x86-64: Prefer 32S relocations
[tinycc.git] / x86_64-gen.c
blob6102be7c465fda807c2ee1a4b92e1afd29357134
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_ST0 0x0080 /* only for long double */
38 #define RC_R8 0x0100
39 #define RC_R9 0x0200
40 #define RC_R10 0x0400
41 #define RC_R11 0x0800
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
56 enum {
57 TREG_RAX = 0,
58 TREG_RCX = 1,
59 TREG_RDX = 2,
60 TREG_RSP = 4,
61 TREG_RSI = 6,
62 TREG_RDI = 7,
64 TREG_R8 = 8,
65 TREG_R9 = 9,
66 TREG_R10 = 10,
67 TREG_R11 = 11,
69 TREG_XMM0 = 16,
70 TREG_XMM1 = 17,
71 TREG_XMM2 = 18,
72 TREG_XMM3 = 19,
73 TREG_XMM4 = 20,
74 TREG_XMM5 = 21,
75 TREG_XMM6 = 22,
76 TREG_XMM7 = 23,
78 TREG_ST0 = 24,
80 TREG_MEM = 0x20
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
96 #define PTR_SIZE 8
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
102 #define MAX_ALIGN 16
104 /******************************************************/
105 #else /* ! TARGET_DEFS_ONLY */
106 /******************************************************/
107 #include "tcc.h"
108 #include <assert.h>
110 ST_DATA const int reg_classes[NB_REGS] = {
111 /* eax */ RC_INT | RC_RAX,
112 /* ecx */ RC_INT | RC_RCX,
113 /* edx */ RC_INT | RC_RDX,
119 RC_R8,
120 RC_R9,
121 RC_R10,
122 RC_R11,
127 /* xmm0 */ RC_FLOAT | RC_XMM0,
128 /* xmm1 */ RC_FLOAT | RC_XMM1,
129 /* xmm2 */ RC_FLOAT | RC_XMM2,
130 /* xmm3 */ RC_FLOAT | RC_XMM3,
131 /* xmm4 */ RC_FLOAT | RC_XMM4,
132 /* xmm5 */ RC_FLOAT | RC_XMM5,
133 /* xmm6 an xmm7 are included so gv() can be used on them,
134 but they are not tagged with RC_FLOAT because they are
135 callee saved on Windows */
136 RC_XMM6,
137 RC_XMM7,
138 /* st0 */ RC_ST0
141 static unsigned long func_sub_sp_offset;
142 static int func_ret_sub;
144 /* XXX: make it faster ? */
145 ST_FUNC void g(int c)
147 int ind1;
148 ind1 = ind + 1;
149 if (ind1 > cur_text_section->data_allocated)
150 section_realloc(cur_text_section, ind1);
151 cur_text_section->data[ind] = c;
152 ind = ind1;
155 ST_FUNC void o(unsigned int c)
157 while (c) {
158 g(c);
159 c = c >> 8;
163 ST_FUNC void gen_le16(int v)
165 g(v);
166 g(v >> 8);
169 ST_FUNC void gen_le32(int c)
171 g(c);
172 g(c >> 8);
173 g(c >> 16);
174 g(c >> 24);
177 ST_FUNC void gen_le64(int64_t c)
179 g(c);
180 g(c >> 8);
181 g(c >> 16);
182 g(c >> 24);
183 g(c >> 32);
184 g(c >> 40);
185 g(c >> 48);
186 g(c >> 56);
189 static void orex(int ll, int r, int r2, int b)
191 if ((r & VT_VALMASK) >= VT_CONST)
192 r = 0;
193 if ((r2 & VT_VALMASK) >= VT_CONST)
194 r2 = 0;
195 if (ll || REX_BASE(r) || REX_BASE(r2))
196 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
197 o(b);
200 /* output a symbol and patch all calls to it */
201 ST_FUNC void gsym_addr(int t, int a)
203 while (t) {
204 unsigned char *ptr = cur_text_section->data + t;
205 uint32_t n = read32le(ptr); /* next value */
206 write32le(ptr, a - t - 4);
207 t = n;
211 void gsym(int t)
213 gsym_addr(t, ind);
216 /* psym is used to put an instruction with a data field which is a
217 reference to a symbol. It is in fact the same as oad ! */
218 #define psym oad
220 static int is64_type(int t)
222 return ((t & VT_BTYPE) == VT_PTR ||
223 (t & VT_BTYPE) == VT_FUNC ||
224 (t & VT_BTYPE) == VT_LLONG);
227 /* instruction + 4 bytes data. Return the address of the data */
228 ST_FUNC int oad(int c, int s)
230 int ind1;
232 o(c);
233 ind1 = ind + 4;
234 if (ind1 > cur_text_section->data_allocated)
235 section_realloc(cur_text_section, ind1);
236 write32le(cur_text_section->data + ind, s);
237 s = ind;
238 ind = ind1;
239 return s;
242 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
244 if (r & VT_SYM)
245 greloca(cur_text_section, sym, ind, R_X86_64_32S, c), c=0;
246 gen_le32(c);
249 /* output constant with relocation if 'r & VT_SYM' is true */
250 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
252 if (r & VT_SYM)
253 greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
254 gen_le64(c);
257 /* output constant with relocation if 'r & VT_SYM' is true */
258 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
260 if (r & VT_SYM)
261 greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
262 gen_le32(c-4);
265 /* output got address with relocation */
266 static void gen_gotpcrel(int r, Sym *sym, int c)
268 #ifndef TCC_TARGET_PE
269 greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
270 #else
271 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
272 get_tok_str(sym->v, NULL), c, r,
273 cur_text_section->data[ind-3],
274 cur_text_section->data[ind-2],
275 cur_text_section->data[ind-1]
277 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
278 #endif
279 gen_le32(0);
280 if (c) {
281 /* we use add c, %xxx for displacement */
282 orex(1, r, 0, 0x81);
283 o(0xc0 + REG_VALUE(r));
284 gen_le32(c);
288 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
290 op_reg = REG_VALUE(op_reg) << 3;
291 if ((r & VT_VALMASK) == VT_CONST) {
292 /* constant memory reference */
293 o(0x05 | op_reg);
294 if (is_got) {
295 gen_gotpcrel(r, sym, c);
296 } else {
297 gen_addrpc32(r, sym, c);
299 } else if ((r & VT_VALMASK) == VT_LOCAL) {
300 /* currently, we use only ebp as base */
301 if (c == (char)c) {
302 /* short reference */
303 o(0x45 | op_reg);
304 g(c);
305 } else {
306 oad(0x85 | op_reg, c);
308 } else if ((r & VT_VALMASK) >= TREG_MEM) {
309 if (c) {
310 g(0x80 | op_reg | REG_VALUE(r));
311 gen_le32(c);
312 } else {
313 g(0x00 | op_reg | REG_VALUE(r));
315 } else {
316 g(0x00 | op_reg | REG_VALUE(r));
320 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
321 opcode bits */
322 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
324 gen_modrm_impl(op_reg, r, sym, c, 0);
327 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
328 opcode bits */
329 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
331 int is_got;
332 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
333 orex(1, r, op_reg, opcode);
334 gen_modrm_impl(op_reg, r, sym, c, is_got);
338 /* load 'r' from value 'sv' */
339 void load(int r, SValue *sv)
341 int v, t, ft, fc, fr;
342 SValue v1;
344 #ifdef TCC_TARGET_PE
345 SValue v2;
346 sv = pe_getimport(sv, &v2);
347 #endif
349 fr = sv->r;
350 ft = sv->type.t & ~VT_DEFSIGN;
351 fc = sv->c.i;
353 ft &= ~(VT_VOLATILE | VT_CONSTANT);
355 #ifndef TCC_TARGET_PE
356 /* we use indirect access via got */
357 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
358 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
359 /* use the result register as a temporal register */
360 int tr = r | TREG_MEM;
361 if (is_float(ft)) {
362 /* we cannot use float registers as a temporal register */
363 tr = get_reg(RC_INT) | TREG_MEM;
365 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
367 /* load from the temporal register */
368 fr = tr | VT_LVAL;
370 #endif
372 v = fr & VT_VALMASK;
373 if (fr & VT_LVAL) {
374 int b, ll;
375 if (v == VT_LLOCAL) {
376 v1.type.t = VT_PTR;
377 v1.r = VT_LOCAL | VT_LVAL;
378 v1.c.i = fc;
379 fr = r;
380 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
381 fr = get_reg(RC_INT);
382 load(fr, &v1);
384 ll = 0;
385 /* Like GCC we can load from small enough properly sized
386 structs and unions as well.
