Add linker's --export-dynamic flag alias
[tinycc.git] / x86_64-gen.c
blobc41bc934ca61c6a189665a32e99b201d7126a6cd
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
35 #define RC_RAX 0x0004
36 #define RC_RCX 0x0008
37 #define RC_RDX 0x0010
38 #define RC_ST0 0x0080 /* only for long double */
39 #define RC_R8 0x0100
40 #define RC_R9 0x0200
41 #define RC_R10 0x0400
42 #define RC_R11 0x0800
43 #define RC_XMM0 0x1000
44 #define RC_XMM1 0x2000
45 #define RC_XMM2 0x4000
46 #define RC_XMM3 0x8000
47 #define RC_XMM4 0x10000
48 #define RC_XMM5 0x20000
49 #define RC_XMM6 0x40000
50 #define RC_XMM7 0x80000
51 #define RC_IRET RC_RAX /* function return: integer register */
52 #define RC_LRET RC_RDX /* function return: second integer register */
53 #define RC_FRET RC_XMM0 /* function return: float register */
54 #define RC_QRET RC_XMM1 /* function return: second float register */
56 /* pretty names for the registers */
57 enum {
58 TREG_RAX = 0,
59 TREG_RCX = 1,
60 TREG_RDX = 2,
61 TREG_RSP = 4,
62 TREG_RSI = 6,
63 TREG_RDI = 7,
65 TREG_R8 = 8,
66 TREG_R9 = 9,
67 TREG_R10 = 10,
68 TREG_R11 = 11,
70 TREG_XMM0 = 16,
71 TREG_XMM1 = 17,
72 TREG_XMM2 = 18,
73 TREG_XMM3 = 19,
74 TREG_XMM4 = 20,
75 TREG_XMM5 = 21,
76 TREG_XMM6 = 22,
77 TREG_XMM7 = 23,
79 TREG_ST0 = 24,
81 TREG_MEM = 0x20
84 #define REX_BASE(reg) (((reg) >> 3) & 1)
85 #define REG_VALUE(reg) ((reg) & 7)
87 /* return registers for function */
88 #define REG_IRET TREG_RAX /* single word int return register */
89 #define REG_LRET TREG_RDX /* second word return register (for long long) */
90 #define REG_FRET TREG_XMM0 /* float return register */
91 #define REG_QRET TREG_XMM1 /* second float return register */
93 /* defined if function parameters must be evaluated in reverse order */
94 #define INVERT_FUNC_PARAMS
96 /* pointer size, in bytes */
97 #define PTR_SIZE 8
99 /* long double size and alignment, in bytes */
100 #define LDOUBLE_SIZE 16
101 #define LDOUBLE_ALIGN 16
102 /* maximum alignment (for aligned attribute support) */
103 #define MAX_ALIGN 16
105 /******************************************************/
106 #else /* ! TARGET_DEFS_ONLY */
107 /******************************************************/
108 #include "tcc.h"
109 #include <assert.h>
111 ST_DATA const int reg_classes[NB_REGS] = {
112 /* eax */ RC_INT | RC_RAX,
113 /* ecx */ RC_INT | RC_RCX,
114 /* edx */ RC_INT | RC_RDX,
120 RC_R8,
121 RC_R9,
122 RC_R10,
123 RC_R11,
128 /* xmm0 */ RC_FLOAT | RC_XMM0,
129 /* xmm1 */ RC_FLOAT | RC_XMM1,
130 /* xmm2 */ RC_FLOAT | RC_XMM2,
131 /* xmm3 */ RC_FLOAT | RC_XMM3,
132 /* xmm4 */ RC_FLOAT | RC_XMM4,
133 /* xmm5 */ RC_FLOAT | RC_XMM5,
134 /* xmm6 an xmm7 are included so gv() can be used on them,
135 but they are not tagged with RC_FLOAT because they are
136 callee saved on Windows */
137 RC_XMM6,
138 RC_XMM7,
139 /* st0 */ RC_ST0
142 static unsigned long func_sub_sp_offset;
143 static int func_ret_sub;
145 /* XXX: make it faster ? */
146 ST_FUNC void g(int c)
148 int ind1;
149 if (nocode_wanted)
150 return;
151 ind1 = ind + 1;
152 if (ind1 > cur_text_section->data_allocated)
153 section_realloc(cur_text_section, ind1);
154 cur_text_section->data[ind] = c;
155 ind = ind1;
158 ST_FUNC void o(unsigned int c)
160 while (c) {
161 g(c);
162 c = c >> 8;
166 ST_FUNC void gen_le16(int v)
168 g(v);
169 g(v >> 8);
172 ST_FUNC void gen_le32(int c)
174 g(c);
175 g(c >> 8);
176 g(c >> 16);
177 g(c >> 24);
180 ST_FUNC void gen_le64(int64_t c)
182 g(c);
183 g(c >> 8);
184 g(c >> 16);
185 g(c >> 24);
186 g(c >> 32);
187 g(c >> 40);
188 g(c >> 48);
189 g(c >> 56);
192 static void orex(int ll, int r, int r2, int b)
194 if ((r & VT_VALMASK) >= VT_CONST)
195 r = 0;
196 if ((r2 & VT_VALMASK) >= VT_CONST)
197 r2 = 0;
198 if (ll || REX_BASE(r) || REX_BASE(r2))
199 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
200 o(b);
203 /* output a symbol and patch all calls to it */
204 ST_FUNC void gsym_addr(int t, int a)
206 while (t) {
207 unsigned char *ptr = cur_text_section->data + t;
208 uint32_t n = read32le(ptr); /* next value */
209 write32le(ptr, a - t - 4);
210 t = n;
214 void gsym(int t)
216 gsym_addr(t, ind);
220 static int is64_type(int t)
222 return ((t & VT_BTYPE) == VT_PTR ||
223 (t & VT_BTYPE) == VT_FUNC ||
224 (t & VT_BTYPE) == VT_LLONG);
227 /* instruction + 4 bytes data. Return the address of the data */
228 static int oad(int c, int s)
230 int t;
231 if (nocode_wanted)
232 return s;
233 o(c);
234 t = ind;
235 gen_le32(s);
236 return t;
239 /* generate jmp to a label */
240 #define gjmp2(instr,lbl) oad(instr,lbl)
242 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
244 if (r & VT_SYM)
245 greloca(cur_text_section, sym, ind, R_X86_64_32S, c), c=0;
246 gen_le32(c);
249 /* output constant with relocation if 'r & VT_SYM' is true */
250 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
252 if (r & VT_SYM)
253 greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
254 gen_le64(c);
257 /* output constant with relocation if 'r & VT_SYM' is true */
258 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
260 if (r & VT_SYM)
261 greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
262 gen_le32(c-4);
265 /* output got address with relocation */
266 static void gen_gotpcrel(int r, Sym *sym, int c)
268 #ifdef TCC_TARGET_PE
269 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
270 get_tok_str(sym->v, NULL), c, r,
271 cur_text_section->data[ind-3],
272 cur_text_section->data[ind-2],
273 cur_text_section->data[ind-1]
275 #endif
276 greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
277 gen_le32(0);
278 if (c) {
279 /* we use add c, %xxx for displacement */
280 orex(1, r, 0, 0x81);
281 o(0xc0 + REG_VALUE(r));
282 gen_le32(c);
286 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
288 op_reg = REG_VALUE(op_reg) << 3;
289 if ((r & VT_VALMASK) == VT_CONST) {
290 /* constant memory reference */
291 if (!(r & VT_SYM)) {
292 /* Absolute memory reference */
293 o(0x04 | op_reg); /* [sib] | destreg */
294 oad(0x25, c); /* disp32 */
295 } else {
296 o(0x05 | op_reg); /* (%rip)+disp32 | destreg */
297 if (is_got) {
298 gen_gotpcrel(r, sym, c);
299 } else {
300 gen_addrpc32(r, sym, c);
303 } else if ((r & VT_VALMASK) == VT_LOCAL) {
304 /* currently, we use only ebp as base */
305 if (c == (char)c) {
306 /* short reference */
307 o(0x45 | op_reg);
308 g(c);
309 } else {
310 oad(0x85 | op_reg, c);
312 } else if ((r & VT_VALMASK) >= TREG_MEM) {
313 if (c) {
314 g(0x80 | op_reg | REG_VALUE(r));
315 gen_le32(c);
316 } else {
317 g(0x00 | op_reg | REG_VALUE(r));
319 } else {
320 g(0x00 | op_reg | REG_VALUE(r));
