2 * ARMv4 code generator for TCC
4 * Copyright (c) 2003 Daniel Glöckner
5 * Copyright (c) 2012 Thomas Preud'homme
7 * Based on i386-gen.c by Fabrice Bellard
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef TARGET_DEFS_ONLY
26 #if defined(TCC_ARM_EABI) && !defined(TCC_ARM_VFP)
27 #error "Currently TinyCC only supports float computation with VFP instructions"
30 /* number of available registers */
37 #ifndef TCC_CPU_VERSION
38 # define TCC_CPU_VERSION 5
41 /* a register can belong to several classes. The classes must be
42 sorted from more general to more precise (see gv2() code which does
43 assumptions on it). */
44 #define RC_INT 0x0001 /* generic integer register */
45 #define RC_FLOAT 0x0002 /* generic float register */
61 #define RC_IRET RC_R0 /* function return: integer register */
62 #define RC_IRE2 RC_R1 /* function return: second integer register */
63 #define RC_FRET RC_F0 /* function return: float register */
65 /* pretty names for the registers */
87 #define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0)
90 /* return registers for function */
91 #define REG_IRET TREG_R0 /* single word int return register */
92 #define REG_IRE2 TREG_R1 /* second word return register (for long long) */
93 #define REG_FRET TREG_F0 /* float return register */
96 #define TOK___divdi3 TOK___aeabi_ldivmod
97 #define TOK___moddi3 TOK___aeabi_ldivmod
98 #define TOK___udivdi3 TOK___aeabi_uldivmod
99 #define TOK___umoddi3 TOK___aeabi_uldivmod
102 /* defined if function parameters must be evaluated in reverse order */
103 #define INVERT_FUNC_PARAMS
105 /* defined if structures are passed as pointers. Otherwise structures
106 are directly pushed on stack. */
107 /* #define FUNC_STRUCT_PARAM_AS_PTR */
109 /* pointer size, in bytes */
112 /* long double size and alignment, in bytes */
114 #define LDOUBLE_SIZE 8
118 #define LDOUBLE_SIZE 8
122 #define LDOUBLE_ALIGN 8
124 #define LDOUBLE_ALIGN 4
127 /* maximum alignment (for aligned attribute support) */
130 #define CHAR_IS_UNSIGNED
132 /******************************************************/
133 #else /* ! TARGET_DEFS_ONLY */
134 /******************************************************/
135 #define USING_GLOBALS
138 enum float_abi float_abi
;
140 ST_DATA
const int reg_classes
[NB_REGS
] = {
141 /* r0 */ RC_INT
| RC_R0
,
142 /* r1 */ RC_INT
| RC_R1
,
143 /* r2 */ RC_INT
| RC_R2
,
144 /* r3 */ RC_INT
| RC_R3
,
145 /* r12 */ RC_INT
| RC_R12
,
146 /* f0 */ RC_FLOAT
| RC_F0
,
147 /* f1 */ RC_FLOAT
| RC_F1
,
148 /* f2 */ RC_FLOAT
| RC_F2
,
149 /* f3 */ RC_FLOAT
| RC_F3
,
151 /* d4/s8 */ RC_FLOAT
| RC_F4
,
152 /* d5/s10 */ RC_FLOAT
| RC_F5
,
153 /* d6/s12 */ RC_FLOAT
| RC_F6
,
154 /* d7/s14 */ RC_FLOAT
| RC_F7
,
158 static int func_sub_sp_offset
, last_itod_magic
;
161 #if defined(CONFIG_TCC_BCHECK)
162 static addr_t func_bound_offset
;
163 static unsigned long func_bound_ind
;
164 ST_DATA
int func_bound_add_epilog
;
167 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
168 static CType float_type
, double_type
, func_float_type
, func_double_type
;
169 ST_FUNC
void arm_init(struct TCCState
*s
)
171 float_type
.t
= VT_FLOAT
;
172 double_type
.t
= VT_DOUBLE
;
173 func_float_type
.t
= VT_FUNC
;
174 func_float_type
.ref
= sym_push(SYM_FIELD
, &float_type
, FUNC_CDECL
, FUNC_OLD
);
175 func_double_type
.t
= VT_FUNC
;
176 func_double_type
.ref
= sym_push(SYM_FIELD
, &double_type
, FUNC_CDECL
, FUNC_OLD
);
178 float_abi
= s
->float_abi
;
179 #ifndef TCC_ARM_HARDFLOAT
180 # warning "soft float ABI currently not supported: default to softfp"
184 #define func_float_type func_old_type
185 #define func_double_type func_old_type
186 #define func_ldouble_type func_old_type
187 ST_FUNC
void arm_init(struct TCCState
*s
)
190 #if !defined (TCC_ARM_VFP)
191 tcc_warning("Support for FPA is deprecated and will be removed in next"
194 #if !defined (TCC_ARM_EABI)
195 tcc_warning("Support for OABI is deprecated and will be removed in next"
202 #define CHECK_R(r) ((r) >= TREG_R0 && (r) <= TREG_LR)
204 static int two2mask(int a
,int b
) {
205 if (!CHECK_R(a
) || !CHECK_R(b
))
206 tcc_error("compiler error! registers %i,%i is not valid",a
,b
);
207 return (reg_classes
[a
]|reg_classes
[b
])&~(RC_INT
|RC_FLOAT
);
210 static int regmask(int r
) {
212 tcc_error("compiler error! register %i is not valid",r
);
213 return reg_classes
[r
]&~(RC_INT
|RC_FLOAT
);
216 /******************************************************/
218 #if defined(TCC_ARM_EABI) && !defined(CONFIG_TCC_ELFINTERP)
219 const char *default_elfinterp(struct TCCState
*s
)
221 if (s
->float_abi
== ARM_HARD_FLOAT
)
222 return "/lib/ld-linux-armhf.so.3";
224 return "/lib/ld-linux.so.3";
230 /* this is a good place to start adding big-endian support*/
235 if (!cur_text_section
)
236 tcc_error("compiler error! This happens f.ex. if the compiler\n"
237 "can't evaluate constant expressions outside of a function.");
238 if (ind1
> cur_text_section
->data_allocated
)
239 section_realloc(cur_text_section
, ind1
);
240 cur_text_section
->data
[ind
++] = i
&255;
242 cur_text_section