387 XXX maybe move to generic operand handling, but should
388 occur only with asm, so tccasm.c might also be a better place */
389 if ((ft & VT_BTYPE) == VT_STRUCT) {
390 int align;
391 switch (type_size(&sv->type, &align)) {
392 case 1: ft = VT_BYTE; break;
393 case 2: ft = VT_SHORT; break;
394 case 4: ft = VT_INT; break;
395 case 8: ft = VT_LLONG; break;
396 default:
397 tcc_error("invalid aggregate type for register load");
398 break;
401 if ((ft & VT_BTYPE) == VT_FLOAT) {
402 b = 0x6e0f66;
403 r = REG_VALUE(r); /* movd */
404 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
405 b = 0x7e0ff3; /* movq */
406 r = REG_VALUE(r);
407 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
408 b = 0xdb, r = 5; /* fldt */
409 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
410 b = 0xbe0f; /* movsbl */
411 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
412 b = 0xb60f; /* movzbl */
413 } else if ((ft & VT_TYPE) == VT_SHORT) {
414 b = 0xbf0f; /* movswl */
415 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
416 b = 0xb70f; /* movzwl */
417 } else {
418 assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
419 || ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
420 || ((ft & VT_BTYPE) == VT_FUNC));
421 ll = is64_type(ft);
422 b = 0x8b;
424 if (ll) {
425 gen_modrm64(b, r, fr, sv->sym, fc);
426 } else {
427 orex(ll, fr, r, b);
428 gen_modrm(r, fr, sv->sym, fc);
430 } else {
431 if (v == VT_CONST) {
432 if (fr & VT_SYM) {
433 #ifdef TCC_TARGET_PE
434 orex(1,0,r,0x8d);
435 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
436 gen_addrpc32(fr, sv->sym, fc);
437 #else
438 if (sv->sym->type.t & VT_STATIC) {
439 orex(1,0,r,0x8d);
440 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
441 gen_addrpc32(fr, sv->sym, fc);
442 } else {
443 orex(1,0,r,0x8b);
444 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
445 gen_gotpcrel(r, sv->sym, fc);
447 #endif
448 } else if (is64_type(ft)) {
449 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
450 gen_le64(sv->c.i);
451 } else {
452 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
453 gen_le32(fc);
455 } else if (v == VT_LOCAL) {
456 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
457 gen_modrm(r, VT_LOCAL, sv->sym, fc);
458 } else if (v == VT_CMP) {
459 orex(0,r,0,0);
460 if ((fc & ~0x100) != TOK_NE)
461 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
462 else
463 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
464 if (fc & 0x100)
466 /* This was a float compare. If the parity bit is
467 set the result was unordered, meaning false for everything
468 except TOK_NE, and true for TOK_NE. */
469 fc &= ~0x100;
470 o(0x037a + (REX_BASE(r) << 8));
472 orex(0,r,0, 0x0f); /* setxx %br */
473 o(fc);
474 o(0xc0 + REG_VALUE(r));
475 } else if (v == VT_JMP || v == VT_JMPI) {
476 t = v & 1;
477 orex(0,r,0,0);
478 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
479 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
480 gsym(fc);
481 orex(0,r,0,0);
482 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
483 } else if (v != r) {
484 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
485 if (v == TREG_ST0) {
486 /* gen_cvt_ftof(VT_DOUBLE); */
487 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
488 /* movsd -0x10(%rsp),%xmmN */
489 o(0x100ff2);
490 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
491 o(0xf024);
492 } else {
493 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
494 if ((ft & VT_BTYPE) == VT_FLOAT) {
495 o(0x100ff3);
496 } else {
497 assert((ft & VT_BTYPE) == VT_DOUBLE);
498 o(0x100ff2);
500 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
502 } else if (r == TREG_ST0) {
503 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
504 /* gen_cvt_ftof(VT_LDOUBLE); */
505 /* movsd %xmmN,-0x10(%rsp) */
506 o(0x110ff2);
507 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
508 o(0xf024);
509 o(0xf02444dd); /* fldl -0x10(%rsp) */
510 } else {
511 orex(1,r,v, 0x89);
512 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
518 /* store register 'r' in lvalue 'v' */
519 void store(int r, SValue *v)
521 int fr, bt, ft, fc;
522 int op64 = 0;
523 /* store the REX prefix in this variable when PIC is enabled */
524 int pic = 0;
526 #ifdef TCC_TARGET_PE
527 SValue v2;
528 v = pe_getimport(v, &v2);
529 #endif
531 ft = v->type.t;
532 fc = v->c.i;
533 fr = v->r & VT_VALMASK;
534 ft &= ~(VT_VOLATILE | VT_CONSTANT);
535 bt = ft & VT_BTYPE;
537 #ifndef TCC_TARGET_PE
538 /* we need to access the variable via got */
539 if (fr == VT_CONST && (v->r & VT_SYM)) {
540 /* mov xx(%rip), %r11 */
541 o(0x1d8b4c);
542 gen_gotpcrel(TREG_R11, v->sym, v->c.i);
543 pic = is64_type(bt) ? 0x49 : 0x41;
545 #endif
547 /* XXX: incorrect if float reg to reg */
548 if (bt == VT_FLOAT) {
549 o(0x66);
550 o(pic);
551 o(0x7e0f); /* movd */
552 r = REG_VALUE(r);
553 } else if (bt == VT_DOUBLE) {
554 o(0x66);
555 o(pic);
556 o(0xd60f); /* movq */
557 r = REG_VALUE(r);
558 } else if (bt == VT_LDOUBLE) {
559 o(0xc0d9); /* fld %st(0) */
560 o(pic);
561 o(0xdb); /* fstpt */
562 r = 7;
563 } else {
564 if (bt == VT_SHORT)
565 o(0x66);
566 o(pic);
567 if (bt == VT_BYTE || bt == VT_BOOL)
568 orex(0, 0, r, 0x88);
569 else if (is64_type(bt))
570 op64 = 0x89;
571 else
572 orex(0, 0, r, 0x89);
574 if (pic) {
575 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
576 if (op64)
577 o(op64);
578 o(3 + (r << 3));
579 } else if (op64) {
580 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
581 gen_modrm64(op64, r, v->r, v->sym, fc);
582 } else if (fr != r) {
583 /* XXX: don't we really come here? */
584 abort();
585 o(0xc0 + fr + r * 8); /* mov r, fr */
587 } else {
588 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
589 gen_modrm(r, v->r, v->sym, fc);
590 } else if (fr != r) {
591 /* XXX: don't we really come here? */
592 abort();
593 o(0xc0 + fr + r * 8); /* mov r, fr */
598 /* 'is_jmp' is '1' if it is a jump */
599 static void gcall_or_jmp(int is_jmp)
601 int r;
602 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
603 ((vtop->r & VT_SYM) || (vtop->c.i-4) == (int)(vtop->c.i-4))) {
604 /* constant case */
605 if (vtop->r & VT_SYM) {
606 /* relocation case */
607 #ifdef TCC_TARGET_PE
608 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
609 #else
610 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
611 #endif
612 } else {
613 /* put an empty PC32 relocation */
614 put_elf_reloca(symtab_section, cur_text_section,
615 ind + 1, R_X86_64_PC32, 0, (int)(vtop->c.i-4));
617 oad(0xe8 + is_jmp, 0); /* call/jmp im */
618 } else {
619 /* otherwise, indirect call */
620 r = TREG_R11;
621 load(r, vtop);
622 o(0x41); /* REX */
623 o(0xff); /* call/jmp *r */
624 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
628 #if defined(CONFIG_TCC_BCHECK)
629 #ifndef TCC_TARGET_PE
630 static addr_t func_bound_offset;
631 static unsigned long func_bound_ind;
632 #endif
634 static void gen_static_call(int v)
636 Sym *sym = external_global_sym(v, &func_old_type, 0);
637 oad(0xe8, 0);
638 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
641 /* generate a bounded pointer addition */