324 /* generate a modrm reference. 'op_reg' contains the additional 3
325 opcode bits */
326 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
328 gen_modrm_impl(op_reg, r, sym, c, 0);
331 /* generate a modrm reference. 'op_reg' contains the additional 3
332 opcode bits */
333 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
335 int is_got;
336 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
337 orex(1, r, op_reg, opcode);
338 gen_modrm_impl(op_reg, r, sym, c, is_got);
342 /* load 'r' from value 'sv' */
343 void load(int r, SValue *sv)
345 int v, t, ft, fc, fr;
346 SValue v1;
348 #ifdef TCC_TARGET_PE
349 SValue v2;
350 sv = pe_getimport(sv, &v2);
351 #endif
353 fr = sv->r;
354 ft = sv->type.t & ~VT_DEFSIGN;
355 fc = sv->c.i;
356 if (fc != sv->c.i && (fr & VT_SYM))
357 tcc_error("64 bit addend in load");
359 ft &= ~(VT_VOLATILE | VT_CONSTANT);
361 #ifndef TCC_TARGET_PE
362 /* we use indirect access via got */
363 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
364 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
365 /* use the result register as a temporal register */
366 int tr = r | TREG_MEM;
367 if (is_float(ft)) {
368 /* we cannot use float registers as a temporal register */
369 tr = get_reg(RC_INT) | TREG_MEM;
371 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
373 /* load from the temporal register */
374 fr = tr | VT_LVAL;
376 #endif
378 v = fr & VT_VALMASK;
379 if (fr & VT_LVAL) {
380 int b, ll;
381 if (v == VT_LLOCAL) {
382 v1.type.t = VT_PTR;
383 v1.r = VT_LOCAL | VT_LVAL;
384 v1.c.i = fc;
385 fr = r;
386 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
387 fr = get_reg(RC_INT);
388 load(fr, &v1);
390 if (fc != sv->c.i) {
391 /* If the addends doesn't fit into a 32bit signed
392 we must use a 64bit move. We've checked above
393 that this doesn't have a sym associated. */
394 v1.type.t = VT_LLONG;
395 v1.r = VT_CONST;
396 v1.c.i = sv->c.i;
397 fr = r;
398 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
399 fr = get_reg(RC_INT);
400 load(fr, &v1);
401 fc = 0;
403 ll = 0;
404 /* Like GCC we can load from small enough properly sized
405 structs and unions as well.
406 XXX maybe move to generic operand handling, but should
407 occur only with asm, so tccasm.c might also be a better place */
408 if ((ft & VT_BTYPE) == VT_STRUCT) {
409 int align;
410 switch (type_size(&sv->type, &align)) {
411 case 1: ft = VT_BYTE; break;
412 case 2: ft = VT_SHORT; break;
413 case 4: ft = VT_INT; break;
414 case 8: ft = VT_LLONG; break;
415 default:
416 tcc_error("invalid aggregate type for register load");
417 break;
420 if ((ft & VT_BTYPE) == VT_FLOAT) {
421 b = 0x6e0f66;
422 r = REG_VALUE(r); /* movd */
423 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
424 b = 0x7e0ff3; /* movq */
425 r = REG_VALUE(r);
426 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
427 b = 0xdb, r = 5; /* fldt */
428 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
429 b = 0xbe0f; /* movsbl */
430 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
431 b = 0xb60f; /* movzbl */
432 } else if ((ft & VT_TYPE) == VT_SHORT) {
433 b = 0xbf0f; /* movswl */
434 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
435 b = 0xb70f; /* movzwl */
436 } else {
437 assert(((ft & VT_BTYPE) == VT_INT)
438 || ((ft & VT_BTYPE) == VT_LLONG)
439 || ((ft & VT_BTYPE) == VT_PTR)
440 || ((ft & VT_BTYPE) == VT_FUNC)
442 ll = is64_type(ft);
443 b = 0x8b;
445 if (ll) {
446 gen_modrm64(b, r, fr, sv->sym, fc);
447 } else {
448 orex(ll, fr, r, b);
449 gen_modrm(r, fr, sv->sym, fc);
451 } else {
452 if (v == VT_CONST) {
453 if (fr & VT_SYM) {
454 #ifdef TCC_TARGET_PE
455 orex(1,0,r,0x8d);
456 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
457 gen_addrpc32(fr, sv->sym, fc);
458 #else
459 if (sv->sym->type.t & VT_STATIC) {
460 orex(1,0,r,0x8d);
461 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
462 gen_addrpc32(fr, sv->sym, fc);
463 } else {
464 orex(1,0,r,0x8b);
465 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
466 gen_gotpcrel(r, sv->sym, fc);
468 #endif
469 } else if (is64_type(ft)) {
470 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
471 gen_le64(sv->c.i);
472 } else {
473 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
474 gen_le32(fc);
476 } else if (v == VT_LOCAL) {
477 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
478 gen_modrm(r, VT_LOCAL, sv->sym, fc);
479 } else if (v == VT_CMP) {
480 orex(0,r,0,0);
481 if ((fc & ~0x100) != TOK_NE)
482 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
483 else
484 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
485 if (fc & 0x100)
487 /* This was a float compare. If the parity bit is
488 set the result was unordered, meaning false for everything
489 except TOK_NE, and true for TOK_NE. */
490 fc &= ~0x100;
491 o(0x037a + (REX_BASE(r) << 8));
493 orex(0,r,0, 0x0f); /* setxx %br */
494 o(fc);
495 o(0xc0 + REG_VALUE(r));
496 } else if (v == VT_JMP || v == VT_JMPI) {
497 t = v & 1;
498 orex(0,r,0,0);
499 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
500 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
501 gsym(fc);
502 orex(0,r,0,0);
503 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
504 } else if (v != r) {
505 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
506 if (v == TREG_ST0) {
507 /* gen_cvt_ftof(VT_DOUBLE); */
508 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
509 /* movsd -0x10(%rsp),%xmmN */
510 o(0x100ff2);
511 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
512 o(0xf024);
513 } else {
514 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
515 if ((ft & VT_BTYPE) == VT_FLOAT) {
516 o(0x100ff3);
517 } else {
518 assert((ft & VT_BTYPE) == VT_DOUBLE);
519 o(0x100ff2);
521 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
523 } else if (r == TREG_ST0) {
524 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
525 /* gen_cvt_ftof(VT_LDOUBLE); */
526 /* movsd %xmmN,-0x10(%rsp) */
527 o(0x110ff2);
528 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
529 o(0xf024);
530 o(0xf02444dd); /* fldl -0x10(%rsp) */
531 } else {
532 orex(1,r,v, 0x89);
533 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
539 /* store register 'r' in lvalue 'v' */
540 void store(int r, SValue *v)
542 int fr, bt, ft, fc;
543 int op64 = 0;
544 /* store the REX prefix in this variable when PIC is enabled */
545 int pic = 0;
547 #ifdef TCC_TARGET_PE
548 SValue v2;
549 v = pe_getimport(v, &v2);
550 #endif
552 fr = v->r & VT_VALMASK;
553 ft = v->type.t;
554 fc = v->c.i;
555 if (fc != v->c.i && (fr & VT_SYM))
556 tcc_error("64 bit addend in store");
557 ft &= ~(VT_VOLATILE | VT_CONSTANT);
