2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
38 #define RC_ST0 0x0080 /* only for long double */
43 #define RC_XMM0 0x1000
44 #define RC_XMM1 0x2000
45 #define RC_XMM2 0x4000
46 #define RC_XMM3 0x8000
47 #define RC_XMM4 0x10000
48 #define RC_XMM5 0x20000
49 #define RC_XMM6 0x40000
50 #define RC_XMM7 0x80000
51 #define RC_IRET RC_RAX /* function return: integer register */
52 #define RC_IRE2 RC_RDX /* function return: second integer register */
53 #define RC_FRET RC_XMM0 /* function return: float register */
54 #define RC_FRE2 RC_XMM1 /* function return: second float register */
56 /* pretty names for the registers */
84 #define REX_BASE(reg) (((reg) >> 3) & 1)
85 #define REG_VALUE(reg) ((reg) & 7)
87 /* return registers for function */
88 #define REG_IRET TREG_RAX /* single word int return register */
89 #define REG_IRE2 TREG_RDX /* second word return register (for long long) */
90 #define REG_FRET TREG_XMM0 /* float return register */
91 #define REG_FRE2 TREG_XMM1 /* second float return register */
93 /* defined if function parameters must be evaluated in reverse order */
94 #define INVERT_FUNC_PARAMS
96 /* pointer size, in bytes */
99 /* long double size and alignment, in bytes */
100 #define LDOUBLE_SIZE 16
101 #define LDOUBLE_ALIGN 16
102 /* maximum alignment (for aligned attribute support) */
105 /* define if return values need to be extended explicitely
106 at caller side (for interfacing with non-TCC compilers) */
108 /******************************************************/
109 #else /* ! TARGET_DEFS_ONLY */
110 /******************************************************/
111 #define USING_GLOBALS
115 ST_DATA
const int reg_classes
[NB_REGS
] = {
116 /* eax */ RC_INT
| RC_RAX
,
117 /* ecx */ RC_INT
| RC_RCX
,
118 /* edx */ RC_INT
| RC_RDX
,
132 /* xmm0 */ RC_FLOAT
| RC_XMM0
,
133 /* xmm1 */ RC_FLOAT
| RC_XMM1
,
134 /* xmm2 */ RC_FLOAT
| RC_XMM2
,
135 /* xmm3 */ RC_FLOAT
| RC_XMM3
,
136 /* xmm4 */ RC_FLOAT
| RC_XMM4
,
137 /* xmm5 */ RC_FLOAT
| RC_XMM5
,
138 /* xmm6 an xmm7 are included so gv() can be used on them,
139 but they are not tagged with RC_FLOAT because they are
140 callee saved on Windows */
146 static unsigned long func_sub_sp_offset
;
147 static int func_ret_sub
;
149 #if defined(CONFIG_TCC_BCHECK)
150 static addr_t func_bound_offset
;
151 static unsigned long func_bound_ind
;
152 static int func_bound_add_epilog
;
156 static int func_scratch
, func_alloca
;
159 /* XXX: make it faster ? */
160 ST_FUNC
void g(int c
)
166 if (ind1
> cur_text_section
->data_allocated
)
167 section_realloc(cur_text_section
, ind1
);
168 cur_text_section
->data
[ind
] = c
;
172 ST_FUNC
void o(unsigned int c
)
180 ST_FUNC
void gen_le16(int v
)
186 ST_FUNC
void gen_le32(int c
)
194 ST_FUNC
void gen_le64(int64_t c
)
206 static void orex(int ll
, int r
, int r2
, int b
)
208 if ((r
& VT_VALMASK
) >= VT_CONST
)
210 if ((r2
& VT_VALMASK
) >= VT_CONST
)
212 if (ll
|| REX_BASE(r
) || REX_BASE(r2
))
213 o(0x40 | REX_BASE(r
) | (REX_BASE(r2
) << 2) | (ll
<< 3));
217 /* output a symbol and patch all calls to it */
218 ST_FUNC
void gsym_addr(int t
, int a
)
221 unsigned char *ptr
= cur_text_section
->data
+ t
;
222 uint32_t n
= read32le(ptr
); /* next value */
223 write32le(ptr
, a
< 0 ? -a
: a
- t
- 4);
228 static int is64_type(int t
)
230 return ((t
& VT_BTYPE
) == VT_PTR
||
231 (t
& VT_BTYPE
) == VT_FUNC
||
232 (t
& VT_BTYPE
) == VT_LLONG
);
235 /* instruction + 4 bytes data. Return the address of the data */
236 static int oad(int c
, int s
)
247 /* generate jmp to a label */
248 #define gjmp2(instr,lbl) oad(instr,lbl)
250 ST_FUNC
void gen_addr32(int r
, Sym
*sym
, int c
)
253 greloca(cur_text_section
, sym
, ind
, R_X86_64_32S
, c
), c
=0;
257 /* output constant with relocation if 'r & VT_SYM' is true */
258 ST_FUNC
void gen_addr64(int r
, Sym
*sym
, int64_t c
)
261 greloca(cur_text_section
, sym
, ind
, R_X86_64_64
, c
), c
=0;
265 /* output constant with relocation if 'r & VT_SYM' is true */
266 ST_FUNC
void gen_addrpc32(int r
, Sym
*sym
, int c
)
269 greloca(cur_text_section
, sym
, ind
, R_X86_64_PC32
, c
-4), c
=4;
273 /* output got address with relocation */
274 static void gen_gotpcrel(int r
, Sym
*sym
, int c
)
277 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
278 get_tok_str(sym
->v
, NULL
), c
, r
,
279 cur_text_section
->data
[ind
-3],
280 cur_text_section
->data
[ind
-2],
281 cur_text_section
->data
[ind
-1]
284 greloca(cur_text_section
, sym
, ind
, R_X86_64_GOTPCREL
, -4);
287 /* we use add c, %xxx for displacement */
289 o(0xc0 + REG_VALUE(r
));
294 static void gen_modrm_impl(int op_reg
, int r
, Sym
*sym
, int c
, int is_got
)
296 op_reg
= REG_VALUE(op_reg
) << 3;
297 if ((r
& VT_VALMASK
) == VT_CONST
) {
298 /* constant memory reference */
300 /* Absolute memory reference */
301 o(0x04 | op_reg
); /* [sib] | destreg */
302 oad(0x25, c
); /* disp32 */
304 o(0x05 | op_reg
); /* (%rip)+disp32 | destreg */
306 gen_gotpcrel(r
, sym
, c
);
308 gen_addrpc32(r
, sym
, c
);
311 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
312 /* currently, we use only ebp as base */
314 /* short reference */
318 oad(0x85 | op_reg
, c
);
320 } else if ((r
& VT_VALMASK
) >= TREG_MEM
) {
322 g(0x80 | op_reg
| REG_VALUE(r
));
325 g(0x00 | op_reg
| REG_VALUE(r
));
328 g(0x00 | op_reg
| REG_VALUE(r
));
332 /* generate a modrm reference. 'op_reg' contains the additional 3
334 static void gen_modrm(int op_reg
, int r
, Sym
*sym
, int c
)
336 gen_modrm_impl(op_reg
, r
, sym
, c
, 0);
339 /* generate a modrm reference. 'op_reg' contains the additional 3
341 static void gen_modrm64(int opcode
, int op_reg
, int r
, Sym
*sym
, int c
)
344 is_got
= (op_reg
& TREG_MEM
) && !(sym
->type
.t
& VT_STATIC
);
345 orex(1, r
, op_reg
, opcode
);
346 gen_modrm_impl(op_reg