642 ST_FUNC void gen_bounded_ptr_add(void)
644 /* save all temporary registers */
645 save_regs(0);
647 /* prepare fast x86_64 function call */
648 gv(RC_RAX);
649 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
650 vtop--;
652 gv(RC_RAX);
653 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
654 vtop--;
656 /* do a fast function call */
657 gen_static_call(TOK___bound_ptr_add);
659 /* returned pointer is in rax */
660 vtop++;
661 vtop->r = TREG_RAX | VT_BOUNDED;
664 /* relocation offset of the bounding function call point */
665 vtop->c.i = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
668 /* patch pointer addition in vtop so that pointer dereferencing is
669 also tested */
670 ST_FUNC void gen_bounded_ptr_deref(void)
672 addr_t func;
673 int size, align;
674 ElfW(Rela) *rel;
675 Sym *sym;
677 size = 0;
678 /* XXX: put that code in generic part of tcc */
679 if (!is_float(vtop->type.t)) {
680 if (vtop->r & VT_LVAL_BYTE)
681 size = 1;
682 else if (vtop->r & VT_LVAL_SHORT)
683 size = 2;
685 if (!size)
686 size = type_size(&vtop->type, &align);
687 switch(size) {
688 case 1: func = TOK___bound_ptr_indir1; break;
689 case 2: func = TOK___bound_ptr_indir2; break;
690 case 4: func = TOK___bound_ptr_indir4; break;
691 case 8: func = TOK___bound_ptr_indir8; break;
692 case 12: func = TOK___bound_ptr_indir12; break;
693 case 16: func = TOK___bound_ptr_indir16; break;
694 default:
695 tcc_error("unhandled size when dereferencing bounded pointer");
696 func = 0;
697 break;
700 sym = external_global_sym(func, &func_old_type, 0);
701 if (!sym->c)
702 put_extern_sym(sym, NULL, 0, 0);
704 /* patch relocation */
705 /* XXX: find a better solution ? */
707 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.i);
708 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
710 #endif
712 #ifdef TCC_TARGET_PE
714 #define REGN 4
715 static const uint8_t arg_regs[REGN] = {
716 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
719 /* Prepare arguments in R10 and R11 rather than RCX and RDX
720 because gv() will not ever use these */
721 static int arg_prepare_reg(int idx) {
722 if (idx == 0 || idx == 1)
723 /* idx=0: r10, idx=1: r11 */
724 return idx + 10;
725 else
726 return arg_regs[idx];
729 static int func_scratch;
731 /* Generate function call. The function address is pushed first, then
732 all the parameters in call order. This functions pops all the
733 parameters and the function address. */
735 void gen_offs_sp(int b, int r, int d)
737 orex(1,0,r & 0x100 ? 0 : r, b);
738 if (d == (char)d) {
739 o(0x2444 | (REG_VALUE(r) << 3));
740 g(d);
741 } else {
742 o(0x2484 | (REG_VALUE(r) << 3));
743 gen_le32(d);
747 /* Return the number of registers needed to return the struct, or 0 if
748 returning via struct pointer. */
749 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
751 int size, align;
752 *regsize = 8;
753 *ret_align = 1; // Never have to re-align return values for x86-64
754 size = type_size(vt, &align);
755 ret->ref = NULL;
756 if (size > 8) {
757 return 0;
758 } else if (size > 4) {
759 ret->t = VT_LLONG;
760 return 1;
761 } else if (size > 2) {
762 ret->t = VT_INT;
763 return 1;
764 } else if (size > 1) {
765 ret->t = VT_SHORT;
766 return 1;
767 } else {
768 ret->t = VT_BYTE;
769 return 1;
773 static int is_sse_float(int t) {
774 int bt;
775 bt = t & VT_BTYPE;
776 return bt == VT_DOUBLE || bt == VT_FLOAT;
779 int gfunc_arg_size(CType *type) {
780 int align;
781 if (type->t & (VT_ARRAY|VT_BITFIELD))
782 return 8;
783 return type_size(type, &align);
786 void gfunc_call(int nb_args)
788 int size, r, args_size, i, d, bt, struct_size;
789 int arg;
791 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
792 arg = nb_args;
794 /* for struct arguments, we need to call memcpy and the function
795 call breaks register passing arguments we are preparing.
796 So, we process arguments which will be passed by stack first. */
797 struct_size = args_size;
798 for(i = 0; i < nb_args; i++) {
799 SValue *sv;
801 --arg;
802 sv = &vtop[-i];
803 bt = (sv->type.t & VT_BTYPE);
804 size = gfunc_arg_size(&sv->type);
806 if (size <= 8)
807 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
809 if (bt == VT_STRUCT) {
810 /* align to stack align size */
811 size = (size + 15) & ~15;
812 /* generate structure store */
813 r = get_reg(RC_INT);
814 gen_offs_sp(0x8d, r, struct_size);
815 struct_size += size;
817 /* generate memcpy call */
818 vset(&sv->type, r | VT_LVAL, 0);
819 vpushv(sv);
820 vstore();
821 --vtop;
822 } else if (bt == VT_LDOUBLE) {
823 gv(RC_ST0);
824 gen_offs_sp(0xdb, 0x107, struct_size);
825 struct_size += 16;
829 if (func_scratch < struct_size)
830 func_scratch = struct_size;
832 arg = nb_args;
833 struct_size = args_size;
835 for(i = 0; i < nb_args; i++) {
836 --arg;
837 bt = (vtop->type.t & VT_BTYPE);
839 size = gfunc_arg_size(&vtop->type);
840 if (size > 8) {
841 /* align to stack align size */
842 size = (size + 15) & ~15;
843 if (arg >= REGN) {
844 d = get_reg(RC_INT);
845 gen_offs_sp(0x8d, d, struct_size);
846 gen_offs_sp(0x89, d, arg*8);
847 } else {
848 d = arg_prepare_reg(arg);
849 gen_offs_sp(0x8d, d, struct_size);
851 struct_size += size;
852 } else {
853 if (is_sse_float(vtop->type.t)) {
854 gv(RC_XMM0); /* only use one float register */
855 if (arg >= REGN) {
856 /* movq %xmm0, j*8(%rsp) */
857 gen_offs_sp(0xd60f66, 0x100, arg*8);
858 } else {
859 /* movaps %xmm0, %xmmN */
860 o(0x280f);
861 o(0xc0 + (arg << 3));
862 d = arg_prepare_reg(arg);
863 /* mov %xmm0, %rxx */
864 o(0x66);
865 orex(1,d,0, 0x7e0f);
866 o(0xc0 + REG_VALUE(d));
868 } else {
869 if (bt == VT_STRUCT) {
870 vtop->type.ref = NULL;
871 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
872 : size > 1 ? VT_SHORT : VT_BYTE;
875 r = gv(RC_INT);
876 if (arg >= REGN) {
877 gen_offs_sp(0x89, r, arg*8);
878 } else {
879 d = arg_prepare_reg(arg);
880 orex(1,d,r,0x89); /* mov */
881 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
885 vtop--;
887 save_regs(0);
889 /* Copy R10 and R11 into RCX and RDX, respectively */
890 if (nb_args > 0) {
891 o(0xd1894c); /* mov %r10, %rcx */
892 if (nb_args > 1) {
893 o(0xda894c); /* mov %r11, %rdx */
897 gcall_or_jmp(0);
898 /* other compilers don't clear the upper bits when returning char/short */
899 bt = vtop->type.ref->type.t & (VT_BTYPE | VT_UNSIGNED);
900 if (bt == (VT_BYTE | VT_UNSIGNED))
901 o(0xc0b60f); /* movzbl %al, %eax */
902 else if (bt == VT_BYTE)
903 o(0xc0be0f); /* movsbl %al, %eax */
904 else if (bt == VT_SHORT)
905 o(0x98); /* cwtl */
906 else if (bt == (VT_SHORT | VT_UNSIGNED))
907 o(0xc0b70f); /* movzbl %al, %eax */
908 #if 0 /* handled in gen_cast() */
909 else if (bt == VT_INT)
910 o(0x9848); /* cltq */
911 else if (bt == (VT_INT | VT_UNSIGNED))
912 o(0xc089); /* mov %eax,%eax */
913 #endif
914 vtop--;
918 #define FUNC_PROLOG_SIZE 11
920 /* generate function prolog of type 't' */
921 void gfunc_prolog(CType *func_type)
923 int addr, reg_param_index, bt, size;
924 Sym *sym;
925 CType *type;
927 func_ret_sub = 0;
928 func_scratch = 0;
929 loc = 0;
931 addr = PTR_SIZE * 2;
932 ind += FUNC_PROLOG_SIZE;