558 bt = ft & VT_BTYPE;
560 #ifndef TCC_TARGET_PE
561 /* we need to access the variable via got */
562 if (fr == VT_CONST && (v->r & VT_SYM)) {
563 /* mov xx(%rip), %r11 */
564 o(0x1d8b4c);
565 gen_gotpcrel(TREG_R11, v->sym, v->c.i);
566 pic = is64_type(bt) ? 0x49 : 0x41;
568 #endif
570 /* XXX: incorrect if float reg to reg */
571 if (bt == VT_FLOAT) {
572 o(0x66);
573 o(pic);
574 o(0x7e0f); /* movd */
575 r = REG_VALUE(r);
576 } else if (bt == VT_DOUBLE) {
577 o(0x66);
578 o(pic);
579 o(0xd60f); /* movq */
580 r = REG_VALUE(r);
581 } else if (bt == VT_LDOUBLE) {
582 o(0xc0d9); /* fld %st(0) */
583 o(pic);
584 o(0xdb); /* fstpt */
585 r = 7;
586 } else {
587 if (bt == VT_SHORT)
588 o(0x66);
589 o(pic);
590 if (bt == VT_BYTE || bt == VT_BOOL)
591 orex(0, 0, r, 0x88);
592 else if (is64_type(bt))
593 op64 = 0x89;
594 else
595 orex(0, 0, r, 0x89);
597 if (pic) {
598 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
599 if (op64)
600 o(op64);
601 o(3 + (r << 3));
602 } else if (op64) {
603 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
604 gen_modrm64(op64, r, v->r, v->sym, fc);
605 } else if (fr != r) {
606 /* XXX: don't we really come here? */
607 abort();
608 o(0xc0 + fr + r * 8); /* mov r, fr */
610 } else {
611 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
612 gen_modrm(r, v->r, v->sym, fc);
613 } else if (fr != r) {
614 /* XXX: don't we really come here? */
615 abort();
616 o(0xc0 + fr + r * 8); /* mov r, fr */
621 /* 'is_jmp' is '1' if it is a jump */
622 static void gcall_or_jmp(int is_jmp)
624 int r;
625 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
626 ((vtop->r & VT_SYM) || (vtop->c.i-4) == (int)(vtop->c.i-4))) {
627 /* constant case */
628 if (vtop->r & VT_SYM) {
629 /* relocation case */
630 #ifdef TCC_TARGET_PE
631 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
632 #else
633 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
634 #endif
635 } else {
636 /* put an empty PC32 relocation */
637 put_elf_reloca(symtab_section, cur_text_section,
638 ind + 1, R_X86_64_PC32, 0, (int)(vtop->c.i-4));
640 oad(0xe8 + is_jmp, 0); /* call/jmp im */
641 } else {
642 /* otherwise, indirect call */
643 r = TREG_R11;
644 load(r, vtop);
645 o(0x41); /* REX */
646 o(0xff); /* call/jmp *r */
647 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
651 #if defined(CONFIG_TCC_BCHECK)
652 #ifndef TCC_TARGET_PE
653 static addr_t func_bound_offset;
654 static unsigned long func_bound_ind;
655 #endif
657 static void gen_static_call(int v)
659 Sym *sym = external_global_sym(v, &func_old_type, 0);
660 oad(0xe8, 0);
661 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
664 /* generate a bounded pointer addition */
665 ST_FUNC void gen_bounded_ptr_add(void)
667 /* save all temporary registers */
668 save_regs(0);
670 /* prepare fast x86_64 function call */
671 gv(RC_RAX);
672 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
673 vtop--;
675 gv(RC_RAX);
676 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
677 vtop--;
679 /* do a fast function call */
680 gen_static_call(TOK___bound_ptr_add);
682 /* returned pointer is in rax */
683 vtop++;
684 vtop->r = TREG_RAX | VT_BOUNDED;
687 /* relocation offset of the bounding function call point */
688 vtop->c.i = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
691 /* patch pointer addition in vtop so that pointer dereferencing is
692 also tested */
693 ST_FUNC void gen_bounded_ptr_deref(void)
695 addr_t func;
696 int size, align;
697 ElfW(Rela) *rel;
698 Sym *sym;
700 size = 0;
701 /* XXX: put that code in generic part of tcc */
702 if (!is_float(vtop->type.t)) {
703 if (vtop->r & VT_LVAL_BYTE)
704 size = 1;
705 else if (vtop->r & VT_LVAL_SHORT)
706 size = 2;
708 if (!size)
709 size = type_size(&vtop->type, &align);
710 switch(size) {
711 case 1: func = TOK___bound_ptr_indir1; break;
712 case 2: func = TOK___bound_ptr_indir2; break;
713 case 4: func = TOK___bound_ptr_indir4; break;
714 case 8: func = TOK___bound_ptr_indir8; break;
715 case 12: func = TOK___bound_ptr_indir12; break;
716 case 16: func = TOK___bound_ptr_indir16; break;
717 default:
718 tcc_error("unhandled size when dereferencing bounded pointer");
719 func = 0;
720 break;
723 sym = external_global_sym(func, &func_old_type, 0);
724 if (!sym->c)
725 put_extern_sym(sym, NULL, 0, 0);
727 /* patch relocation */
728 /* XXX: find a better solution ? */
730 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.i);
731 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
733 #endif
735 #ifdef TCC_TARGET_PE
737 #define REGN 4
738 static const uint8_t arg_regs[REGN] = {
739 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
742 /* Prepare arguments in R10 and R11 rather than RCX and RDX
743 because gv() will not ever use these */
744 static int arg_prepare_reg(int idx) {
745 if (idx == 0 || idx == 1)
746 /* idx=0: r10, idx=1: r11 */
747 return idx + 10;
748 else
749 return arg_regs[idx];
752 static int func_scratch, func_alloca;
754 /* Generate function call. The function address is pushed first, then
755 all the parameters in call order. This functions pops all the
756 parameters and the function address. */
758 static void gen_offs_sp(int b, int r, int d)
760 orex(1,0,r & 0x100 ? 0 : r, b);
761 if (d == (char)d) {
762 o(0x2444 | (REG_VALUE(r) << 3));
763 g(d);
764 } else {
765 o(0x2484 | (REG_VALUE(r) << 3));
766 gen_le32(d);
770 static int using_regs(int size)
772 return !(size > 8 || (size & (size - 1)));
775 /* Return the number of registers needed to return the struct, or 0 if
776 returning via struct pointer. */
777 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
779 int size, align;
780 *ret_align = 1; // Never have to re-align return values for x86-64
781 *regsize = 8;
782 size = type_size(vt, &align);
783 if (!using_regs(size))
784 return 0;
785 if (size == 8)
786 ret->t = VT_LLONG;
787 else if (size == 4)
788 ret->t = VT_INT;
789 else if (size == 2)
790 ret->t = VT_SHORT;
791 else
792 ret->t = VT_BYTE;
793 ret->ref = NULL;
794 return 1;
797 static int is_sse_float(int t) {
798 int bt;
799 bt = t & VT_BTYPE;
800 return bt == VT_DOUBLE || bt == VT_FLOAT;
803 static int gfunc_arg_size(CType *type) {
804 int align;
805 if (type->t & (VT_ARRAY|VT_BITFIELD))
806 return 8;
807 return type_size(type, &align);
810 void gfunc_call(int nb_args)
812 int size, r, args_size, i, d, bt, struct_size;
813 int arg;
815 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
816 arg = nb_args;
818 /* for struct arguments, we need to call memcpy and the function
819 call breaks register passing arguments we are preparing.