, r
, sym
, c
, is_got
);
350 /* load 'r' from value 'sv' */
351 void load(int r
, SValue
*sv
)
353 int v
, t
, ft
, fc
, fr
;
358 sv
= pe_getimport(sv
, &v2
);
362 ft
= sv
->type
.t
& ~VT_DEFSIGN
;
364 if (fc
!= sv
->c
.i
&& (fr
& VT_SYM
))
365 tcc_error("64 bit addend in load");
367 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
369 #ifndef TCC_TARGET_PE
370 /* we use indirect access via got */
371 if ((fr
& VT_VALMASK
) == VT_CONST
&& (fr
& VT_SYM
) &&
372 (fr
& VT_LVAL
) && !(sv
->sym
->type
.t
& VT_STATIC
)) {
373 /* use the result register as a temporal register */
374 int tr
= r
| TREG_MEM
;
376 /* we cannot use float registers as a temporal register */
377 tr
= get_reg(RC_INT
) | TREG_MEM
;
379 gen_modrm64(0x8b, tr
, fr
, sv
->sym
, 0);
381 /* load from the temporal register */
389 if (v
== VT_LLOCAL
) {
391 v1
.r
= VT_LOCAL
| VT_LVAL
;
394 if (!(reg_classes
[fr
] & (RC_INT
|RC_R11
)))
395 fr
= get_reg(RC_INT
);
399 /* If the addends doesn't fit into a 32bit signed
400 we must use a 64bit move. We've checked above
401 that this doesn't have a sym associated. */
402 v1
.type
.t
= VT_LLONG
;
406 if (!(reg_classes
[fr
] & (RC_INT
|RC_R11
)))
407 fr
= get_reg(RC_INT
);
412 /* Like GCC we can load from small enough properly sized
413 structs and unions as well.
414 XXX maybe move to generic operand handling, but should
415 occur only with asm, so tccasm.c might also be a better place */
416 if ((ft
& VT_BTYPE
) == VT_STRUCT
) {
418 switch (type_size(&sv
->type
, &align
)) {
419 case 1: ft
= VT_BYTE
; break;
420 case 2: ft
= VT_SHORT
; break;
421 case 4: ft
= VT_INT
; break;
422 case 8: ft
= VT_LLONG
; break;
424 tcc_error("invalid aggregate type for register load");
428 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
430 r
= REG_VALUE(r
); /* movd */
431 } else if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
432 b
= 0x7e0ff3; /* movq */
434 } else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
) {
435 b
= 0xdb, r
= 5; /* fldt */
436 } else if ((ft
& VT_TYPE
) == VT_BYTE
|| (ft
& VT_TYPE
) == VT_BOOL
) {
437 b
= 0xbe0f; /* movsbl */
438 } else if ((ft
& VT_TYPE
) == (VT_BYTE
| VT_UNSIGNED
)) {
439 b
= 0xb60f; /* movzbl */
440 } else if ((ft
& VT_TYPE
) == VT_SHORT
) {
441 b
= 0xbf0f; /* movswl */
442 } else if ((ft
& VT_TYPE
) == (VT_SHORT
| VT_UNSIGNED
)) {
443 b
= 0xb70f; /* movzwl */
445 assert(((ft
& VT_BTYPE
) == VT_INT
)
446 || ((ft
& VT_BTYPE
) == VT_LLONG
)
447 || ((ft
& VT_BTYPE
) == VT_PTR
)
448 || ((ft
& VT_BTYPE
) == VT_FUNC
)
454 gen_modrm64(b
, r
, fr
, sv
->sym
, fc
);
457 gen_modrm(r
, fr
, sv
->sym
, fc
);
464 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
465 gen_addrpc32(fr
, sv
->sym
, fc
);
467 if (sv
->sym
->type
.t
& VT_STATIC
) {
469 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
470 gen_addrpc32(fr
, sv
->sym
, fc
);
473 o(0x05 + REG_VALUE(r
) * 8); /* mov xx(%rip), r */
474 gen_gotpcrel(r
, sv
->sym
, fc
);
477 } else if (is64_type(ft
)) {
478 orex(1,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
481 orex(0,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
484 } else if (v
== VT_LOCAL
) {
485 orex(1,0,r
,0x8d); /* lea xxx(%ebp), r */
486 gen_modrm(r
, VT_LOCAL
, sv
->sym
, fc
);
487 } else if (v
== VT_CMP
) {
492 /* This was a float compare. If the parity bit is
493 set the result was unordered, meaning false for everything
494 except TOK_NE, and true for TOK_NE. */
495 orex(0, r
, 0, 0xb0 + REG_VALUE(r
)); /* mov $0/1,%al */
496 g(v
^ fc
^ (v
== TOK_NE
));
497 o(0x037a + (REX_BASE(r
) << 8));
499 orex(0,r
,0, 0x0f); /* setxx %br */
501 o(0xc0 + REG_VALUE(r
));
503 o(0xc0b6 + REG_VALUE(r
) * 0x900); /* movzbl %al, %eax */
504 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
507 oad(0xb8 + REG_VALUE(r
), t
); /* mov $1, r */
508 o(0x05eb + (REX_BASE(r
) << 8)); /* jmp after */
511 oad(0xb8 + REG_VALUE(r
), t
^ 1); /* mov $0, r */
513 if ((r
>= TREG_XMM0
) && (r
<= TREG_XMM7
)) {
515 /* gen_cvt_ftof(VT_DOUBLE); */
516 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
517 /* movsd -0x10(%rsp),%xmmN */
519 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
522 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
523 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
526 assert((ft
& VT_BTYPE
) == VT_DOUBLE
);
529 o(0xc0 + REG_VALUE(v
) + REG_VALUE(r
)*8);
531 } else if (r
== TREG_ST0
) {
532 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
533 /* gen_cvt_ftof(VT_LDOUBLE); */
534 /* movsd %xmmN,-0x10(%rsp) */
536 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
538 o(0xf02444dd); /* fldl -0x10(%rsp) */
540 orex(is64_type(ft
), r
, v
, 0x89);
541 o(0xc0 + REG_VALUE(r
) + REG_VALUE(v
) * 8); /* mov v, r */
547 /* store register 'r' in lvalue 'v' */
548 void store(int r
, SValue
*v
)
552 /* store the REX prefix in this variable when PIC is enabled */
557 v
= pe_getimport(v
, &v2
);
560 fr
= v
->r
& VT_VALMASK
;
563 if (fc
!= v
->c
.i
&& (fr
& VT_SYM
))
564 tcc_error("64 bit addend in store");
565 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
568 #ifndef TCC_TARGET_PE
569 /* we need to access the variable via got */
570 if (fr
== VT_CONST
&& (v
->r
& VT_SYM
)) {
571 /* mov xx(%rip), %r11 */
573 gen_gotpcrel(TREG_R11
, v
->sym
, v
->c
.i
);
574 pic
= is64_type(bt
) ? 0x49 : 0x41;
578 /* XXX: incorrect if float reg to reg */
579 if (bt
== VT_FLOAT
) {
582 o(0x7e0f); /* movd */
584 } else if (bt
== VT_DOUBLE
) {
587 o(0xd60f); /* movq */
589 } else if (bt
== VT_LDOUBLE
) {
590 o(0xc0d9); /* fld %st(0) */
598 if (bt
== VT_BYTE
|| bt
== VT_BOOL
)
600 else if (is64_type(bt
))
606 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
611 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
612 gen_modrm64(op64
, r
, v
->r
, v
->sym
, fc
);