933 func_sub_sp_offset = ind;
934 reg_param_index = 0;
936 sym = func_type->ref;
938 /* if the function returns a structure, then add an
939 implicit pointer parameter */
940 func_vt = sym->type;
941 func_var = (sym->c == FUNC_ELLIPSIS);
942 size = gfunc_arg_size(&func_vt);
943 if (size > 8) {
944 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
945 func_vc = addr;
946 reg_param_index++;
947 addr += 8;
950 /* define parameters */
951 while ((sym = sym->next) != NULL) {
952 type = &sym->type;
953 bt = type->t & VT_BTYPE;
954 size = gfunc_arg_size(type);
955 if (size > 8) {
956 if (reg_param_index < REGN) {
957 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
959 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
960 } else {
961 if (reg_param_index < REGN) {
962 /* save arguments passed by register */
963 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
964 o(0xd60f66); /* movq */
965 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
966 } else {
967 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
970 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
972 addr += 8;
973 reg_param_index++;
976 while (reg_param_index < REGN) {
977 if (func_type->ref->c == FUNC_ELLIPSIS) {
978 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
979 addr += 8;
981 reg_param_index++;
985 /* generate function epilog */
986 void gfunc_epilog(void)
988 int v, saved_ind;
990 o(0xc9); /* leave */
991 if (func_ret_sub == 0) {
992 o(0xc3); /* ret */
993 } else {
994 o(0xc2); /* ret n */
995 g(func_ret_sub);
996 g(func_ret_sub >> 8);
999 saved_ind = ind;
1000 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1001 /* align local size to word & save local variables */
1002 v = (func_scratch + -loc + 15) & -16;
1004 if (v >= 4096) {
1005 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
1006 oad(0xb8, v); /* mov stacksize, %eax */
1007 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1008 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
1009 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1010 } else {
1011 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1012 o(0xec8148); /* sub rsp, stacksize */
1013 gen_le32(v);
1016 cur_text_section->data_offset = saved_ind;
1017 pe_add_unwind_data(ind, saved_ind, v);
1018 ind = cur_text_section->data_offset;
1021 #else
1023 static void gadd_sp(int val)
1025 if (val == (char)val) {
1026 o(0xc48348);
1027 g(val);
1028 } else {
1029 oad(0xc48148, val); /* add $xxx, %rsp */
1033 typedef enum X86_64_Mode {
1034 x86_64_mode_none,
1035 x86_64_mode_memory,
1036 x86_64_mode_integer,
1037 x86_64_mode_sse,
1038 x86_64_mode_x87
1039 } X86_64_Mode;
1041 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1043 if (a == b)
1044 return a;
1045 else if (a == x86_64_mode_none)
1046 return b;
1047 else if (b == x86_64_mode_none)
1048 return a;
1049 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1050 return x86_64_mode_memory;
1051 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1052 return x86_64_mode_integer;
1053 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1054 return x86_64_mode_memory;
1055 else
1056 return x86_64_mode_sse;
1059 static X86_64_Mode classify_x86_64_inner(CType *ty)
1061 X86_64_Mode mode;
1062 Sym *f;
1064 switch (ty->t & VT_BTYPE) {
1065 case VT_VOID: return x86_64_mode_none;
1067 case VT_INT:
1068 case VT_BYTE:
1069 case VT_SHORT:
1070 case VT_LLONG:
1071 case VT_BOOL:
1072 case VT_PTR:
1073 case VT_FUNC:
1074 case VT_ENUM: return x86_64_mode_integer;
1076 case VT_FLOAT:
1077 case VT_DOUBLE: return x86_64_mode_sse;
1079 case VT_LDOUBLE: return x86_64_mode_x87;
1081 case VT_STRUCT:
1082 f = ty->ref;
1084 mode = x86_64_mode_none;
1085 for (f = f->next; f; f = f->next)
1086 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1088 return mode;
1090 assert(0);
1091 return 0;
1094 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1096 X86_64_Mode mode;
1097 int size, align, ret_t = 0;
1099 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1100 *psize = 8;
1101 *palign = 8;
1102 *reg_count = 1;
1103 ret_t = ty->t;
1104 mode = x86_64_mode_integer;
1105 } else {
1106 size = type_size(ty, &align);
1107 *psize = (size + 7) & ~7;
1108 *palign = (align + 7) & ~7;
1110 if (size > 16) {
1111 mode = x86_64_mode_memory;
1112 } else {
1113 mode = classify_x86_64_inner(ty);
1114 switch (mode) {
1115 case x86_64_mode_integer:
1116 if (size > 8) {
1117 *reg_count = 2;
1118 ret_t = VT_QLONG;
1119 } else {
1120 *reg_count = 1;
1121 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1123 break;
1125 case x86_64_mode_x87:
1126 *reg_count = 1;
1127 ret_t = VT_LDOUBLE;
1128 break;
1130 case x86_64_mode_sse:
1131 if (size > 8) {
1132 *reg_count = 2;
1133 ret_t = VT_QFLOAT;
1134 } else {
1135 *reg_count = 1;
1136 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1138 break;
1139 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1144 if (ret) {
1145 ret->ref = NULL;
1146 ret->t = ret_t;
1149 return mode;
1152 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1154 /* This definition must be synced with stdarg.h */
1155 enum __va_arg_type {
1156 __va_gen_reg, __va_float_reg, __va_stack
1158 int size, align, reg_count;
1159 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1160 switch (mode) {
1161 default: return __va_stack;
1162 case x86_64_mode_integer: return __va_gen_reg;
1163 case x86_64_mode_sse: return __va_float_reg;
1167 /* Return the number of registers needed to return the struct, or 0 if
1168 returning via struct pointer. */
1169 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1171 int size, align, reg_count;
1172 *ret_align = 1; // Never have to re-align return values for x86-64
1173 *regsize = 8;
1174 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1177 #define REGN 6
1178 static const uint8_t arg_regs[REGN] = {
1179 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1182 static int arg_prepare_reg(int idx) {
1183 if (idx == 2 || idx == 3)
1184 /* idx=2: r10, idx=3: r11 */
1185 return idx + 8;
1186 else
1187 return arg_regs[idx];
1190 /* Generate function call. The function address is pushed first, then
1191 all the parameters in call order. This functions pops all the
1192 parameters and the function address. */
1193 void gfunc_call(int nb_args)
1195 X86_64_Mode mode;
1196 CType type;
1197 int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
1198 int nb_reg_args = 0;
1199 int nb_sse_args = 0;
1200 int sse_reg, gen_reg;
1202 /* calculate the number of integer/float register arguments */
1203 for(i = 0; i < nb_args; i++) {
1204 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1205 if (mode == x86_64_mode_sse)
1206 nb_sse_args += reg_count;
1207 else if (mode == x86_64_mode_integer)
1208 nb_reg_args += reg_count;
1211 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1212 and ended by a 16-byte aligned argument. This is because, from the point of view of
1213 the callee, argument alignment is computed from the bottom up. */
1214 /* for struct arguments, we need to call memcpy and the function
1215 call breaks register passing arguments we are preparing.