820 So, we process arguments which will be passed by stack first. */
821 struct_size = args_size;
822 for(i = 0; i < nb_args; i++) {
823 SValue *sv;
825 --arg;
826 sv = &vtop[-i];
827 bt = (sv->type.t & VT_BTYPE);
828 size = gfunc_arg_size(&sv->type);
830 if (using_regs(size))
831 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
833 if (bt == VT_STRUCT) {
834 /* align to stack align size */
835 size = (size + 15) & ~15;
836 /* generate structure store */
837 r = get_reg(RC_INT);
838 gen_offs_sp(0x8d, r, struct_size);
839 struct_size += size;
841 /* generate memcpy call */
842 vset(&sv->type, r | VT_LVAL, 0);
843 vpushv(sv);
844 vstore();
845 --vtop;
846 } else if (bt == VT_LDOUBLE) {
847 gv(RC_ST0);
848 gen_offs_sp(0xdb, 0x107, struct_size);
849 struct_size += 16;
853 if (func_scratch < struct_size)
854 func_scratch = struct_size;
856 arg = nb_args;
857 struct_size = args_size;
859 for(i = 0; i < nb_args; i++) {
860 --arg;
861 bt = (vtop->type.t & VT_BTYPE);
863 size = gfunc_arg_size(&vtop->type);
864 if (!using_regs(size)) {
865 /* align to stack align size */
866 size = (size + 15) & ~15;
867 if (arg >= REGN) {
868 d = get_reg(RC_INT);
869 gen_offs_sp(0x8d, d, struct_size);
870 gen_offs_sp(0x89, d, arg*8);
871 } else {
872 d = arg_prepare_reg(arg);
873 gen_offs_sp(0x8d, d, struct_size);
875 struct_size += size;
876 } else {
877 if (is_sse_float(vtop->type.t)) {
878 if (tcc_state->nosse)
879 tcc_error("SSE disabled");
880 if (arg >= REGN) {
881 gv(RC_XMM0);
882 /* movq %xmm0, j*8(%rsp) */
883 gen_offs_sp(0xd60f66, 0x100, arg*8);
884 } else {
885 /* Load directly to xmmN register */
886 gv(RC_XMM0 << arg);
887 d = arg_prepare_reg(arg);
888 /* mov %xmmN, %rxx */
889 o(0x66);
890 orex(1,d,0, 0x7e0f);
891 o(0xc0 + arg*8 + REG_VALUE(d));
893 } else {
894 if (bt == VT_STRUCT) {
895 vtop->type.ref = NULL;
896 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
897 : size > 1 ? VT_SHORT : VT_BYTE;
900 r = gv(RC_INT);
901 if (arg >= REGN) {
902 gen_offs_sp(0x89, r, arg*8);
903 } else {
904 d = arg_prepare_reg(arg);
905 orex(1,d,r,0x89); /* mov */
906 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
910 vtop--;
912 save_regs(0);
914 /* Copy R10 and R11 into RCX and RDX, respectively */
915 if (nb_args > 0) {
916 o(0xd1894c); /* mov %r10, %rcx */
917 if (nb_args > 1) {
918 o(0xda894c); /* mov %r11, %rdx */
922 gcall_or_jmp(0);
924 if ((vtop->r & VT_SYM) && vtop->sym->v == TOK_alloca) {
925 /* need to add the "func_scratch" area after alloca */
926 o(0x0548), gen_le32(func_alloca), func_alloca = ind - 4;
929 /* other compilers don't clear the upper bits when returning char/short */
930 bt = vtop->type.ref->type.t & (VT_BTYPE | VT_UNSIGNED);
931 if (bt == (VT_BYTE | VT_UNSIGNED))
932 o(0xc0b60f); /* movzbl %al, %eax */
933 else if (bt == VT_BYTE)
934 o(0xc0be0f); /* movsbl %al, %eax */
935 else if (bt == VT_SHORT)
936 o(0x98); /* cwtl */
937 else if (bt == (VT_SHORT | VT_UNSIGNED))
938 o(0xc0b70f); /* movzbl %al, %eax */
939 #if 0 /* handled in gen_cast() */
940 else if (bt == VT_INT)
941 o(0x9848); /* cltq */
942 else if (bt == (VT_INT | VT_UNSIGNED))
943 o(0xc089); /* mov %eax,%eax */
944 #endif
945 vtop--;
949 #define FUNC_PROLOG_SIZE 11
951 /* generate function prolog of type 't' */
952 void gfunc_prolog(CType *func_type)
954 int addr, reg_param_index, bt, size;
955 Sym *sym;
956 CType *type;
958 func_ret_sub = 0;
959 func_scratch = 0;
960 func_alloca = 0;
961 loc = 0;
963 addr = PTR_SIZE * 2;
964 ind += FUNC_PROLOG_SIZE;
965 func_sub_sp_offset = ind;
966 reg_param_index = 0;
968 sym = func_type->ref;
970 /* if the function returns a structure, then add an
971 implicit pointer parameter */
972 func_vt = sym->type;
973 func_var = (sym->f.func_type == FUNC_ELLIPSIS);
974 size = gfunc_arg_size(&func_vt);
975 if (!using_regs(size)) {
976 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
977 func_vc = addr;
978 reg_param_index++;
979 addr += 8;
982 /* define parameters */
983 while ((sym = sym->next) != NULL) {
984 type = &sym->type;
985 bt = type->t & VT_BTYPE;
986 size = gfunc_arg_size(type);
987 if (!using_regs(size)) {
988 if (reg_param_index < REGN) {
989 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
991 sym_push(sym->v & ~SYM_FIELD, type, VT_LLOCAL | VT_LVAL, addr);
992 } else {
993 if (reg_param_index < REGN) {
994 /* save arguments passed by register */
995 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
996 if (tcc_state->nosse)
997 tcc_error("SSE disabled");
998 o(0xd60f66); /* movq */
999 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
1000 } else {
1001 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
1004 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
1006 addr += 8;
1007 reg_param_index++;
1010 while (reg_param_index < REGN) {
1011 if (func_type->ref->f.func_type == FUNC_ELLIPSIS) {
1012 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
1013 addr += 8;
1015 reg_param_index++;
1019 /* generate function epilog */
1020 void gfunc_epilog(void)
1022 int v, saved_ind;
1024 o(0xc9); /* leave */
1025 if (func_ret_sub == 0) {
1026 o(0xc3); /* ret */
1027 } else {
1028 o(0xc2); /* ret n */
1029 g(func_ret_sub);
1030 g(func_ret_sub >> 8);
1033 saved_ind = ind;
1034 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1035 /* align local size to word & save local variables */
1036 func_scratch = (func_scratch + 15) & -16;
1037 v = (func_scratch + -loc + 15) & -16;
1039 if (v >= 4096) {
1040 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
1041 oad(0xb8, v); /* mov stacksize, %eax */
1042 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1043 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
1044 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1045 } else {
1046 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1047 o(0xec8148); /* sub rsp, stacksize */
1048 gen_le32(v);
1051 /* add the "func_scratch" area after each alloca seen */
1052 while (func_alloca) {
1053 unsigned char *ptr = cur_text_section->data + func_alloca;
1054 func_alloca = read32le(ptr);
1055 write32le(ptr, func_scratch);
1058 cur_text_section->data_offset = saved_ind;
1059 pe_add_unwind_data(ind, saved_ind, v);
1060 ind = cur_text_section->data_offset;
1063 #else
1065 static void gadd_sp(int val)
1067 if (val == (char)val) {
1068 o(0xc48348);
1069 g(val);
1070 } else {
1071 oad(0xc48148, val); /* add $xxx, %rsp */
1075 typedef enum X86_64_Mode {
1076 x86_64_mode_none,
1077 x86_64_mode_memory,
1078 x86_64_mode_integer,
1079 x86_64_mode_sse,
1080 x86_64_mode_x87
1081 } X86_64_Mode;
1083 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1085 if (a == b)
1086 return a;
1087 else if (a == x86_64_mode_none)
1088 return b;
1089 else if (b == x86_64_mode_none)
1090 return a;
1091 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1092 return x86_64_mode_memory;
1093 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1094 return x86_64_mode_integer;
1095 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1096 return x86_64_mode_memory;
1097 else
1098 return x86_64_mode_sse;
1101 static X86_64_Mode classify_x86_64_inner(CType *ty)
1103 X86_64_Mode mode;
1104 Sym *f;
1106 switch (ty->t & VT_BTYPE) {
1107 case VT_VOID: return x86_64_mode_none;
1109 case VT_INT:
1110 case VT_BYTE:
1111 case VT_SHORT:
1112 case VT_LLONG:
1113 case VT_BOOL:
1114 case VT_PTR:
1115 case VT_FUNC:
1116 return x86_64_mode_integer;
1118 case VT_FLOAT:
1119 case VT_DOUBLE: return x86_64_mode_sse;
1121 case VT_LDOUBLE: return x86_64_mode_x87;
1123 case VT_STRUCT:
1124 f = ty->ref;
1126 mode = x86_64_mode_none;
1127 for (f = f->next; f; f = f->next)