->data
[ind
++] = i
&255;
244 cur_text_section
->data
[ind
++] = i
&255;
246 cur_text_section
->data
[ind
++] = i
;
249 static uint32_t stuff_const(uint32_t op
, uint32_t c
)
252 uint32_t nc
= 0, negop
= 0;
262 case 0x1A00000: //mov
263 case 0x1E00000: //mvn
270 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1E00000;
274 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1A00000;
275 case 0x1C00000: //bic
280 case 0x1800000: //orr
282 return (op
&0xFFF0FFFF)|0x1E00000;
288 if(c
<256) /* catch undefined <<32 */
291 m
=(0xff>>i
)|(0xff<<(32-i
));
293 return op
|(i
<<7)|(c
<<i
)|(c
>>(32-i
));
303 void stuff_const_harder(uint32_t op
, uint32_t v
) {
309 uint32_t a
[16], nv
, no
, o2
, n2
;
312 o2
=(op
&0xfff0ffff)|((op
&0xf000)<<4);;
314 a
[i
]=(a
[i
-1]>>2)|(a
[i
-1]<<30);
316 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
317 if((v
&(a
[i
]|a
[j
]))==v
) {
318 o(stuff_const(op
,v
&a
[i
]));
319 o(stuff_const(o2
,v
&a
[j
]));
326 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
327 if((nv
&(a
[i
]|a
[j
]))==nv
) {
328 o(stuff_const(no
,nv
&a
[i
]));
329 o(stuff_const(n2
,nv
&a
[j
]));
334 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
335 if((v
&(a
[i
]|a
[j
]|a
[k
]))==v
) {
336 o(stuff_const(op
,v
&a
[i
]));
337 o(stuff_const(o2
,v
&a
[j
]));
338 o(stuff_const(o2
,v
&a
[k
]));
345 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
346 if((nv
&(a
[i
]|a
[j
]|a
[k
]))==nv
) {
347 o(stuff_const(no
,nv
&a
[i
]));
348 o(stuff_const(n2
,nv
&a
[j
]));
349 o(stuff_const(n2
,nv
&a
[k
]));
352 o(stuff_const(op
,v
&a
[0]));
353 o(stuff_const(o2
,v
&a
[4]));
354 o(stuff_const(o2
,v
&a
[8]));
355 o(stuff_const(o2
,v
&a
[12]));
359 uint32_t encbranch(int pos
, int addr
, int fail
)
363 if(addr
>=0x1000000 || addr
<-0x1000000) {
365 tcc_error("FIXME: function bigger than 32MB");
368 return 0x0A000000|(addr
&0xffffff);
371 int decbranch(int pos
)
374 x
=*(uint32_t *)(cur_text_section
->data
+ pos
);
381 /* output a symbol and patch all calls to it */
382 void gsym_addr(int t
, int a
)
387 x
=(uint32_t *)(cur_text_section
->data
+ t
);
390 *x
=0xE1A00000; // nop
393 *x
|= encbranch(lt
,a
,1);
399 static uint32_t vfpr(int r
)
401 if(r
<TREG_F0
|| r
>TREG_F7
)
402 tcc_error("compiler error! register %i is no vfp register",r
);
406 static uint32_t fpr(int r
)
408 if(r
<TREG_F0
|| r
>TREG_F3
)
409 tcc_error("compiler error! register %i is no fpa register",r
);
414 static uint32_t intr(int r
)
418 if(r
>= TREG_R0
&& r
<= TREG_R3
)
420 if (!(r
>= TREG_SP
&& r
<= TREG_LR
))
421 tcc_error("compiler error! register %i is no int register",r
);
422 return r
+ (13 - TREG_SP
);
425 static void calcaddr(uint32_t *base
, int *off
, int *sgn
, int maxoff
, unsigned shift
)
427 if(*off
>maxoff
|| *off
&((1<<shift
)-1)) {
434 y
=stuff_const(x
,*off
&~maxoff
);
440 y
=stuff_const(x
,(*off
+maxoff
)&~maxoff
);
444 *off
=((*off
+maxoff
)&~maxoff
)-*off
;
447 stuff_const_harder(x
,*off
&~maxoff
);
452 static uint32_t mapcc(int cc
)
457 return 0x30000000; /* CC/LO */
459 return 0x20000000; /* CS/HS */
461 return 0x00000000; /* EQ */
463 return 0x10000000; /* NE */
465 return 0x90000000; /* LS */
467 return 0x80000000; /* HI */
469 return 0x40000000; /* MI */
471 return 0x50000000; /* PL */
473 return 0xB0000000; /* LT */
475 return 0xA0000000; /* GE */
477 return 0xD0000000; /* LE */
479 return 0xC0000000; /* GT */
481 tcc_error("unexpected condition code");
482 return 0xE0000000; /* AL */
485 static int negcc(int cc
)
514 tcc_error("unexpected condition code");
518 /* load 'r' from value 'sv' */
519 void load(int r
, SValue
*sv
)
521 int v
, ft
, fc
, fr
, sign
;
538 uint32_t base
= 0xB; // fp
541 v1
.r
= VT_LOCAL
| VT_LVAL
;
547 } else if(v
== VT_CONST
) {
556 } else if(v
< VT_CONST
) {
563 calcaddr(&base
,&fc
,&sign
,1020,2);
565 op
=0xED100A00; /* flds */
568 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
569 op
|=0x100; /* flds -> fldd */
570 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
575 #if LDOUBLE_SIZE == 8
576 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
579 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
581 else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
584 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
586 } else if((ft
& (VT_BTYPE
|VT_UNSIGNED
)) == VT_BYTE
587 || (ft
& VT_BTYPE
) == VT_SHORT
) {
588 calcaddr(&base
,&fc
,&sign
,255,0);
590 if ((ft
& VT_BTYPE
) == VT_SHORT
)
592 if ((ft
& VT_UNSIGNED
) == 0)
596 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
598 calcaddr(&base
,&fc
,&sign
,4095,0);
602 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
604 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
610 op
=stuff_const(0xE3A00000|(intr(r
)<<12),sv
->c
.i
);
611 if (fr
& VT_SYM
|| !op
) {
612 o(0xE59F0000|(intr(r
)<<12));
615 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
620 } else if (v
== VT_LOCAL
) {
621 op
=stuff_const(0xE28B0000|(intr(r
)<<12),sv
->c
.i
);
622 if (fr
& VT_SYM
|| !op
) {
623 o(0xE59F0000|(intr(r
)<<12));
625 if(fr
& VT_SYM
) // needed ?
