
949 CType *type;
951 func_ret_sub = 0;
952 func_scratch = 0;
953 func_alloca = 0;
954 loc = 0;
956 addr = PTR_SIZE * 2;
957 ind += FUNC_PROLOG_SIZE;
958 func_sub_sp_offset = ind;
959 reg_param_index = 0;
961 sym = func_type->ref;
963 /* if the function returns a structure, then add an
964 implicit pointer parameter */
965 func_vt = sym->type;
966 func_var = (sym->f.func_type == FUNC_ELLIPSIS);
967 size = gfunc_arg_size(&func_vt);
968 if (!using_regs(size)) {
969 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
970 func_vc = addr;
971 reg_param_index++;
972 addr += 8;
975 /* define parameters */
976 while ((sym = sym->next) != NULL) {
977 type = &sym->type;
978 bt = type->t & VT_BTYPE;
979 size = gfunc_arg_size(type);
980 if (!using_regs(size)) {
981 if (reg_param_index < REGN) {
982 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
984 sym_push(sym->v & ~SYM_FIELD, type,
985 VT_LLOCAL | lvalue_type(type->t), addr);
986 } else {
987 if (reg_param_index < REGN) {
988 /* save arguments passed by register */
989 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
990 if (tcc_state->nosse)
991 tcc_error("SSE disabled");
992 o(0xd60f66); /* movq */
993 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
994 } else {
995 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
998 sym_push(sym->v & ~SYM_FIELD, type,
999 VT_LOCAL | lvalue_type(type->t), addr);
1001 addr += 8;
1002 reg_param_index++;
1005 while (reg_param_index < REGN) {
1006 if (func_type->ref->f.func_type == FUNC_ELLIPSIS) {
1007 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
1008 addr += 8;
1010 reg_param_index++;
1014 /* generate function epilog */
1015 void gfunc_epilog(void)
1017 int v, saved_ind;
1019 o(0xc9); /* leave */
1020 if (func_ret_sub == 0) {
1021 o(0xc3); /* ret */
1022 } else {
1023 o(0xc2); /* ret n */
1024 g(func_ret_sub);
1025 g(func_ret_sub >> 8);
1028 saved_ind = ind;
1029 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1030 /* align local size to word & save local variables */
1031 func_scratch = (func_scratch + 15) & -16;
1032 v = (func_scratch + -loc + 15) & -16;
1034 if (v >= 4096) {
1035 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
1036 oad(0xb8, v); /* mov stacksize, %eax */
1037 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1038 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
1039 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1040 } else {
1041 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1042 o(0xec8148); /* sub rsp, stacksize */
1043 gen_le32(v);
1046 /* add the "func_scratch" area after each alloca seen */
1047 while (func_alloca) {
1048 unsigned char *ptr = cur_text_section->data + func_alloca;
1049 func_alloca = read32le(ptr);
1050 write32le(ptr, func_scratch);
1053 cur_text_section->data_offset = saved_ind;
1054 pe_add_unwind_data(ind, saved_ind, v);
1055 ind = cur_text_section->data_offset;
1058 #else
1060 static void gadd_sp(int val)
1062 if (val == (char)val) {
1063 o(0xc48348);
1064 g(val);
1065 } else {
1066 oad(0xc48148, val); /* add $xxx, %rsp */
1070 typedef enum X86_64_Mode {
1071 x86_64_mode_none,
1072 x86_64_mode_memory,
1073 x86_64_mode_integer,
1074 x86_64_mode_sse,
1075 x86_64_mode_x87
1076 } X86_64_Mode;
1078 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1080 if (a == b)
1081 return a;
1082 else if (a == x86_64_mode_none)
1083 return b;
1084 else if (b == x86_64_mode_none)
1085 return a;
1086 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1087 return x86_64_mode_memory;
1088 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1089 return x86_64_mode_integer;
1090 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1091 return x86_64_mode_memory;
1092 else
1093 return x86_64_mode_sse;
1096 static X86_64_Mode classify_x86_64_inner(CType *ty)
1098 X86_64_Mode mode;
1099 Sym *f;
1101 switch (ty->t & VT_BTYPE) {
1102 case VT_VOID: return x86_64_mode_none;
1104 case VT_INT:
1105 case VT_BYTE:
1106 case VT_SHORT:
1107 case VT_LLONG:
1108 case VT_BOOL:
1109 case VT_PTR:
1110 case VT_FUNC:
1111 return x86_64_mode_integer;
1113 case VT_FLOAT:
1114 case VT_DOUBLE: return x86_64_mode_sse;