1128 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1130 return mode;
1132 assert(0);
1133 return 0;
1136 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1138 X86_64_Mode mode;
1139 int size, align, ret_t = 0;
1141 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1142 *psize = 8;
1143 *palign = 8;
1144 *reg_count = 1;
1145 ret_t = ty->t;
1146 mode = x86_64_mode_integer;
1147 } else {
1148 size = type_size(ty, &align);
1149 *psize = (size + 7) & ~7;
1150 *palign = (align + 7) & ~7;
1152 if (size > 16) {
1153 mode = x86_64_mode_memory;
1154 } else {
1155 mode = classify_x86_64_inner(ty);
1156 switch (mode) {
1157 case x86_64_mode_integer:
1158 if (size > 8) {
1159 *reg_count = 2;
1160 ret_t = VT_QLONG;
1161 } else {
1162 *reg_count = 1;
1163 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1165 break;
1167 case x86_64_mode_x87:
1168 *reg_count = 1;
1169 ret_t = VT_LDOUBLE;
1170 break;
1172 case x86_64_mode_sse:
1173 if (size > 8) {
1174 *reg_count = 2;
1175 ret_t = VT_QFLOAT;
1176 } else {
1177 *reg_count = 1;
1178 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1180 break;
1181 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1186 if (ret) {
1187 ret->ref = NULL;
1188 ret->t = ret_t;
1191 return mode;
1194 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1196 /* This definition must be synced with stdarg.h */
1197 enum __va_arg_type {
1198 __va_gen_reg, __va_float_reg, __va_stack
1200 int size, align, reg_count;
1201 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1202 switch (mode) {
1203 default: return __va_stack;
1204 case x86_64_mode_integer: return __va_gen_reg;
1205 case x86_64_mode_sse: return __va_float_reg;
1209 /* Return the number of registers needed to return the struct, or 0 if
1210 returning via struct pointer. */
1211 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1213 int size, align, reg_count;
1214 *ret_align = 1; // Never have to re-align return values for x86-64
1215 *regsize = 8;
1216 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1219 #define REGN 6
1220 static const uint8_t arg_regs[REGN] = {
1221 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1224 static int arg_prepare_reg(int idx) {
1225 if (idx == 2 || idx == 3)
1226 /* idx=2: r10, idx=3: r11 */
1227 return idx + 8;
1228 else
1229 return arg_regs[idx];
1232 /* Generate function call. The function address is pushed first, then
1233 all the parameters in call order. This functions pops all the
1234 parameters and the function address. */
1235 void gfunc_call(int nb_args)
1237 X86_64_Mode mode;
1238 CType type;
1239 int size, align, r, args_size, stack_adjust, i, reg_count;
1240 int nb_reg_args = 0;
1241 int nb_sse_args = 0;
1242 int sse_reg, gen_reg;
1243 char _onstack[nb_args], *onstack = _onstack;
1245 /* calculate the number of integer/float register arguments, remember
1246 arguments to be passed via stack (in onstack[]), and also remember
1247 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1248 to be done in a left-to-right pass over arguments. */
1249 stack_adjust = 0;
1250 for(i = nb_args - 1; i >= 0; i--) {
1251 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1252 if (mode == x86_64_mode_sse && nb_sse_args + reg_count <= 8) {
1253 nb_sse_args += reg_count;
1254 onstack[i] = 0;
1255 } else if (mode == x86_64_mode_integer && nb_reg_args + reg_count <= REGN) {
1256 nb_reg_args += reg_count;
1257 onstack[i] = 0;
1258 } else if (mode == x86_64_mode_none) {
1259 onstack[i] = 0;
1260 } else {
1261 if (align == 16 && (stack_adjust &= 15)) {
1262 onstack[i] = 2;
1263 stack_adjust = 0;
1264 } else
1265 onstack[i] = 1;
1266 stack_adjust += size;
1270 if (nb_sse_args && tcc_state->nosse)
1271 tcc_error("SSE disabled but floating point arguments passed");
1273 /* fetch cpu flag before generating any code */
1274 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1275 gv(RC_INT);
1277 /* for struct arguments, we need to call memcpy and the function
1278 call breaks register passing arguments we are preparing.
1279 So, we process arguments which will be passed by stack first. */
1280 gen_reg = nb_reg_args;
1281 sse_reg = nb_sse_args;
1282 args_size = 0;
1283 stack_adjust &= 15;
1284 for (i = 0; i < nb_args;) {
1285 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1286 if (!onstack[i]) {
1287 ++i;
1288 continue;
1290 /* Possibly adjust stack to align SSE boundary. We're processing
1291 args from right to left while allocating happens left to right
1292 (stack grows down), so the adjustment needs to happen _after_
1293 an argument that requires it. */
1294 if (stack_adjust) {
1295 o(0x50); /* push %rax; aka sub $8,%rsp */
1296 args_size += 8;
1297 stack_adjust = 0;
1299 if (onstack[i] == 2)
1300 stack_adjust = 1;
1302 vrotb(i+1);
1304 switch (vtop->type.t & VT_BTYPE) {
1305 case VT_STRUCT:
1306 /* allocate the necessary size on stack */
1307 o(0x48);
1308 oad(0xec81, size); /* sub $xxx, %rsp */
1309 /* generate structure store */
1310 r = get_reg(RC_INT);
1311 orex(1, r, 0, 0x89); /* mov %rsp, r */
1312 o(0xe0 + REG_VALUE(r));
1313 vset(&vtop->type, r | VT_LVAL, 0);
1314 vswap();
1315 vstore();
1316 break;
1318 case VT_LDOUBLE:
1319 gv(RC_ST0);
1320 oad(0xec8148, size); /* sub $xxx, %rsp */
1321 o(0x7cdb); /* fstpt 0(%rsp) */
1322 g(0x24);
1323 g(0x00);
1324 break;
1326 case VT_FLOAT:
1327 case VT_DOUBLE:
1328 assert(mode == x86_64_mode_sse);
1329 r = gv(RC_FLOAT);
1330 o(0x50); /* push $rax */
1331 /* movq %xmmN, (%rsp) */
1332 o(0xd60f66);
1333 o(0x04 + REG_VALUE(r)*8);
1334 o(0x24);
1335 break;
1337 default:
1338 assert(mode == x86_64_mode_integer);
1339 /* simple type */
1340 /* XXX: implicit cast ? */
1341 r = gv(RC_INT);
1342 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1343 break;
1345 args_size += size;
1347 vpop();
1348 --nb_args;
1349 onstack++;
1352 /* XXX This should be superfluous. */
1353 save_regs(0); /* save used temporary registers */
1355 /* then, we prepare register passing arguments.
1356 Note that we cannot set RDX and RCX in this loop because gv()
1357 may break these temporary registers. Let's use R10 and R11
1358 instead of them */
1359 assert(gen_reg <= REGN);
1360 assert(sse_reg <= 8);
1361 for(i = 0; i < nb_args; i++) {
1362 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1363 /* Alter stack entry type so that gv() knows how to treat it */
1364 vtop->type = type;
1365 if (mode == x86_64_mode_sse) {
1366 if (reg_count == 2) {
1367 sse_reg -= 2;
1368 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1369 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1370 /* movaps %xmm0, %xmmN */
1371 o(0x280f);
1372 o(0xc0 + (sse_reg << 3));
1373 /* movaps %xmm1, %xmmN */
1374 o(0x280f);
1375 o(0xc1 + ((sse_reg+1) << 3));
1377 } else {
1378 assert(reg_count == 1);
1379 --sse_reg;
1380 /* Load directly to register */
1381 gv(RC_XMM0 << sse_reg);
1383 } else if (mode == x86_64_mode_integer) {
1384 /* simple type */
1385 /* XXX: implicit cast ? */
1386 int d;
1387 gen_reg -= reg_count;
1388 r = gv(RC_INT);
1389 d = arg_prepare_reg(gen_reg);
1390 orex(1,d,r,0x89); /* mov */
1391 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1392 if (reg_count == 2) {
1393 d = arg_prepare_reg(gen_reg+1);
1394 orex(1,d,vtop->r2,0x89); /* mov */
1395 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1398 vtop--;
1400 assert(gen_reg == 0);
1401 assert(sse_reg == 0);
1403 /* We shouldn't have many operands on the stack anymore, but the
1404 call address itself is still there, and it might be in %eax
1405 (or edx/ecx) currently, which the below writes would clobber.
