2 * i386 specific functions for TCC assembler
4 * Copyright (c) 2001, 2002 Fabrice Bellard
5 * Copyright (c) 2009 Frédéric Feret (x86_64 support)
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 // #define NB_ASM_REGS 8
25 #define MAX_OPERANDS 3
26 #define NB_SAVED_REGS 3
28 #define TOK_ASM_first TOK_ASM_clc
29 #define TOK_ASM_last TOK_ASM_emms
31 #define OPC_JMP 0x01 /* jmp operand */
32 #define OPC_B 0x02 /* only used with OPC_WL */
33 #define OPC_WL 0x04 /* accepts w, l or no suffix */
34 #define OPC_BWL (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
35 #define OPC_REG 0x08 /* register is added to opcode */
36 #define OPC_MODRM 0x10 /* modrm encoding */
37 #define OPC_FWAIT 0x20 /* add fwait opcode */
38 #define OPC_TEST 0x40 /* test opcodes */
39 #define OPC_SHIFT 0x80 /* shift opcodes */
40 #define OPC_D16 0x0100 /* generate data16 prefix */
41 #define OPC_ARITH 0x0200 /* arithmetic opcodes */
42 #define OPC_SHORTJMP 0x0400 /* short jmp operand */
43 #define OPC_FARITH 0x0800 /* FPU arithmetic opcodes */
44 #ifdef TCC_TARGET_X86_64
45 # define OPC_WLQ 0x1000 /* accepts w, l, q or no suffix */
46 # define OPC_BWLQ (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */
47 # define OPC_WLX OPC_WLQ
49 # define OPC_WLX OPC_WL
52 #define OPC_GROUP_SHIFT 13
54 /* in order to compress the operand type, we use specific operands and
57 OPT_REG8
=0, /* warning: value is hardcoded from TOK_ASM_xxx */
58 OPT_REG16
, /* warning: value is hardcoded from TOK_ASM_xxx */
59 OPT_REG32
, /* warning: value is hardcoded from TOK_ASM_xxx */
60 #ifdef TCC_TARGET_X86_64
61 OPT_REG64
, /* warning: value is hardcoded from TOK_ASM_xxx */
63 OPT_MMX
, /* warning: value is hardcoded from TOK_ASM_xxx */
64 OPT_SSE
, /* warning: value is hardcoded from TOK_ASM_xxx */
65 OPT_CR
, /* warning: value is hardcoded from TOK_ASM_xxx */
66 OPT_TR
, /* warning: value is hardcoded from TOK_ASM_xxx */
67 OPT_DB
, /* warning: value is hardcoded from TOK_ASM_xxx */
74 #ifdef TCC_TARGET_X86_64
77 OPT_EAX
, /* %al, %ax, %eax or %rax register */
78 OPT_ST0
, /* %st(0) register */
79 OPT_CL
, /* %cl register */
80 OPT_DX
, /* %dx register */
81 OPT_ADDR
, /* OP_EA with only offset */
82 OPT_INDIR
, /* *(expr) */
85 OPT_IM
, /* IM8 | IM16 | IM32 | IM64 */
86 OPT_REG
, /* REG8 | REG16 | REG32 | REG64 */
87 OPT_REGW
, /* REG16 | REG32 | REG64 */
88 OPT_IMW
, /* IM16 | IM32 | IM64 */
89 #ifdef TCC_TARGET_X86_64
90 OPT_IMNO64
, /* IM16 | IM32 */
92 /* can be ored with any OPT_xxx */
96 #define OP_REG8 (1 << OPT_REG8)
97 #define OP_REG16 (1 << OPT_REG16)
98 #define OP_REG32 (1 << OPT_REG32)
99 #define OP_MMX (1 << OPT_MMX)
100 #define OP_SSE (1 << OPT_SSE)
101 #define OP_CR (1 << OPT_CR)
102 #define OP_TR (1 << OPT_TR)
103 #define OP_DB (1 << OPT_DB)
104 #define OP_SEG (1 << OPT_SEG)