1116 case VT_LDOUBLE: return x86_64_mode_x87;
1118 case VT_STRUCT:
1119 f = ty->ref;
1121 mode = x86_64_mode_none;
1122 for (f = f->next; f; f = f->next)
1123 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1125 return mode;
1127 assert(0);
1128 return 0;
1131 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1133 X86_64_Mode mode;
1134 int size, align, ret_t = 0;
1136 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1137 *psize = 8;
1138 *palign = 8;
1139 *reg_count = 1;
1140 ret_t = ty->t;
1141 mode = x86_64_mode_integer;
1142 } else {
1143 size = type_size(ty, &align);
1144 *psize = (size + 7) & ~7;
1145 *palign = (align + 7) & ~7;
1147 if (size > 16) {
1148 mode = x86_64_mode_memory;
1149 } else {
1150 mode = classify_x86_64_inner(ty);
1151 switch (mode) {
1152 case x86_64_mode_integer:
1153 if (size > 8) {
1154 *reg_count = 2;
1155 ret_t = VT_QLONG;
1156 } else {
1157 *reg_count = 1;
1158 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1160 break;
1162 case x86_64_mode_x87:
1163 *reg_count = 1;
1164 ret_t = VT_LDOUBLE;
1165 break;
1167 case x86_64_mode_sse:
1168 if (size > 8) {
1169 *reg_count = 2;
1170 ret_t = VT_QFLOAT;
1171 } else {
1172 *reg_count = 1;
1173 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1175 break;
1176 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1181 if (ret) {
1182 ret->ref = NULL;
1183 ret->t = ret_t;
1186 return mode;
1189 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1191 /* This definition must be synced with stdarg.h */
1192 enum __va_arg_type {
1193 __va_gen_reg, __va_float_reg, __va_stack
1195 int size, align, reg_count;
1196 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1197 switch (mode) {
1198 default: return __va_stack;
1199 case x86_64_mode_integer: return __va_gen_reg;
1200 case x86_64_mode_sse: return __va_float_reg;
1204 /* Return the number of registers needed to return the struct, or 0 if
1205 returning via struct pointer. */
1206 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1208 int size, align, reg_count;
1209 *ret_align = 1; // Never have to re-align return values for x86-64
1210 *regsize = 8;
1211 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1214 #define REGN 6
1215 static const uint8_t arg_regs[REGN] = {
1216 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1219 static int arg_prepare_reg(int idx) {
1220 if (idx == 2 || idx == 3)
1221 /* idx=2: r10, idx=3: r11 */
1222 return idx + 8;
1223 else
1224 return arg_regs[idx];
1227 /* Generate function call. The function address is pushed first, then
1228 all the parameters in call order. This functions pops all the
1229 parameters and the function address. */
1230 void gfunc_call(int nb_args)
1232 X86_64_Mode mode;
1233 CType type;
1234 int size, align, r, args_size, stack_adjust, i, reg_count;
1235 int nb_reg_args = 0;
1236 int nb_sse_args = 0;
1237 int sse_reg, gen_reg;
1238 char _onstack[nb_args], *onstack = _onstack;
1240 /* calculate the number of integer/float register arguments, remember
1241 arguments to be passed via stack (in onstack[]), and also remember
1242 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1243 to be done in a left-to-right pass over arguments. */
1244 stack_adjust = 0;
1245 for(i = nb_args - 1; i >= 0; i--) {
1246 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1247 if (mode == x86_64_mode_sse && nb_sse_args + reg_count <= 8) {
1248 nb_sse_args += reg_count;
1249 onstack[i] = 0;
1250 } else if (mode == x86_64_mode_integer && nb_reg_args + reg_count <= REGN) {
1251 nb_reg_args += reg_count;
1252 onstack[i] = 0;
1253 } else if (mode == x86_64_mode_none) {
1254 onstack[i] = 0;
1255 } else {
1256 if (align == 16 && (stack_adjust &= 15)) {
1257 onstack[i] = 2;
1258 stack_adjust = 0;
1259 } else
1260 onstack[i] = 1;
1261 stack_adjust += size;
1265 if (nb_sse_args && tcc_state->nosse)
1266 tcc_error("SSE disabled but floating point arguments passed");
1268 /* fetch cpu flag before generating any code */
1269 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1270 gv(RC_INT);
1272 /* for struct arguments, we need to call memcpy and the function
1273 call breaks register passing arguments we are preparing.