1406 So evict all remaining operands here. */
1407 save_regs(0);
1409 /* Copy R10 and R11 into RDX and RCX, respectively */
1410 if (nb_reg_args > 2) {
1411 o(0xd2894c); /* mov %r10, %rdx */
1412 if (nb_reg_args > 3) {
1413 o(0xd9894c); /* mov %r11, %rcx */
1417 if (vtop->type.ref->f.func_type != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1418 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1419 gcall_or_jmp(0);
1420 if (args_size)
1421 gadd_sp(args_size);
1422 vtop--;
1426 #define FUNC_PROLOG_SIZE 11
1428 static void push_arg_reg(int i) {
1429 loc -= 8;
1430 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1433 /* generate function prolog of type 't' */
1434 void gfunc_prolog(CType *func_type)
1436 X86_64_Mode mode;
1437 int i, addr, align, size, reg_count;
1438 int param_addr = 0, reg_param_index, sse_param_index;
1439 Sym *sym;
1440 CType *type;
1442 sym = func_type->ref;
1443 addr = PTR_SIZE * 2;
1444 loc = 0;
1445 ind += FUNC_PROLOG_SIZE;
1446 func_sub_sp_offset = ind;
1447 func_ret_sub = 0;
1449 if (sym->f.func_type == FUNC_ELLIPSIS) {
1450 int seen_reg_num, seen_sse_num, seen_stack_size;
1451 seen_reg_num = seen_sse_num = 0;
1452 /* frame pointer and return address */
1453 seen_stack_size = PTR_SIZE * 2;
1454 /* count the number of seen parameters */
1455 sym = func_type->ref;
1456 while ((sym = sym->next) != NULL) {
1457 type = &sym->type;
1458 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1459 switch (mode) {
1460 default:
1461 stack_arg:
1462 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1463 break;
1465 case x86_64_mode_integer:
1466 if (seen_reg_num + reg_count > REGN)
1467 goto stack_arg;
1468 seen_reg_num += reg_count;
1469 break;
1471 case x86_64_mode_sse:
1472 if (seen_sse_num + reg_count > 8)
1473 goto stack_arg;
1474 seen_sse_num += reg_count;
1475 break;
1479 loc -= 16;
1480 /* movl $0x????????, -0x10(%rbp) */
1481 o(0xf045c7);
1482 gen_le32(seen_reg_num * 8);
1483 /* movl $0x????????, -0xc(%rbp) */
1484 o(0xf445c7);
1485 gen_le32(seen_sse_num * 16 + 48);
1486 /* movl $0x????????, -0x8(%rbp) */
1487 o(0xf845c7);
1488 gen_le32(seen_stack_size);
1490 /* save all register passing arguments */
1491 for (i = 0; i < 8; i++) {
1492 loc -= 16;
1493 if (!tcc_state->nosse) {
1494 o(0xd60f66); /* movq */
1495 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1497 /* movq $0, loc+8(%rbp) */
1498 o(0x85c748);
1499 gen_le32(loc + 8);
1500 gen_le32(0);
1502 for (i = 0; i < REGN; i++) {
1503 push_arg_reg(REGN-1-i);
1507 sym = func_type->ref;
1508 reg_param_index = 0;
1509 sse_param_index = 0;
1511 /* if the function returns a structure, then add an
1512 implicit pointer parameter */
1513 func_vt = sym->type;
1514 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1515 if (mode == x86_64_mode_memory) {
1516 push_arg_reg(reg_param_index);
1517 func_vc = loc;
1518 reg_param_index++;
1520 /* define parameters */
1521 while ((sym = sym->next) != NULL) {
1522 type = &sym->type;
1523 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1524 switch (mode) {
1525 case x86_64_mode_sse:
1526 if (tcc_state->nosse)
1527 tcc_error("SSE disabled but floating point arguments used");
1528 if (sse_param_index + reg_count <= 8) {
1529 /* save arguments passed by register */
1530 loc -= reg_count * 8;
1531 param_addr = loc;
1532 for (i = 0; i < reg_count; ++i) {
1533 o(0xd60f66); /* movq */
1534 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1535 ++sse_param_index;
1537 } else {
1538 addr = (addr + align - 1) & -align;
1539 param_addr = addr;
1540 addr += size;
1542 break;
1544 case x86_64_mode_memory:
1545 case x86_64_mode_x87:
1546 addr = (addr + align - 1) & -align;
1547 param_addr = addr;
1548 addr += size;
1549 break;
1551 case x86_64_mode_integer: {
1552 if (reg_param_index + reg_count <= REGN) {
1553 /* save arguments passed by register */
1554 loc -= reg_count * 8;
1555 param_addr = loc;
1556 for (i = 0; i < reg_count; ++i) {
1557 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1558 ++reg_param_index;
1560 } else {
1561 addr = (addr + align - 1) & -align;
1562 param_addr = addr;
1563 addr += size;
1565 break;
1567 default: break; /* nothing to be done for x86_64_mode_none */
1569 sym_push(sym->v & ~SYM_FIELD, type,
1570 VT_LOCAL | VT_LVAL, param_addr);
1573 #ifdef CONFIG_TCC_BCHECK
1574 /* leave some room for bound checking code */
1575 if (tcc_state->do_bounds_check) {
1576 func_bound_offset = lbounds_section->data_offset;
1577 func_bound_ind = ind;
1578 oad(0xb8, 0); /* lbound section pointer */
1579 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1580 oad(0xb8, 0); /* call to function */
1582 #endif
1585 /* generate function epilog */
1586 void gfunc_epilog(void)
1588 int v, saved_ind;
1590 #ifdef CONFIG_TCC_BCHECK
1591 if (tcc_state->do_bounds_check
1592 && func_bound_offset != lbounds_section->data_offset)
1594 addr_t saved_ind;
1595 addr_t *bounds_ptr;
1596 Sym *sym_data;
1598 /* add end of table info */
1599 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1600 *bounds_ptr = 0;
1602 /* generate bound local allocation */
1603 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1604 func_bound_offset, lbounds_section->data_offset);
1605 saved_ind = ind;
1606 ind = func_bound_ind;
1607 greloca(cur_text_section, sym_data, ind + 1, R_X86_64_64, 0);
1608 ind = ind + 5 + 3;
1609 gen_static_call(TOK___bound_local_new);
1610 ind = saved_ind;
1612 /* generate bound check local freeing */
1613 o(0x5250); /* save returned value, if any */
1614 greloca(cur_text_section, sym_data, ind + 1, R_X86_64_64, 0);
1615 oad(0xb8, 0); /* mov xxx, %rax */
1616 o(0xc78948); /* mov %rax,%rdi # first arg in %rdi, this must be ptr */
1617 gen_static_call(TOK___bound_local_delete);
1618 o(0x585a); /* restore returned value, if any */
1620 #endif
1621 o(0xc9); /* leave */
1622 if (func_ret_sub == 0) {
1623 o(0xc3); /* ret */
1624 } else {
1625 o(0xc2); /* ret n */
1626 g(func_ret_sub);
1627 g(func_ret_sub >> 8);
1629 /* align local size to word & save local variables */
1630 v = (-loc + 15) & -16;
1631 saved_ind = ind;
1632 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1633 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1634 o(0xec8148); /* sub rsp, stacksize */
1635 gen_le32(v);
1636 ind = saved_ind;
1639 #endif /* not PE */
1641 ST_FUNC void gen_fill_nops(int bytes)
1643 while (bytes--)
1644 g(0x90);
1647 /* generate a jump to a label */
1648 int gjmp(int t)
1650 return gjmp2(0xe9, t);
1653 /* generate a jump to a fixed address */
1654 void gjmp_addr(int a)
1656 int r;
1657 r = a - ind - 2;
1658 if (r == (char)r) {
1659 g(0xeb);
1660 g(r);
1661 } else {
1662 oad(0xe9, a - ind - 5);
1666 ST_FUNC void gtst_addr(int inv, int a)
1668 int v = vtop->r & VT_VALMASK;
1669 if (v == VT_CMP) {
1670 inv ^= (vtop--)->c.i;
1671 a -= ind + 2;
1672 if (a == (char)a) {
1673 g(inv - 32);
1674 g(a);
1675 } else {
1676 g(0x0f);
1677 oad(inv - 16, a - 4);
1679 } else if ((v & ~1) == VT_JMP) {
1680 if ((v & 1) != inv) {
1681 gjmp_addr(a);
1682 gsym(vtop->c.i);
1683 } else {
1684 gsym(vtop->c.i);
1685 o(0x05eb);
1686 gjmp_addr(a);
1688 vtop--;
1692 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1693 ST_FUNC int gtst(int inv, int t)
1695 int v = vtop->r & VT_VALMASK;
1697 if (nocode_wanted) {
1699 } else if (v == VT_CMP) {
1700 /* fast case : can jump directly since flags are set */
1701 if (vtop->c.i & 0x100)
1703 /* This was a float compare. If the parity flag is set
1704 the result was unordered. For anything except != this
1705 means false and we don't jump (anding both conditions).