105 #define OP_ST (1 << OPT_ST)
106 #define OP_IM8 (1 << OPT_IM8)
107 #define OP_IM8S (1 << OPT_IM8S)
108 #define OP_IM16 (1 << OPT_IM16)
109 #define OP_IM32 (1 << OPT_IM32)
110 #define OP_EAX (1 << OPT_EAX)
111 #define OP_ST0 (1 << OPT_ST0)
112 #define OP_CL (1 << OPT_CL)
113 #define OP_DX (1 << OPT_DX)
114 #define OP_ADDR (1 << OPT_ADDR)
115 #define OP_INDIR (1 << OPT_INDIR)
116 #ifdef TCC_TARGET_X86_64
117 # define OP_REG64 (1 << OPT_REG64)
118 # define OP_IM64 (1 << OPT_IM64)
124 #define OP_EA 0x40000000
125 #define OP_REG (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64)
127 #ifdef TCC_TARGET_X86_64
128 # define OP_IM OP_IM64
129 # define TREG_XAX TREG_RAX
130 # define TREG_XCX TREG_RCX
131 # define TREG_XDX TREG_RDX
133 # define OP_IM OP_IM32
134 # define TREG_XAX TREG_EAX
135 # define TREG_XCX TREG_ECX
136 # define TREG_XDX TREG_EDX
139 typedef struct ASMInstr
{
144 uint8_t op_type
[MAX_OPERANDS
]; /* see OP_xxx */
147 typedef struct Operand
{
149 int8_t reg
; /* register, -1 if none */
150 int8_t reg2
; /* second register, -1 if none */
155 static const uint8_t reg_to_size
[9] = {
160 #ifdef TCC_TARGET_X86_64
164 0, 0, 1, 0, 2, 0, 0, 0, 3
167 #define NB_TEST_OPCODES 30
169 static const uint8_t test_bits
[NB_TEST_OPCODES
] = {
202 static const uint8_t segment_prefixes
[] = {
211 static const ASMInstr asm_instrs
[] = {
213 #define DEF_ASM_OP0(name, opcode)
214 #define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 0 },
215 #define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 1, { op0 }},
216 #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 2, { op0, op1 }},
217 #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, opcode, (instr_type | group << OPC_GROUP_SHIFT), 3, { op0, op1, op2 }},
218 #ifdef TCC_TARGET_X86_64
219 # include "x86_64-asm.h"
221 # include "i386-asm.h"
227 static const uint16_t op0_codes
[] = {
229 #define DEF_ASM_OP0(x, opcode) opcode,
230 #define DEF_ASM_OP0L(name, opcode, group, instr_type)
231 #define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
232 #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
233 #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
234 #ifdef TCC_TARGET_X86_64
235 # include "x86_64-asm.h"
237 # include "i386-asm.h"
241 static inline int get_reg_shift(TCCState
*s1
)
245 if (s1
->seg_size
== 16)
246 error("invalid effective address");
248 v
= asm_int_expr(s1
);
263 expect("1, 2, 4 or 8 constant");
270 static int asm_parse_reg(void)
276 if (tok
>= TOK_ASM_eax
&& tok
<= TOK_ASM_edi
) {
277 reg
= tok
- TOK_ASM_eax
;
278 #ifdef TCC_TARGET_X86_64
279 } else if (tok
>= TOK_ASM_rax
&& tok
<= TOK_ASM_rdi
) {
280 reg
= tok
- TOK_ASM_rax
;
283 } else if (tok
>= TOK_ASM_ax
&& tok
<= TOK_ASM_di
) {
284 reg
= tok
- TOK_ASM_ax
;
294 static void parse_operand(TCCState
*s1