1274 So, we process arguments which will be passed by stack first. */
1275 gen_reg = nb_reg_args;
1276 sse_reg = nb_sse_args;
1277 args_size = 0;
1278 stack_adjust &= 15;
1279 for (i = 0; i < nb_args;) {
1280 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1281 if (!onstack[i]) {
1282 ++i;
1283 continue;
1285 /* Possibly adjust stack to align SSE boundary. We're processing
1286 args from right to left while allocating happens left to right
1287 (stack grows down), so the adjustment needs to happen _after_
1288 an argument that requires it. */
1289 if (stack_adjust) {
1290 o(0x50); /* push %rax; aka sub $8,%rsp */
1291 args_size += 8;
1292 stack_adjust = 0;
1294 if (onstack[i] == 2)
1295 stack_adjust = 1;
1297 vrotb(i+1);
1299 switch (vtop->type.t & VT_BTYPE) {
1300 case VT_STRUCT:
1301 /* allocate the necessary size on stack */
1302 o(0x48);
1303 oad(0xec81, size); /* sub $xxx, %rsp */
1304 /* generate structure store */
1305 r = get_reg(RC_INT);
1306 orex(1, r, 0, 0x89); /* mov %rsp, r */
1307 o(0xe0 + REG_VALUE(r));
1308 vset(&vtop->type, r | VT_LVAL, 0);
1309 vswap();
1310 vstore();
1311 break;
1313 case VT_LDOUBLE:
1314 gv(RC_ST0);
1315 oad(0xec8148, size); /* sub $xxx, %rsp */
1316 o(0x7cdb); /* fstpt 0(%rsp) */
1317 g(0x24);
1318 g(0x00);
1319 break;
1321 case VT_FLOAT:
1322 case VT_DOUBLE:
1323 assert(mode == x86_64_mode_sse);
1324 r = gv(RC_FLOAT);
1325 o(0x50); /* push $rax */
1326 /* movq %xmmN, (%rsp) */
1327 o(0xd60f66);
1328 o(0x04 + REG_VALUE(r)*8);
1329 o(0x24);
1330 break;
1332 default:
1333 assert(mode == x86_64_mode_integer);
1334 /* simple type */
1335 /* XXX: implicit cast ? */
1336 r = gv(RC_INT);
1337 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1338 break;
1340 args_size += size;
1342 vpop();
1343 --nb_args;
1344 onstack++;
1347 /* XXX This should be superfluous. */
1348 save_regs(0); /* save used temporary registers */
1350 /* then, we prepare register passing arguments.
1351 Note that we cannot set RDX and RCX in this loop because gv()
1352 may break these temporary registers. Let's use R10 and R11
1353 instead of them */
1354 assert(gen_reg <= REGN);
1355 assert(sse_reg <= 8);
1356 for(i = 0; i < nb_args; i++) {
1357 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1358 /* Alter stack entry type so that gv() knows how to treat it */
1359 vtop->type = type;
1360 if (mode == x86_64_mode_sse) {
1361 if (reg_count == 2) {
1362 sse_reg -= 2;
1363 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1364 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1365 /* movaps %xmm0, %xmmN */
1366 o(0x280f);
1367 o(0xc0 + (sse_reg << 3));
1368 /* movaps %xmm1, %xmmN */
1369 o(0x280f);
1370 o(0xc1 + ((sse_reg+1) << 3));
1372 } else {
1373 assert(reg_count == 1);
1374 --sse_reg;
1375 /* Load directly to register */
1376 gv(RC_XMM0 << sse_reg);
1378 } else if (mode == x86_64_mode_integer) {
1379 /* simple type */
1380 /* XXX: implicit cast ? */
1381 int d;
1382 gen_reg -= reg_count;
1383 r = gv(RC_INT);
1384 d = arg_prepare_reg(gen_reg);
1385 orex(1,d,r,0x89); /* mov */
1386 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1387 if (reg_count == 2) {
1388 d = arg_prepare_reg(gen_reg+1);
1389 orex(1,d,vtop->r2,0x89); /* mov */
1390 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1393 vtop--;
1395 assert(gen_reg == 0);
1396 assert(sse_reg == 0);
1398 /* We shouldn't have many operands on the stack anymore, but the
1399 call address itself is still there, and it might be in %eax
1400 (or edx/ecx) currently, which the below writes would clobber.
1401 So evict all remaining operands here. */
1402 save_regs(0);
1404 /* Copy R10 and R11 into RDX and RCX, respectively */
1405 if (nb_reg_args > 2) {
1406 o(0xd2894c); /* mov %r10, %rdx */
1407 if (nb_reg_args > 3) {
1408 o(0xd9894c); /* mov %r11, %rcx */
1412 if (vtop->type.ref->f.func_type != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1413 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1414 gcall_or_jmp(0);
1415 if (args_size)
1416 gadd_sp(args_size);
1417 vtop--;
1421 #define FUNC_PROLOG_SIZE 11
1423 static void push_arg_reg(int i) {
1424 loc -= 8;