626 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
628 o(0xE08B0000|(intr(r
)<<12)|intr(r
));
632 } else if(v
== VT_CMP
) {
633 o(mapcc(sv
->c
.i
)|0x3A00001|(intr(r
)<<12));
634 o(mapcc(negcc(sv
->c
.i
))|0x3A00000|(intr(r
)<<12));
636 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
639 o(0xE3A00000|(intr(r
)<<12)|t
);
642 o(0xE3A00000|(intr(r
)<<12)|(t
^1));
644 } else if (v
< VT_CONST
) {
647 o(0xEEB00A40|(vfpr(r
)<<12)|vfpr(v
)|T2CPR(ft
)); /* fcpyX */
649 o(0xEE008180|(fpr(r
)<<12)|fpr(v
));
652 o(0xE1A00000|(intr(r
)<<12)|intr(v
));
656 tcc_error("load unimplemented!");
659 /* store register 'r' in lvalue 'v' */
660 void store(int r
, SValue
*sv
)
663 int v
, ft
, fc
, fr
, sign
;
678 if (fr
& VT_LVAL
|| fr
== VT_LOCAL
) {
679 uint32_t base
= 0xb; /* fp */
684 } else if(v
== VT_CONST
) {
696 calcaddr(&base
,&fc
,&sign
,1020,2);
698 op
=0xED000A00; /* fsts */
701 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
702 op
|=0x100; /* fsts -> fstd */
703 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
708 #if LDOUBLE_SIZE == 8
709 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
712 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
714 if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
717 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
720 } else if((ft
& VT_BTYPE
) == VT_SHORT
) {
721 calcaddr(&base
,&fc
,&sign
,255,0);
725 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
727 calcaddr(&base
,&fc
,&sign
,4095,0);
731 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
733 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
738 tcc_error("store unimplemented");
741 static void gadd_sp(int val
)
743 stuff_const_harder(0xE28DD000,val
);
746 /* 'is_jmp' is '1' if it is a jump */
747 static void gcall_or_jmp(int is_jmp
)
751 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
753 if(vtop
->r
& VT_SYM
){
754 x
=encbranch(ind
,ind
+vtop
->c
.i
,0);
756 /* relocation case */
757 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_PC24
);
758 o(x
|(is_jmp
?0xE0000000:0xE1000000));
761 o(0xE28FE004); // add lr,pc,#4
762 o(0xE51FF004); // ldr pc,[pc,#-4]
763 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_ABS32
);
768 o(0xE28FE004); // add lr,pc,#4
769 o(0xE51FF004); // ldr pc,[pc,#-4]
773 /* otherwise, indirect call */
774 #ifdef CONFIG_TCC_BCHECK
775 vtop
->r
&= ~VT_MUSTBOUND
;
779 o(0xE1A0E00F); // mov lr,pc
780 o(0xE1A0F000|intr(r
)); // mov pc,r
784 #if defined(CONFIG_TCC_BCHECK)
786 static void gen_bounds_call(int v
)
788 Sym
*sym
= external_global_sym(v
, &func_old_type
);
790 greloc(cur_text_section
, sym
, ind
, R_ARM_PC24
);
794 /* generate a bounded pointer addition */
795 ST_FUNC
void gen_bounded_ptr_add(void)
797 vpush_global_sym(&func_old_type
, TOK___bound_ptr_add
);
801 /* returned pointer is in REG_IRET */
802 vtop
->r
= REG_IRET
| VT_BOUNDED
;
805 /* relocation offset of the bounding function call point */
806 vtop
->c
.i
= (cur_text_section
->reloc
->data_offset
- sizeof(Elf32_Rel
));
809 /* patch pointer addition in vtop so that pointer dereferencing is
811 ST_FUNC
void gen_bounded_ptr_deref(void)
821 size
= type_size(&vtop
->type
, &align
);
823 case 1: func
= TOK___bound_ptr_indir1
; break;
824 case 2: func
= TOK___bound_ptr_indir2
; break;
825 case 4: func
= TOK___bound_ptr_indir4
; break;
826 case 8: func
= TOK___bound_ptr_indir8
; break;
827 case 12: func
= TOK___bound_ptr_indir12
; break;
828 case 16: func
= TOK___bound_ptr_indir16
; break;
830 /* may happen with struct member access */
832 //tcc_error("unhandled size when dereferencing bounded pointer");
836 sym
= external_global_sym(func
, &func_old_type
);
838 put_extern_sym(sym
, NULL
, 0, 0);
839 /* patch relocation */
840 /* XXX: find a better solution ? */
841 rel
= (Elf32_Rel
*)(cur_text_section
->reloc
->data
+ vtop
->c
.i
);
842 rel
->r_info
= ELF32_R_INFO(sym
->c
, ELF32_R_TYPE(rel
->r_info
));
845 static void gen_bounds_prolog(void)
847 /* leave some room for bound checking code */
848 func_bound_offset
= lbounds_section
->data_offset
;
849 func_bound_ind
= ind
;
850 func_bound_add_epilog
= 0;
851 o(0xe1a00000); /* ld r0,lbounds_section->data_offset */
854 o(0xe1a00000); /* call __bound_local_new */
857 static void gen_bounds_epilog(void)
862 int offset_modified
= func_bound_offset
!= lbounds_section
->data_offset
;
864 if (!offset_modified
&& !func_bound_add_epilog
)
867 /* add end of table info */
868 bounds_ptr
= section_ptr_add(lbounds_section
, sizeof(addr_t
));
871 sym_data
= get_sym_ref(&char_pointer_type
, lbounds_section
,
872 func_bound_offset
, lbounds_section
->data_offset
);
874 /* generate bound local allocation */
875 if (offset_modified
) {
877 ind
= func_bound_ind
;
878 o(0xe59f0000); /* ldr r0, [pc] */
879 o(0xea000000); /* b $+4 */
880 greloc(cur_text_section
, sym_data
, ind
, R_ARM_ABS32
);
881 o(0x00000000); /* lbounds_section->data_offset */
882 gen_bounds_call(TOK___bound_local_new
);
886 /* generate bound check local freeing */
887 o(0xe92d0003); /* push {r0,r1} */
888 o(0xed2d0b02); /* vpush {d0} */
889 o(0xe59f0000); /* ldr r0, [pc] */
890 o(0xea000000); /* b $+4 */
891 greloc(cur_text_section
, sym_data
, ind
, R_ARM_ABS32
);
892 o(0x00000000); /* lbounds_section->data_offset */
893 gen_bounds_call(TOK___bound_local_delete
);
894 o(0xecbd0b02); /* vpop {d0} */
895 o(0xe8bd0003); /* pop {r0,r1} */
899 static int unalias_ldbl(int btype
)
901 #if LDOUBLE_SIZE == 8
902 if (btype
== VT_LDOUBLE
)
908 /* Return whether a structure is an homogeneous float aggregate or not.
909 The answer is true if all the elements of the structure are of the same
910 primitive float type and there is less than 4 elements.
912 type: the type corresponding to the structure to be tested */
913 static int is_hgen_float_aggr(CType
*type
)
915 if ((type
->t
& VT_BTYPE
) == VT_STRUCT
) {
917 int btype
, nb_fields
= 0;
919 ref
= type
->ref
->next
;
921 btype
= unalias_ldbl(ref
->type
.t
& VT_BTYPE
);
922 if (btype
== VT_FLOAT
|| btype
== VT_DOUBLE
) {
923 for(; ref
&& btype
== unalias_ldbl(ref
->type
.t
& VT_BTYPE
); ref
= ref
->next
, nb_fields
++);
924 return !ref
&& nb_fields
<= 4;
932 signed char avail
[3]; /* 3 holes max with only float and double alignments */
933 int first_hole
; /* first available hole */
934 int last_hole
; /* last available hole (none if equal to first_hole) */
935 int first_free_reg
; /* next free register in the sequence, hole excluded */
938 /* Find suitable registers for a VFP Co-Processor Register Candidate (VFP CPRC
939 param) according to the rules described in the procedure call standard for
940 the ARM architecture (AAPCS). If found, the registers are assigned to this
941 VFP CPRC parameter. Registers are allocated in sequence unless a hole exists
942 and the parameter is a single float.