, Operand
*op
)
308 if (tok
>= TOK_ASM_al
&& tok
<= TOK_ASM_db7
) {
309 reg
= tok
- TOK_ASM_al
;
310 op
->type
= 1 << (reg
>> 3); /* WARNING: do not change constant order */
312 if ((op
->type
& OP_REG
) && op
->reg
== TREG_XAX
)
314 else if (op
->type
== OP_REG8
&& op
->reg
== TREG_XCX
)
316 else if (op
->type
== OP_REG16
&& op
->reg
== TREG_XDX
)
318 } else if (tok
>= TOK_ASM_dr0
&& tok
<= TOK_ASM_dr7
) {
320 op
->reg
= tok
- TOK_ASM_dr0
;
321 } else if (tok
>= TOK_ASM_es
&& tok
<= TOK_ASM_gs
) {
323 op
->reg
= tok
- TOK_ASM_es
;
324 } else if (tok
== TOK_ASM_st
) {
330 if (tok
!= TOK_PPNUM
)
334 if ((unsigned)reg
>= 8 || p
[1] != '\0')
345 error("unknown register");
349 } else if (tok
== '$') {
357 if (op
->e
.v
== (uint8_t)op
->e
.v
)
359 if (op
->e
.v
== (int8_t)op
->e
.v
)
361 if (op
->e
.v
== (uint16_t)op
->e
.v
)
363 #ifdef TCC_TARGET_X86_64
364 if (op
->e
.v
== (uint32_t)op
->e
.v
)
369 /* address(reg,reg2,shift) with all variants */
385 /* bracketed offset expression */
397 op
->reg
= asm_parse_reg();
402 op
->reg2
= asm_parse_reg();
406 op
->shift
= get_reg_shift(s1
);
411 if (op
->reg
== -1 && op
->reg2
== -1)
417 /* XXX: unify with C code output ? */
418 ST_FUNC
void gen_expr32(ExprValue
*pe
)
420 gen_addr32(pe
->sym
? VT_SYM
: 0, pe
->sym
, pe
->v
);
423 #ifdef TCC_TARGET_X86_64
424 static void gen_expr64(ExprValue
*pe
)
426 gen_addr64(pe
->sym
? VT_SYM
: 0, pe
->sym
, pe
->v
);
430 /* XXX: unify with C code output ? */
431 static void gen_disp32(ExprValue
*pe
)
434 if (sym
&& sym
->r
== cur_text_section
->sh_num
) {
435 /* same section: we can output an absolute value. Note
436 that the TCC compiler behaves differently here because
437 it always outputs a relocation to ease (future) code
438 elimination in the linker */
439 gen_le32(pe
->v
+ sym
->jnext
- ind
- 4);
441 if (sym
&& sym
->type
.t
== VT_VOID
) {
442 sym
->type
.t
= VT_FUNC
;
443 sym
->type
.ref
= NULL
;
445 gen_addrpc32(VT_SYM
, sym
, pe
->v
);
450 static void gen_expr16(ExprValue
*pe
)
453 greloc(cur_text_section
, pe
->sym
, ind
, R_386_16
);
456 static void gen_disp16(ExprValue
*pe
)
461 if (sym
->r
== cur_text_section
->sh_num
) {
462 /* same section: we can output an absolute value. Note
463 that the TCC compiler behaves differently here because
464 it always outputs a relocation to ease (future) code
465 elimination in the linker */
466 gen_le16(pe
->v
+ sym
->jnext
- ind
- 2);
468 greloc(cur_text_section
, sym
, ind
, R_386_PC16
);
472 /* put an empty PC32 relocation */
473 put_elf_reloc(symtab_section
, cur_text_section
,
480 /* generate the modrm operand */
481 static inline void asm_modrm(int reg
, Operand
*op
)
483 int mod
, reg1
, reg2
, sib_reg1
;
485 if (op
->type
& (OP_REG
| OP_MMX
| OP_SSE
)) {
486 g(0xc0 + (reg
<< 3) + op
->reg
);
487 } else if (op
->reg
