2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
40 #define RC_ST0 0x0080 /* only for long double */
45 #define RC_XMM0 0x1000
46 #define RC_XMM1 0x2000
47 #define RC_XMM2 0x4000
48 #define RC_XMM3 0x8000
49 #define RC_XMM4 0x10000
50 #define RC_XMM5 0x20000
51 #define RC_XMM6 0x40000
52 #define RC_XMM7 0x80000
53 #define RC_IRET RC_RAX /* function return: integer register */
54 #define RC_IRE2 RC_RDX /* function return: second integer register */
55 #define RC_FRET RC_XMM0 /* function return: float register */
56 #define RC_FRE2 RC_XMM1 /* function return: second float register */
58 /* pretty names for the registers */
86 #define REX_BASE(reg) (((reg) >> 3) & 1)
87 #define REG_VALUE(reg) ((reg) & 7)
89 /* return registers for function */
90 #define REG_IRET TREG_RAX /* single word int return register */
91 #define REG_IRE2 TREG_RDX /* second word return register (for long long) */
92 #define REG_FRET TREG_XMM0 /* float return register */
93 #define REG_FRE2 TREG_XMM1 /* second float return register */
95 /* defined if function parameters must be evaluated in reverse order */
96 #define INVERT_FUNC_PARAMS
98 /* pointer size, in bytes */
101 /* long double size and alignment, in bytes */
102 #define LDOUBLE_SIZE 16
103 #define LDOUBLE_ALIGN 16
104 /* maximum alignment (for aligned attribute support) */
107 /* define if return values need to be extended explicitely
108 at caller side (for interfacing with non-TCC compilers) */
111 #define TCC_TARGET_NATIVE_STRUCT_COPY
112 ST_FUNC
void gen_struct_copy(int size
);
114 /******************************************************/
115 #else /* ! TARGET_DEFS_ONLY */
116 /******************************************************/
117 #define USING_GLOBALS
121 ST_DATA
const char * const target_machine_defs
=
126 ST_DATA
const int reg_classes
[NB_REGS
] = {
127 /* eax */ RC_INT
| RC_RAX
,
128 /* ecx */ RC_INT
| RC_RCX
,
129 /* edx */ RC_INT
| RC_RDX
,
143 /* xmm0 */ RC_FLOAT
| RC_XMM0
,
144 /* xmm1 */ RC_FLOAT
| RC_XMM1
,
145 /* xmm2 */ RC_FLOAT
| RC_XMM2
,
146 /* xmm3 */ RC_FLOAT
| RC_XMM3
,
147 /* xmm4 */ RC_FLOAT
| RC_XMM4
,
148 /* xmm5 */ RC_FLOAT
| RC_XMM5
,
149 /* xmm6 an xmm7 are included so gv() can be used on them,
150 but they are not tagged with RC_FLOAT because they are
151 callee saved on Windows */
157 static unsigned long func_sub_sp_offset
;
158 static int func_ret_sub
;
160 #if defined(CONFIG_TCC_BCHECK)
161 static addr_t func_bound_offset
;
162 static unsigned long func_bound_ind
;
163 ST_DATA
int func_bound_add_epilog
;
167 static int func_scratch
, func_alloca
;
170 /* XXX: make it faster ? */
171 ST_FUNC
void g(int c
)
177 if (ind1
> cur_text_section
->data_allocated
)
178 section_realloc(cur_text_section
, ind1
);
179 cur_text_section
->data
[ind
] = c
;
183 ST_FUNC
void o(unsigned int c
)
191 ST_FUNC
void gen_le16(int v
)
197 ST_FUNC
void gen_le32(int c
)
205 ST_FUNC
void gen_le64(int64_t c
)
217 static void orex(int ll
, int r
, int r2
, int b
)
219 if ((r
& VT_VALMASK
) >= VT_CONST
)
221 if ((r2
& VT_VALMASK
) >= VT_CONST
)
223 if (ll
|| REX_BASE(r
) || REX_BASE(r2
))
224 o(0x40 | REX_BASE(r
) | (REX_BASE(r2
) << 2) | (ll
<< 3));
228 /* output a symbol and patch all calls to it */
229 ST_FUNC
void gsym_addr(int t
, int a
)
232 unsigned char *ptr
= cur_text_section
->data
+ t
;
233 uint32_t n
= read32le(ptr
); /* next value */
234 write32le(ptr
, a
< 0 ? -a
: a
- t
- 4);
239 static int is64_type(int t
)
241 return ((t
& VT_BTYPE
) == VT_PTR
||
242 (t
& VT_BTYPE
) == VT_FUNC
||
243 (t
& VT_BTYPE
) == VT_LLONG
);
246 /* instruction + 4 bytes data. Return the address of the data */
247 static int oad(int c
, int s
)
258 /* generate jmp to a label */
259 #define gjmp2(instr,lbl) oad(instr,lbl)
261 ST_FUNC
void gen_addr32(int r
, Sym
*sym
, int c
)
264 greloca(cur_text_section
, sym
, ind
, R_X86_64_32S
, c
), c
=0;
268 /* output constant with relocation if 'r & VT_SYM' is true */
269 ST_FUNC
void gen_addr64(int r
, Sym
*sym
, int64_t c
)
272 greloca(cur_text_section
, sym
, ind
, R_X86_64_64
, c
), c
=0;
276 /* output constant with relocation if 'r & VT_SYM' is true */
277 ST_FUNC
void gen_addrpc32(int r
, Sym
*sym
, int c
)
280 greloca(cur_text_section
, sym
, ind
, R_X86_64_PC32
, c
-4), c
=4;
284 /* output got address with relocation */
285 static void gen_gotpcrel(int r
, Sym
*sym
, int c
)
288 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
289 get_tok_str(sym
->v
, NULL
), c
, r
,
290 cur_text_section
->data
[ind
-3],
291 cur_text_section
->data
[ind
-2],
292 cur_text_section
->data
[ind
-1]
295 greloca(cur_text_section
, sym
, ind
, R_X86_64_GOTPCREL
, -4);
298 /* we use add c, %xxx for displacement */
300 o(0xc0 + REG_VALUE(r
));
305 static void gen_modrm_impl(int op_reg
, int r
, Sym
*sym
, int c
, int is_got
)
307 op_reg
= REG_VALUE(op_reg
) << 3;
308 if ((r
& VT_VALMASK
) == VT_CONST
) {
309 /* constant memory reference */
311 /* Absolute memory reference */
312 o(0x04 | op_reg
); /* [sib] | destreg */
313 oad(0x25, c
); /* disp32 */
315 o(0x05 | op_reg
); /* (%rip)+disp32 | destreg */
317 gen_gotpcrel(r
, sym
, c
);
319 gen_addrpc32(r
, sym
, c
);
322 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
323 /* currently, we use only ebp as base */
325 /* short reference */
329 oad(0x85 | op_reg
, c
);
331 } else if ((r
& VT_VALMASK
) >= TREG_MEM
) {
333 g(0x80 | op_reg