944 avregs: opaque structure to keep track of available VFP co-processor regs
945 align: alignment constraints for the param, as returned by type_size()
946 size: size of the parameter, as returned by type_size() */
947 int assign_vfpreg(struct avail_regs
*avregs
, int align
, int size
)
951 if (avregs
->first_free_reg
== -1)
953 if (align
>> 3) { /* double alignment */
954 first_reg
= avregs
->first_free_reg
;
955 /* alignment constraint not respected so use next reg and record hole */
957 avregs
->avail
[avregs
->last_hole
++] = first_reg
++;
958 } else { /* no special alignment (float or array of float) */
959 /* if single float and a hole is available, assign the param to it */
960 if (size
== 4 && avregs
->first_hole
!= avregs
->last_hole
)
961 return avregs
->avail
[avregs
->first_hole
++];
963 first_reg
= avregs
->first_free_reg
;
965 if (first_reg
+ size
/ 4 <= 16) {
966 avregs
->first_free_reg
= first_reg
+ size
/ 4;
969 avregs
->first_free_reg
= -1;
973 /* Returns whether all params need to be passed in core registers or not.
974 This is the case for function part of the runtime ABI. */
975 int floats_in_core_regs(SValue
*sval
)
980 switch (sval
->sym
->v
) {
981 case TOK___floatundisf
:
982 case TOK___floatundidf
:
983 case TOK___fixunssfdi
:
984 case TOK___fixunsdfdi
:
986 case TOK___fixunsxfdi
:
988 case TOK___floatdisf
:
989 case TOK___floatdidf
:
999 /* Return the number of registers needed to return the struct, or 0 if
1000 returning via struct pointer. */
1001 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
) {
1004 size
= type_size(vt
, &align
);
1005 if (float_abi
== ARM_HARD_FLOAT
&& !variadic
&&
1006 (is_float(vt
->t
) || is_hgen_float_aggr(vt
))) {
1011 return (size
+ 7) >> 3;
1012 } else if (size
> 0 && size
<= 4) {
1025 /* Parameters are classified according to how they are copied to their final
1026 destination for the function call. Because the copying is performed class
1027 after class according to the order in the union below, it is important that
1028 some constraints about the order of the members of this union are respected:
1029 - CORE_STRUCT_CLASS must come after STACK_CLASS;
1030 - CORE_CLASS must come after STACK_CLASS, CORE_STRUCT_CLASS and
1032 - VFP_STRUCT_CLASS must come after VFP_CLASS.
1033 See the comment for the main loop in copy_params() for the reason. */
1044 int start
; /* first reg or addr used depending on the class */
1045 int end
; /* last reg used or next free addr depending on the class */
1046 SValue
*sval
; /* pointer to SValue on the value stack */
1047 struct param_plan
*prev
; /* previous element in this class */
1051 struct param_plan
*pplans
; /* array of all the param plans */
1052 struct param_plan
*clsplans
[NB_CLASSES
]; /* per class lists of param plans */
1056 static void add_param_plan(struct plan
* plan
, int cls
, int start
, int end
, SValue
*v
)
1058 struct param_plan
*p
= &plan
->pplans
[plan
->nb_plans
++];
1059 p
->prev
= plan
->clsplans
[cls
];
1060 plan
->clsplans
[cls
] = p
;
1061 p
->start
= start
, p
->end
= end
, p
->sval
= v
;
1064 /* Assign parameters to registers and stack with alignment according to the
1065 rules in the procedure call standard for the ARM architecture (AAPCS).
1066 The overall assignment is recorded in an array of per parameter structures
1067 called parameter plans. The parameter plans are also further organized in a
1068 number of linked lists, one per class of parameter (see the comment for the
1069 definition of union reg_class).
1071 nb_args: number of parameters of the function for which a call is generated
1072 float_abi: float ABI in use for this function call
1073 plan: the structure where the overall assignment is recorded
1074 todo: a bitmap that record which core registers hold a parameter
1076 Returns the amount of stack space needed for parameter passing
1078 Note: this function allocated an array in plan->pplans with tcc_malloc. It
1079 is the responsibility of the caller to free this array once used (ie not
1080 before copy_params). */
1081 static int assign_regs(int nb_args
, int float_abi
, struct plan
*plan
, int *todo
)
1084 int ncrn
/* next core register number */, nsaa
/* next stacked argument address*/;
1085 struct avail_regs avregs
= {{0}};
1090 for(i
= nb_args
; i
-- ;) {
1091 int j
, start_vfpreg
= 0;
1092 CType type
= vtop
[-i
].type
;
1093 type
.t
&= ~VT_ARRAY
;
1094 size
= type_size(&type
, &align
);
1095 size
= (size
+ 3) & ~3;
1096 align
= (align
+ 3) & ~3;
1097 switch(vtop
[-i
].type
.t
& VT_BTYPE
) {
1102 if (float_abi
== ARM_HARD_FLOAT
) {
1103 int is_hfa
= 0; /* Homogeneous float aggregate */
1105 if (is_float(vtop
[-i
].type
.t
)
1106 || (is_hfa
= is_hgen_float_aggr(&vtop
[-i
].type
))) {
1109 start_vfpreg
= assign_vfpreg(&avregs
, align
, size
);
1110 end_vfpreg
= start_vfpreg
+ ((size
- 1) >> 2);
1111 if (start_vfpreg
>= 0) {
1112 add_param_plan(plan
, is_hfa
? VFP_STRUCT_CLASS
: VFP_CLASS
,
1113 start_vfpreg
, end_vfpreg
, &vtop
[-i
]);
1119 ncrn
= (ncrn
+ (align
-1)/4) & ~((align
/4) - 1);
1120 if (ncrn
+ size
/4 <= 4 || (ncrn
< 4 && start_vfpreg
!= -1)) {
1121 /* The parameter is allocated both in core register and on stack. As
1122 * such, it can be of either class: it would either be the last of
1123 * CORE_STRUCT_CLASS or the first of STACK_CLASS. */
1124 for (j
= ncrn
; j
< 4 && j
< ncrn
+ size
/ 4; j
++)
1126 add_param_plan(plan
, CORE_STRUCT_CLASS
, ncrn
, j
, &vtop
[-i
]);
1129 nsaa
= (ncrn
- 4) * 4;
1137 int is_long
= (vtop
[-i
].type
.t
& VT_BTYPE
) == VT_LLONG
;
1140 ncrn
= (ncrn
+ 1) & -2;
1144 add_param_plan(plan
, CORE_CLASS
, ncrn
, ncrn
+ is_long
, &vtop
[-i
]);
1145 ncrn
+= 1 + is_long
;
1149 nsaa
= (nsaa
+ (align
- 1)) & ~(align
- 1);
1150 add_param_plan(plan
, STACK_CLASS
, nsaa
, nsaa
+ size
, &vtop
[-i
]);
1151 nsaa
+= size
; /* size already rounded up before */
1156 /* Copy parameters to their final destination (core reg, VFP reg or stack) for
1159 nb_args: number of parameters the function take
1160 plan: the overall assignment plan for parameters
1161 todo: a bitmap indicating what core reg will hold a parameter
1163 Returns the number of SValue added by this function on the value stack */
1164 static int copy_params(int nb_args
, struct plan
*plan
, int todo
)
1166 int size
, align
, r
, i
, nb_extra_sval
= 0;
1167 struct param_plan
*pplan
;
1170 /* Several constraints require parameters to be copied in a specific order:
1171 - structures are copied to the stack before being loaded in a reg;
1172 - floats loaded to an odd numbered VFP reg are first copied to the
1173 preceding even numbered VFP reg and then moved to the next VFP reg.