== -1 && op
->reg2
== -1) {
488 /* displacement only */
490 if (tcc_state
->seg_size
== 16) {
491 g(0x06 + (reg
<< 3));
493 } else if (tcc_state
->seg_size
== 32)
496 g(0x05 + (reg
<< 3));
501 /* fist compute displacement encoding */
502 if (sib_reg1
== -1) {
505 } else if (op
->e
.v
== 0 && !op
->e
.sym
&& op
->reg
!= 5) {
507 } else if (op
->e
.v
== (int8_t)op
->e
.v
&& !op
->e
.sym
) {
512 /* compute if sib byte needed */
517 if (tcc_state
->seg_size
== 32) {
519 g(mod
+ (reg
<< 3) + reg1
);
524 reg2
= 4; /* indicate no index */
525 g((op
->shift
<< 6) + (reg2
<< 3) + sib_reg1
);
528 } else if (tcc_state
->seg_size
== 16) {
529 /* edi = 7, esi = 6 --> di = 5, si = 4 */
530 if ((reg1
== 6) || (reg1
== 7)) {
532 /* ebx = 3 --> bx = 7 */
533 } else if (reg1
== 3) {
535 /* o32 = 5 --> o16 = 6 */
536 } else if (reg1
== 5) {
538 /* sib not valid in 16-bit mode */
539 } else if (reg1
== 4) {
541 /* bp + si + offset */
542 if ((sib_reg1
== 5) && (reg2
== 6)) {
544 /* bp + di + offset */
545 } else if ((sib_reg1
== 5) && (reg2
== 7)) {
547 /* bx + si + offset */
548 } else if ((sib_reg1
== 3) && (reg2
== 6)) {
550 /* bx + di + offset */
551 } else if ((sib_reg1
== 3) && (reg2
== 7)) {
554 error("invalid effective address");
559 error("invalid register");
561 g(mod
+ (reg
<< 3) + reg1
);
567 } else if (mod
== 0x80 || op
->reg
== -1) {
569 if (tcc_state
->seg_size
== 16)
571 else if (tcc_state
->seg_size
== 32)
578 ST_FUNC
void asm_opcode(TCCState
*s1
, int opcode
)
581 int i
, modrm_index
, reg
, v
, op1
, is_short_jmp
, seg_prefix
;
583 Operand ops
[MAX_OPERANDS
], *pop
;
584 int op_type
[3]; /* decoded op type */
586 static int a32
= 0, o32
= 0, addr32
= 0, data32
= 0;
589 /* force synthetic ';' after prefix instruction, so we can handle */
590 /* one-line things like "rep stosb" instead of only "rep\nstosb" */
591 if (opcode
>= TOK_ASM_wait
&& opcode
<= TOK_ASM_repnz
)
599 if (tok
== ';' || tok
== TOK_LINEFEED
)
601 if (nb_ops
>= MAX_OPERANDS
) {
602 error("incorrect number of operands");
604 parse_operand(s1
, pop
);
606 if (pop
->type
!= OP_SEG
|| seg_prefix
)
607 error("incorrect prefix");
608 seg_prefix
= segment_prefixes
[pop
->reg
];
610 parse_operand(s1
, pop
);
612 if (!(pop
->type
& OP_EA
)) {
613 error("segment prefix must be followed by memory reference");
625 s
= 0; /* avoid warning */
627 /* optimize matching by using a lookup table (no hashing is needed
629 for(pa
= asm_instrs
; pa
->sym
!= 0; pa
++) {
631 if (pa
->instr_type
& OPC_FARITH
) {
632 v
= opcode
- pa
->sym
;
633 if (!((unsigned)v
< 8 * 6 && (v
% 6) == 0))
635 } else if (pa
->instr_type
& OPC_ARITH
) {
636 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ 8*NBWLX
))
638 s
= (opcode
- pa
->sym
) % NBWLX
;
639 } else if (pa
->instr_type
& OPC_SHIFT
) {