613 } else if (fr
!= r
) {
614 orex(1, fr
, r
, op64
);
615 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
618 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
619 gen_modrm(r
, v
->r
, v
->sym
, fc
);
620 } else if (fr
!= r
) {
621 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
626 /* 'is_jmp' is '1' if it is a jump */
627 static void gcall_or_jmp(int is_jmp
)
630 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
&&
631 ((vtop
->r
& VT_SYM
) && (vtop
->c
.i
-4) == (int)(vtop
->c
.i
-4))) {
632 /* constant symbolic case -> simple relocation */
634 greloca(cur_text_section
, vtop
->sym
, ind
+ 1, R_X86_64_PC32
, (int)(vtop
->c
.i
-4));
636 greloca(cur_text_section
, vtop
->sym
, ind
+ 1, R_X86_64_PLT32
, (int)(vtop
->c
.i
-4));
638 oad(0xe8 + is_jmp
, 0); /* call/jmp im */
639 #ifdef CONFIG_TCC_BCHECK
640 if (tcc_state
->do_bounds_check
&&
641 (vtop
->sym
->v
== TOK_alloca
||
642 vtop
->sym
->v
== TOK_setjmp
||
643 vtop
->sym
->v
== TOK__setjmp
644 #ifndef TCC_TARGET_PE
645 || vtop
->sym
->v
== TOK_sigsetjmp
646 || vtop
->sym
->v
== TOK___sigsetjmp
649 func_bound_add_epilog
= 1;
652 /* otherwise, indirect call */
656 o(0xff); /* call/jmp *r */
657 o(0xd0 + REG_VALUE(r
) + (is_jmp
<< 4));
661 #if defined(CONFIG_TCC_BCHECK)
663 static void gen_bounds_call(int v
)
665 Sym
*sym
= external_global_sym(v
, &func_old_type
);
668 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PC32
, -4);
670 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PLT32
, -4);
674 /* generate a bounded pointer addition */
675 ST_FUNC
void gen_bounded_ptr_add(void)
677 vpush_global_sym(&func_old_type
, TOK___bound_ptr_add
);
681 /* returned pointer is in rax */
682 vtop
->r
= TREG_RAX
| VT_BOUNDED
;
685 /* relocation offset of the bounding function call point */
686 vtop
->c
.i
= (cur_text_section
->reloc
->data_offset
- sizeof(ElfW(Rela
)));
689 /* patch pointer addition in vtop so that pointer dereferencing is
691 ST_FUNC
void gen_bounded_ptr_deref(void)
701 size
= type_size(&vtop
->type
, &align
);
703 case 1: func
= TOK___bound_ptr_indir1
; break;
704 case 2: func
= TOK___bound_ptr_indir2
; break;
705 case 4: func
= TOK___bound_ptr_indir4
; break;
706 case 8: func
= TOK___bound_ptr_indir8
; break;
707 case 12: func
= TOK___bound_ptr_indir12
; break;
708 case 16: func
= TOK___bound_ptr_indir16
; break;
710 /* may happen with struct member access */
712 //tcc_error("unhandled size when dereferencing bounded pointer");
716 sym
= external_global_sym(func
, &func_old_type
);
718 put_extern_sym(sym
, NULL
, 0, 0);
719 /* patch relocation */
720 /* XXX: find a better solution ? */
721 rel
= (ElfW(Rela
) *)(cur_text_section
->reloc
->data
+ vtop
->c
.i
);
722 rel
->r_info
= ELF64_R_INFO(sym
->c
, ELF64_R_TYPE(rel
->r_info
));
726 # define TREG_FASTCALL_1 TREG_RCX
728 # define TREG_FASTCALL_1 TREG_RDI
731 static void gen_bounds_prolog(void)
733 /* leave some room for bound checking code */
734 func_bound_offset
= lbounds_section
->data_offset
;
735 func_bound_ind
= ind
;
736 func_bound_add_epilog
= 0;
737 o(0xb848 + TREG_FASTCALL_1
* 0x100); /*lbound section pointer */
739 oad(0xb8, 0); /* call to function */
742 static void gen_bounds_epilog(void)
747 int offset_modified
= func_bound_offset
!= lbounds_section
->data_offset
;
749 if (!offset_modified
&& !func_bound_add_epilog
)
752 /* add end of table info */
753 bounds_ptr
= section_ptr_add(lbounds_section
, sizeof(addr_t
));
756 sym_data
= get_sym_ref(&char_pointer_type
, lbounds_section
,
757 func_bound_offset
, lbounds_section
->data_offset
);
759 /* generate bound local allocation */
760 if (offset_modified
) {
762 ind
= func_bound_ind
;
763 greloca(cur_text_section
, sym_data
, ind
+ 2, R_X86_64_64
, 0);
765 gen_bounds_call(TOK___bound_local_new
);
769 /* generate bound check local freeing */
770 o(0x5250); /* save returned value, if any */
771 greloca(cur_text_section
, sym_data
, ind
+ 2, R_X86_64_64
, 0);
772 o(0xb848 + TREG_FASTCALL_1
* 0x100); /* mov xxx, %rcx/di */
774 gen_bounds_call(TOK___bound_local_delete
);
775 o(0x585a); /* restore returned value, if any */
782 static const uint8_t arg_regs
[REGN
] = {
783 TREG_RCX
, TREG_RDX
, TREG_R8
, TREG_R9
786 /* Prepare arguments in R10 and R11 rather than RCX and RDX
787 because gv() will not ever use these */
788 static int arg_prepare_reg(int idx
) {
789 if (idx
== 0 || idx
== 1)
790 /* idx=0: r10, idx=1: r11 */
793 return arg_regs
[idx
];
796 /* Generate function call. The function address is pushed first, then
797 all the parameters in call order. This functions pops all the
798 parameters and the function address. */
800 static void gen_offs_sp(int b
, int r
, int d
)
802 orex(1,0,r
& 0x100 ? 0 : r
, b
);
804 o(0x2444 | (REG_VALUE(r
) << 3));
807 o(0x2484 | (REG_VALUE(r
) << 3));
812 static int using_regs(int size
)
814 return !(size
> 8 || (size
& (size
- 1)));
817 /* Return the number of registers needed to return the struct, or 0 if
818 returning via struct pointer. */
819 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
822 *ret_align
= 1; // Never have to re-align return values for x86-64
824 size
= type_size(vt
, &align
);
825 if (!using_regs(size
))
839 static int is_sse_float(int t
) {
842 return bt
== VT_DOUBLE
|| bt
== VT_FLOAT
;
845 static int gfunc_arg_size(CType
*type
) {
847 if (type
->t
& (VT_ARRAY
|VT_BITFIELD
))
849 return type_size(type
, &align
);
852 void gfunc_call(int nb_args
)
854 int size
, r
, args_size
, i
, d
, bt
, struct_size
;
857 #ifdef CONFIG_TCC_BCHECK
858 if (tcc_state
->do_bounds_check
)
859 gbound_args(nb_args
);
862 args_size
= (nb_args
< REGN
? REGN
: nb_args
) * PTR_SIZE
;
865 /* for struct arguments, we need to call memcpy and the function
866 call breaks register passing arguments we are preparing.