1175 It is thus important that:
1176 - structures assigned to core regs must be copied after parameters
1177 assigned to the stack but before structures assigned to VFP regs because
1178 a structure can lie partly in core registers and partly on the stack;
1179 - parameters assigned to the stack and all structures be copied before
1180 parameters assigned to a core reg since copying a parameter to the stack
1181 require using a core reg;
1182 - parameters assigned to VFP regs be copied before structures assigned to
1183 VFP regs as the copy might use an even numbered VFP reg that already
1184 holds part of a structure. */
1186 for(i
= 0; i
< NB_CLASSES
; i
++) {
1187 for(pplan
= plan
->clsplans
[i
]; pplan
; pplan
= pplan
->prev
) {
1190 && (i
!= CORE_CLASS
|| pplan
->sval
->r
< VT_CONST
))
1193 vpushv(pplan
->sval
);
1194 pplan
->sval
->r
= pplan
->sval
->r2
= VT_CONST
; /* disable entry */
1197 case CORE_STRUCT_CLASS
:
1198 case VFP_STRUCT_CLASS
:
1199 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_STRUCT
) {
1201 size
= type_size(&pplan
->sval
->type
, &align
);
1202 /* align to stack align size */
1203 size
= (size
+ 3) & ~3;
1204 if (i
== STACK_CLASS
&& pplan
->prev
)
1205 padding
= pplan
->start
- pplan
->prev
->end
;
1206 size
+= padding
; /* Add padding if any */
1207 /* allocate the necessary size on stack */
1209 /* generate structure store */
1210 r
= get_reg(RC_INT
);
1211 o(0xE28D0000|(intr(r
)<<12)|padding
); /* add r, sp, padding */
1212 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1214 vstore(); /* memcpy to current sp + potential padding */
1216 /* Homogeneous float aggregate are loaded to VFP registers
1217 immediately since there is no way of loading data in multiple
1218 non consecutive VFP registers as what is done for other
1219 structures (see the use of todo). */
1220 if (i
== VFP_STRUCT_CLASS
) {
1221 int first
= pplan
->start
, nb
= pplan
->end
- first
+ 1;
1222 /* vpop.32 {pplan->start, ..., pplan->end} */
1223 o(0xECBD0A00|(first
&1)<<22|(first
>>1)<<12|nb
);
1224 /* No need to write the register used to a SValue since VFP regs
1225 cannot be used for gcall_or_jmp */
1228 if (is_float(pplan
->sval
->type
.t
)) {
1230 r
= vfpr(gv(RC_FLOAT
)) << 12;
1231 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1235 r
|= 0x101; /* vpush.32 -> vpush.64 */
1237 o(0xED2D0A01 + r
); /* vpush */
1239 r
= fpr(gv(RC_FLOAT
)) << 12;
1240 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1242 else if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1245 size
= LDOUBLE_SIZE
;
1252 o(0xED2D0100|r
|(size
>>2)); /* some kind of vpush for FPA */
1255 /* simple type (currently always same size) */
1256 /* XXX: implicit cast ? */
1258 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1262 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1266 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1268 if (i
== STACK_CLASS
&& pplan
->prev
)
1269 gadd_sp(pplan
->prev
->end
- pplan
->start
); /* Add padding if any */
1274 gv(regmask(TREG_F0
+ (pplan
->start
>> 1)));
1275 if (pplan
->start
& 1) { /* Must be in upper part of double register */
1276 o(0xEEF00A40|((pplan
->start
>>1)<<12)|(pplan
->start
>>1)); /* vmov.f32 s(n+1), sn */
1277 vtop
->r
= VT_CONST
; /* avoid being saved on stack by gv for next float */
1282 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1284 gv(regmask(pplan
->end
));
1285 pplan
->sval
->r2
= vtop
->r
;
1288 gv(regmask(pplan
->start
));
1289 /* Mark register as used so that gcall_or_jmp use another one
1290 (regs >=4 are free as never used to pass parameters) */
1291 pplan
->sval
->r
= vtop
->r
;
1298 /* second pass to restore registers that were saved on stack by accident.