1216 So, we process arguments which will be passed by stack first. */
1217 gen_reg = nb_reg_args;
1218 sse_reg = nb_sse_args;
1219 run_start = 0;
1220 args_size = 0;
1221 while (run_start != nb_args) {
1222 int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
1224 run_end = nb_args;
1225 stack_adjust = 0;
1226 for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
1227 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1228 switch (mode) {
1229 case x86_64_mode_memory:
1230 case x86_64_mode_x87:
1231 stack_arg:
1232 if (align == 16)
1233 run_end = i;
1234 else
1235 stack_adjust += size;
1236 break;
1238 case x86_64_mode_sse:
1239 sse_reg -= reg_count;
1240 if (sse_reg + reg_count > 8) goto stack_arg;
1241 break;
1243 case x86_64_mode_integer:
1244 gen_reg -= reg_count;
1245 if (gen_reg + reg_count > REGN) goto stack_arg;
1246 break;
1247 default: break; /* nothing to be done for x86_64_mode_none */
1251 gen_reg = run_gen_reg;
1252 sse_reg = run_sse_reg;
1254 /* adjust stack to align SSE boundary */
1255 if (stack_adjust &= 15) {
1256 /* fetch cpu flag before the following sub will change the value */
1257 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1258 gv(RC_INT);
1260 stack_adjust = 16 - stack_adjust;
1261 o(0x48);
1262 oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
1263 args_size += stack_adjust;
1266 for(i = run_start; i < run_end;) {
1267 /* Swap argument to top, it will possibly be changed here,
1268 and might use more temps. At the end of the loop we keep
1269 in on the stack and swap it back to its original position
1270 if it is a register. */
1271 SValue tmp = vtop[0];
1272 int arg_stored = 1;
1274 vtop[0] = vtop[-i];
1275 vtop[-i] = tmp;
1276 mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, &reg_count);
1278 switch (vtop->type.t & VT_BTYPE) {
1279 case VT_STRUCT:
1280 if (mode == x86_64_mode_sse) {
1281 if (sse_reg > 8)
1282 sse_reg -= reg_count;
1283 else
1284 arg_stored = 0;
1285 } else if (mode == x86_64_mode_integer) {
1286 if (gen_reg > REGN)
1287 gen_reg -= reg_count;
1288 else
1289 arg_stored = 0;
1292 if (arg_stored) {
1293 /* allocate the necessary size on stack */
1294 o(0x48);
1295 oad(0xec81, size); /* sub $xxx, %rsp */
1296 /* generate structure store */
1297 r = get_reg(RC_INT);
1298 orex(1, r, 0, 0x89); /* mov %rsp, r */
1299 o(0xe0 + REG_VALUE(r));
1300 vset(&vtop->type, r | VT_LVAL, 0);
1301 vswap();
1302 vstore();
1303 args_size += size;
1305 break;
1307 case VT_LDOUBLE:
1308 assert(0);
1309 break;
1311 case VT_FLOAT:
1312 case VT_DOUBLE:
1313 assert(mode == x86_64_mode_sse);
1314 if (sse_reg > 8) {
1315 --sse_reg;
1316 r = gv(RC_FLOAT);
1317 o(0x50); /* push $rax */
1318 /* movq %xmmN, (%rsp) */
1319 o(0xd60f66);
1320 o(0x04 + REG_VALUE(r)*8);
1321 o(0x24);
1322 args_size += size;
1323 } else {
1324 arg_stored = 0;
1326 break;
1328 default:
1329 assert(mode == x86_64_mode_integer);
1330 /* simple type */
1331 /* XXX: implicit cast ? */
1332 if (gen_reg > REGN) {
1333 --gen_reg;
1334 r = gv(RC_INT);
1335 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1336 args_size += size;
1337 } else {
1338 arg_stored = 0;
1340 break;
1343 /* And swap the argument back to it's original position. */
1344 tmp = vtop[0];
1345 vtop[0] = vtop[-i];
1346 vtop[-i] = tmp;
1348 if (arg_stored) {
1349 vrotb(i+1);
1350 assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
1351 vpop();
1352 --nb_args;
1353 --run_end;
1354 } else {
1355 ++i;
1359 /* handle 16 byte aligned arguments at end of run */
1360 run_start = i = run_end;
1361 while (i < nb_args) {
1362 /* Rotate argument to top since it will always be popped */
1363 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1364 if (align != 16)
1365 break;
1367 vrotb(i+1);
1369 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1370 gv(RC_ST0);
1371 oad(0xec8148, size); /* sub $xxx, %rsp */
1372 o(0x7cdb); /* fstpt 0(%rsp) */
1373 g(0x24);
1374 g(0x00);
1375 args_size += size;
1376 } else {
1377 assert(mode == x86_64_mode_memory);
1379 /* allocate the necessary size on stack */
1380 o(0x48);
1381 oad(0xec81, size); /* sub $xxx, %rsp */
1382 /* generate structure store */
1383 r = get_reg(RC_INT);
1384 orex(1, r, 0, 0x89); /* mov %rsp, r */
1385 o(0xe0 + REG_VALUE(r));
1386 vset(&vtop->type, r | VT_LVAL, 0);
1387 vswap();
1388 vstore();
1389 args_size += size;
1392 vpop();
1393 --nb_args;
1397 /* XXX This should be superfluous. */
1398 save_regs(0); /* save used temporary registers */
1400 /* then, we prepare register passing arguments.
1401 Note that we cannot set RDX and RCX in this loop because gv()
1402 may break these temporary registers. Let's use R10 and R11
1403 instead of them */
1404 assert(gen_reg <= REGN);
1405 assert(sse_reg <= 8);
1406 for(i = 0; i < nb_args; i++) {
1407 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1408 /* Alter stack entry type so that gv() knows how to treat it */
1409 vtop->type = type;
1410 if (mode == x86_64_mode_sse) {
1411 if (reg_count == 2) {
1412 sse_reg -= 2;
1413 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1414 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1415 /* movaps %xmm0, %xmmN */
1416 o(0x280f);
1417 o(0xc0 + (sse_reg << 3));
1418 /* movaps %xmm1, %xmmN */
1419 o(0x280f);
1420 o(0xc1 + ((sse_reg+1) << 3));
1422 } else {
1423 assert(reg_count == 1);
1424 --sse_reg;
1425 /* Load directly to register */
1426 gv(RC_XMM0 << sse_reg);
1428 } else if (mode == x86_64_mode_integer) {
1429 /* simple type */
1430 /* XXX: implicit cast ? */
1431 int d;
1432 gen_reg -= reg_count;
1433 r = gv(RC_INT);
1434 d = arg_prepare_reg(gen_reg);
1435 orex(1,d,r,0x89); /* mov */
1436 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1437 if (reg_count == 2) {
1438 d = arg_prepare_reg(gen_reg+1);
1439 orex(1,d,vtop->r2,0x89); /* mov */
1440 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1443 vtop--;
1445 assert(gen_reg == 0);
1446 assert(sse_reg == 0);
1448 /* We shouldn't have many operands on the stack anymore, but the
1449 call address itself is still there, and it might be in %eax
1450 (or edx/ecx) currently, which the below writes would clobber.