1425 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1428 /* generate function prolog of type 't' */
1429 void gfunc_prolog(CType *func_type)
1431 X86_64_Mode mode;
1432 int i, addr, align, size, reg_count;
1433 int param_addr = 0, reg_param_index, sse_param_index;
1434 Sym *sym;
1435 CType *type;
1437 sym = func_type->ref;
1438 addr = PTR_SIZE * 2;
1439 loc = 0;
1440 ind += FUNC_PROLOG_SIZE;
1441 func_sub_sp_offset = ind;
1442 func_ret_sub = 0;
1444 if (sym->f.func_type == FUNC_ELLIPSIS) {
1445 int seen_reg_num, seen_sse_num, seen_stack_size;
1446 seen_reg_num = seen_sse_num = 0;
1447 /* frame pointer and return address */
1448 seen_stack_size = PTR_SIZE * 2;
1449 /* count the number of seen parameters */
1450 sym = func_type->ref;
1451 while ((sym = sym->next) != NULL) {
1452 type = &sym->type;
1453 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1454 switch (mode) {
1455 default:
1456 stack_arg:
1457 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1458 break;
1460 case x86_64_mode_integer:
1461 if (seen_reg_num + reg_count > REGN)
1462 goto stack_arg;
1463 seen_reg_num += reg_count;
1464 break;
1466 case x86_64_mode_sse:
1467 if (seen_sse_num + reg_count > 8)
1468 goto stack_arg;
1469 seen_sse_num += reg_count;
1470 break;
1474 loc -= 16;
1475 /* movl $0x????????, -0x10(%rbp) */
1476 o(0xf045c7);
1477 gen_le32(seen_reg_num * 8);
1478 /* movl $0x????????, -0xc(%rbp) */
1479 o(0xf445c7);
1480 gen_le32(seen_sse_num * 16 + 48);
1481 /* movl $0x????????, -0x8(%rbp) */
1482 o(0xf845c7);
1483 gen_le32(seen_stack_size);
1485 /* save all register passing arguments */
1486 for (i = 0; i < 8; i++) {
1487 loc -= 16;
1488 if (!tcc_state->nosse) {
1489 o(0xd60f66); /* movq */
1490 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1492 /* movq $0, loc+8(%rbp) */
1493 o(0x85c748);
1494 gen_le32(loc + 8);
1495 gen_le32(0);
1497 for (i = 0; i < REGN; i++) {
1498 push_arg_reg(REGN-1-i);
1502 sym = func_type->ref;
1503 reg_param_index = 0;
1504 sse_param_index = 0;
1506 /* if the function returns a structure, then add an
1507 implicit pointer parameter */
1508 func_vt = sym->type;
1509 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1510 if (mode == x86_64_mode_memory) {
1511 push_arg_reg(reg_param_index);
1512 func_vc = loc;
1513 reg_param_index++;
1515 /* define parameters */
1516 while ((sym = sym->next) != NULL) {
1517 type = &sym->type;
1518 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1519 switch (mode) {
1520 case x86_64_mode_sse:
1521 if (tcc_state->nosse)
1522 tcc_error("SSE disabled but floating point arguments used");
1523 if (sse_param_index + reg_count <= 8) {
1524 /* save arguments passed by register */
1525 loc -= reg_count * 8;
1526 param_addr = loc;
1527 for (i = 0; i < reg_count; ++i) {
1528 o(0xd60f66); /* movq */
1529 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1530 ++sse_param_index;
1532 } else {
1533 addr = (addr + align - 1) & -align;
1534 param_addr = addr;
1535 addr += size;
1537 break;
1539 case x86_64_mode_memory:
1540 case x86_64_mode_x87:
1541 addr = (addr + align - 1) & -align;
1542 param_addr = addr;
1543 addr += size;
1544 break;
1546 case x86_64_mode_integer: {
1547 if (reg_param_index + reg_count <= REGN) {
1548 /* save arguments passed by register */
1549 loc -= reg_count * 8;
1550 param_addr = loc;
1551 for (i = 0; i < reg_count; ++i) {
1552 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1553 ++reg_param_index;
1555 } else {
1556 addr = (addr + align - 1) & -align;
1557 param_addr = addr;
1558 addr += size;
1560 break;
1562 default: break; /* nothing to be done for x86_64_mode_none */
1564 sym_push(sym->v & ~SYM_FIELD, type,
1565 VT_LOCAL | lvalue_type(type->t), param_addr);
1568 #ifdef CONFIG_TCC_BCHECK
1569 /* leave some room for bound checking code */
1570 if (tcc_state->do_bounds_check) {
1571 func_bound_offset = lbounds_section->data_offset;
1572 func_bound_ind = ind;
1573 oad(0xb8, 0); /* lbound section pointer */
1574 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1575 oad(0xb8, 0); /* call to function */
1577 #endif
1580 /* generate function epilog */