1299 Maybe redundant after the "lvalue_save" patch in tccgen.c:gv() */
1303 /* Manually free remaining registers since next parameters are loaded
1304 * manually, without the help of gv(int). */
1308 o(0xE8BD0000|todo
); /* pop {todo} */
1309 for(pplan
= plan
->clsplans
[CORE_STRUCT_CLASS
]; pplan
; pplan
= pplan
->prev
) {
1311 pplan
->sval
->r
= pplan
->start
;
1312 /* An SValue can only pin 2 registers at best (r and r2) but a structure
1313 can occupy more than 2 registers. Thus, we need to push on the value
1314 stack some fake parameter to have on SValue for each registers used
1315 by a structure (r2 is not used). */
1316 for (r
= pplan
->start
+ 1; r
<= pplan
->end
; r
++) {
1317 if (todo
& (1 << r
)) {
1325 return nb_extra_sval
;
1328 /* Generate function call. The function address is pushed first, then
1329 all the parameters in call order. This functions pops all the
1330 parameters and the function address. */
1331 void gfunc_call(int nb_args
)
1334 int def_float_abi
= float_abi
;
1341 #ifdef CONFIG_TCC_BCHECK
1342 if (tcc_state
->do_bounds_check
)
1343 gbound_args(nb_args
);
1347 if (float_abi
== ARM_HARD_FLOAT
) {
1348 variadic
= (vtop
[-nb_args
].type
.ref
->f
.func_type
== FUNC_ELLIPSIS
);
1349 if (variadic
|| floats_in_core_regs(&vtop
[-nb_args
]))
1350 float_abi
= ARM_SOFTFP_FLOAT
;
1353 /* cannot let cpu flags if other instruction are generated. Also avoid leaving
1354 VT_JMP anywhere except on the top of the stack because it would complicate
1355 the code generator. */
1356 r
= vtop
->r
& VT_VALMASK
;
1357 if (r
== VT_CMP
|| (r
& ~1) == VT_JMP
)
1360 memset(&plan
, 0, sizeof plan
);
1362 plan
.pplans
= tcc_malloc(nb_args
* sizeof(*plan
.pplans
));
1364 args_size
= assign_regs(nb_args
, float_abi
, &plan
, &todo
);
1367 if (args_size
& 7) { /* Stack must be 8 byte aligned at fct call for EABI */
1368 args_size
= (args_size
+ 7) & ~7;
1369 o(0xE24DD004); /* sub sp, sp, #4 */
1373 nb_args
+= copy_params(nb_args
, &plan
, todo
);
1374 tcc_free(plan
.pplans
);
1376 /* Move fct SValue on top as required by gcall_or_jmp */
1380 gadd_sp(args_size
); /* pop all parameters passed on the stack */
1381 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1382 if(float_abi
== ARM_SOFTFP_FLOAT
&& is_float(vtop
->type
.ref
->type
.t
)) {
1383 if((vtop
->type
.ref
->type
.t
& VT_BTYPE
) == VT_FLOAT
) {
1384 o(0xEE000A10); /*vmov s0, r0 */
1386 o(0xEE000B10); /* vmov.32 d0[0], r0 */
1387 o(0xEE201B10); /* vmov.32 d0[1], r1 */
1391 vtop
-= nb_args
+ 1; /* Pop all params and fct address from value stack */
1392 leaffunc
= 0; /* we are calling a function, so we aren't in a leaf function */
1393 float_abi
= def_float_abi
;
1396 /* generate function prolog of type 't' */
1397 void gfunc_prolog(Sym
*func_sym
)
1399 CType
*func_type
= &func_sym
->type
;
1401 int n
, nf
, size
, align
, rs
, struct_ret
= 0;
1402 int addr
, pn
, sn
; /* pn=core, sn=stack */
1406 struct avail_regs avregs
= {{0}};
1409 sym
= func_type
->ref
;
1412 if ((func_vt
.t
& VT_BTYPE
) == VT_STRUCT
&&
1413 !gfunc_sret(&func_vt
, func_var
, &ret_type
, &align
, &rs
))
1417 func_vc
= 12; /* Offset from fp of the place to store the result */
1419 for(sym2
= sym
->next
; sym2
&& (n
< 4 || nf
< 16); sym2
= sym2
->next
) {
1420 size
= type_size(&sym2
->type
, &align
);
1422 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&&
1423 (is_float(sym2
->type
.t
) || is_hgen_float_aggr(&sym2
->type
))) {
1424 int tmpnf
= assign_vfpreg(&avregs
, align
, size
);
1425 tmpnf
+= (size
+ 3) / 4;
1426 nf
= (tmpnf
> nf
) ? tmpnf
: nf
;
1430 n
+= (size
+ 3) / 4;
1432 o(0xE1A0C00D); /* mov ip,sp */
1441 o(0xE92D0000|((1<<n
)-1)); /* save r0-r4 on stack if needed */
1446 nf
=(nf
+1)&-2; /* nf => HARDFLOAT => EABI */
1447 o(0xED2D0A00|nf
); /* save s0-s15 on stack if needed */
1449 o(0xE92D5800); /* save fp, ip, lr */
1450 o(0xE1A0B00D); /* mov fp, sp */
1451 func_sub_sp_offset
= ind
;
1452 o(0xE1A00000); /* nop, leave space for stack adjustment in epilog */
1455 if (float_abi
== ARM_HARD_FLOAT
) {
1457 memset(&avregs
, 0, sizeof avregs
);
1460 pn
= struct_ret
, sn
= 0;
1461 while ((sym
= sym
->next
)) {
1464 size
= type_size(type
, &align
);
1465 size
= (size
+ 3) >> 2;
1466 align
= (align
+ 3) & ~3;
1468 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&& (is_float(sym
->type
.t
)
1469 || is_hgen_float_aggr(&sym
->type
))) {
1470 int fpn
= assign_vfpreg(&avregs
, align
, size
<< 2);
1479 pn
= (pn
+ (align
-1)/4) & -(align
/4);
1481 addr
= (nf
+ pn
) * 4;
1488 sn
= (sn
+ (align
-1)/4) & -(align
/4);
1490 addr
= (n
+ nf
+ sn
) * 4;
1493 sym_push(sym
->v
& ~SYM_FIELD
, type
, VT_LOCAL
| VT_LVAL
,
1499 #ifdef CONFIG_TCC_BCHECK
1500 if (tcc_state
->do_bounds_check
)
1501 gen_bounds_prolog();
1505 /* generate function epilog */
1506 void gfunc_epilog(void)
1511 #ifdef CONFIG_TCC_BCHECK
1512 if (tcc_state
->do_bounds_check
)
1513 gen_bounds_epilog();
1515 /* Copy float return value to core register if base standard is used and
1516 float computation is made with VFP */
1517 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1518 if ((float_abi
== ARM_SOFTFP_FLOAT
|| func_var
) && is_float(func_vt
.t
)) {
1519 if((func_vt
.t
& VT_BTYPE
) == VT_FLOAT
)
1520 o(0xEE100A10); /* fmrs r0, s0 */
1522 o(0xEE100B10); /* fmrdl r0, d0 */
1523 o(0xEE301B10); /* fmrdh r1, d0 */
1527 o(0xE89BA800); /* restore fp, sp, pc */
1528 diff
= (-loc