1706 For != this means true (oring both).
1707 Take care about inverting the test. We need to jump
1708 to our target if the result was unordered and test wasn't NE,
1709 otherwise if unordered we don't want to jump. */
1710 vtop->c.i &= ~0x100;
1711 if (inv == (vtop->c.i == TOK_NE))
1712 o(0x067a); /* jp +6 */
1713 else
1715 g(0x0f);
1716 t = gjmp2(0x8a, t); /* jp t */
1719 g(0x0f);
1720 t = gjmp2((vtop->c.i - 16) ^ inv, t);
1721 } else if (v == VT_JMP || v == VT_JMPI) {
1722 /* && or || optimization */
1723 if ((v & 1) == inv) {
1724 /* insert vtop->c jump list in t */
1725 uint32_t n1, n = vtop->c.i;
1726 if (n) {
1727 while ((n1 = read32le(cur_text_section->data + n)))
1728 n = n1;
1729 write32le(cur_text_section->data + n, t);
1730 t = vtop->c.i;
1732 } else {
1733 t = gjmp(t);
1734 gsym(vtop->c.i);
1737 vtop--;
1738 return t;
1741 /* generate an integer binary operation */
1742 void gen_opi(int op)
1744 int r, fr, opc, c;
1745 int ll, uu, cc;
1747 ll = is64_type(vtop[-1].type.t);
1748 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1749 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1751 switch(op) {
1752 case '+':
1753 case TOK_ADDC1: /* add with carry generation */
1754 opc = 0;
1755 gen_op8:
1756 if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
1757 /* constant case */
1758 vswap();
1759 r = gv(RC_INT);
1760 vswap();
1761 c = vtop->c.i;
1762 if (c == (char)c) {
1763 /* XXX: generate inc and dec for smaller code ? */
1764 orex(ll, r, 0, 0x83);
1765 o(0xc0 | (opc << 3) | REG_VALUE(r));
1766 g(c);
1767 } else {
1768 orex(ll, r, 0, 0x81);
1769 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1771 } else {
1772 gv2(RC_INT, RC_INT);
1773 r = vtop[-1].r;
1774 fr = vtop[0].r;
1775 orex(ll, r, fr, (opc << 3) | 0x01);
1776 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1778 vtop--;
1779 if (op >= TOK_ULT && op <= TOK_GT) {
1780 vtop->r = VT_CMP;
1781 vtop->c.i = op;
1783 break;
1784 case '-':
1785 case TOK_SUBC1: /* sub with carry generation */
1786 opc = 5;
1787 goto gen_op8;
1788 case TOK_ADDC2: /* add with carry use */
1789 opc = 2;
1790 goto gen_op8;
1791 case TOK_SUBC2: /* sub with carry use */
1792 opc = 3;
1793 goto gen_op8;
1794 case '&':
1795 opc = 4;
1796 goto gen_op8;
1797 case '^':
1798 opc = 6;
1799 goto gen_op8;
1800 case '|':
1801 opc = 1;
1802 goto gen_op8;
1803 case '*':
1804 gv2(RC_INT, RC_INT);
1805 r = vtop[-1].r;
1806 fr = vtop[0].r;
1807 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1808 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1809 vtop--;
1810 break;
1811 case TOK_SHL:
1812 opc = 4;
1813 goto gen_shift;
1814 case TOK_SHR:
1815 opc = 5;
1816 goto gen_shift;
1817 case TOK_SAR:
1818 opc = 7;
1819 gen_shift:
1820 opc = 0xc0 | (opc << 3);
1821 if (cc) {
1822 /* constant case */
1823 vswap();
1824 r = gv(RC_INT);
1825 vswap();
1826 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1827 o(opc | REG_VALUE(r));
1828 g(vtop->c.i & (ll ? 63 : 31));
1829 } else {
1830 /* we generate the shift in ecx */
1831 gv2(RC_INT, RC_RCX);
1832 r = vtop[-1].r;
1833 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1834 o(opc | REG_VALUE(r));
1836 vtop--;
1837 break;
1838 case TOK_UDIV:
1839 case TOK_UMOD:
1840 uu = 1;
1841 goto divmod;
1842 case '/':
1843 case '%':
1844 case TOK_PDIV:
1845 uu = 0;
1846 divmod:
1847 /* first operand must be in eax */
1848 /* XXX: need better constraint for second operand */
1849 gv2(RC_RAX, RC_RCX);
1850 r = vtop[-1].r;
1851 fr = vtop[0].r;
1852 vtop--;
1853 save_reg(TREG_RDX);
1854 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1855 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1856 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1857 if (op == '%' || op == TOK_UMOD)
1858 r = TREG_RDX;
1859 else
1860 r = TREG_RAX;
1861 vtop->r = r;
1862 break;
1863 default:
1864 opc = 7;
1865 goto gen_op8;
1869 void gen_opl(int op)
1871 gen_opi(op);
1874 /* generate a floating point operation 'v = t1 op t2' instruction. The
1875 two operands are guaranteed to have the same floating point type */
1876 /* XXX: need to use ST1 too */
1877 void gen_opf(int op)
1879 int a, ft, fc, swapped, r;
1880 int float_type =
1881 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1883 /* convert constants to memory references */
1884 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1885 vswap();
1886 gv(float_type);
1887 vswap();
1889 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1890 gv(float_type);
1892 /* must put at least one value in the floating point register */
1893 if ((vtop[-1].r & VT_LVAL) &&
1894 (vtop[0].r & VT_LVAL)) {
1895 vswap();
1896 gv(float_type);
1897 vswap();
1899 swapped = 0;
1900 /* swap the stack if needed so that t1 is the register and t2 is
1901 the memory reference */
1902 if (vtop[-1].r & VT_LVAL) {
1903 vswap();
1904 swapped = 1;
1906 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1907 if (op >= TOK_ULT && op <= TOK_GT) {
1908 /* load on stack second operand */
1909 load(TREG_ST0, vtop);
1910 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1911 if (op == TOK_GE || op == TOK_GT)
1912 swapped = !swapped;
1913 else if (op == TOK_EQ || op == TOK_NE)
1914 swapped = 0;
1915 if (swapped)
1916 o(0xc9d9); /* fxch %st(1) */
1917 if (op == TOK_EQ || op == TOK_NE)
1918 o(0xe9da); /* fucompp */
1919 else
1920 o(0xd9de); /* fcompp */
1921 o(0xe0df); /* fnstsw %ax */
1922 if (op == TOK_EQ) {
1923 o(0x45e480); /* and $0x45, %ah */
1924 o(0x40fC80); /* cmp $0x40, %ah */
1925 } else if (op == TOK_NE) {
1926 o(0x45e480); /* and $0x45, %ah */
1927 o(0x40f480); /* xor $0x40, %ah */
1928 op = TOK_NE;
1929 } else if (op == TOK_GE || op == TOK_LE) {
1930 o(0x05c4f6); /* test $0x05, %ah */
1931 op = TOK_EQ;
1932 } else {
1933 o(0x45c4f6); /* test $0x45, %ah */
1934 op = TOK_EQ;
1936 vtop--;
1937 vtop->r = VT_CMP;
1938 vtop->c.i = op;
1939 } else {
1940 /* no memory reference possible for long double operations */
1941 load(TREG_ST0, vtop);
1942 swapped = !swapped;
1944 switch(op) {
1945 default:
1946 case '+':
1947 a = 0;
1948 break;
1949 case '-':
1950 a = 4;
1951 if (swapped)
1952 a++;
1953 break;
1954 case '*':
1955 a = 1;
1956 break;
1957 case '/':
1958 a = 6;
1959 if (swapped)
1960 a++;
1961 break;
1963 ft = vtop->type.t;
1964 fc = vtop->c.i;
1965 o(0xde); /* fxxxp %st, %st(1) */
1966 o(0xc1 + (a << 3));
1967 vtop--;
1969 } else {
1970 if (op >= TOK_ULT && op <= TOK_GT) {
1971 /* if saved lvalue, then we must reload it */
1972 r = vtop->r;
1973 fc = vtop->c.i;
1974 if ((r & VT_VALMASK) == VT_LLOCAL) {
1975 SValue v1;
1976 r = get_reg(RC_INT);
1977 v1.type.t = VT_PTR;
1978 v1.r = VT_LOCAL | VT_LVAL;
1979 v1.c.i = fc;
1980 load(r, &v1);
1981 fc = 0;
1984 if (op == TOK_EQ || op == TOK_NE) {
1985 swapped = 0;
1986 } else {
1987 if (op == TOK_LE || op == TOK_LT)