640 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ 7*NBWLX
))
642 s
= (opcode
- pa
->sym
) % NBWLX
;
643 } else if (pa
->instr_type
& OPC_TEST
) {
644 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NB_TEST_OPCODES
))
646 } else if (pa
->instr_type
& OPC_B
) {
647 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NBWLX
))
649 s
= opcode
- pa
->sym
;
650 } else if (pa
->instr_type
& OPC_WLX
) {
651 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NBWLX
-1))
653 s
= opcode
- pa
->sym
+ 1;
655 if (pa
->sym
!= opcode
)
658 if (pa
->nb_ops
!= nb_ops
)
660 /* now decode and check each operand */
661 for(i
= 0; i
< nb_ops
; i
++) {
663 op1
= pa
->op_type
[i
];
667 v
= OP_IM8
| OP_IM16
| OP_IM32
| OP_IM64
;
670 v
= OP_REG8
| OP_REG16
| OP_REG32
| OP_REG64
;
673 v
= OP_REG16
| OP_REG32
| OP_REG64
;
676 v
= OP_IM16
| OP_IM32
| OP_IM64
;
678 #ifdef TCC_TARGET_X86_64
680 v
= OP_IM16
| OP_IM32
;
690 if ((ops
[i
].type
& v
) == 0)
693 /* all is matching ! */
698 if (opcode
>= TOK_ASM_first
&& opcode
<= TOK_ASM_last
) {
700 b
= op0_codes
[opcode
- TOK_ASM_first
];
702 if (opcode
== TOK_ASM_o32
) {
703 if (s1
->seg_size
== 32)
704 error("incorrect prefix");
707 } else if (opcode
== TOK_ASM_a32
) {
708 if (s1
->seg_size
== 32)
709 error("incorrect prefix");
719 error("unknown opcode '%s'",
720 get_tok_str(opcode
, NULL
));
723 /* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
725 for(i
= 0; s
== NBWLX
-1 && i
< nb_ops
; i
++) {
726 if ((ops
[i
].type
& OP_REG
) && !(op_type
[i
] & (OP_CL
| OP_DX
)))
727 s
= reg_to_size
[ops
[i
].type
& OP_REG
];
730 if ((opcode
== TOK_ASM_push
|| opcode
== TOK_ASM_pop
) &&
731 (ops
[0].type
& (OP_SEG
| OP_IM8S
| OP_IM32
| OP_IM64
)))
734 error("cannot infer opcode suffix");
739 for(i
= 0; i
< nb_ops
; i
++) {
740 if (ops
[i
].type
& OP_REG32
) {
741 if (s1
->seg_size
== 16)
743 } else if (!(ops
[i
].type
& OP_REG32
)) {
744 if (s1
->seg_size
== 32)
750 if (s
== 1 || (pa
->instr_type
& OPC_D16
)) {
751 if (s1
->seg_size
== 32)
754 if (s1
->seg_size
== 16) {
755 if (!(pa
->instr_type
& OPC_D16
))
760 /* generate a16/a32 prefix if needed */
761 if ((a32
== 1) && (addr32
== 0))
763 /* generate o16/o32 prefix if needed */
764 if ((o32
== 1) && (data32
== 0))
769 /* generate data16 prefix if needed */
770 if (s
== 1 || (pa
->instr_type
& OPC_D16
))
772 #ifdef TCC_TARGET_X86_64
774 /* generate REX prefix */
775 if ((opcode
!= TOK_ASM_push
&& opcode
!= TOK_ASM_pop
)
776 || !(ops
[0].type
& OP_REG64
))
782 /* now generates the operation */
783 if (pa
->instr_type
& OPC_FWAIT
)
789 if ((v
== 0x69 || v
== 0x6b) && nb_ops
== 2) {
790 /* kludge for imul $im, %reg */
793 op_type
[2] = op_type
[1];
794 } else if (v
== 0xcd && ops
[0].e
.v
== 3 && !ops
[0].e
.sym
) {
795 v
--; /* int $3 case */
797 } else if ((v
== 0x06 || v
== 0x07)) {
798 if (ops