1581 void gfunc_epilog(void)
1583 int v, saved_ind;
1585 #ifdef CONFIG_TCC_BCHECK
1586 if (tcc_state->do_bounds_check
1587 && func_bound_offset != lbounds_section->data_offset)
1589 addr_t saved_ind;
1590 addr_t *bounds_ptr;
1591 Sym *sym_data;
1593 /* add end of table info */
1594 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1595 *bounds_ptr = 0;
1597 /* generate bound local allocation */
1598 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1599 func_bound_offset, lbounds_section->data_offset);
1600 saved_ind = ind;
1601 ind = func_bound_ind;
1602 greloca(cur_text_section, sym_data, ind + 1, R_X86_64_64, 0);
1603 ind = ind + 5 + 3;
1604 gen_static_call(TOK___bound_local_new);
1605 ind = saved_ind;
1607 /* generate bound check local freeing */
1608 o(0x5250); /* save returned value, if any */
1609 greloca(cur_text_section, sym_data, ind + 1, R_X86_64_64, 0);
1610 oad(0xb8, 0); /* mov xxx, %rax */
1611 o(0xc78948); /* mov %rax,%rdi # first arg in %rdi, this must be ptr */
1612 gen_static_call(TOK___bound_local_delete);
1613 o(0x585a); /* restore returned value, if any */
1615 #endif
1616 o(0xc9); /* leave */
1617 if (func_ret_sub == 0) {
1618 o(0xc3); /* ret */
1619 } else {
1620 o(0xc2); /* ret n */
1621 g(func_ret_sub);
1622 g(func_ret_sub >> 8);
1624 /* align local size to word & save local variables */
1625 v = (-loc + 15) & -16;
1626 saved_ind = ind;
1627 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1628 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1629 o(0xec8148); /* sub rsp, stacksize */
1630 gen_le32(v);
1631 ind = saved_ind;
1634 #endif /* not PE */
1636 ST_FUNC void gen_fill_nops(int bytes)
1638 while (bytes--)
1639 g(0x90);
1642 /* generate a jump to a label */
1643 int gjmp(int t)
1645 return gjmp2(0xe9, t);
1648 /* generate a jump to a fixed address */
1649 void gjmp_addr(int a)
1651 int r;
1652 r = a - ind - 2;
1653 if (r == (char)r) {
1654 g(0xeb);
1655 g(r);
1656 } else {
1657 oad(0xe9, a - ind - 5);
1661 ST_FUNC void gtst_addr(int inv, int a)
1663 int v = vtop->r & VT_VALMASK;
1664 if (v == VT_CMP) {
1665 inv ^= (vtop--)->c.i;
1666 a -= ind + 2;
1667 if (a == (char)a) {
1668 g(inv - 32);
1669 g(a);
1670 } else {
1671 g(0x0f);
1672 oad(inv - 16, a - 4);
1674 } else if ((v & ~1) == VT_JMP) {
1675 if ((v & 1) != inv) {
1676 gjmp_addr(a);
1677 gsym(vtop->c.i);
1678 } else {
1679 gsym(vtop->c.i);
1680 o(0x05eb);
1681 gjmp_addr(a);
1683 vtop--;
1687 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1688 ST_FUNC int gtst(int inv, int t)
1690 int v = vtop->r & VT_VALMASK;
1692 if (nocode_wanted) {
1694 } else if (v == VT_CMP) {
1695 /* fast case : can jump directly since flags are set */
1696 if (vtop->c.i & 0x100)
1698 /* This was a float compare. If the parity flag is set
1699 the result was unordered. For anything except != this
1700 means false and we don't jump (anding both conditions).
1701 For != this means true (oring both).
1702 Take care about inverting the test. We need to jump
1703 to our target if the result was unordered and test wasn't NE,
1704 otherwise if unordered we don't want to jump. */
1705 vtop->c.i &= ~0x100;
1706 if (inv == (vtop->c.i == TOK_NE))
1707 o(0x067a); /* jp +6 */
1708 else
1710 g(0x0f);
1711 t = gjmp2(0x8a, t); /* jp t */
1714 g(0x0f);
1715 t = gjmp2((vtop->c.i - 16) ^ inv, t);
1716 } else if (v == VT_JMP || v == VT_JMPI) {
1717 /* && or || optimization */
1718 if ((v & 1) == inv) {
1719 /* insert vtop->c jump list in t */
1720 uint32_t n1, n = vtop->c.i;
1721 if (n) {
1722 while ((n1 = read32le(cur_text_section->data + n)))
1723 n = n1;
1724 write32le(cur_text_section->data + n, t);
1725 t = vtop->c.i;
1727 } else {
1728 t = gjmp(t);
1729 gsym(vtop->c.i);
1732 vtop--;
1733 return t;
1736 /* generate an integer binary operation */
1737 void gen_opi(int op)
1739 int r, fr, opc, c;
1740 int ll, uu, cc;
1742 ll = is64_type(vtop[-1].type.t);
1743 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1744 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1746 switch(op) {
1747 case '+':
1748 case TOK_ADDC1: /* add with carry generation */
1749 opc = 0;
1750 gen_op8:
1751 if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
1752 /* constant case */
1753 vswap();
1754 r = gv(RC_INT);
1755 vswap();
1756 c = vtop->c.i;
1757 if (c == (char)c) {
1758 /* XXX: generate inc and dec for smaller code ? */
1759 orex(ll, r, 0, 0x83);
1760 o(0xc0 | (opc << 3) | REG_VALUE(r));
1761 g(c);
1762 } else {
1763 orex(ll, r, 0, 0x81);
1764 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1766 } else {
1767 gv2(RC_INT, RC_INT);
1768 r = vtop[-1].r;
1769 fr = vtop[0].r;
1770 orex(ll, r, fr, (opc << 3) | 0x01);
1771 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1773 vtop--;
1774 if (op >= TOK_ULT && op <= TOK_GT) {
1775 vtop->r = VT_CMP;
1776 vtop->c.i = op;
1778 break;
1779 case '-':
1780 case TOK_SUBC1: /* sub with carry generation */
1781 opc = 5;
1782 goto gen_op8;
1783 case TOK_ADDC2: /* add with carry use */
1784 opc = 2;
1785 goto gen_op8;
1786 case TOK_SUBC2: /* sub with carry use */
1787 opc = 3;
1788 goto gen_op8;
1789 case '&':
1790 opc = 4;
1791 goto gen_op8;
1792 case '^':
1793 opc = 6;
1794 goto gen_op8;
1795 case '|':
1796 opc = 1;
1797 goto gen_op8;
1798 case '*':
1799 gv2(RC_INT, RC_INT);
1800 r = vtop[-1].r;
1801 fr = vtop[0].r;
1802 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1803 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1804 vtop--;
1805 break;
1806 case TOK_SHL:
1807 opc = 4;
1808 goto gen_shift;
1809 case TOK_SHR:
1810 opc = 5;
1811 goto gen_shift;
1812 case TOK_SAR:
1813 opc = 7;
1814 gen_shift:
1815 opc = 0xc0 | (opc << 3);
1816 if (cc) {
1817 /* constant case */
1818 vswap();
1819 r = gv(RC_INT);
1820 vswap();
1821 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1822 o(opc | REG_VALUE(r));
1823 g(vtop->c.i & (ll ? 63 : 31));
1824 } else {
1825 /* we generate the shift in ecx */
1826 gv2(RC_INT, RC_RCX);
1827 r = vtop[-1].r;
1828 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1829 o(opc | REG_VALUE(r));
1831 vtop--;
1832 break;
1833 case TOK_UDIV:
1834 case TOK_UMOD:
1835 uu = 1;
1836 goto divmod;
1837 case '/':
1838 case '%':
1839 case TOK_PDIV:
1840 uu = 0;
1841 divmod:
1842 /* first operand must be in eax */
1843 /* XXX: need better constraint for second operand */
1844 gv2(RC_RAX, RC_RCX);
1845 r = vtop[-1].r;
1846 fr = vtop[0].r;
1847 vtop--;
1848 save_reg(TREG_RDX);
1849 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1850 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1851 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1852 if (op == '%' || op == TOK_UMOD)
1853 r = TREG_RDX;
1854 else
1855 r = TREG_RAX;
1856 vtop->r = r;
1857 break;
1858 default:
1859 opc = 7;
1860 goto gen_op8;
1864 void gen_opl(int op)
1866 gen_opi(op);
1869 /* generate a floating point operation 'v = t1 op t2' instruction. The
1870 two operands are guaranteed to have the same floating point type */
1871 /* XXX: need to use ST1 too */
1872 void gen_opf(int op)
1874 int a, ft, fc, swapped, r;
1875 int float_type =
1876 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1878 /* convert constants to memory references */
1879 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1880 vswap();
1881 gv(float_type);
1882 vswap();
1884 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1885 gv(float_type);
1887 /* must put at least one value in the floating point register */
1888 if ((vtop[-1].r & VT_LVAL) &&
1889 (vtop[0].r & VT_LVAL)) {
1890 vswap();
1891 gv(float_type);
1892 vswap();
1894 swapped = 0;
1895 /* swap the stack if needed so that t1 is the register and t2 is
1896 the memory reference */
1897 if (vtop[-1].r & VT_LVAL) {
1898 vswap();
1899 swapped = 1;
1901 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1902 if (op >= TOK_ULT && op <= TOK_GT) {
1903 /* load on stack second operand */
1904 load(TREG_ST0, vtop);
1905 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1906 if (op == TOK_GE || op == TOK_GT)
1907 swapped = !swapped;
1908 else if (op == TOK_EQ || op == TOK_NE)
1909 swapped = 0;
1910 if (swapped)
1911 o(0xc9d9); /* fxch %st(1) */
1912 if (op == TOK_EQ || op == TOK_NE)
1913 o(0xe9da); /* fucompp */
1914 else
1915 o(0xd9de); /* fcompp */