| REG_VALUE(r
));
336 g(0x00 | op_reg
| REG_VALUE(r
));
339 g(0x00 | op_reg
| REG_VALUE(r
));
343 /* generate a modrm reference. 'op_reg' contains the additional 3
345 static void gen_modrm(int op_reg
, int r
, Sym
*sym
, int c
)
347 gen_modrm_impl(op_reg
, r
, sym
, c
, 0);
350 /* generate a modrm reference. 'op_reg' contains the additional 3
352 static void gen_modrm64(int opcode
, int op_reg
, int r
, Sym
*sym
, int c
)
355 is_got
= (op_reg
& TREG_MEM
) && !(sym
->type
.t
& VT_STATIC
);
356 orex(1, r
, op_reg
, opcode
);
357 gen_modrm_impl(op_reg
, r
, sym
, c
, is_got
);
361 /* load 'r' from value 'sv' */
362 void load(int r
, SValue
*sv
)
364 int v
, t
, ft
, fc
, fr
;
369 sv
= pe_getimport(sv
, &v2
);
373 ft
= sv
->type
.t
& ~VT_DEFSIGN
;
375 if (fc
!= sv
->c
.i
&& (fr
& VT_SYM
))
376 tcc_error("64 bit addend in load");
378 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
380 #ifndef TCC_TARGET_PE
381 /* we use indirect access via got */
382 if ((fr
& VT_VALMASK
) == VT_CONST
&& (fr
& VT_SYM
) &&
383 (fr
& VT_LVAL
) && !(sv
->sym
->type
.t
& VT_STATIC
)) {
384 /* use the result register as a temporal register */
385 int tr
= r
| TREG_MEM
;
387 /* we cannot use float registers as a temporal register */
388 tr
= get_reg(RC_INT
) | TREG_MEM
;
390 gen_modrm64(0x8b, tr
, fr
, sv
->sym
, 0);
392 /* load from the temporal register */
400 if (v
== VT_LLOCAL
) {
402 v1
.r
= VT_LOCAL
| VT_LVAL
;
405 if (!(reg_classes
[fr
] & (RC_INT
|RC_R11
)))
406 fr
= get_reg(RC_INT
);
410 /* If the addends doesn't fit into a 32bit signed
411 we must use a 64bit move. We've checked above
412 that this doesn't have a sym associated. */
413 v1
.type
.t
= VT_LLONG
;
417 if (!(reg_classes
[fr
] & (RC_INT
|RC_R11
)))
418 fr
= get_reg(RC_INT
);
423 /* Like GCC we can load from small enough properly sized
424 structs and unions as well.
425 XXX maybe move to generic operand handling, but should
426 occur only with asm, so tccasm.c might also be a better place */
427 if ((ft
& VT_BTYPE
) == VT_STRUCT
) {
429 switch (type_size(&sv
->type
, &align
)) {
430 case 1: ft
= VT_BYTE
; break;
431 case 2: ft
= VT_SHORT
; break;
432 case 4: ft
= VT_INT
; break;
433 case 8: ft
= VT_LLONG
; break;
435 tcc_error("invalid aggregate type for register load");
439 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
441 r
= REG_VALUE(r
); /* movd */
442 } else if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
443 b
= 0x7e0ff3; /* movq */
445 } else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
) {
446 b
= 0xdb, r
= 5; /* fldt */
447 } else if ((ft
& VT_TYPE
) == VT_BYTE
|| (ft
& VT_TYPE
) == VT_BOOL
) {
448 b
= 0xbe0f; /* movsbl */
449 } else if ((ft
& VT_TYPE
) == (VT_BYTE
| VT_UNSIGNED
)) {
450 b
= 0xb60f; /* movzbl */
451 } else if ((ft
& VT_TYPE
) == VT_SHORT
) {
452 b
= 0xbf0f; /* movswl */
453 } else if ((ft
& VT_TYPE
) == (VT_SHORT
| VT_UNSIGNED
)) {
454 b
= 0xb70f; /* movzwl */
455 } else if ((ft
& VT_TYPE
) == (VT_VOID
)) {
456 /* Can happen with zero size structs */
459 assert(((ft
& VT_BTYPE
) == VT_INT
)
460 || ((ft
& VT_BTYPE
) == VT_LLONG
)
461 || ((ft
& VT_BTYPE
) == VT_PTR
)
462 || ((ft
& VT_BTYPE
) == VT_FUNC
)
468 gen_modrm64(b
, r
, fr
, sv
->sym
, fc
);
471 gen_modrm(r
, fr
, sv
->sym
, fc
);
478 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
479 gen_addrpc32(fr
, sv
->sym
, fc
);
481 if (sv
->sym
->type
.t
& VT_STATIC
) {
483 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
484 gen_addrpc32(fr
, sv
->sym
, fc
);
487 o(0x05 + REG_VALUE(r
) * 8); /* mov xx(%rip), r */
488 gen_gotpcrel(r
, sv
->sym
, fc
);
491 } else if (is64_type(ft
)) {
492 orex(1,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
495 orex(0,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
498 } else if (v
== VT_LOCAL
) {
499 orex(1,0,r
,0x8d); /* lea xxx(%ebp), r */
500 gen_modrm(r
, VT_LOCAL
, sv
->sym
, fc
);
501 } else if (v
== VT_CMP
) {
506 /* This was a float compare. If the parity bit is
507 set the result was unordered, meaning false for everything
508 except TOK_NE, and true for TOK_NE. */
509 orex(0, r
, 0, 0xb0 + REG_VALUE(r
)); /* mov $0/1,%al */
510 g(v
^ fc
^ (v
== TOK_NE
));
511 o(0x037a + (REX_BASE(r
) << 8));
513 orex(0,r
,0, 0x0f); /* setxx %br */
515 o(0xc0 + REG_VALUE(r
));
517 o(0xc0b6 + REG_VALUE(r
) * 0x900); /* movzbl %al, %eax */
518 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
521 oad(0xb8 + REG_VALUE(r
), t
); /* mov $1, r */
522 o(0x05eb + (REX_BASE(r
) << 8)); /* jmp after */
525 oad(0xb8 + REG_VALUE(r
), t
^ 1); /* mov $0, r */
527 if ((r
>= TREG_XMM0
) && (r
<= TREG_XMM7
)) {
529 /* gen_cvt_ftof(VT_DOUBLE); */
530 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
531 /* movsd -0x10(%rsp),%xmmN */
533 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
536 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
537 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
540 assert((ft
& VT_BTYPE
) == VT_DOUBLE
);
543 o(0xc0 + REG_VALUE(v
) + REG_VALUE(r
)*8);
545 } else if (r
== TREG_ST0
) {
546 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
547 /* gen_cvt_ftof(VT_LDOUBLE); */
548 /* movsd %xmmN,-0x10(%rsp) */
550 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
552 o(0xf02444dd); /* fldl -0x10(%rsp) */
554 orex(is64_type(ft
), r
, v
, 0x89);
555 o(0xc0 + REG_VALUE(r
) + REG_VALUE(v
) * 8); /* mov v, r */