1451 So evict all remaining operands here. */
1452 save_regs(0);
1454 /* Copy R10 and R11 into RDX and RCX, respectively */
1455 if (nb_reg_args > 2) {
1456 o(0xd2894c); /* mov %r10, %rdx */
1457 if (nb_reg_args > 3) {
1458 o(0xd9894c); /* mov %r11, %rcx */
1462 if (vtop->type.ref->c != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1463 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1464 gcall_or_jmp(0);
1465 if (args_size)
1466 gadd_sp(args_size);
1467 vtop--;
1471 #define FUNC_PROLOG_SIZE 11
1473 static void push_arg_reg(int i) {
1474 loc -= 8;
1475 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1478 /* generate function prolog of type 't' */
1479 void gfunc_prolog(CType *func_type)
1481 X86_64_Mode mode;
1482 int i, addr, align, size, reg_count;
1483 int param_addr = 0, reg_param_index, sse_param_index;
1484 Sym *sym;
1485 CType *type;
1487 sym = func_type->ref;
1488 addr = PTR_SIZE * 2;
1489 loc = 0;
1490 ind += FUNC_PROLOG_SIZE;
1491 func_sub_sp_offset = ind;
1492 func_ret_sub = 0;
1494 if (func_type->ref->c == FUNC_ELLIPSIS) {
1495 int seen_reg_num, seen_sse_num, seen_stack_size;
1496 seen_reg_num = seen_sse_num = 0;
1497 /* frame pointer and return address */
1498 seen_stack_size = PTR_SIZE * 2;
1499 /* count the number of seen parameters */
1500 sym = func_type->ref;
1501 while ((sym = sym->next) != NULL) {
1502 type = &sym->type;
1503 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1504 switch (mode) {
1505 default:
1506 stack_arg:
1507 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1508 break;
1510 case x86_64_mode_integer:
1511 if (seen_reg_num + reg_count <= 8) {
1512 seen_reg_num += reg_count;
1513 } else {
1514 seen_reg_num = 8;
1515 goto stack_arg;
1517 break;
1519 case x86_64_mode_sse:
1520 if (seen_sse_num + reg_count <= 8) {
1521 seen_sse_num += reg_count;
1522 } else {
1523 seen_sse_num = 8;
1524 goto stack_arg;
1526 break;
1530 loc -= 16;
1531 /* movl $0x????????, -0x10(%rbp) */
1532 o(0xf045c7);
1533 gen_le32(seen_reg_num * 8);
1534 /* movl $0x????????, -0xc(%rbp) */
1535 o(0xf445c7);
1536 gen_le32(seen_sse_num * 16 + 48);
1537 /* movl $0x????????, -0x8(%rbp) */
1538 o(0xf845c7);
1539 gen_le32(seen_stack_size);
1541 /* save all register passing arguments */
1542 for (i = 0; i < 8; i++) {
1543 loc -= 16;
1544 o(0xd60f66); /* movq */
1545 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1546 /* movq $0, loc+8(%rbp) */
1547 o(0x85c748);
1548 gen_le32(loc + 8);
1549 gen_le32(0);
1551 for (i = 0; i < REGN; i++) {
1552 push_arg_reg(REGN-1-i);
1556 sym = func_type->ref;
1557 reg_param_index = 0;
1558 sse_param_index = 0;
1560 /* if the function returns a structure, then add an
1561 implicit pointer parameter */
1562 func_vt = sym->type;
1563 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1564 if (mode == x86_64_mode_memory) {
1565 push_arg_reg(reg_param_index);
1566 func_vc = loc;
1567 reg_param_index++;
1569 /* define parameters */
1570 while ((sym = sym->next) != NULL) {
1571 type = &sym->type;
1572 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1573 switch (mode) {
1574 case x86_64_mode_sse:
1575 if (sse_param_index + reg_count <= 8) {
1576 /* save arguments passed by register */
1577 loc -= reg_count * 8;
1578 param_addr = loc;
1579 for (i = 0; i < reg_count; ++i) {
1580 o(0xd60f66); /* movq */
1581 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1582 ++sse_param_index;
1584 } else {
1585 addr = (addr + align - 1) & -align;
1586 param_addr = addr;
1587 addr += size;
1589 break;
1591 case x86_64_mode_memory:
1592 case x86_64_mode_x87:
1593 addr = (addr + align - 1) & -align;
1594 param_addr = addr;
1595 addr += size;
1596 break;
1598 case x86_64_mode_integer: {
1599 if (reg_param_index + reg_count <= REGN) {
1600 /* save arguments passed by register */
1601 loc -= reg_count * 8;
1602 param_addr = loc;
1603 for (i = 0; i < reg_count; ++i) {
1604 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1605 ++reg_param_index;
1607 } else {
1608 addr = (addr + align - 1) & -align;
1609 param_addr = addr;
1610 addr += size;
1612 break;
1614 default: break; /* nothing to be done for x86_64_mode_none */
1616 sym_push(sym->v & ~SYM_FIELD, type,
1617 VT_LOCAL | VT_LVAL, param_addr);
1620 #ifdef CONFIG_TCC_BCHECK
1621 /* leave some room for bound checking code */
1622 if (tcc_state->do_bounds_check) {
1623 func_bound_offset = lbounds_section->data_offset;
1624 func_bound_ind = ind;
1625 oad(0xb8, 0); /* lbound section pointer */
1626 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1627 oad(0xb8, 0); /* call to function */
1629 #endif
1632 /* generate function epilog */
1633 void gfunc_epilog(void)
1635 int v, saved_ind;
1637 #ifdef CONFIG_TCC_BCHECK
1638 if (tcc_state->do_bounds_check
1639 && func_bound_offset != lbounds_section->data_offset)
1641 addr_t saved_ind;
1642 addr_t *bounds_ptr;
1643 Sym *sym_data;
1645 /* add end of table info */
1646 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1647 *bounds_ptr = 0;
1649 /* generate bound local allocation */
1650 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1651 func_bound_offset, lbounds_section->data_offset);
1652 saved_ind = ind;
1653 ind = func_bound_ind;
1654 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1655 ind = ind + 5 + 3;
1656 gen_static_call(TOK___bound_local_new);
1657 ind = saved_ind;
1659 /* generate bound check local freeing */
1660 o(0x5250); /* save returned value, if any */
1661 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1662 oad(0xb8, 0); /* mov xxx, %rax */
1663 o(0xc78948); /* mov %rax,%rdi # first arg in %rdi, this must be ptr */
1664 gen_static_call(TOK___bound_local_delete);
1665 o(0x585a); /* restore returned value, if any */
1667 #endif
1668 o(0xc9); /* leave */
1669 if (func_ret_sub == 0) {
1670 o(0xc3); /* ret */
1671 } else {
1672 o(0xc2); /* ret n */
1673 g(func_ret_sub);
1674 g(func_ret_sub >> 8);
1676 /* align local size to word & save local variables */
1677 v = (-loc + 15) & -16;
1678 saved_ind = ind;
1679 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1680 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1681 o(0xec8148); /* sub rsp, stacksize */
1682 gen_le32(v);
1683 ind = saved_ind;
1686 #endif /* not PE */
1688 /* generate a jump to a label */
1689 int gjmp(int t)
1691 return psym(0xe9, t);
1694 /* generate a jump to a fixed address */
1695 void gjmp_addr(int a)
1697 int r;
1698 r = a - ind - 2;
1699 if (r == (char)r) {
1700 g(0xeb);
1701 g(r);
1702 } else {
1703 oad(0xe9, a - ind - 5);
1707 ST_FUNC void gtst_addr(int inv, int a)
1709 inv ^= (vtop--)->c.i;
1710 a -= ind + 2;
1711 if (a == (char)a) {
1712 g(inv - 32);
1713 g(a);
1714 } else {
1715 g(0x0f);
1716 oad(inv - 16, a - 4);
1720 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1721 ST_FUNC int gtst(int inv, int t)
1723 int v = vtop->r & VT_VALMASK;
1724 if (v == VT_CMP) {
1725 /* fast case : can jump directly since flags are set */
1726 if (vtop->c.i & 0x100)
1728 /* This was a float compare. If the parity flag is set
1729 the result was unordered. For anything except != this
1730 means false and we don't jump (anding both conditions).