1916 o(0xe0df); /* fnstsw %ax */
1917 if (op == TOK_EQ) {
1918 o(0x45e480); /* and $0x45, %ah */
1919 o(0x40fC80); /* cmp $0x40, %ah */
1920 } else if (op == TOK_NE) {
1921 o(0x45e480); /* and $0x45, %ah */
1922 o(0x40f480); /* xor $0x40, %ah */
1923 op = TOK_NE;
1924 } else if (op == TOK_GE || op == TOK_LE) {
1925 o(0x05c4f6); /* test $0x05, %ah */
1926 op = TOK_EQ;
1927 } else {
1928 o(0x45c4f6); /* test $0x45, %ah */
1929 op = TOK_EQ;
1931 vtop--;
1932 vtop->r = VT_CMP;
1933 vtop->c.i = op;
1934 } else {
1935 /* no memory reference possible for long double operations */
1936 load(TREG_ST0, vtop);
1937 swapped = !swapped;
1939 switch(op) {
1940 default:
1941 case '+':
1942 a = 0;
1943 break;
1944 case '-':
1945 a = 4;
1946 if (swapped)
1947 a++;
1948 break;
1949 case '*':
1950 a = 1;
1951 break;
1952 case '/':
1953 a = 6;
1954 if (swapped)
1955 a++;
1956 break;
1958 ft = vtop->type.t;
1959 fc = vtop->c.i;
1960 o(0xde); /* fxxxp %st, %st(1) */
1961 o(0xc1 + (a << 3));
1962 vtop--;
1964 } else {
1965 if (op >= TOK_ULT && op <= TOK_GT) {
1966 /* if saved lvalue, then we must reload it */
1967 r = vtop->r;
1968 fc = vtop->c.i;
1969 if ((r & VT_VALMASK) == VT_LLOCAL) {
1970 SValue v1;
1971 r = get_reg(RC_INT);
1972 v1.type.t = VT_PTR;
1973 v1.r = VT_LOCAL | VT_LVAL;
1974 v1.c.i = fc;
1975 load(r, &v1);
1976 fc = 0;
1979 if (op == TOK_EQ || op == TOK_NE) {
1980 swapped = 0;
1981 } else {
1982 if (op == TOK_LE || op == TOK_LT)
1983 swapped = !swapped;
1984 if (op == TOK_LE || op == TOK_GE) {
1985 op = 0x93; /* setae */
1986 } else {
1987 op = 0x97; /* seta */
1991 if (swapped) {
1992 gv(RC_FLOAT);
1993 vswap();
1995 assert(!(vtop[-1].r & VT_LVAL));
1997 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1998 o(0x66);
1999 if (op == TOK_EQ || op == TOK_NE)
2000 o(0x2e0f); /* ucomisd */
2001 else
2002 o(0x2f0f); /* comisd */
2004 if (vtop->r & VT_LVAL) {
2005 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2006 } else {
2007 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2010 vtop--;
2011 vtop->r = VT_CMP;
2012 vtop->c.i = op | 0x100;
2013 } else {
2014 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2015 switch(op) {
2016 default:
2017 case '+':
2018 a = 0;
2019 break;
2020 case '-':
2021 a = 4;
2022 break;
2023 case '*':
2024 a = 1;
2025 break;
2026 case '/':
2027 a = 6;
2028 break;
2030 ft = vtop->type.t;
2031 fc = vtop->c.i;
2032 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2034 r = vtop->r;
2035 /* if saved lvalue, then we must reload it */
2036 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2037 SValue v1;
2038 r = get_reg(RC_INT);
2039 v1.type.t = VT_PTR;
2040 v1.r = VT_LOCAL | VT_LVAL;
2041 v1.c.i = fc;
2042 load(r, &v1);
2043 fc = 0;
2046 assert(!(vtop[-1].r & VT_LVAL));
2047 if (swapped) {
2048 assert(vtop->r & VT_LVAL);
2049 gv(RC_FLOAT);
2050 vswap();
2053 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2054 o(0xf2);
2055 } else {
2056 o(0xf3);
2058 o(0x0f);
2059 o(0x58 + a);
2061 if (vtop->r & VT_LVAL) {
2062 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2063 } else {
2064 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2067 vtop--;
2072 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2073 and 'long long' cases. */
2074 void gen_cvt_itof(int t)
2076 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2077 save_reg(TREG_ST0);
2078 gv(RC_INT);
2079 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2080 /* signed long long to float/double/long double (unsigned case
2081 is handled generically) */
2082 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2083 o(0x242cdf); /* fildll (%rsp) */
2084 o(0x08c48348); /* add $8, %rsp */
2085 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2086 (VT_INT | VT_UNSIGNED)) {
2087 /* unsigned int to float/double/long double */
2088 o(0x6a); /* push $0 */
2089 g(0x00);
2090 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2091 o(0x242cdf); /* fildll (%rsp) */
2092 o(0x10c48348); /* add $16, %rsp */
2093 } else {
2094 /* int to float/double/long double */
2095 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2096 o(0x2404db); /* fildl (%rsp) */