561 /* store register 'r' in lvalue 'v' */
562 void store(int r
, SValue
*v
)
566 /* store the REX prefix in this variable when PIC is enabled */
571 v
= pe_getimport(v
, &v2
);
574 fr
= v
->r
& VT_VALMASK
;
577 if (fc
!= v
->c
.i
&& (fr
& VT_SYM
))
578 tcc_error("64 bit addend in store");
579 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
582 #ifndef TCC_TARGET_PE
583 /* we need to access the variable via got */
586 && !(v
->sym
->type
.t
& VT_STATIC
)) {
587 /* mov xx(%rip), %r11 */
589 gen_gotpcrel(TREG_R11
, v
->sym
, v
->c
.i
);
590 pic
= is64_type(bt
) ? 0x49 : 0x41;
594 /* XXX: incorrect if float reg to reg */
595 if (bt
== VT_FLOAT
) {
598 o(0x7e0f); /* movd */
600 } else if (bt
== VT_DOUBLE
) {
603 o(0xd60f); /* movq */
605 } else if (bt
== VT_LDOUBLE
) {
606 o(0xc0d9); /* fld %st(0) */
614 if (bt
== VT_BYTE
|| bt
== VT_BOOL
)
616 else if (is64_type(bt
))
622 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
627 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
628 gen_modrm64(op64
, r
, v
->r
, v
->sym
, fc
);
629 } else if (fr
!= r
) {
630 orex(1, fr
, r
, op64
);
631 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
634 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
635 gen_modrm(r
, v
->r
, v
->sym
, fc
);
636 } else if (fr
!= r
) {
637 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
642 /* 'is_jmp' is '1' if it is a jump */
643 static void gcall_or_jmp(int is_jmp
)
646 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
&&
647 ((vtop
->r
& VT_SYM
) && (vtop
->c
.i
-4) == (int)(vtop
->c
.i
-4))) {
648 /* constant symbolic case -> simple relocation */
649 greloca(cur_text_section
, vtop
->sym
, ind
+ 1, R_X86_64_PLT32
, (int)(vtop
->c
.i
-4));
650 oad(0xe8 + is_jmp
, 0); /* call/jmp im */
652 /* otherwise, indirect call */
656 o(0xff); /* call/jmp *r */
657 o(0xd0 + REG_VALUE(r
) + (is_jmp
<< 4));
661 #if defined(CONFIG_TCC_BCHECK)
663 static void gen_bounds_call(int v
)
665 Sym
*sym
= external_helper_sym(v
);
667 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PLT32
, -4);
671 # define TREG_FASTCALL_1 TREG_RCX
673 # define TREG_FASTCALL_1 TREG_RDI
676 static void gen_bounds_prolog(void)
678 /* leave some room for bound checking code */
679 func_bound_offset
= lbounds_section
->data_offset
;
680 func_bound_ind
= ind
;
681 func_bound_add_epilog
= 0;
682 o(0x0d8d48 + ((TREG_FASTCALL_1
== TREG_RDI
) * 0x300000)); /*lbound section pointer */
684 oad(0xb8, 0); /* call to function */
687 static void gen_bounds_epilog(void)
692 int offset_modified
= func_bound_offset
!= lbounds_section
->data_offset
;
694 if (!offset_modified
&& !func_bound_add_epilog
)
697 /* add end of table info */
698 bounds_ptr
= section_ptr_add(lbounds_section
, sizeof(addr_t
));
701 sym_data
= get_sym_ref(&char_pointer_type
, lbounds_section
,
702 func_bound_offset
, PTR_SIZE
);
704 /* generate bound local allocation */
705 if (offset_modified
) {
707 ind
= func_bound_ind
;
708 greloca(cur_text_section
, sym_data
, ind
+ 3, R_X86_64_PC32
, -4);
710 gen_bounds_call(TOK___bound_local_new
);
714 /* generate bound check local freeing */
715 o(0x5250); /* save returned value, if any */
716 o(0x20ec8348); /* sub $32,%rsp */
717 o(0x290f); /* movaps %xmm0,0x10(%rsp) */
719 o(0x240c290f); /* movaps %xmm1,(%rsp) */
720 greloca(cur_text_section
, sym_data
, ind
+ 3, R_X86_64_PC32
, -4);
721 o(0x0d8d48 + ((TREG_FASTCALL_1
== TREG_RDI
) * 0x300000)); /* lea xxx(%rip), %rcx/rdi */
723 gen_bounds_call(TOK___bound_local_delete
);
724 o(0x280f); /* movaps 0x10(%rsp),%xmm0 */
726 o(0x240c280f); /* movaps (%rsp),%xmm1 */
727 o(0x20c48348); /* add $32,%rsp */
728 o(0x585a); /* restore returned value, if any */
735 static const uint8_t arg_regs
[REGN
] = {
736 TREG_RCX
, TREG_RDX
, TREG_R8
, TREG_R9
739 /* Prepare arguments in R10 and R11 rather than RCX and RDX
740 because gv() will not ever use these */
741 static int arg_prepare_reg(int idx
) {
742 if (idx
== 0 || idx
== 1)
743 /* idx=0: r10, idx=1: r11 */
746 return idx
>= 0 && idx
< REGN
? arg_regs
[idx
] : 0;
749 /* Generate function call. The function address is pushed first, then
750 all the parameters in call order. This functions pops all the
751 parameters and the function address. */
753 static void gen_offs_sp(int b
, int r
, int d
)
755 orex(1,0,r
& 0x100 ? 0 : r
, b
);
757 o(0x2444 | (REG_VALUE(r
) << 3));
760 o(0x2484 | (REG_VALUE(r
) << 3));
765 static int using_regs(int size
)
767 return !(size
> 8 || (size
& (size
- 1)));
770 /* Return the number of registers needed to return the struct, or 0 if
771 returning via struct pointer. */
772 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
775 *ret_align
= 1; // Never have to re-align return values for x86-64
777 size
= type_size(vt
, &align
);
778 if (!using_regs(size
))
792 static int is_sse_float(int t
) {
795 return bt
== VT_DOUBLE
|| bt
== VT_FLOAT
;
798 static int gfunc_arg_size(CType
*type
) {
800 if (type
->t
& (VT_ARRAY
|VT_BITFIELD
))
802 return type_size(type
, &align
);
805 void gfunc_call(int nb_args
)
807 int size
, r
, args_size
, i
, d
, bt
, struct_size
;
810 #ifdef CONFIG_TCC_BCHECK
811 if (tcc_state
->do_bounds_check
)
812 gbound_args(nb_args
);
815 args_size
= (nb_args
< REGN
? REGN
: nb_args
) * PTR_SIZE
;
818 /* for struct arguments, we need to call memcpy and the function
819 call breaks register passing arguments we are preparing.