1988 swapped = !swapped;
1989 if (op == TOK_LE || op == TOK_GE) {
1990 op = 0x93; /* setae */
1991 } else {
1992 op = 0x97; /* seta */
1996 if (swapped) {
1997 gv(RC_FLOAT);
1998 vswap();
2000 assert(!(vtop[-1].r & VT_LVAL));
2002 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
2003 o(0x66);
2004 if (op == TOK_EQ || op == TOK_NE)
2005 o(0x2e0f); /* ucomisd */
2006 else
2007 o(0x2f0f); /* comisd */
2009 if (vtop->r & VT_LVAL) {
2010 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2011 } else {
2012 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2015 vtop--;
2016 vtop->r = VT_CMP;
2017 vtop->c.i = op | 0x100;
2018 } else {
2019 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2020 switch(op) {
2021 default:
2022 case '+':
2023 a = 0;
2024 break;
2025 case '-':
2026 a = 4;
2027 break;
2028 case '*':
2029 a = 1;
2030 break;
2031 case '/':
2032 a = 6;
2033 break;
2035 ft = vtop->type.t;
2036 fc = vtop->c.i;
2037 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2039 r = vtop->r;
2040 /* if saved lvalue, then we must reload it */
2041 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2042 SValue v1;
2043 r = get_reg(RC_INT);
2044 v1.type.t = VT_PTR;
2045 v1.r = VT_LOCAL | VT_LVAL;
2046 v1.c.i = fc;
2047 load(r, &v1);
2048 fc = 0;
2051 assert(!(vtop[-1].r & VT_LVAL));
2052 if (swapped) {
2053 assert(vtop->r & VT_LVAL);
2054 gv(RC_FLOAT);
2055 vswap();
2058 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2059 o(0xf2);
2060 } else {
2061 o(0xf3);
2063 o(0x0f);
2064 o(0x58 + a);
2066 if (vtop->r & VT_LVAL) {
2067 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2068 } else {
2069 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2072 vtop--;
2077 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2078 and 'long long' cases. */
2079 void gen_cvt_itof(int t)
2081 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2082 save_reg(TREG_ST0);
2083 gv(RC_INT);
2084 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2085 /* signed long long to float/double/long double (unsigned case
2086 is handled generically) */
2087 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2088 o(0x242cdf); /* fildll (%rsp) */
2089 o(0x08c48348); /* add $8, %rsp */
2090 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2091 (VT_INT | VT_UNSIGNED)) {
2092 /* unsigned int to float/double/long double */
2093 o(0x6a); /* push $0 */
2094 g(0x00);
2095 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2096 o(0x242cdf); /* fildll (%rsp) */
2097 o(0x10c48348); /* add $16, %rsp */
2098 } else {
2099 /* int to float/double/long double */
2100 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2101 o(0x2404db); /* fildl (%rsp) */
2102 o(0x08c48348); /* add $8, %rsp */
2104 vtop->r = TREG_ST0;
2105 } else {
2106 int r = get_reg(RC_FLOAT);
2107 gv(RC_INT);
2108 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2109 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2110 (VT_INT | VT_UNSIGNED) ||
2111 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2112 o(0x48); /* REX */
2114 o(0x2a0f);
2115 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2116 vtop->r = r;
2120 /* convert from one floating point type to another */
2121 void gen_cvt_ftof(int t)
2123 int ft, bt, tbt;
2125 ft = vtop->type.t;
2126 bt = ft & VT_BTYPE;
2127 tbt = t & VT_BTYPE;
2129 if (bt == VT_FLOAT) {
2130 gv(RC_FLOAT);
2131 if (tbt == VT_DOUBLE) {
2132 o(0x140f); /* unpcklps */
2133 o(0xc0 + REG_VALUE(vtop->r)*9);
2134 o(0x5a0f); /* cvtps2pd */
2135 o(0xc0 + REG_VALUE(vtop->r)*9);
2136 } else if (tbt == VT_LDOUBLE) {
2137 save_reg(RC_ST0);
2138 /* movss %xmm0,-0x10(%rsp) */
2139 o(0x110ff3);
2140 o(0x44 + REG_VALUE(vtop->r)*8);
2141 o(0xf024);
2142 o(0xf02444d9); /* flds -0x10(%rsp) */
2143 vtop->r = TREG_ST0;
2145 } else if (bt == VT_DOUBLE) {
2146 gv(RC_FLOAT);
2147 if (tbt == VT_FLOAT) {
2148 o(0x140f66); /* unpcklpd */
2149 o(0xc0 + REG_VALUE(vtop->r)*9);
2150 o(0x5a0f66); /* cvtpd2ps */
2151 o(0xc0 + REG_VALUE(vtop->r)*9);
2152 } else if (tbt == VT_LDOUBLE) {
2153 save_reg(RC_ST0);
2154 /* movsd %xmm0,-0x10(%rsp) */
2155 o(0x110ff2);
2156 o(0x44 + REG_VALUE(vtop->r)*8);
2157 o(0xf024);
2158 o(0xf02444dd); /* fldl -0x10(%rsp) */
2159 vtop->r = TREG_ST0;
2161 } else {
2162 int r;
2163 gv(RC_ST0);
2164 r = get_reg(RC_FLOAT);
2165 if (tbt == VT_DOUBLE) {
2166 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2167 /* movsd -0x10(%rsp),%xmm0 */
2168 o(0x100ff2);
2169 o(0x44 + REG_VALUE(r)*8);
2170 o(0xf024);
2171 vtop->r = r;
2172 } else if (tbt == VT_FLOAT) {
2173 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2174 /* movss -0x10(%rsp),%xmm0 */
2175 o(0x100ff3);
2176 o(0x44 + REG_VALUE(r)*8);
2177 o(0xf024);
2178 vtop->r = r;
2183 /* convert fp to int 't' type */
2184 void gen_cvt_ftoi(int t)
2186 int ft, bt, size, r;
2187 ft = vtop->type.t;
2188 bt = ft & VT_BTYPE;
2189 if (bt == VT_LDOUBLE) {
2190 gen_cvt_ftof(VT_DOUBLE);
2191 bt = VT_DOUBLE;
2194 gv(RC_FLOAT);
2195 if (t != VT_INT)
2196 size = 8;
2197 else
2198 size = 4;
2200 r = get_reg(RC_INT);
2201 if (bt == VT_FLOAT) {
2202 o(0xf3);
2203 } else if (bt == VT_DOUBLE) {
2204 o(0xf2);
2205 } else {
2206 assert(0);
2208 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2209 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2210 vtop->r = r;
2213 /* computed goto support */
2214 void ggoto(void)
2216 gcall_or_jmp(1);
2217 vtop--;
2220 /* Save the stack pointer onto the stack and return the location of its address */
2221 ST_FUNC void gen_vla_sp_save(int addr) {
2222 /* mov %rsp,addr(%rbp)*/
2223 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2226 /* Restore the SP from a location on the stack */
2227 ST_FUNC void gen_vla_sp_restore(int addr) {
2228 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2231 #ifdef TCC_TARGET_PE
2232 /* Save result of gen_vla_alloc onto the stack */
2233 ST_FUNC void gen_vla_result(int addr) {
2234 /* mov %rax,addr(%rbp)*/
2235 gen_modrm64(0x89, TREG_RAX, VT_LOCAL, NULL, addr);
2237 #endif
2239 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2240 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2241 #ifdef TCC_TARGET_PE
2242 /* alloca does more than just adjust %rsp on Windows */
2243 vpush_global_sym(&func_old_type, TOK_alloca);
2244 vswap(); /* Move alloca ref past allocation size */
2245 gfunc_call(1);
2246 #else
2247 int r;
2248 r = gv(RC_INT); /* allocation size */
2249 /* sub r,%rsp */
2250 o(0x2b48);
2251 o(0xe0 | REG_VALUE(r));
2252 /* We align to 16 bytes rather than align */
2253 /* and ~15, %rsp */
2254 o(0xf0e48348);
2255 vpop();
2256 #endif
2260 /* end of x86-64 code generator */
2261 /*************************************************************/
2262 #endif /* ! TARGET_DEFS_ONLY */
2263 /******************************************************/