2097 o(0x08c48348); /* add $8, %rsp */
2099 vtop->r = TREG_ST0;
2100 } else {
2101 int r = get_reg(RC_FLOAT);
2102 gv(RC_INT);
2103 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2104 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2105 (VT_INT | VT_UNSIGNED) ||
2106 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2107 o(0x48); /* REX */
2109 o(0x2a0f);
2110 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2111 vtop->r = r;
2115 /* convert from one floating point type to another */
2116 void gen_cvt_ftof(int t)
2118 int ft, bt, tbt;
2120 ft = vtop->type.t;
2121 bt = ft & VT_BTYPE;
2122 tbt = t & VT_BTYPE;
2124 if (bt == VT_FLOAT) {
2125 gv(RC_FLOAT);
2126 if (tbt == VT_DOUBLE) {
2127 o(0x140f); /* unpcklps */
2128 o(0xc0 + REG_VALUE(vtop->r)*9);
2129 o(0x5a0f); /* cvtps2pd */
2130 o(0xc0 + REG_VALUE(vtop->r)*9);
2131 } else if (tbt == VT_LDOUBLE) {
2132 save_reg(RC_ST0);
2133 /* movss %xmm0,-0x10(%rsp) */
2134 o(0x110ff3);
2135 o(0x44 + REG_VALUE(vtop->r)*8);
2136 o(0xf024);
2137 o(0xf02444d9); /* flds -0x10(%rsp) */
2138 vtop->r = TREG_ST0;
2140 } else if (bt == VT_DOUBLE) {
2141 gv(RC_FLOAT);
2142 if (tbt == VT_FLOAT) {
2143 o(0x140f66); /* unpcklpd */
2144 o(0xc0 + REG_VALUE(vtop->r)*9);
2145 o(0x5a0f66); /* cvtpd2ps */
2146 o(0xc0 + REG_VALUE(vtop->r)*9);
2147 } else if (tbt == VT_LDOUBLE) {
2148 save_reg(RC_ST0);
2149 /* movsd %xmm0,-0x10(%rsp) */
2150 o(0x110ff2);
2151 o(0x44 + REG_VALUE(vtop->r)*8);
2152 o(0xf024);
2153 o(0xf02444dd); /* fldl -0x10(%rsp) */
2154 vtop->r = TREG_ST0;
2156 } else {
2157 int r;
2158 gv(RC_ST0);
2159 r = get_reg(RC_FLOAT);
2160 if (tbt == VT_DOUBLE) {
2161 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2162 /* movsd -0x10(%rsp),%xmm0 */
2163 o(0x100ff2);
2164 o(0x44 + REG_VALUE(r)*8);
2165 o(0xf024);
2166 vtop->r = r;
2167 } else if (tbt == VT_FLOAT) {
2168 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2169 /* movss -0x10(%rsp),%xmm0 */
2170 o(0x100ff3);
2171 o(0x44 + REG_VALUE(r)*8);
2172 o(0xf024);
2173 vtop->r = r;
2178 /* convert fp to int 't' type */
2179 void gen_cvt_ftoi(int t)
2181 int ft, bt, size, r;
2182 ft = vtop->type.t;
2183 bt = ft & VT_BTYPE;
2184 if (bt == VT_LDOUBLE) {
2185 gen_cvt_ftof(VT_DOUBLE);
2186 bt = VT_DOUBLE;
2189 gv(RC_FLOAT);
2190 if (t != VT_INT)
2191 size = 8;
2192 else
2193 size = 4;
2195 r = get_reg(RC_INT);
2196 if (bt == VT_FLOAT) {
2197 o(0xf3);
2198 } else if (bt == VT_DOUBLE) {
2199 o(0xf2);
2200 } else {
2201 assert(0);
2203 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2204 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2205 vtop->r = r;
2208 /* computed goto support */
2209 void ggoto(void)
2211 gcall_or_jmp(1);
2212 vtop--;
2215 /* Save the stack pointer onto the stack and return the location of its address */
2216 ST_FUNC void gen_vla_sp_save(int addr) {
2217 /* mov %rsp,addr(%rbp)*/
2218 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2221 /* Restore the SP from a location on the stack */
2222 ST_FUNC void gen_vla_sp_restore(int addr) {
2223 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2226 #ifdef TCC_TARGET_PE
2227 /* Save result of gen_vla_alloc onto the stack */
2228 ST_FUNC void gen_vla_result(int addr) {
2229 /* mov %rax,addr(%rbp)*/
2230 gen_modrm64(0x89, TREG_RAX, VT_LOCAL, NULL, addr);
2232 #endif
2234 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2235 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2236 #ifdef TCC_TARGET_PE
2237 /* alloca does more than just adjust %rsp on Windows */
2238 vpush_global_sym(&func_old_type, TOK_alloca);
2239 vswap(); /* Move alloca ref past allocation size */
2240 gfunc_call(1);
2241 #else
2242 int r;
2243 r = gv(RC_INT); /* allocation size */
2244 /* sub r,%rsp */
2245 o(0x2b48);
2246 o(0xe0 | REG_VALUE(r));
2247 /* We align to 16 bytes rather than align */
2248 /* and ~15, %rsp */
2249 o(0xf0e48348);
2250 vpop();
2251 #endif
2255 /* end of x86-64 code generator */
2256 /*************************************************************/
2257 #endif /* ! TARGET_DEFS_ONLY */
2258 /******************************************************/