820 So, we process arguments which will be passed by stack first. */
821 struct_size
= args_size
;
822 for(i
= 0; i
< nb_args
; i
++) {
827 bt
= (sv
->type
.t
& VT_BTYPE
);
828 size
= gfunc_arg_size(&sv
->type
);
830 if (using_regs(size
))
831 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
833 if (bt
== VT_STRUCT
) {
834 /* align to stack align size */
835 size
= (size
+ 15) & ~15;
836 /* generate structure store */
838 gen_offs_sp(0x8d, r
, struct_size
);
841 /* generate memcpy call */
842 vset(&sv
->type
, r
| VT_LVAL
, 0);
846 } else if (bt
== VT_LDOUBLE
) {
848 gen_offs_sp(0xdb, 0x107, struct_size
);
853 if (func_scratch
< struct_size
)
854 func_scratch
= struct_size
;
857 struct_size
= args_size
;
859 for(i
= 0; i
< nb_args
; i
++) {
861 bt
= (vtop
->type
.t
& VT_BTYPE
);
863 size
= gfunc_arg_size(&vtop
->type
);
864 if (!using_regs(size
)) {
865 /* align to stack align size */
866 size
= (size
+ 15) & ~15;
869 gen_offs_sp(0x8d, d
, struct_size
);
870 gen_offs_sp(0x89, d
, arg
*8);
872 d
= arg_prepare_reg(arg
);
873 gen_offs_sp(0x8d, d
, struct_size
);
877 if (is_sse_float(vtop
->type
.t
)) {
878 if (tcc_state
->nosse
)
879 tcc_error("SSE disabled");
882 /* movq %xmm0, j*8(%rsp) */
883 gen_offs_sp(0xd60f66, 0x100, arg
*8);
885 /* Load directly to xmmN register */
887 d
= arg_prepare_reg(arg
);
888 /* mov %xmmN, %rxx */
891 o(0xc0 + arg
*8 + REG_VALUE(d
));
894 if (bt
== VT_STRUCT
) {
895 vtop
->type
.ref
= NULL
;
896 vtop
->type
.t
= size
> 4 ? VT_LLONG
: size
> 2 ? VT_INT
897 : size
> 1 ? VT_SHORT
: VT_BYTE
;
902 gen_offs_sp(0x89, r
, arg
*8);
904 d
= arg_prepare_reg(arg
);
905 orex(1,d
,r
,0x89); /* mov */
906 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
913 /* Copy R10 and R11 into RCX and RDX, respectively */
915 o(0xd1894c); /* mov %r10, %rcx */
917 o(0xda894c); /* mov %r11, %rdx */
923 if ((vtop
->r
& VT_SYM
) && vtop
->sym
->v
== TOK_alloca
) {
924 /* need to add the "func_scratch" area after alloca */
925 o(0x48); func_alloca
= oad(0x05, func_alloca
); /* add $NN, %rax */
926 #ifdef CONFIG_TCC_BCHECK
927 if (tcc_state
->do_bounds_check
)
928 gen_bounds_call(TOK___bound_alloca_nr
); /* new region */
935 #define FUNC_PROLOG_SIZE 11
937 /* generate function prolog of type 't' */
938 void gfunc_prolog(Sym
*func_sym
)
940 CType
*func_type
= &func_sym
->type
;
941 int addr
, reg_param_index
, bt
, size
;
951 ind
+= FUNC_PROLOG_SIZE
;
952 func_sub_sp_offset
= ind
;
955 sym
= func_type
->ref
;
957 /* if the function returns a structure, then add an
958 implicit pointer parameter */
959 size
= gfunc_arg_size(&func_vt
);
960 if (!using_regs(size
)) {
961 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
967 /* define parameters */
968 while ((sym
= sym
->next
) != NULL
) {
970 bt
= type
->t
& VT_BTYPE
;
971 size
= gfunc_arg_size(type
);
972 if (!using_regs(size
)) {
973 if (reg_param_index
< REGN
) {
974 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
976 sym_push(sym
->v
& ~SYM_FIELD
, type
,
977 VT_LLOCAL
| VT_LVAL
, addr
);
979 if (reg_param_index
< REGN
) {
980 /* save arguments passed by register */
981 if ((bt
== VT_FLOAT
) || (bt
== VT_DOUBLE
)) {
982 if (tcc_state
->nosse
)
983 tcc_error("SSE disabled");
984 o(0xd60f66); /* movq */
985 gen_modrm(reg_param_index
, VT_LOCAL
, NULL
, addr
);
987 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
990 sym_push(sym
->v
& ~SYM_FIELD
, type
,
991 VT_LOCAL
| VT_LVAL
, addr
);
997 while (reg_param_index
< REGN
) {
999 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
1004 #ifdef CONFIG_TCC_BCHECK
1005 if (tcc_state
->do_bounds_check
)
1006 gen_bounds_prolog();
1010 /* generate function epilog */
1011 void gfunc_epilog(void)
1015 /* align local size to word & save local variables */
1016 func_scratch
= (func_scratch
+ 15) & -16;
1017 loc
= (loc
& -16) - func_scratch
;
1019 #ifdef CONFIG_TCC_BCHECK
1020 if (tcc_state
->do_bounds_check
)
1021 gen_bounds_epilog();
1024 o(0xc9); /* leave */
1025 if (func_ret_sub
== 0) {
1028 o(0xc2); /* ret n */
1030 g(func_ret_sub
>> 8);
1034 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1038 Sym
*sym
= external_helper_sym(TOK___chkstk
);
1039 oad(0xb8, v
); /* mov stacksize, %eax */
1040 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1041 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PLT32
, -4);
1042 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1044 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1045 o(0xec8148); /* sub rsp, stacksize */
1049 /* add the "func_scratch" area after each alloca seen */
1050 gsym_addr(func_alloca
, -func_scratch
);
1052 cur_text_section
->data_offset
= saved_ind
;
1053 pe_add_unwind_data(ind
, saved_ind
, v
);
1054 ind
= cur_text_section
->data_offset
;
1059 static void gadd_sp(int val
)
1061 if (val
== (char)val
) {
1065 oad(0xc48148, val
); /* add $xxx, %rsp */
1069 typedef enum X86_64_Mode
{
1072 x86_64_mode_integer
,
1077 static X86_64_Mode
classify_x86_64_merge(X86_64_Mode a
, X86_64_Mode b
)
1081 else if (a
== x86_64_mode_none
)
1083 else if (b
== x86_64_mode_none
)
1085 else if ((a
== x86_64_mode_memory
) || (b
== x86_64_mode_memory
))
1086 return x86_64_mode_memory
;
1087 else if ((a
== x86_64_mode_integer
) || (b
== x86_64_mode_integer
))
1088 return x86_64_mode_integer
;
1089 else if ((a
== x86_64_mode_x87
) || (b
== x86_64_mode_x87
))
1090 return x86_64_mode_memory
;
1092 return x86_64_mode_sse
;
1095 static X86_64_Mode
classify_x86_64_inner(CType
*ty
)
1100 switch (ty
->t
& VT_BTYPE
) {
1101 case VT_VOID
: return x86_64_mode_none
;
1110 return x86_64_mode_integer
;
1113 case VT_DOUBLE
: return x86_64_mode_sse
;
1115 case VT_LDOUBLE
: return x86_64_mode_x87
;
1120 mode
= x86_64_mode_none
;
1121 for (f
= f
->next
; f
; f
= f
->next
)
1122 mode
= classify_x86_64_merge(mode
, classify_x86_64_inner(&f
->type
));
1130 static X86_64_Mode
classify_x86_64_arg(CType
*ty
, CType
*ret
, int *psize
, int *palign
, int *reg_count
)
1133 int size
, align
, ret_t
= 0;
1135 if (ty
->t
& (VT_BITFIELD
|VT_ARRAY
)) {
1140 mode
= x86_64_mode_integer
;
1142 size
= type_size(ty
, &align
);
1143 *psize
= (size
+ 7) & ~7;
1144 *palign
= (align
+ 7) & ~7;
1145 *reg_count
= 0; /* avoid compiler warning */
1148 mode
= x86_64_mode_memory
;
1150 mode
= classify_x86_64_inner(ty
);
1152 case x86_64_mode_integer