867 So, we process arguments which will be passed by stack first. */
868 struct_size
= args_size
;
869 for(i
= 0; i
< nb_args
; i
++) {
874 bt
= (sv
->type
.t
& VT_BTYPE
);
875 size
= gfunc_arg_size(&sv
->type
);
877 if (using_regs(size
))
878 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
880 if (bt
== VT_STRUCT
) {
881 /* align to stack align size */
882 size
= (size
+ 15) & ~15;
883 /* generate structure store */
885 gen_offs_sp(0x8d, r
, struct_size
);
888 /* generate memcpy call */
889 vset(&sv
->type
, r
| VT_LVAL
, 0);
893 } else if (bt
== VT_LDOUBLE
) {
895 gen_offs_sp(0xdb, 0x107, struct_size
);
900 if (func_scratch
< struct_size
)
901 func_scratch
= struct_size
;
904 struct_size
= args_size
;
906 for(i
= 0; i
< nb_args
; i
++) {
908 bt
= (vtop
->type
.t
& VT_BTYPE
);
910 size
= gfunc_arg_size(&vtop
->type
);
911 if (!using_regs(size
)) {
912 /* align to stack align size */
913 size
= (size
+ 15) & ~15;
916 gen_offs_sp(0x8d, d
, struct_size
);
917 gen_offs_sp(0x89, d
, arg
*8);
919 d
= arg_prepare_reg(arg
);
920 gen_offs_sp(0x8d, d
, struct_size
);
924 if (is_sse_float(vtop
->type
.t
)) {
925 if (tcc_state
->nosse
)
926 tcc_error("SSE disabled");
929 /* movq %xmm0, j*8(%rsp) */
930 gen_offs_sp(0xd60f66, 0x100, arg
*8);
932 /* Load directly to xmmN register */
934 d
= arg_prepare_reg(arg
);
935 /* mov %xmmN, %rxx */
938 o(0xc0 + arg
*8 + REG_VALUE(d
));
941 if (bt
== VT_STRUCT
) {
942 vtop
->type
.ref
= NULL
;
943 vtop
->type
.t
= size
> 4 ? VT_LLONG
: size
> 2 ? VT_INT
944 : size
> 1 ? VT_SHORT
: VT_BYTE
;
949 gen_offs_sp(0x89, r
, arg
*8);
951 d
= arg_prepare_reg(arg
);
952 orex(1,d
,r
,0x89); /* mov */
953 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
960 /* Copy R10 and R11 into RCX and RDX, respectively */
962 o(0xd1894c); /* mov %r10, %rcx */
964 o(0xda894c); /* mov %r11, %rdx */
970 if ((vtop
->r
& VT_SYM
) && vtop
->sym
->v
== TOK_alloca
) {
971 /* need to add the "func_scratch" area after alloca */
972 o(0x48); func_alloca
= oad(0x05, func_alloca
); /* add $NN, %rax */
973 #ifdef CONFIG_TCC_BCHECK
974 if (tcc_state
->do_bounds_check
)
975 gen_bounds_call(TOK___bound_alloca_nr
); /* new region */
982 #define FUNC_PROLOG_SIZE 11
984 /* generate function prolog of type 't' */
985 void gfunc_prolog(Sym
*func_sym
)
987 CType
*func_type
= &func_sym
->type
;
988 int addr
, reg_param_index
, bt
, size
;
998 ind
+= FUNC_PROLOG_SIZE
;
999 func_sub_sp_offset
= ind
;
1000 reg_param_index
= 0;
1002 sym
= func_type
->ref
;
1004 /* if the function returns a structure, then add an
1005 implicit pointer parameter */
1006 size
= gfunc_arg_size(&func_vt
);
1007 if (!using_regs(size
)) {
1008 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
1014 /* define parameters */
1015 while ((sym
= sym
->next
) != NULL
) {
1017 bt
= type
->t
& VT_BTYPE
;
1018 size
= gfunc_arg_size(type
);
1019 if (!using_regs(size
)) {
1020 if (reg_param_index
< REGN
) {
1021 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
1023 sym_push(sym
->v
& ~SYM_FIELD
, type
,
1024 VT_LLOCAL
| VT_LVAL
, addr
);
1026 if (reg_param_index
< REGN
) {
1027 /* save arguments passed by register */
1028 if ((bt
== VT_FLOAT
) || (bt
== VT_DOUBLE
)) {
1029 if (tcc_state
->nosse
)
1030 tcc_error("SSE disabled");
1031 o(0xd60f66); /* movq */
1032 gen_modrm(reg_param_index
, VT_LOCAL
, NULL
, addr
);
1034 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
1037 sym_push(sym
->v
& ~SYM_FIELD
, type
,
1038 VT_LOCAL
| VT_LVAL
, addr
);
1044 while (reg_param_index
< REGN
) {
1046 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
1051 #ifdef CONFIG_TCC_BCHECK
1052 if (tcc_state
->do_bounds_check
)
1053 gen_bounds_prolog();
1057 /* generate function epilog */
1058 void gfunc_epilog(void)
1062 /* align local size to word & save local variables */
1063 func_scratch
= (func_scratch
+ 15) & -16;
1064 loc
= (loc
& -16) - func_scratch
;
1066 #ifdef CONFIG_TCC_BCHECK
1067 if (tcc_state
->do_bounds_check
)
1068 gen_bounds_epilog();
1071 o(0xc9); /* leave */
1072 if (func_ret_sub
== 0) {
1075 o(0xc2); /* ret n */
1077 g(func_ret_sub
>> 8);
1081 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1085 Sym
*sym
= external_global_sym(TOK___chkstk
, &func_old_type
);
1086 oad(0xb8, v
); /* mov stacksize, %eax */
1087 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1088 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PC32
, -4);
1089 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1091 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1092 o(0xec8148); /* sub rsp, stacksize */
1096 /* add the "func_scratch" area after each alloca seen */
1097 gsym_addr(func_alloca
, -func_scratch
);
1099 cur_text_section
->data_offset
= saved_ind
;
1100 pe_add_unwind_data(ind
, saved_ind
, v
);
1101 ind
= cur_text_section
->data_offset
;
1106 static void gadd_sp(int val
)
1108 if (val
== (char)val
) {
1112 oad(0xc48148, val
); /* add $xxx, %rsp */
1116 typedef enum X86_64_Mode
{
1119 x86_64_mode_integer
,
1124 static X86_64_Mode
classify_x86_64_merge(X86_64_Mode a
, X86_64_Mode b
)
1128 else if (a
== x86_64_mode_none
)
1130 else if (b
== x86_64_mode_none
)
1132 else if ((a
== x86_64_mode_memory
) || (b
== x86_64_mode_memory
))
1133 return x86_64_mode_memory
;
1134 else if ((a
== x86_64_mode_integer
) || (b
== x86_64_mode_integer
))