+ 3) & -4;
1531 diff
= ((diff
+ 11) & -8) - 4;
1534 x
=stuff_const(0xE24BD000, diff
); /* sub sp,fp,# */
1536 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = x
;
1540 o(0xE59FC004); /* ldr ip,[pc+4] */
1541 o(0xE04BD00C); /* sub sp,fp,ip */
1542 o(0xE1A0F00E); /* mov pc,lr */
1544 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = 0xE1000000|encbranch(func_sub_sp_offset
,addr
,1);
1549 ST_FUNC
void gen_fill_nops(int bytes
)
1552 tcc_error("alignment of code section not multiple of 4");
1559 /* generate a jump to a label */
1560 ST_FUNC
int gjmp(int t
)
1566 o(0xE0000000|encbranch(r
,t
,1));
1570 /* generate a jump to a fixed address */
1571 ST_FUNC
void gjmp_addr(int a
)
1576 ST_FUNC
int gjmp_cond(int op
, int t
)
1583 op
|=encbranch(r
,t
,1);
1588 ST_FUNC
int gjmp_append(int n
, int t
)
1595 p
= decbranch(lp
=p
);
1597 x
= (uint32_t *)(cur_text_section
->data
+ lp
);
1599 *x
|= encbranch(lp
,t
,1);
1605 /* generate an integer binary operation */
1606 void gen_opi(int op
)
1609 uint32_t opc
= 0, r
, fr
;
1610 unsigned short retreg
= REG_IRET
;
1618 case TOK_ADDC1
: /* add with carry generation */
1626 case TOK_SUBC1
: /* sub with carry generation */
1630 case TOK_ADDC2
: /* add with carry use */
1634 case TOK_SUBC2
: /* sub with carry use */
1651 gv2(RC_INT
, RC_INT
);
1655 o(0xE0000090|(intr(r
)<<16)|(intr(r
)<<8)|intr(fr
));
1680 func
=TOK___aeabi_idivmod
;
1689 func
=TOK___aeabi_uidivmod
;
1697 gv2(RC_INT
, RC_INT
);
1698 r
=intr(vtop
[-1].r2
=get_reg(RC_INT
));
1700 vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(c
));
1702 o(0xE0800090|(r
<<16)|(intr(vtop
->r
)<<12)|(intr(c
)<<8)|intr(vtop
[1].r
));
1711 if((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1712 if(opc
== 4 || opc
== 5 || opc
== 0xc) {
1714 opc
|=2; // sub -> rsb
1717 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1718 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1723 opc
=0xE0000000|(opc
<<20);
1724 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1726 x
=stuff_const(opc
|0x2000000|(c
<<16),vtop
->c
.i
);
1728 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1733 fr
=intr(gv(RC_INT
));
1734 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
1739 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1740 o(opc
|(c
<<16)|(r
<<12)|fr
);
1743 if (op
>= TOK_ULT
&& op
<= TOK_GT
)
1747 opc
=0xE1A00000|(opc
<<5);
1748 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1749 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1754 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1755 fr
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1756 c
= vtop
->c
.i
& 0x1f;
1757 o(opc
|r
|(c
<<7)|(fr
<<12));
1759 fr
=intr(gv(RC_INT
));
1760 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
1765 c
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1766 o(opc
|r
|(c
<<12)|(fr
<<8)|0x10);
1771 vpush_global_sym(&func_old_type
, func
);
1778 tcc_error("gen_opi %i unimplemented!",op
);
1783 static int is_zero(int i
)
1785 if((vtop
[i
].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1787 if (vtop
[i
].type
.t
== VT_FLOAT
)
1788 return (vtop
[i
].c
.f
== 0.f
);
1789 else if (vtop
[i
].type
.t
== VT_DOUBLE
)
1790 return (vtop
[i
].c
.d
== 0.0);
1791 return (vtop
[i
].c
.ld
== 0.l
);
1794 /* generate a floating point operation 'v = t1 op t2' instruction. The
1795 * two operands are guaranteed to have the same floating point type */
1796 void gen_opf(int op
)
1800 x
=0xEE000A00|T2CPR(vtop
->type
.t
);
1818 x
|=0x810000; /* fsubX -> fnegX */
1831 if(op
< TOK_ULT
|| op
> TOK_GT
) {
1832 tcc_error("unknown fp op %x!",op
);
1838 case TOK_LT
: op
=TOK_GT
; break;
1839 case TOK_GE
: op
=TOK_ULE
; break;
1840 case TOK_LE
: op
=TOK_GE
; break;
1841 case TOK_GT
: op
=TOK_ULT
; break;
1844 x
|=0xB40040; /* fcmpX */
1845 if(op
!=TOK_EQ
&& op
!=TOK_NE
)
1846 x
|=0x80; /* fcmpX -> fcmpeX */
1849 o(x
|0x10000|(vfpr(gv(RC_FLOAT
))<<12)); /* fcmp(e)X -> fcmp(e)zX */
1851 gv2(RC_FLOAT
,RC_FLOAT
);
1853 o(x
|(vfpr(vtop
[-1].r
) << 12));
1856 o(0xEEF1FA10); /* fmstat */
1859 case TOK_LE
: op
=TOK_ULE
; break;
1860 case TOK_LT
: op
=TOK_ULT
; break;
1861 case TOK_UGE
: op
=TOK_GE
; break;
1862 case TOK_UGT
: op
=TOK_GT
; break;
1876 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
1883 vtop
->r
=get_reg_ex(RC_FLOAT
,r
);
1886 o(x
|(vfpr(vtop
->r
)<<12));
1890 static uint32_t is_fconst()
1894 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1896 if (vtop
->type
.t
== VT_FLOAT
)
1898 else if (vtop
->type
.t
== VT_DOUBLE
)
1928 /* generate a floating point operation 'v = t1 op t2' instruction. The
1929 two operands are guaranteed to have the same floating point type */
1930 void gen_opf(int op
)
1932 uint32_t x
, r
, r2
, c1
, c2
;
1933 //fputs("gen_opf\n",stderr);
1939 #if LDOUBLE_SIZE == 8
1940 if ((vtop
->type
.t
& VT_BTYPE
) != VT_FLOAT
)
1943 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1945 else if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
)
1956 r
=fpr(gv(RC_FLOAT
));
1963 r2
=fpr(gv(RC_FLOAT
));
1964 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
1966 r
=fpr(gv(RC_FLOAT
));
1977 r
=fpr(gv(RC_FLOAT
));
1979 } else if(c1
&& c1
<=0xf) {
1982 r
=fpr(gv(RC_FLOAT
));
1987 r
=fpr(gv(RC_FLOAT
));
1989 r2
=fpr(gv(RC_FLOAT
));
1990 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
1992 r
=fpr(gv(RC_FLOAT
));
2003 r
=fpr(gv(RC_FLOAT
));
2008 r2