:
1166 if ((ty
->t
& VT_BTYPE
) == VT_STRUCT
|| (ty
->t
& VT_UNSIGNED
))
1167 ret_t
|= VT_UNSIGNED
;
1171 case x86_64_mode_x87
:
1176 case x86_64_mode_sse
:
1182 ret_t
= (size
> 4) ? VT_DOUBLE
: VT_FLOAT
;
1185 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1198 ST_FUNC
int classify_x86_64_va_arg(CType
*ty
)
1200 /* This definition must be synced with stdarg.h */
1201 enum __va_arg_type
{
1202 __va_gen_reg
, __va_float_reg
, __va_stack
1204 int size
, align
, reg_count
;
1205 X86_64_Mode mode
= classify_x86_64_arg(ty
, NULL
, &size
, &align
, ®_count
);
1207 default: return __va_stack
;
1208 case x86_64_mode_integer
: return __va_gen_reg
;
1209 case x86_64_mode_sse
: return __va_float_reg
;
1213 /* Return the number of registers needed to return the struct, or 0 if
1214 returning via struct pointer. */
1215 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
1217 int size
, align
, reg_count
;
1218 if (classify_x86_64_arg(vt
, ret
, &size
, &align
, ®_count
) == x86_64_mode_memory
)
1220 *ret_align
= 1; // Never have to re-align return values for x86-64
1221 *regsize
= 8 * reg_count
; /* the (virtual) regsize is 16 for VT_QLONG/QFLOAT */
1226 static const uint8_t arg_regs
[REGN
] = {
1227 TREG_RDI
, TREG_RSI
, TREG_RDX
, TREG_RCX
, TREG_R8
, TREG_R9
1230 static int arg_prepare_reg(int idx
) {
1231 if (idx
== 2 || idx
== 3)
1232 /* idx=2: r10, idx=3: r11 */
1235 return idx
>= 0 && idx
< REGN
? arg_regs
[idx
] : 0;
1238 /* Generate function call. The function address is pushed first, then
1239 all the parameters in call order. This functions pops all the
1240 parameters and the function address. */
1241 void gfunc_call(int nb_args
)
1245 int size
, align
, r
, args_size
, stack_adjust
, i
, reg_count
, k
;
1246 int nb_reg_args
= 0;
1247 int nb_sse_args
= 0;
1248 int sse_reg
, gen_reg
;
1249 char *onstack
= tcc_malloc((nb_args
+ 1) * sizeof (char));
1251 #ifdef CONFIG_TCC_BCHECK
1252 if (tcc_state
->do_bounds_check
)
1253 gbound_args(nb_args
);
1256 /* calculate the number of integer/float register arguments, remember
1257 arguments to be passed via stack (in onstack[]), and also remember
1258 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1259 to be done in a left-to-right pass over arguments. */
1261 for(i
= nb_args
- 1; i
>= 0; i
--) {
1262 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1263 if (size
== 0) continue;
1264 if (mode
== x86_64_mode_sse
&& nb_sse_args
+ reg_count
<= 8) {
1265 nb_sse_args
+= reg_count
;
1267 } else if (mode
== x86_64_mode_integer
&& nb_reg_args
+ reg_count
<= REGN
) {
1268 nb_reg_args
+= reg_count
;
1270 } else if (mode
== x86_64_mode_none
) {
1273 if (align
== 16 && (stack_adjust
&= 15)) {
1278 stack_adjust
+= size
;
1282 if (nb_sse_args
&& tcc_state
->nosse
)
1283 tcc_error("SSE disabled but floating point arguments passed");
1285 /* fetch cpu flag before generating any code */
1286 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
)
1289 /* for struct arguments, we need to call memcpy and the function
1290 call breaks register passing arguments we are preparing.
1291 So, we process arguments which will be passed by stack first. */
1292 gen_reg
= nb_reg_args
;
1293 sse_reg
= nb_sse_args
;
1296 for (i
= k
= 0; i
< nb_args
;) {
1297 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1299 if (!onstack
[i
+ k
]) {
1303 /* Possibly adjust stack to align SSE boundary. We're processing
1304 args from right to left while allocating happens left to right
1305 (stack grows down), so the adjustment needs to happen _after_
1306 an argument that requires it. */
1308 o(0x50); /* push %rax; aka sub $8,%rsp */
1312 if (onstack
[i
+ k
] == 2)
1318 switch (vtop
->type
.t
& VT_BTYPE
) {
1320 /* allocate the necessary size on stack */
1322 oad(0xec81, size
); /* sub $xxx, %rsp */
1323 /* generate structure store */
1324 r
= get_reg(RC_INT
);
1325 orex(1, r
, 0, 0x89); /* mov %rsp, r */
1326 o(0xe0 + REG_VALUE(r
));
1327 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1329 /* keep stack aligned for (__bound_)memmove call */
1330 o(0x10ec8348); /* sub $16,%rsp */
1331 o(0xf0e48348); /* and $-16,%rsp */
1332 orex(0,r
,0,0x50 + REG_VALUE(r
)); /* push r (last %rsp) */
1333 o(0x08ec8348); /* sub $8,%rsp */
1335 o(0x08c48348); /* add $8,%rsp */
1336 o(0x5c); /* pop %rsp */
1341 oad(0xec8148, size
); /* sub $xxx, %rsp */
1342 o(0x7cdb); /* fstpt 0(%rsp) */
1349 assert(mode
== x86_64_mode_sse
);
1351 o(0x50); /* push $rax */
1352 /* movq %xmmN, (%rsp) */
1354 o(0x04 + REG_VALUE(r
)*8);
1359 assert(mode
== x86_64_mode_integer
);
1361 /* XXX: implicit cast ? */
1363 orex(0,r
,0,0x50 + REG_VALUE(r
)); /* push r */
1375 /* XXX This should be superfluous. */
1376 save_regs(0); /* save used temporary registers */
1378 /* then, we prepare register passing arguments.
1379 Note that we cannot set RDX and RCX in this loop because gv()
1380 may break these temporary registers. Let's use R10 and R11
1382 assert(gen_reg
<= REGN
);
1383 assert(sse_reg
<= 8);
1384 for(i
= 0; i
< nb_args
; i
++) {
1385 mode
= classify_x86_64_arg(&vtop
->type
, &type
, &size
, &align
, ®_count
);
1386 if (size
== 0) continue;
1387 /* Alter stack entry type so that gv() knows how to treat it */
1389 if (mode
== x86_64_mode_sse
) {
1390 if (reg_count
== 2) {
1392 gv(RC_FRET
); /* Use pair load into xmm0 & xmm1 */
1393 if (sse_reg
) { /* avoid redundant movaps %xmm0, %xmm0 */
1394 /* movaps %xmm1, %xmmN */
1396 o(0xc1 + ((sse_reg
+1) << 3));
1397 /* movaps %xmm0, %xmmN */
1399 o(0xc0 + (sse_reg
<< 3));
1402 assert(reg_count
== 1);
1404 /* Load directly to register */
1405 gv(RC_XMM0
<< sse_reg
);
1407 } else if (mode
== x86_64_mode_integer
) {
1409 /* XXX: implicit cast ? */
1411 gen_reg
-= reg_count
;
1413 d
= arg_prepare_reg(gen_reg
);
1414 orex(1,d
,r
,0x89); /* mov */
1415 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
1416 if (reg_count
== 2) {
1417 d
= arg_prepare_reg(gen_reg
+1);
1418 orex(1,d
,vtop
->r2
,0x89); /* mov */
1419 o(0xc0 + REG_VALUE(vtop
->r2
) * 8 + REG_VALUE(d
));
1424 assert(gen_reg
== 0);
1425 assert(sse_reg
== 0);
1427 /* We shouldn't have many operands on the stack anymore, but the
1428 call address itself is still there, and it might be in %eax
1429 (or edx/ecx) currently, which the below writes would clobber.