1135 return x86_64_mode_integer
;
1136 else if ((a
== x86_64_mode_x87
) || (b
== x86_64_mode_x87
))
1137 return x86_64_mode_memory
;
1139 return x86_64_mode_sse
;
1142 static X86_64_Mode
classify_x86_64_inner(CType
*ty
)
1147 switch (ty
->t
& VT_BTYPE
) {
1148 case VT_VOID
: return x86_64_mode_none
;
1157 return x86_64_mode_integer
;
1160 case VT_DOUBLE
: return x86_64_mode_sse
;
1162 case VT_LDOUBLE
: return x86_64_mode_x87
;
1167 mode
= x86_64_mode_none
;
1168 for (f
= f
->next
; f
; f
= f
->next
)
1169 mode
= classify_x86_64_merge(mode
, classify_x86_64_inner(&f
->type
));
1177 static X86_64_Mode
classify_x86_64_arg(CType
*ty
, CType
*ret
, int *psize
, int *palign
, int *reg_count
)
1180 int size
, align
, ret_t
= 0;
1182 if (ty
->t
& (VT_BITFIELD
|VT_ARRAY
)) {
1187 mode
= x86_64_mode_integer
;
1189 size
= type_size(ty
, &align
);
1190 *psize
= (size
+ 7) & ~7;
1191 *palign
= (align
+ 7) & ~7;
1194 mode
= x86_64_mode_memory
;
1196 mode
= classify_x86_64_inner(ty
);
1198 case x86_64_mode_integer
:
1212 if ((ty
->t
& VT_BTYPE
) == VT_STRUCT
|| (ty
->t
& VT_UNSIGNED
))
1213 ret_t
|= VT_UNSIGNED
;
1217 case x86_64_mode_x87
:
1222 case x86_64_mode_sse
:
1228 ret_t
= (size
> 4) ? VT_DOUBLE
: VT_FLOAT
;
1231 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1244 ST_FUNC
int classify_x86_64_va_arg(CType
*ty
)
1246 /* This definition must be synced with stdarg.h */
1247 enum __va_arg_type
{
1248 __va_gen_reg
, __va_float_reg
, __va_stack
1250 int size
, align
, reg_count
;
1251 X86_64_Mode mode
= classify_x86_64_arg(ty
, NULL
, &size
, &align
, ®_count
);
1253 default: return __va_stack
;
1254 case x86_64_mode_integer
: return __va_gen_reg
;
1255 case x86_64_mode_sse
: return __va_float_reg
;
1259 /* Return the number of registers needed to return the struct, or 0 if
1260 returning via struct pointer. */
1261 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
1263 int size
, align
, reg_count
;
1264 *ret_align
= 1; // Never have to re-align return values for x86-64
1266 return (classify_x86_64_arg(vt
, ret
, &size
, &align
, ®_count
) != x86_64_mode_memory
);
1270 static const uint8_t arg_regs
[REGN
] = {
1271 TREG_RDI
, TREG_RSI
, TREG_RDX
, TREG_RCX
, TREG_R8
, TREG_R9
1274 static int arg_prepare_reg(int idx
) {
1275 if (idx
== 2 || idx
== 3)
1276 /* idx=2: r10, idx=3: r11 */
1279 return arg_regs
[idx
];
1282 /* Generate function call. The function address is pushed first, then
1283 all the parameters in call order. This functions pops all the
1284 parameters and the function address. */
1285 void gfunc_call(int nb_args
)
1289 int size
, align
, r
, args_size
, stack_adjust
, i
, reg_count
;
1290 int nb_reg_args
= 0;
1291 int nb_sse_args
= 0;
1292 int sse_reg
, gen_reg
;
1293 char _onstack
[nb_args
? nb_args
: 1], *onstack
= _onstack
;
1295 #ifdef CONFIG_TCC_BCHECK
1296 if (tcc_state
->do_bounds_check
)
1297 gbound_args(nb_args
);
1300 /* calculate the number of integer/float register arguments, remember
1301 arguments to be passed via stack (in onstack[]), and also remember
1302 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1303 to be done in a left-to-right pass over arguments. */
1305 for(i
= nb_args
- 1; i
>= 0; i
--) {
1306 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1307 if (mode
== x86_64_mode_sse
&& nb_sse_args
+ reg_count
<= 8) {
1308 nb_sse_args
+= reg_count
;
1310 } else if (mode
== x86_64_mode_integer
&& nb_reg_args
+ reg_count
<= REGN
) {
1311 nb_reg_args
+= reg_count
;
1313 } else if (mode
== x86_64_mode_none
) {
1316 if (align
== 16 && (stack_adjust
&= 15)) {
1321 stack_adjust
+= size
;
1325 if (nb_sse_args
&& tcc_state
->nosse
)
1326 tcc_error("SSE disabled but floating point arguments passed");
1328 /* fetch cpu flag before generating any code */
1329 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
)
1332 /* for struct arguments, we need to call memcpy and the function
1333 call breaks register passing arguments we are preparing.
1334 So, we process arguments which will be passed by stack first. */
1335 gen_reg
= nb_reg_args
;
1336 sse_reg
= nb_sse_args
;
1339 for (i
= 0; i
< nb_args
;) {
1340 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1345 /* Possibly adjust stack to align SSE boundary. We're processing
1346 args from right to left while allocating happens left to right
1347 (stack grows down), so the adjustment needs to happen _after_
1348 an argument that requires it. */
1350 o(0x50); /* push %rax; aka sub $8,%rsp */
1354 if (onstack
[i
] == 2)
1359 switch (vtop
->type
.t
& VT_BTYPE
) {
1361 /* allocate the necessary size on stack */
1363 oad(0xec81, size
); /* sub $xxx, %rsp */
1364 /* generate structure store */
1365 r
= get_reg(RC_INT
);
1366 orex(1, r
, 0, 0x89); /* mov %rsp, r */
1367 o(0xe0 + REG_VALUE(r
));
1368 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1375 oad(0xec8148, size
); /* sub $xxx, %rsp */
1376 o(0x7cdb); /* fstpt 0(%rsp) */
1383 assert(mode
== x86_64_mode_sse
);
1385 o(0x50); /* push $rax */
1386 /* movq %xmmN, (%rsp) */
1388 o(0x04 + REG_VALUE(r
)*8);
1393 assert(mode
== x86_64_mode_integer
);
1395 /* XXX: implicit cast ? */
1397 orex(0,r
,0,0x50 + REG_VALUE(r
)); /* push r */
1407 /* XXX This should be superfluous. */
1408 save_regs(0); /* save used temporary registers */
1410 /* then, we prepare register passing arguments.