1731 For != this means true (oring both).
1732 Take care about inverting the test. We need to jump
1733 to our target if the result was unordered and test wasn't NE,
1734 otherwise if unordered we don't want to jump. */
1735 vtop->c.i &= ~0x100;
1736 if (inv == (vtop->c.i == TOK_NE))
1737 o(0x067a); /* jp +6 */
1738 else
1740 g(0x0f);
1741 t = psym(0x8a, t); /* jp t */
1744 g(0x0f);
1745 t = psym((vtop->c.i - 16) ^ inv, t);
1746 } else if (v == VT_JMP || v == VT_JMPI) {
1747 /* && or || optimization */
1748 if ((v & 1) == inv) {
1749 /* insert vtop->c jump list in t */
1750 uint32_t n1, n = vtop->c.i;
1751 if (n) {
1752 while ((n1 = read32le(cur_text_section->data + n)))
1753 n = n1;
1754 write32le(cur_text_section->data + n, t);
1755 t = vtop->c.i;
1757 } else {
1758 t = gjmp(t);
1759 gsym(vtop->c.i);
1762 vtop--;
1763 return t;
1766 /* generate an integer binary operation */
1767 void gen_opi(int op)
1769 int r, fr, opc, c;
1770 int ll, uu, cc;
1772 ll = is64_type(vtop[-1].type.t);
1773 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1774 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1776 switch(op) {
1777 case '+':
1778 case TOK_ADDC1: /* add with carry generation */
1779 opc = 0;
1780 gen_op8:
1781 if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
1782 /* constant case */
1783 vswap();
1784 r = gv(RC_INT);
1785 vswap();
1786 c = vtop->c.i;
1787 if (c == (char)c) {
1788 /* XXX: generate inc and dec for smaller code ? */
1789 orex(ll, r, 0, 0x83);
1790 o(0xc0 | (opc << 3) | REG_VALUE(r));
1791 g(c);
1792 } else {
1793 orex(ll, r, 0, 0x81);
1794 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1796 } else {
1797 gv2(RC_INT, RC_INT);
1798 r = vtop[-1].r;
1799 fr = vtop[0].r;
1800 orex(ll, r, fr, (opc << 3) | 0x01);
1801 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1803 vtop--;
1804 if (op >= TOK_ULT && op <= TOK_GT) {
1805 vtop->r = VT_CMP;
1806 vtop->c.i = op;
1808 break;
1809 case '-':
1810 case TOK_SUBC1: /* sub with carry generation */
1811 opc = 5;
1812 goto gen_op8;
1813 case TOK_ADDC2: /* add with carry use */
1814 opc = 2;
1815 goto gen_op8;
1816 case TOK_SUBC2: /* sub with carry use */
1817 opc = 3;
1818 goto gen_op8;
1819 case '&':
1820 opc = 4;
1821 goto gen_op8;
1822 case '^':
1823 opc = 6;
1824 goto gen_op8;
1825 case '|':
1826 opc = 1;
1827 goto gen_op8;
1828 case '*':
1829 gv2(RC_INT, RC_INT);
1830 r = vtop[-1].r;
1831 fr = vtop[0].r;
1832 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1833 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1834 vtop--;
1835 break;
1836 case TOK_SHL:
1837 opc = 4;
1838 goto gen_shift;
1839 case TOK_SHR:
1840 opc = 5;
1841 goto gen_shift;
1842 case TOK_SAR:
1843 opc = 7;
1844 gen_shift:
1845 opc = 0xc0 | (opc << 3);
1846 if (cc) {
1847 /* constant case */
1848 vswap();
1849 r = gv(RC_INT);
1850 vswap();
1851 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1852 o(opc | REG_VALUE(r));
1853 g(vtop->c.i & (ll ? 63 : 31));
1854 } else {
1855 /* we generate the shift in ecx */
1856 gv2(RC_INT, RC_RCX);
1857 r = vtop[-1].r;
1858 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1859 o(opc | REG_VALUE(r));
1861 vtop--;
1862 break;
1863 case TOK_UDIV:
1864 case TOK_UMOD:
1865 uu = 1;
1866 goto divmod;
1867 case '/':
1868 case '%':
1869 case TOK_PDIV:
1870 uu = 0;
1871 divmod:
1872 /* first operand must be in eax */
1873 /* XXX: need better constraint for second operand */
1874 gv2(RC_RAX, RC_RCX);
1875 r = vtop[-1].r;
1876 fr = vtop[0].r;
1877 vtop--;
1878 save_reg(TREG_RDX);
1879 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1880 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1881 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1882 if (op == '%' || op == TOK_UMOD)
1883 r = TREG_RDX;
1884 else
1885 r = TREG_RAX;
1886 vtop->r = r;
1887 break;
1888 default:
1889 opc = 7;
1890 goto gen_op8;
1894 void gen_opl(int op)
1896 gen_opi(op);
1899 /* generate a floating point operation 'v = t1 op t2' instruction. The
1900 two operands are guaranted to have the same floating point type */
1901 /* XXX: need to use ST1 too */
1902 void gen_opf(int op)
1904 int a, ft, fc, swapped, r;
1905 int float_type =
1906 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1908 /* convert constants to memory references */
1909 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1910 vswap();
1911 gv(float_type);
1912 vswap();
1914 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1915 gv(float_type);
1917 /* must put at least one value in the floating point register */
1918 if ((vtop[-1].r & VT_LVAL) &&
1919 (vtop[0].r & VT_LVAL)) {
1920 vswap();
1921 gv(float_type);
1922 vswap();
1924 swapped = 0;
1925 /* swap the stack if needed so that t1 is the register and t2 is
1926 the memory reference */
1927 if (vtop[-1].r & VT_LVAL) {
1928 vswap();
1929 swapped = 1;
1931 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1932 if (op >= TOK_ULT && op <= TOK_GT) {
1933 /* load on stack second operand */
1934 load(TREG_ST0, vtop);
1935 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1936 if (op == TOK_GE || op == TOK_GT)
1937 swapped = !swapped;
1938 else if (op == TOK_EQ || op == TOK_NE)
1939 swapped = 0;
1940 if (swapped)
1941 o(0xc9d9); /* fxch %st(1) */
1942 if (op == TOK_EQ || op == TOK_NE)
1943 o(0xe9da); /* fucompp */
1944 else
1945 o(0xd9de); /* fcompp */
1946 o(0xe0df); /* fnstsw %ax */
1947 if (op == TOK_EQ) {
1948 o(0x45e480); /* and $0x45, %ah */
1949 o(0x40fC80); /* cmp $0x40, %ah */
1950 } else if (op == TOK_NE) {
1951 o(0x45e480); /* and $0x45, %ah */
1952 o(0x40f480); /* xor $0x40, %ah */
1953 op = TOK_NE;
1954 } else if (op == TOK_GE || op == TOK_LE) {
1955 o(0x05c4f6); /* test $0x05, %ah */
1956 op = TOK_EQ;
1957 } else {
1958 o(0x45c4f6); /* test $0x45, %ah */
1959 op = TOK_EQ;
1961 vtop--;
1962 vtop->r = VT_CMP;
1963 vtop->c.i = op;
1964 } else {
1965 /* no memory reference possible for long double operations */
1966 load(TREG_ST0, vtop);
1967 swapped = !swapped;
1969 switch(op) {
1970 default:
1971 case '+':
1972 a = 0;
1973 break;
1974 case '-':
1975 a = 4;
1976 if (swapped)
1977 a++;
1978 break;
1979 case '*':
1980 a = 1;
1981 break;
1982 case '/':
1983 a = 6;
1984 if (swapped)
1985 a++;
1986 break;
1988 ft = vtop->type.t;
1989 fc = vtop->c.i;
1990 o(0xde); /* fxxxp %st, %st(1) */
1991 o(0xc1 + (a << 3));
1992 vtop--;
1994 } else {
1995 if (op >= TOK_ULT && op <= TOK_GT) {
1996 /* if saved lvalue, then we must reload it */
1997 r = vtop->r;
1998 fc = vtop->c.i;
1999 if ((r & VT_VALMASK) == VT_LLOCAL) {
2000 SValue v1;
2001 r = get_reg(RC_INT);
2002 v1.type.t = VT_PTR;
2003 v1.r = VT_LOCAL | VT_LVAL;
2004 v1.c.i = fc;
2005 load(r, &v1);
2006 fc = 0;