1430 So evict all remaining operands here. */
1433 /* Copy R10 and R11 into RDX and RCX, respectively */
1434 if (nb_reg_args
> 2) {
1435 o(0xd2894c); /* mov %r10, %rdx */
1436 if (nb_reg_args
> 3) {
1437 o(0xd9894c); /* mov %r11, %rcx */
1441 if (vtop
->type
.ref
->f
.func_type
!= FUNC_NEW
) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1442 oad(0xb8, nb_sse_args
< 8 ? nb_sse_args
: 8); /* mov nb_sse_args, %eax */
1449 #define FUNC_PROLOG_SIZE 11
1451 static void push_arg_reg(int i
) {
1453 gen_modrm64(0x89, arg_regs
[i
], VT_LOCAL
, NULL
, loc
);
1456 /* generate function prolog of type 't' */
1457 void gfunc_prolog(Sym
*func_sym
)
1459 CType
*func_type
= &func_sym
->type
;
1460 X86_64_Mode mode
, ret_mode
;
1461 int i
, addr
, align
, size
, reg_count
;
1462 int param_addr
= 0, reg_param_index
, sse_param_index
;
1466 sym
= func_type
->ref
;
1467 addr
= PTR_SIZE
* 2;
1469 ind
+= FUNC_PROLOG_SIZE
;
1470 func_sub_sp_offset
= ind
;
1472 ret_mode
= classify_x86_64_arg(&func_vt
, NULL
, &size
, &align
, ®_count
);
1475 int seen_reg_num
, seen_sse_num
, seen_stack_size
;
1476 seen_reg_num
= ret_mode
== x86_64_mode_memory
;
1478 /* frame pointer and return address */
1479 seen_stack_size
= PTR_SIZE
* 2;
1480 /* count the number of seen parameters */
1481 sym
= func_type
->ref
;
1482 while ((sym
= sym
->next
) != NULL
) {
1484 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1488 seen_stack_size
= ((seen_stack_size
+ align
- 1) & -align
) + size
;
1491 case x86_64_mode_integer
:
1492 if (seen_reg_num
+ reg_count
> REGN
)
1494 seen_reg_num
+= reg_count
;
1497 case x86_64_mode_sse
:
1498 if (seen_sse_num
+ reg_count
> 8)
1500 seen_sse_num
+= reg_count
;
1506 /* movl $0x????????, -0x18(%rbp) */
1508 gen_le32(seen_reg_num
* 8);
1509 /* movl $0x????????, -0x14(%rbp) */
1511 gen_le32(seen_sse_num
* 16 + 48);
1512 /* leaq $0x????????, %r11 */
1514 gen_le32(seen_stack_size
);
1515 /* movq %r11, -0x10(%rbp) */
1517 /* leaq $-192(%rbp), %r11 */
1519 gen_le32(-176 - 24);
1520 /* movq %r11, -0x8(%rbp) */
1523 /* save all register passing arguments */
1524 for (i
= 0; i
< 8; i
++) {
1526 if (!tcc_state
->nosse
) {
1527 o(0xd60f66); /* movq */
1528 gen_modrm(7 - i
, VT_LOCAL
, NULL
, loc
);
1530 /* movq $0, loc+8(%rbp) */
1535 for (i
= 0; i
< REGN
; i
++) {
1536 push_arg_reg(REGN
-1-i
);
1540 sym
= func_type
->ref
;
1541 reg_param_index
= 0;
1542 sse_param_index
= 0;
1544 /* if the function returns a structure, then add an
1545 implicit pointer parameter */
1546 if (ret_mode
== x86_64_mode_memory
) {
1547 push_arg_reg(reg_param_index
);
1551 /* define parameters */
1552 while ((sym
= sym
->next
) != NULL
) {
1554 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1556 case x86_64_mode_sse
:
1557 if (tcc_state
->nosse
)
1558 tcc_error("SSE disabled but floating point arguments used");
1559 if (sse_param_index
+ reg_count
<= 8) {
1560 /* save arguments passed by register */
1561 loc
-= reg_count
* 8;
1563 for (i
= 0; i
< reg_count
; ++i
) {
1564 o(0xd60f66); /* movq */
1565 gen_modrm(sse_param_index
, VT_LOCAL
, NULL
, param_addr
+ i
*8);
1569 addr
= (addr
+ align
- 1) & -align
;
1575 case x86_64_mode_memory
:
1576 case x86_64_mode_x87
:
1577 addr
= (addr
+ align
- 1) & -align
;
1582 case x86_64_mode_integer
: {
1583 if (reg_param_index
+ reg_count
<= REGN
) {
1584 /* save arguments passed by register */
1585 loc
-= reg_count
* 8;
1587 for (i
= 0; i
< reg_count
; ++i
) {
1588 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, param_addr
+ i
*8);
1592 addr
= (addr
+ align
- 1) & -align
;
1598 default: break; /* nothing to be done for x86_64_mode_none */
1600 sym_push(sym
->v
& ~SYM_FIELD
, type
,
1601 VT_LOCAL
| VT_LVAL
, param_addr
);
1604 #ifdef CONFIG_TCC_BCHECK
1605 if (tcc_state
->do_bounds_check
)
1606 gen_bounds_prolog();
1610 /* generate function epilog */
1611 void gfunc_epilog(void)
1615 #ifdef CONFIG_TCC_BCHECK
1616 if (tcc_state
->do_bounds_check
)
1617 gen_bounds_epilog();
1619 o(0xc9); /* leave */
1620 if (func_ret_sub
== 0) {
1623 o(0xc2); /* ret n */
1625 g(func_ret_sub
>> 8);
1627 /* align local size to word & save local variables */
1628 v
= (-loc
+ 15) & -16;
1630 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1631 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1632 o(0xec8148); /* sub rsp, stacksize */
1639 ST_FUNC
void gen_fill_nops(int bytes
)
1645 /* generate a jump to a label */
1648 return gjmp2(0xe9, t
);
1651 /* generate a jump to a fixed address */
1652 void gjmp_addr(int a
)
1660 oad(0xe9, a
- ind
- 5);
1664 ST_FUNC
int gjmp_append(int n
, int t
)
1667 /* insert vtop->c jump list in t */
1669 uint32_t n1
= n
, n2
;
1670 while ((n2
= read32le(p
= cur_text_section
->data
+ n1
)))
1678 ST_FUNC
int gjmp_cond(int op
, int t
)
1682 /* This was a float compare. If the parity flag is set
1683 the result was unordered. For anything except != this
1684 means false and we don't jump (anding both conditions).