[0].reg
>= 4) {
799 /* push/pop %fs or %gs */
800 v
= 0x0fa0 + (v
- 0x06) + ((ops
[0].reg
- 4) << 3);
802 v
+= ops
[0].reg
<< 3;
805 } else if (v
<= 0x05) {
807 v
+= ((opcode
- TOK_ASM_addb
) / NBWLX
) << 3;
808 } else if ((pa
->instr_type
& (OPC_FARITH
| OPC_MODRM
)) == OPC_FARITH
) {
810 v
+= ((opcode
- pa
->sym
) / 6) << 3;
812 if (pa
->instr_type
& OPC_REG
) {
813 for(i
= 0; i
< nb_ops
; i
++) {
814 if (op_type
[i
] & (OP_REG
| OP_ST
)) {
819 /* mov $im, %reg case */
820 if (pa
->opcode
== 0xb0 && s
>= 1)
823 if (pa
->instr_type
& OPC_B
)
825 if (pa
->instr_type
& OPC_TEST
)
826 v
+= test_bits
[opcode
- pa
->sym
];
827 if (pa
->instr_type
& OPC_SHORTJMP
) {
831 /* see if we can really generate the jump with a byte offset */
835 if (sym
->r
!= cur_text_section
->sh_num
)
837 jmp_disp
= ops
[0].e
.v
+ sym
->jnext
- ind
- 2;
838 if (jmp_disp
== (int8_t)jmp_disp
) {
839 /* OK to generate jump */
841 ops
[0].e
.v
= jmp_disp
;
844 if (pa
->instr_type
& OPC_JMP
) {
845 /* long jump will be allowed. need to modify the
852 error("invalid displacement");
861 /* search which operand will used for modrm */
863 if (pa
->instr_type
& OPC_SHIFT
) {
864 reg
= (opcode
- pa
->sym
) / NBWLX
;
867 } else if (pa
->instr_type
& OPC_ARITH
) {
868 reg
= (opcode
- pa
->sym
) / NBWLX
;
869 } else if (pa
->instr_type
& OPC_FARITH
) {
870 reg
= (opcode
- pa
->sym
) / 6;
872 reg
= (pa
->instr_type
>> OPC_GROUP_SHIFT
) & 7;
874 if (pa
->instr_type
& OPC_MODRM
) {
875 /* first look for an ea operand */
876 for(i
= 0;i
< nb_ops
; i
++) {
877 if (op_type
[i
] & OP_EA
)
880 /* then if not found, a register or indirection (shift instructions) */
881 for(i
= 0;i
< nb_ops
; i
++) {
882 if (op_type
[i
] & (OP_REG
| OP_MMX
| OP_SSE
| OP_INDIR
))
886 error("bad op table");
890 /* if a register is used in another operand then it is
891 used instead of group */
892 for(i
= 0;i
< nb_ops
; i
++) {
894 if (i
!= modrm_index
&&
895 (v
& (OP_REG
| OP_MMX
| OP_SSE
| OP_CR
| OP_TR
| OP_DB
| OP_SEG
))) {
901 asm_modrm(reg
, &ops
[modrm_index
]);
905 #ifndef TCC_TARGET_X86_64
906 if (pa
->opcode
== 0x9a || pa
->opcode
== 0xea) {
907 /* ljmp or lcall kludge */
909 if (s1
->seg_size
== 16 && o32
== 0)
910 gen_expr16(&ops
[1].e
);
913 gen_expr32(&ops
[1].e
);
915 error("cannot relocate");
916 gen_le16(ops
[0].e
.v
);
920 for(i
= 0;i
< nb_ops
; i
++) {
922 if (v
& (OP_IM8
| OP_IM16
| OP_IM32
| OP_IM64
| OP_IM8S
| OP_ADDR
)) {
923 /* if multiple sizes are given it means we must look
925 if ((v
| OP_IM8
| OP_IM64
) == (OP_IM8
| OP_IM16
| OP_IM32
| OP_IM64
)) {
930 else if (s
== 2 || (v
& OP_IM64
) == 0)
935 if (v
& (OP_IM8
| OP_IM8S
)) {
939 } else if (v
& OP_IM16
) {
941 if (s1
->seg_size
== 16)
942 gen_expr16(&ops
[i
].e
);
947 error("cannot relocate");
949 gen_le16(ops
[i
].e
.v
);
951 if (pa