1411 Note that we cannot set RDX and RCX in this loop because gv()
1412 may break these temporary registers. Let's use R10 and R11
1414 assert(gen_reg
<= REGN
);
1415 assert(sse_reg
<= 8);
1416 for(i
= 0; i
< nb_args
; i
++) {
1417 mode
= classify_x86_64_arg(&vtop
->type
, &type
, &size
, &align
, ®_count
);
1418 /* Alter stack entry type so that gv() knows how to treat it */
1420 if (mode
== x86_64_mode_sse
) {
1421 if (reg_count
== 2) {
1423 gv(RC_FRET
); /* Use pair load into xmm0 & xmm1 */
1424 if (sse_reg
) { /* avoid redundant movaps %xmm0, %xmm0 */
1425 /* movaps %xmm1, %xmmN */
1427 o(0xc1 + ((sse_reg
+1) << 3));
1428 /* movaps %xmm0, %xmmN */
1430 o(0xc0 + (sse_reg
<< 3));
1433 assert(reg_count
== 1);
1435 /* Load directly to register */
1436 gv(RC_XMM0
<< sse_reg
);
1438 } else if (mode
== x86_64_mode_integer
) {
1440 /* XXX: implicit cast ? */
1442 gen_reg
-= reg_count
;
1444 d
= arg_prepare_reg(gen_reg
);
1445 orex(1,d
,r
,0x89); /* mov */
1446 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
1447 if (reg_count
== 2) {
1448 d
= arg_prepare_reg(gen_reg
+1);
1449 orex(1,d
,vtop
->r2
,0x89); /* mov */
1450 o(0xc0 + REG_VALUE(vtop
->r2
) * 8 + REG_VALUE(d
));
1455 assert(gen_reg
== 0);
1456 assert(sse_reg
== 0);
1458 /* We shouldn't have many operands on the stack anymore, but the
1459 call address itself is still there, and it might be in %eax
1460 (or edx/ecx) currently, which the below writes would clobber.
1461 So evict all remaining operands here. */
1464 /* Copy R10 and R11 into RDX and RCX, respectively */
1465 if (nb_reg_args
> 2) {
1466 o(0xd2894c); /* mov %r10, %rdx */
1467 if (nb_reg_args
> 3) {
1468 o(0xd9894c); /* mov %r11, %rcx */
1472 if (vtop
->type
.ref
->f
.func_type
!= FUNC_NEW
) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1473 oad(0xb8, nb_sse_args
< 8 ? nb_sse_args
: 8); /* mov nb_sse_args, %eax */
1480 #define FUNC_PROLOG_SIZE 11
1482 static void push_arg_reg(int i
) {
1484 gen_modrm64(0x89, arg_regs
[i
], VT_LOCAL
, NULL
, loc
);
1487 /* generate function prolog of type 't' */
1488 void gfunc_prolog(Sym
*func_sym
)
1490 CType
*func_type
= &func_sym
->type
;
1492 int i
, addr
, align
, size
, reg_count
;
1493 int param_addr
= 0, reg_param_index
, sse_param_index
;
1497 sym
= func_type
->ref
;
1498 addr
= PTR_SIZE
* 2;
1500 ind
+= FUNC_PROLOG_SIZE
;
1501 func_sub_sp_offset
= ind
;
1505 int seen_reg_num
, seen_sse_num
, seen_stack_size
;
1506 seen_reg_num
= seen_sse_num
= 0;
1507 /* frame pointer and return address */
1508 seen_stack_size
= PTR_SIZE
* 2;
1509 /* count the number of seen parameters */
1510 sym
= func_type
->ref
;
1511 while ((sym
= sym
->next
) != NULL
) {
1513 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1517 seen_stack_size
= ((seen_stack_size
+ align
- 1) & -align
) + size
;
1520 case x86_64_mode_integer
:
1521 if (seen_reg_num
+ reg_count
> REGN
)
1523 seen_reg_num
+= reg_count
;
1526 case x86_64_mode_sse
:
1527 if (seen_sse_num
+ reg_count
> 8)
1529 seen_sse_num
+= reg_count
;
1535 /* movl $0x????????, -0x18(%rbp) */
1537 gen_le32(seen_reg_num
* 8);
1538 /* movl $0x????????, -0x14(%rbp) */
1540 gen_le32(seen_sse_num
* 16 + 48);
1541 /* leaq $0x????????, %r11 */
1543 gen_le32(seen_stack_size
);
1544 /* movq %r11, -0x10(%rbp) */
1546 /* leaq $-192(%rbp), %r11 */
1548 gen_le32(-176 - 24);
1549 /* movq %r11, -0x8(%rbp) */
1552 /* save all register passing arguments */
1553 for (i
= 0; i
< 8; i
++) {
1555 if (!tcc_state
->nosse
) {
1556 o(0xd60f66); /* movq */
1557 gen_modrm(7 - i
, VT_LOCAL
, NULL
, loc
);
1559 /* movq $0, loc+8(%rbp) */
1564 for (i
= 0; i
< REGN
; i
++) {
1565 push_arg_reg(REGN
-1-i
);
1569 sym
= func_type
->ref
;
1570 reg_param_index
= 0;
1571 sse_param_index
= 0;
1573 /* if the function returns a structure, then add an
1574 implicit pointer parameter */
1575 mode
= classify_x86_64_arg(&func_vt
, NULL
, &size
, &align
, ®_count
);
1576 if (mode
== x86_64_mode_memory
) {
1577 push_arg_reg(reg_param_index
);
1581 /* define parameters */
1582 while ((sym
= sym
->next
) != NULL
) {
1584 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1586 case x86_64_mode_sse
:
1587 if (tcc_state
->nosse
)
1588 tcc_error("SSE disabled but floating point arguments used");
1589 if (sse_param_index
+ reg_count
<= 8) {
1590 /* save arguments passed by register */
1591 loc
-= reg_count
* 8;
1593 for (i
= 0; i
< reg_count
; ++i
) {
1594 o(0xd60f66); /* movq */
1595 gen_modrm(sse_param_index
, VT_LOCAL
, NULL
, param_addr
+ i
*8);
1599 addr
= (addr
+ align
- 1) & -align
;
1605 case x86_64_mode_memory
:
1606 case x86_64_mode_x87
:
1607 addr
= (addr
+ align
- 1) & -align
;
1612 case x86_64_mode_integer
: {
1613 if (reg_param_index
+ reg_count
<= REGN
) {
1614 /* save arguments passed by register */
1615 loc
-= reg_count
* 8;
1617 for (i
= 0; i
< reg_count
; ++i
) {
1618 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, param_addr
+ i
*8);
1622 addr
= (addr
+ align
- 1) & -align
;
1628 default: break; /* nothing to be done for x86_64_mode_none */
1630 sym_push(sym
->v
& ~SYM_FIELD
, type
,
1631 VT_LOCAL
| VT_LVAL
, param_addr
);
1634 #ifdef CONFIG_TCC_BCHECK
1635 if (tcc_state
->do_bounds_check
)
1636 gen_bounds_prolog();
1640 /* generate function epilog */
1641 void gfunc_epilog(void)
1645 #ifdef CONFIG_TCC_BCHECK
1646 if (tcc_state
->do_bounds_check
)
1647 gen_bounds_epilog();
1649 o(0xc9); /* leave */
1650 if (func_ret_sub
== 0) {
1653 o(0xc2); /* ret n */
1655 g(func_ret_sub
>> 8);
1657 /* align local size to word & save local variables */
1658 v
= (-loc
+ 15) & -16;
1660 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1661 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1662 o(0xec8148); /* sub rsp, stacksize */
1669 ST_FUNC
void gen_fill_nops(int bytes
)
1675 /* generate a jump to a label */
1678 return gjmp2(0xe9, t
);
1681 /* generate a jump to a fixed address */
1682 void gjmp_addr(int a
)
1690 oad(0xe9, a
- ind
- 5);
1694 ST_FUNC
int gjmp_append(int n
, int t
)
1697 /* insert vtop->c jump list in t */
1699 uint32_t n1
= n
, n2
;
1700 while ((n2
= read32le(p
= cur_text_section
->data
+ n1
)))
1708 ST_FUNC
int gjmp_cond(int op
, int t
)
1712 /* This was a float compare. If the parity flag is set
1713 the result was unordered. For anything except != this
1714 means false and we don't jump (anding both conditions).