1685 For != this means true (oring both).
1686 Take care about inverting the test. We need to jump
1687 to our target if the result was unordered and test wasn't NE,
1688 otherwise if unordered we don't want to jump. */
1689 int v
= vtop
->cmp_r
;
1691 if (op
^ v
^ (v
!= TOK_NE
))
1692 o(0x067a); /* jp +6 */
1696 t
= gjmp2(0x8a, t
); /* jp t */
1700 t
= gjmp2(op
- 16, t
);
1704 /* generate an integer binary operation */
1705 void gen_opi(int op
)
1710 ll
= is64_type(vtop
[-1].type
.t
);
1711 uu
= (vtop
[-1].type
.t
& VT_UNSIGNED
) != 0;
1712 cc
= (vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
;
1716 case TOK_ADDC1
: /* add with carry generation */
1719 if (cc
&& (!ll
|| (int)vtop
->c
.i
== vtop
->c
.i
)) {
1726 /* XXX: generate inc and dec for smaller code ? */
1727 orex(ll
, r
, 0, 0x83);
1728 o(0xc0 | (opc
<< 3) | REG_VALUE(r
));
1731 orex(ll
, r
, 0, 0x81);
1732 oad(0xc0 | (opc
<< 3) | REG_VALUE(r
), c
);
1735 gv2(RC_INT
, RC_INT
);
1738 orex(ll
, r
, fr
, (opc
<< 3) | 0x01);
1739 o(0xc0 + REG_VALUE(r
) + REG_VALUE(fr
) * 8);
1742 if (op
>= TOK_ULT
&& op
<= TOK_GT
)
1746 case TOK_SUBC1
: /* sub with carry generation */
1749 case TOK_ADDC2
: /* add with carry use */
1752 case TOK_SUBC2
: /* sub with carry use */
1765 gv2(RC_INT
, RC_INT
);
1768 orex(ll
, fr
, r
, 0xaf0f); /* imul fr, r */
1769 o(0xc0 + REG_VALUE(fr
) + REG_VALUE(r
) * 8);
1781 opc
= 0xc0 | (opc
<< 3);
1787 orex(ll
, r
, 0, 0xc1); /* shl/shr/sar $xxx, r */
1788 o(opc
| REG_VALUE(r
));
1789 g(vtop
->c
.i
& (ll
? 63 : 31));
1791 /* we generate the shift in ecx */
1792 gv2(RC_INT
, RC_RCX
);
1794 orex(ll
, r
, 0, 0xd3); /* shl/shr/sar %cl, r */
1795 o(opc
| REG_VALUE(r
));
1808 /* first operand must be in eax */
1809 /* XXX: need better constraint for second operand */
1810 gv2(RC_RAX
, RC_RCX
);
1815 orex(ll
, 0, 0, uu
? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1816 orex(ll
, fr
, 0, 0xf7); /* div fr, %eax */
1817 o((uu
? 0xf0 : 0xf8) + REG_VALUE(fr
));
1818 if (op
== '%' || op
== TOK_UMOD
)
1830 void gen_opl(int op
)
1835 void vpush_const(int t
, int v
)
1837 CType ctype
= { t
| VT_CONSTANT
, 0 };
1838 vpushsym(&ctype
, external_global_sym(v
, &ctype
));
1842 /* generate a floating point operation 'v = t1 op t2' instruction. The
1843 two operands are guaranteed to have the same floating point type */
1844 /* XXX: need to use ST1 too */
1845 void gen_opf(int op
)
1847 int a
, ft
, fc
, swapped
, r
;
1848 int bt
= vtop
->type
.t
& VT_BTYPE
;
1849 int float_type
= bt
== VT_LDOUBLE
? RC_ST0
: RC_FLOAT
;
1851 if (op
== TOK_NEG
) { /* unary minus */
1853 if (float_type
== RC_ST0
) {
1854 o(0xe0d9); /* fchs */
1856 /* -0.0, in libtcc1.c */
1857 vpush_const(bt
, bt
== VT_FLOAT
? TOK___mzerosf
: TOK___mzerodf
);
1859 if (bt
== VT_DOUBLE
)
1861 /* xorp[sd] %xmm1, %xmm0 */
1862 o(0xc0570f | (REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8) << 16);
1868 /* convert constants to memory references */
1869 if ((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
1874 if ((vtop
[0].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
)
1877 /* must put at least one value in the floating point register */
1878 if ((vtop
[-1].r
& VT_LVAL
) &&
1879 (vtop
[0].r
& VT_LVAL
)) {
1885 /* swap the stack if needed so that t1 is the register and t2 is
1886 the memory reference */
1887 if (vtop
[-1].r
& VT_LVAL
) {
1891 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
) {
1892 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1893 /* load on stack second operand */
1894 load(TREG_ST0
, vtop
);
1895 save_reg(TREG_RAX
); /* eax is used by FP comparison code */
1896 if (op
== TOK_GE
|| op
== TOK_GT
)
1898 else if (op
== TOK_EQ
|| op
== TOK_NE
)
1901 o(0xc9d9); /* fxch %st(1) */
1902 if (op
== TOK_EQ
|| op
== TOK_NE
)
1903 o(0xe9da); /* fucompp */
1905 o(0xd9de); /* fcompp */
1906 o(0xe0df); /* fnstsw %ax */
1908 o(0x45e480); /* and $0x45, %ah */
1909 o(0x40fC80); /* cmp $0x40, %ah */
1910 } else if (op
== TOK_NE
) {
1911 o(0x45e480); /* and $0x45, %ah */
1912 o(0x40f480); /* xor $0x40, %ah */
1914 } else if (op
== TOK_GE
|| op
== TOK_LE
) {
1915 o(0x05c4f6); /* test $0x05, %ah */
1918 o(0x45c4f6); /* test $0x45, %ah */
1924 /* no memory reference possible for long double operations */
1925 load(TREG_ST0
, vtop
);
1949 o(0xde); /* fxxxp %st, %st(1) */
1954 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1955 /* if saved lvalue, then we must reload it */
1958 if ((r
& VT_VALMASK
) == VT_LLOCAL
) {
1960 r
= get_reg(RC_INT
);
1962 v1
.r
= VT_LOCAL
| VT_LVAL
;
1966 vtop
->r
= r
= r
| VT_LVAL
;
1969 if (op
== TOK_EQ
|| op
== TOK_NE
) {
1972 if (op
== TOK_LE
|| op
== TOK_LT
)
1974 if (op
== TOK_LE
|| op
== TOK_GE
) {
1975 op
= 0x93; /* setae */
1977 op
= 0x97; /* seta */
1985 assert(!(vtop
[-1].r
& VT_LVAL
));
1987 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1989 if (op
== TOK_EQ
|| op
== TOK_NE
)
1990 o(0x2e0f); /* ucomisd */
1992 o(0x2f0f); /* comisd */
1994 if (vtop
->r
& VT_LVAL
) {
1995 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
1997 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2001 vset_VT_CMP(op
| 0x100);
2004 assert((vtop
->type
.t
& VT_BTYPE
) != VT_LDOUBLE
);
2022 assert((ft
& VT_BTYPE
) != VT_LDOUBLE
);
2025 /* if saved lvalue, then we must reload it */
2026 if ((vtop
->r
& VT_VALMASK
) == VT_LLOCAL
) {
2028 r
= get_reg(RC_INT
);
2030 v1
.r
= VT_LOCAL
| VT_LVAL
;
2034 vtop
->r
= r
= r
| VT_LVAL
;
2037 assert(!(vtop
[-1].r
& VT_LVAL
));
2039 assert(vtop
->r
& VT_LVAL
);
2042 fc
= vtop
->c
.i
; /* bcheck may have saved previous vtop[-1] */