2009 if (op == TOK_EQ || op == TOK_NE) {
2010 swapped = 0;
2011 } else {
2012 if (op == TOK_LE || op == TOK_LT)
2013 swapped = !swapped;
2014 if (op == TOK_LE || op == TOK_GE) {
2015 op = 0x93; /* setae */
2016 } else {
2017 op = 0x97; /* seta */
2021 if (swapped) {
2022 gv(RC_FLOAT);
2023 vswap();
2025 assert(!(vtop[-1].r & VT_LVAL));
2027 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
2028 o(0x66);
2029 if (op == TOK_EQ || op == TOK_NE)
2030 o(0x2e0f); /* ucomisd */
2031 else
2032 o(0x2f0f); /* comisd */
2034 if (vtop->r & VT_LVAL) {
2035 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2036 } else {
2037 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2040 vtop--;
2041 vtop->r = VT_CMP;
2042 vtop->c.i = op | 0x100;
2043 } else {
2044 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2045 switch(op) {
2046 default:
2047 case '+':
2048 a = 0;
2049 break;
2050 case '-':
2051 a = 4;
2052 break;
2053 case '*':
2054 a = 1;
2055 break;
2056 case '/':
2057 a = 6;
2058 break;
2060 ft = vtop->type.t;
2061 fc = vtop->c.i;
2062 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2064 r = vtop->r;
2065 /* if saved lvalue, then we must reload it */
2066 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2067 SValue v1;
2068 r = get_reg(RC_INT);
2069 v1.type.t = VT_PTR;
2070 v1.r = VT_LOCAL | VT_LVAL;
2071 v1.c.i = fc;
2072 load(r, &v1);
2073 fc = 0;
2076 assert(!(vtop[-1].r & VT_LVAL));
2077 if (swapped) {
2078 assert(vtop->r & VT_LVAL);
2079 gv(RC_FLOAT);
2080 vswap();
2083 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2084 o(0xf2);
2085 } else {
2086 o(0xf3);
2088 o(0x0f);
2089 o(0x58 + a);
2091 if (vtop->r & VT_LVAL) {
2092 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2093 } else {
2094 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2097 vtop--;
2102 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2103 and 'long long' cases. */
2104 void gen_cvt_itof(int t)
2106 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2107 save_reg(TREG_ST0);
2108 gv(RC_INT);
2109 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2110 /* signed long long to float/double/long double (unsigned case
2111 is handled generically) */
2112 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2113 o(0x242cdf); /* fildll (%rsp) */
2114 o(0x08c48348); /* add $8, %rsp */
2115 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2116 (VT_INT | VT_UNSIGNED)) {
2117 /* unsigned int to float/double/long double */
2118 o(0x6a); /* push $0 */
2119 g(0x00);
2120 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2121 o(0x242cdf); /* fildll (%rsp) */
2122 o(0x10c48348); /* add $16, %rsp */
2123 } else {
2124 /* int to float/double/long double */
2125 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2126 o(0x2404db); /* fildl (%rsp) */
2127 o(0x08c48348); /* add $8, %rsp */
2129 vtop->r = TREG_ST0;
2130 } else {
2131 int r = get_reg(RC_FLOAT);
2132 gv(RC_INT);
2133 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2134 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2135 (VT_INT | VT_UNSIGNED) ||
2136 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2137 o(0x48); /* REX */
2139 o(0x2a0f);
2140 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2141 vtop->r = r;
2145 /* convert from one floating point type to another */
2146 void gen_cvt_ftof(int t)
2148 int ft, bt, tbt;
2150 ft = vtop->type.t;
2151 bt = ft & VT_BTYPE;
2152 tbt = t & VT_BTYPE;
2154 if (bt == VT_FLOAT) {
2155 gv(RC_FLOAT);
2156 if (tbt == VT_DOUBLE) {
2157 o(0x140f); /* unpcklps */
2158 o(0xc0 + REG_VALUE(vtop->r)*9);
2159 o(0x5a0f); /* cvtps2pd */
2160 o(0xc0 + REG_VALUE(vtop->r)*9);
2161 } else if (tbt == VT_LDOUBLE) {
2162 save_reg(RC_ST0);
2163 /* movss %xmm0,-0x10(%rsp) */
2164 o(0x110ff3);
2165 o(0x44 + REG_VALUE(vtop->r)*8);
2166 o(0xf024);
2167 o(0xf02444d9); /* flds -0x10(%rsp) */
2168 vtop->r = TREG_ST0;
2170 } else if (bt == VT_DOUBLE) {
2171 gv(RC_FLOAT);
2172 if (tbt == VT_FLOAT) {
2173 o(0x140f66); /* unpcklpd */
2174 o(0xc0 + REG_VALUE(vtop->r)*9);
2175 o(0x5a0f66); /* cvtpd2ps */
2176 o(0xc0 + REG_VALUE(vtop->r)*9);
2177 } else if (tbt == VT_LDOUBLE) {
2178 save_reg(RC_ST0);
2179 /* movsd %xmm0,-0x10(%rsp) */
2180 o(0x110ff2);
2181 o(0x44 + REG_VALUE(vtop->r)*8);
2182 o(0xf024);
2183 o(0xf02444dd); /* fldl -0x10(%rsp) */
2184 vtop->r = TREG_ST0;
2186 } else {
2187 int r;
2188 gv(RC_ST0);
2189 r = get_reg(RC_FLOAT);
2190 if (tbt == VT_DOUBLE) {
2191 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2192 /* movsd -0x10(%rsp),%xmm0 */
2193 o(0x100ff2);
2194 o(0x44 + REG_VALUE(r)*8);
2195 o(0xf024);
2196 vtop->r = r;
2197 } else if (tbt == VT_FLOAT) {
2198 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2199 /* movss -0x10(%rsp),%xmm0 */
2200 o(0x100ff3);
2201 o(0x44 + REG_VALUE(r)*8);
2202 o(0xf024);
2203 vtop->r = r;
2208 /* convert fp to int 't' type */
2209 void gen_cvt_ftoi(int t)
2211 int ft, bt, size, r;
2212 ft = vtop->type.t;
2213 bt = ft & VT_BTYPE;
2214 if (bt == VT_LDOUBLE) {
2215 gen_cvt_ftof(VT_DOUBLE);
2216 bt = VT_DOUBLE;
2219 gv(RC_FLOAT);
2220 if (t != VT_INT)
2221 size = 8;
2222 else
2223 size = 4;
2225 r = get_reg(RC_INT);
2226 if (bt == VT_FLOAT) {
2227 o(0xf3);
2228 } else if (bt == VT_DOUBLE) {
2229 o(0xf2);
2230 } else {
2231 assert(0);
2233 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2234 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2235 vtop->r = r;
2238 /* computed goto support */
2239 void ggoto(void)
2241 gcall_or_jmp(1);
2242 vtop--;
2245 /* Save the stack pointer onto the stack and return the location of its address */
2246 ST_FUNC void gen_vla_sp_save(int addr) {
2247 /* mov %rsp,addr(%rbp)*/
2248 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2251 /* Restore the SP from a location on the stack */
2252 ST_FUNC void gen_vla_sp_restore(int addr) {
2253 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2256 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2257 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2258 #ifdef TCC_TARGET_PE
2259 /* alloca does more than just adjust %rsp on Windows */
2260 vpush_global_sym(&func_old_type, TOK_alloca);
2261 vswap(); /* Move alloca ref past allocation size */
2262 gfunc_call(1);
2263 #else
2264 int r;
2265 r = gv(RC_INT); /* allocation size */
2266 /* sub r,%rsp */
2267 o(0x2b48);
2268 o(0xe0 | REG_VALUE(r));
2269 /* We align to 16 bytes rather than align */
2270 /* and ~15, %rsp */
2271 o(0xf0e48348);
2272 vpop();
2273 #endif
2277 /* end of x86-64 code generator */
2278 /*************************************************************/
2279 #endif /* ! TARGET_DEFS_ONLY */
2280 /******************************************************/