1715 For != this means true (oring both).
1716 Take care about inverting the test. We need to jump
1717 to our target if the result was unordered and test wasn't NE,
1718 otherwise if unordered we don't want to jump. */
1719 int v
= vtop
->cmp_r
;
1721 if (op
^ v
^ (v
!= TOK_NE
))
1722 o(0x067a); /* jp +6 */
1726 t
= gjmp2(0x8a, t
); /* jp t */
1730 t
= gjmp2(op
- 16, t
);
1734 /* generate an integer binary operation */
1735 void gen_opi(int op
)
1740 ll
= is64_type(vtop
[-1].type
.t
);
1741 uu
= (vtop
[-1].type
.t
& VT_UNSIGNED
) != 0;
1742 cc
= (vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
;
1746 case TOK_ADDC1
: /* add with carry generation */
1749 if (cc
&& (!ll
|| (int)vtop
->c
.i
== vtop
->c
.i
)) {
1756 /* XXX: generate inc and dec for smaller code ? */
1757 orex(ll
, r
, 0, 0x83);
1758 o(0xc0 | (opc
<< 3) | REG_VALUE(r
));
1761 orex(ll
, r
, 0, 0x81);
1762 oad(0xc0 | (opc
<< 3) | REG_VALUE(r
), c
);
1765 gv2(RC_INT
, RC_INT
);
1768 orex(ll
, r
, fr
, (opc
<< 3) | 0x01);
1769 o(0xc0 + REG_VALUE(r
) + REG_VALUE(fr
) * 8);
1772 if (op
>= TOK_ULT
&& op
<= TOK_GT
)
1776 case TOK_SUBC1
: /* sub with carry generation */
1779 case TOK_ADDC2
: /* add with carry use */
1782 case TOK_SUBC2
: /* sub with carry use */
1795 gv2(RC_INT
, RC_INT
);
1798 orex(ll
, fr
, r
, 0xaf0f); /* imul fr, r */
1799 o(0xc0 + REG_VALUE(fr
) + REG_VALUE(r
) * 8);
1811 opc
= 0xc0 | (opc
<< 3);
1817 orex(ll
, r
, 0, 0xc1); /* shl/shr/sar $xxx, r */
1818 o(opc
| REG_VALUE(r
));
1819 g(vtop
->c
.i
& (ll
? 63 : 31));
1821 /* we generate the shift in ecx */
1822 gv2(RC_INT
, RC_RCX
);
1824 orex(ll
, r
, 0, 0xd3); /* shl/shr/sar %cl, r */
1825 o(opc
| REG_VALUE(r
));
1838 /* first operand must be in eax */
1839 /* XXX: need better constraint for second operand */
1840 gv2(RC_RAX
, RC_RCX
);
1845 orex(ll
, 0, 0, uu
? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1846 orex(ll
, fr
, 0, 0xf7); /* div fr, %eax */
1847 o((uu
? 0xf0 : 0xf8) + REG_VALUE(fr
));
1848 if (op
== '%' || op
== TOK_UMOD
)
1860 void gen_opl(int op
)
1865 /* generate a floating point operation 'v = t1 op t2' instruction. The
1866 two operands are guaranteed to have the same floating point type */
1867 /* XXX: need to use ST1 too */
1868 void gen_opf(int op
)
1870 int a
, ft
, fc
, swapped
, r
;
1872 (vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
? RC_ST0
: RC_FLOAT
;
1874 /* convert constants to memory references */
1875 if ((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
1880 if ((vtop
[0].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
)
1883 /* must put at least one value in the floating point register */
1884 if ((vtop
[-1].r
& VT_LVAL
) &&
1885 (vtop
[0].r
& VT_LVAL
)) {
1891 /* swap the stack if needed so that t1 is the register and t2 is
1892 the memory reference */
1893 if (vtop
[-1].r
& VT_LVAL
) {
1897 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
) {
1898 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1899 /* load on stack second operand */
1900 load(TREG_ST0
, vtop
);
1901 save_reg(TREG_RAX
); /* eax is used by FP comparison code */
1902 if (op
== TOK_GE
|| op
== TOK_GT
)
1904 else if (op
== TOK_EQ
|| op
== TOK_NE
)
1907 o(0xc9d9); /* fxch %st(1) */
1908 if (op
== TOK_EQ
|| op
== TOK_NE
)
1909 o(0xe9da); /* fucompp */
1911 o(0xd9de); /* fcompp */
1912 o(0xe0df); /* fnstsw %ax */
1914 o(0x45e480); /* and $0x45, %ah */
1915 o(0x40fC80); /* cmp $0x40, %ah */
1916 } else if (op
== TOK_NE
) {
1917 o(0x45e480); /* and $0x45, %ah */
1918 o(0x40f480); /* xor $0x40, %ah */
1920 } else if (op
== TOK_GE
|| op
== TOK_LE
) {
1921 o(0x05c4f6); /* test $0x05, %ah */
1924 o(0x45c4f6); /* test $0x45, %ah */
1930 /* no memory reference possible for long double operations */
1931 load(TREG_ST0
, vtop
);
1955 o(0xde); /* fxxxp %st, %st(1) */
1960 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1961 /* if saved lvalue, then we must reload it */
1964 if ((r
& VT_VALMASK
) == VT_LLOCAL
) {
1966 r
= get_reg(RC_INT
);
1968 v1
.r
= VT_LOCAL
| VT_LVAL
;
1972 vtop
->r
= r
= r
| VT_LVAL
;
1975 if (op
== TOK_EQ
|| op
== TOK_NE
) {
1978 if (op
== TOK_LE
|| op
== TOK_LT
)
1980 if (op
== TOK_LE
|| op
== TOK_GE
) {
1981 op
= 0x93; /* setae */
1983 op
= 0x97; /* seta */
1991 assert(!(vtop
[-1].r
& VT_LVAL
));
1993 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1995 if (op
== TOK_EQ
|| op
== TOK_NE
)
1996 o(0x2e0f); /* ucomisd */
1998 o(0x2f0f); /* comisd */
2000 if (vtop
->r
& VT_LVAL
) {
2001 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
2003 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2007 vset_VT_CMP(op
| 0x100);
2010 assert((vtop
->type
.t
& VT_BTYPE
) != VT_LDOUBLE
);
2028 assert((ft
& VT_BTYPE
) != VT_LDOUBLE
);
2031 /* if saved lvalue, then we must reload it */
2032 if ((vtop
->r
& VT_VALMASK
) == VT_LLOCAL
) {
2034 r
= get_reg(RC_INT
);
2036 v1
.r
= VT_LOCAL
| VT_LVAL
;
2040 vtop
->r
= r
= r
| VT_LVAL
;
2043 assert(!(vtop
[-1].r
& VT_LVAL
));
2045 assert(vtop
->r
& VT_LVAL
);