2045 if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
2053 if (vtop
->r
& VT_LVAL
) {
2054 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
2056 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2064 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2065 and 'long long' cases. */
2066 void gen_cvt_itof(int t
)
2068 if ((t
& VT_BTYPE
) == VT_LDOUBLE
) {
2071 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2072 /* signed long long to float/double/long double (unsigned case
2073 is handled generically) */
2074 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2075 o(0x242cdf); /* fildll (%rsp) */
2076 o(0x08c48348); /* add $8, %rsp */
2077 } else if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2078 (VT_INT
| VT_UNSIGNED
)) {
2079 /* unsigned int to float/double/long double */
2080 o(0x6a); /* push $0 */
2082 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2083 o(0x242cdf); /* fildll (%rsp) */
2084 o(0x10c48348); /* add $16, %rsp */
2086 /* int to float/double/long double */
2087 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2088 o(0x2404db); /* fildl (%rsp) */
2089 o(0x08c48348); /* add $8, %rsp */
2093 int r
= get_reg(RC_FLOAT
);
2095 o(0xf2 + ((t
& VT_BTYPE
) == VT_FLOAT
?1:0));
2096 if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2097 (VT_INT
| VT_UNSIGNED
) ||
2098 (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2102 o(0xc0 + (vtop
->r
& VT_VALMASK
) + REG_VALUE(r
)*8); /* cvtsi2sd */
2107 /* convert from one floating point type to another */
2108 void gen_cvt_ftof(int t
)
2116 if (bt
== VT_FLOAT
) {
2118 if (tbt
== VT_DOUBLE
) {
2119 o(0x140f); /* unpcklps */
2120 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2121 o(0x5a0f); /* cvtps2pd */
2122 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2123 } else if (tbt
== VT_LDOUBLE
) {
2125 /* movss %xmm0,-0x10(%rsp) */
2127 o(0x44 + REG_VALUE(vtop
->r
)*8);
2129 o(0xf02444d9); /* flds -0x10(%rsp) */
2132 } else if (bt
== VT_DOUBLE
) {
2134 if (tbt
== VT_FLOAT
) {
2135 o(0x140f66); /* unpcklpd */
2136 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2137 o(0x5a0f66); /* cvtpd2ps */
2138 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2139 } else if (tbt
== VT_LDOUBLE
) {
2141 /* movsd %xmm0,-0x10(%rsp) */
2143 o(0x44 + REG_VALUE(vtop
->r
)*8);
2145 o(0xf02444dd); /* fldl -0x10(%rsp) */
2151 r
= get_reg(RC_FLOAT
);
2152 if (tbt
== VT_DOUBLE
) {
2153 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2154 /* movsd -0x10(%rsp),%xmm0 */
2156 o(0x44 + REG_VALUE(r
)*8);
2159 } else if (tbt
== VT_FLOAT
) {
2160 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2161 /* movss -0x10(%rsp),%xmm0 */
2163 o(0x44 + REG_VALUE(r
)*8);
2170 /* convert fp to int 't' type */
2171 void gen_cvt_ftoi(int t
)
2173 int ft
, bt
, size
, r
;
2176 if (bt
== VT_LDOUBLE
) {
2177 gen_cvt_ftof(VT_DOUBLE
);
2187 r
= get_reg(RC_INT
);
2188 if (bt
== VT_FLOAT
) {
2190 } else if (bt
== VT_DOUBLE
) {
2195 orex(size
== 8, r
, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2196 o(0xc0 + REG_VALUE(vtop
->r
) + REG_VALUE(r
)*8);
2200 // Generate sign extension from 32 to 64 bits:
2201 ST_FUNC
void gen_cvt_sxtw(void)
2204 /* x86_64 specific: movslq */
2206 o(0xc0 + (REG_VALUE(r
) << 3) + REG_VALUE(r
));
2209 /* char/short to int conversion */
2210 ST_FUNC
void gen_cvt_csti(int t
)
2214 sz
= !(t
& VT_UNSIGNED
);
2215 xl
= (t
& VT_BTYPE
) == VT_SHORT
;
2216 ll
= (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
;
2217 orex(ll
, r
, 0, 0xc0b60f /* mov[sz] %a[xl], %eax */
2218 | (sz
<< 3 | xl
) << 8
2219 | (REG_VALUE(r
) << 3 | REG_VALUE(r
)) << 16
2223 /* increment tcov counter */
2224 ST_FUNC
void gen_increment_tcov (SValue
*sv
)
2226 o(0x058348); /* addq $1, xxx(%rip) */
2227 greloca(cur_text_section
, sv
->sym
, ind
, R_X86_64_PC32
, -5);
2232 /* computed goto support */
2233 ST_FUNC
void ggoto(void)
2239 /* Save the stack pointer onto the stack and return the location of its address */
2240 ST_FUNC
void gen_vla_sp_save(int addr
) {
2241 /* mov %rsp,addr(%rbp)*/
2242 gen_modrm64(0x89, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2245 /* Restore the SP from a location on the stack */
2246 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2247 gen_modrm64(0x8b, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2250 #ifdef TCC_TARGET_PE
2251 /* Save result of gen_vla_alloc onto the stack */
2252 ST_FUNC
void gen_vla_result(int addr
) {
2253 /* mov %rax,addr(%rbp)*/
2254 gen_modrm64(0x89, TREG_RAX
, VT_LOCAL
, NULL
, addr
);
2258 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2259 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2262 #if defined(CONFIG_TCC_BCHECK)
2263 use_call
= tcc_state
->do_bounds_check
;
2265 #ifdef TCC_TARGET_PE /* alloca does more than just adjust %rsp on Windows */
2270 vpush_helper_func(TOK_alloca
);
2271 vswap(); /* Move alloca ref past allocation size */
2276 r
= gv(RC_INT
); /* allocation size */
2279 o(0xe0 | REG_VALUE(r
));
2280 /* We align to 16 bytes rather than align */
2288 * Assmuing the top part of the stack looks like below,
2291 ST_FUNC
void gen_struct_copy(int size
)
2293 int n
= size
/ PTR_SIZE
;
2294 #ifdef TCC_TARGET_PE
2295 o(0x5756); /* push rsi, rdi */
2297 gv2(RC_RDI
, RC_RSI
);
2313 #ifdef TCC_TARGET_PE
2314 o(0x5e5f); /* pop rdi, rsi */
2320 /* end of x86-64 code generator */
2321 /*************************************************************/
2322 #endif /* ! TARGET_DEFS_ONLY */
2323 /******************************************************/