=fpr(gv(RC_FLOAT
));
2009 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
2011 r
=fpr(gv(RC_FLOAT
));
2022 r
=fpr(gv(RC_FLOAT
));
2024 } else if(c1
&& c1
<=0xf) {
2027 r
=fpr(gv(RC_FLOAT
));
2032 r
=fpr(gv(RC_FLOAT
));
2034 r2
=fpr(gv(RC_FLOAT
));
2035 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
2037 r
=fpr(gv(RC_FLOAT
));
2043 if(op
>= TOK_ULT
&& op
<= TOK_GT
) {
2044 x
|=0xd0f110; // cmfe
2045 /* bug (intention?) in Linux FPU emulator
2046 doesn't set carry if equal */
2052 tcc_error("unsigned comparison on floats?");
2058 op
=TOK_ULE
; /* correct in unordered case only if AC bit in FPSR set */
2062 x
&=~0x400000; // cmfe -> cmf
2084 r
=fpr(gv(RC_FLOAT
));
2091 r2
=fpr(gv(RC_FLOAT
));
2092 if ((vtop
[-1].r
& VT_VALMASK
) >= VT_CONST
) {
2094 r
=fpr(gv(RC_FLOAT
));
2102 tcc_error("unknown fp op %x!",op
);
2106 if(vtop
[-1].r
== VT_CMP
)
2112 vtop
[-1].r
=get_reg_ex(RC_FLOAT
,two2mask(vtop
[-1].r
,c1
));
2116 o(x
|(r
<<16)|(c1
<<12)|r2
);
2120 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2121 and 'long long' cases. */
2122 ST_FUNC
void gen_cvt_itof(int t
)
2126 bt
=vtop
->type
.t
& VT_BTYPE
;
2127 if(bt
== VT_INT
|| bt
== VT_SHORT
|| bt
== VT_BYTE
) {
2133 r2
=vfpr(vtop
->r
=get_reg(RC_FLOAT
));
2134 o(0xEE000A10|(r
<<12)|(r2
<<16)); /* fmsr */
2136 if(!(vtop
->type
.t
& VT_UNSIGNED
))
2137 r2
|=0x80; /* fuitoX -> fsituX */
2138 o(0xEEB80A40|r2
|T2CPR(t
)); /* fYitoX*/
2140 r2
=fpr(vtop
->r
=get_reg(RC_FLOAT
));
2141 if((t
& VT_BTYPE
) != VT_FLOAT
)
2142 dsize
=0x80; /* flts -> fltd */
2143 o(0xEE000110|dsize
|(r2
<<16)|(r
<<12)); /* flts */
2144 if((vtop
->type
.t
& (VT_UNSIGNED
|VT_BTYPE
)) == (VT_UNSIGNED
|VT_INT
)) {
2146 o(0xE3500000|(r
<<12)); /* cmp */
2147 r
=fpr(get_reg(RC_FLOAT
));
2148 if(last_itod_magic
) {
2149 off
=ind
+8-last_itod_magic
;
2154 o(0xBD1F0100|(r
<<12)|off
); /* ldflts */
2156 o(0xEA000000); /* b */
2157 last_itod_magic
=ind
;
2158 o(0x4F800000); /* 4294967296.0f */
2160 o(0xBE000100|dsize
|(r2
<<16)|(r2
<<12)|r
); /* adflt */
2164 } else if(bt
== VT_LLONG
) {
2166 CType
*func_type
= 0;
2167 if((t
& VT_BTYPE
) == VT_FLOAT
) {
2168 func_type
= &func_float_type
;
2169 if(vtop
->type
.t
& VT_UNSIGNED
)
2170 func
=TOK___floatundisf
;
2172 func
=TOK___floatdisf
;
2173 #if LDOUBLE_SIZE != 8
2174 } else if((t
& VT_BTYPE
) == VT_LDOUBLE
) {
2175 func_type
= &func_ldouble_type
;
2176 if(vtop
->type
.t
& VT_UNSIGNED
)
2177 func
=TOK___floatundixf
;
2179 func
=TOK___floatdixf
;
2180 } else if((t
& VT_BTYPE
) == VT_DOUBLE
) {
2182 } else if((t
& VT_BTYPE
) == VT_DOUBLE
|| (t
& VT_BTYPE
) == VT_LDOUBLE
) {
2184 func_type
= &func_double_type
;
2185 if(vtop
->type
.t
& VT_UNSIGNED
)
2186 func
=TOK___floatundidf
;
2188 func
=TOK___floatdidf
;
2191 vpush_global_sym(func_type
, func
);
2199 tcc_error("unimplemented gen_cvt_itof %x!",vtop
->type
.t
);
2202 /* convert fp to int 't' type */
2203 void gen_cvt_ftoi(int t
)
2209 r2
=vtop
->type
.t
& VT_BTYPE
;
2212 r
=vfpr(gv(RC_FLOAT
));
2214 o(0xEEBC0AC0|(r
<<12)|r
|T2CPR(r2
)|u
); /* ftoXizY */
2215 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2216 o(0xEE100A10|(r
<<16)|(r2
<<12));
2221 func
=TOK___fixunssfsi
;
2222 #if LDOUBLE_SIZE != 8
2223 else if(r2
== VT_LDOUBLE
)
2224 func
=TOK___fixunsxfsi
;
2225 else if(r2
== VT_DOUBLE
)
2227 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2229 func
=TOK___fixunsdfsi
;
2231 r
=fpr(gv(RC_FLOAT
));
2232 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2233 o(0xEE100170|(r2
<<12)|r
);
2237 } else if(t
== VT_LLONG
) { // unsigned handled in gen_cvt_ftoi1
2240 #if LDOUBLE_SIZE != 8
2241 else if(r2
== VT_LDOUBLE
)
2243 else if(r2
== VT_DOUBLE
)
2245 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2250 vpush_global_sym(&func_old_type
, func
);
2255 vtop
->r2
= REG_IRE2
;
2259 tcc_error("unimplemented gen_cvt_ftoi!");
2262 /* convert from one floating point type to another */
2263 void gen_cvt_ftof(int t
)
2266 if(((vtop
->type
.t
& VT_BTYPE
) == VT_FLOAT
) != ((t
& VT_BTYPE
) == VT_FLOAT
)) {
2267 uint32_t r
= vfpr(gv(RC_FLOAT
));
2268 o(0xEEB70AC0|(r
<<12)|r
|T2CPR(vtop
->type
.t
));
2271 /* all we have to do on i386 and FPA ARM is to put the float in a register */
2276 /* computed goto support */
2283 /* Save the stack pointer onto the stack and return the location of its address */
2284 ST_FUNC
void gen_vla_sp_save(int addr
) {
2287 v
.r
= VT_LOCAL
| VT_LVAL
;
2292 /* Restore the SP from a location on the stack */
2293 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2296 v
.r
= VT_LOCAL
| VT_LVAL
;
2301 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2302 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2304 #if defined(CONFIG_TCC_BCHECK)
2305 if (tcc_state
->do_bounds_check
)
2308 r
= intr(gv(RC_INT
));
2309 o(0xE04D0000|(r
<<12)|r
); /* sub r, sp, r */
2317 if (align
& (align
- 1))
2318 tcc_error("alignment is not a power of 2: %i", align
);
2319 o(stuff_const(0xE3C0D000|(r
<<16), align
- 1)); /* bic sp, r, #align-1 */
2321 #if defined(CONFIG_TCC_BCHECK)
2322 if (tcc_state
->do_bounds_check
) {
2325 o(0xe1a0000d | (vtop
->r
<< 12)); // mov r0,sp
2327 vpush_global_sym(&func_old_type
, TOK___bound_new_region
);
2330 func_bound_add_epilog
= 1;
2335 /* end of ARM code generator */
2336 /*************************************************************/
2338 /*************************************************************/