2050 if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
2058 if (vtop
->r
& VT_LVAL
) {
2059 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
2061 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2069 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2070 and 'long long' cases. */
2071 void gen_cvt_itof(int t
)
2073 if ((t
& VT_BTYPE
) == VT_LDOUBLE
) {
2076 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2077 /* signed long long to float/double/long double (unsigned case
2078 is handled generically) */
2079 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2080 o(0x242cdf); /* fildll (%rsp) */
2081 o(0x08c48348); /* add $8, %rsp */
2082 } else if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2083 (VT_INT
| VT_UNSIGNED
)) {
2084 /* unsigned int to float/double/long double */
2085 o(0x6a); /* push $0 */
2087 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2088 o(0x242cdf); /* fildll (%rsp) */
2089 o(0x10c48348); /* add $16, %rsp */
2091 /* int to float/double/long double */
2092 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2093 o(0x2404db); /* fildl (%rsp) */
2094 o(0x08c48348); /* add $8, %rsp */
2098 int r
= get_reg(RC_FLOAT
);
2100 o(0xf2 + ((t
& VT_BTYPE
) == VT_FLOAT
?1:0));
2101 if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2102 (VT_INT
| VT_UNSIGNED
) ||
2103 (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2107 o(0xc0 + (vtop
->r
& VT_VALMASK
) + REG_VALUE(r
)*8); /* cvtsi2sd */
2112 /* convert from one floating point type to another */
2113 void gen_cvt_ftof(int t
)
2121 if (bt
== VT_FLOAT
) {
2123 if (tbt
== VT_DOUBLE
) {
2124 o(0x140f); /* unpcklps */
2125 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2126 o(0x5a0f); /* cvtps2pd */
2127 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2128 } else if (tbt
== VT_LDOUBLE
) {
2130 /* movss %xmm0,-0x10(%rsp) */
2132 o(0x44 + REG_VALUE(vtop
->r
)*8);
2134 o(0xf02444d9); /* flds -0x10(%rsp) */
2137 } else if (bt
== VT_DOUBLE
) {
2139 if (tbt
== VT_FLOAT
) {
2140 o(0x140f66); /* unpcklpd */
2141 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2142 o(0x5a0f66); /* cvtpd2ps */
2143 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2144 } else if (tbt
== VT_LDOUBLE
) {
2146 /* movsd %xmm0,-0x10(%rsp) */
2148 o(0x44 + REG_VALUE(vtop
->r
)*8);
2150 o(0xf02444dd); /* fldl -0x10(%rsp) */
2156 r
= get_reg(RC_FLOAT
);
2157 if (tbt
== VT_DOUBLE
) {
2158 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2159 /* movsd -0x10(%rsp),%xmm0 */
2161 o(0x44 + REG_VALUE(r
)*8);
2164 } else if (tbt
== VT_FLOAT
) {
2165 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2166 /* movss -0x10(%rsp),%xmm0 */
2168 o(0x44 + REG_VALUE(r
)*8);
2175 /* convert fp to int 't' type */
2176 void gen_cvt_ftoi(int t
)
2178 int ft
, bt
, size
, r
;
2181 if (bt
== VT_LDOUBLE
) {
2182 gen_cvt_ftof(VT_DOUBLE
);
2192 r
= get_reg(RC_INT
);
2193 if (bt
== VT_FLOAT
) {
2195 } else if (bt
== VT_DOUBLE
) {
2200 orex(size
== 8, r
, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2201 o(0xc0 + REG_VALUE(vtop
->r
) + REG_VALUE(r
)*8);
2205 // Generate sign extension from 32 to 64 bits:
2206 ST_FUNC
void gen_cvt_sxtw(void)
2209 /* x86_64 specific: movslq */
2211 o(0xc0 + (REG_VALUE(r
) << 3) + REG_VALUE(r
));
2214 /* char/short to int conversion */
2215 ST_FUNC
void gen_cvt_csti(int t
)
2219 sz
= !(t
& VT_UNSIGNED
);
2220 xl
= (t
& VT_BTYPE
) == VT_SHORT
;
2221 ll
= (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
;
2222 orex(ll
, r
, 0, 0xc0b60f /* mov[sz] %a[xl], %eax */
2223 | (sz
<< 3 | xl
) << 8
2224 | (REG_VALUE(r
) << 3 | REG_VALUE(r
)) << 16
2228 /* computed goto support */
2235 /* Save the stack pointer onto the stack and return the location of its address */
2236 ST_FUNC
void gen_vla_sp_save(int addr
) {
2237 /* mov %rsp,addr(%rbp)*/
2238 gen_modrm64(0x89, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2241 /* Restore the SP from a location on the stack */
2242 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2243 gen_modrm64(0x8b, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2246 #ifdef TCC_TARGET_PE
2247 /* Save result of gen_vla_alloc onto the stack */
2248 ST_FUNC
void gen_vla_result(int addr
) {
2249 /* mov %rax,addr(%rbp)*/
2250 gen_modrm64(0x89, TREG_RAX
, VT_LOCAL
, NULL
, addr
);
2254 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2255 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2258 #if defined(CONFIG_TCC_BCHECK)
2259 use_call
= tcc_state
->do_bounds_check
;
2261 #ifdef TCC_TARGET_PE /* alloca does more than just adjust %rsp on Windows */
2266 vpush_global_sym(&func_old_type
, TOK_alloca
);
2267 vswap(); /* Move alloca ref past allocation size */
2272 r
= gv(RC_INT
); /* allocation size */
2275 o(0xe0 | REG_VALUE(r
));
2276 /* We align to 16 bytes rather than align */
2284 /* end of x86-64 code generator */
2285 /*************************************************************/
2286 #endif /* ! TARGET_DEFS_ONLY */
2287 /******************************************************/