->instr_type
& (OPC_JMP
| OPC_SHORTJMP
)) {
955 else if (s1
->seg_size
== 16)
956 gen_disp16(&ops
[i
].e
);
959 gen_disp32(&ops
[i
].e
);
962 if (s1
->seg_size
== 16 && !((o32
== 1) && (v
& OP_IM32
)))
963 gen_expr16(&ops
[i
].e
);
966 #ifdef TCC_TARGET_X86_64
968 gen_expr64(&ops
[i
].e
);
971 gen_expr32(&ops
[i
].e
);
975 } else if (v
& (OP_REG16
| OP_REG32
)) {
976 if (pa
->instr_type
& (OPC_JMP
| OPC_SHORTJMP
)) {
978 g(0xE0 + ops
[i
].reg
);
981 #ifdef TCC_TARGET_X86_64
982 } else if (v
& (OP_REG32
| OP_REG64
)) {
983 if (pa
->instr_type
& (OPC_JMP
| OPC_SHORTJMP
)) {
985 g(0xE0 + ops
[i
].reg
);
995 /* return the constraint priority (we allocate first the lowest
996 numbered constraints) */
997 static inline int constraint_priority(const char *str
)
1001 /* we take the lowest priority */
1035 error("unknown constraint '%c'", c
);
1044 static const char *skip_constraint_modifiers(const char *p
)
1046 while (*p
== '=' || *p
== '&' || *p
== '+' || *p
== '%')
1051 #define REG_OUT_MASK 0x01
1052 #define REG_IN_MASK 0x02
1054 #define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
1056 ST_FUNC
void asm_compute_constraints(ASMOperand
*operands
,
1057 int nb_operands
, int nb_outputs
,
1058 const uint8_t *clobber_regs
,
1062 int sorted_op
[MAX_ASM_OPERANDS
];
1063 int i
, j
, k
, p1
, p2
, tmp
, reg
, c
, reg_mask
;
1065 uint8_t regs_allocated
[NB_ASM_REGS
];
1068 for(i
=0;i
<nb_operands
;i
++) {
1070 op
->input_index
= -1;
1076 /* compute constraint priority and evaluate references to output
1077 constraints if input constraints */
1078 for(i
=0;i
<nb_operands
;i
++) {
1080 str
= op
->constraint
;
1081 str
= skip_constraint_modifiers(str
);
1082 if (isnum(*str
) || *str
== '[') {
1083 /* this is a reference to another constraint */
1084 k
= find_constraint(operands
, nb_operands
, str
, NULL
);
1085 if ((unsigned)k
>= i
|| i
< nb_outputs
)
1086 error("invalid reference in constraint %d ('%s')",
1089 if (operands
[k
].input_index
>= 0)
1090 error("cannot reference twice the same operand");
1091 operands
[k
].input_index
= i
;
1094 op
->priority
= constraint_priority(str
);
1098 /* sort operands according to their priority */
1099 for(i
=0;i
<nb_operands
;i
++)
1101 for(i
=0;i
<nb_operands
- 1;i
++) {
1102 for(j
=i
+1;j
<nb_operands
;j
++) {
1103 p1
= operands
[sorted_op
[i
]].priority
;
1104 p2
= operands
[sorted_op
[j
]].priority
;
1107 sorted_op
[i
] = sorted_op
[j
];
1113 for(i
= 0;i
< NB_ASM_REGS
; i
++) {
1114 if (clobber_regs
[i
])
1115 regs_allocated
[i
] = REG_IN_MASK
| REG_OUT_MASK
;
1117 regs_allocated
[i
] = 0;
1119 /* esp cannot be used */
1120 regs_allocated
[4] = REG_IN_MASK
| REG_OUT_MASK
;
1121 /* ebp cannot be used yet */
1122 regs_allocated
[5] = REG_IN_MASK
| REG_OUT_MASK
;
1124 /* allocate registers and generate corresponding asm moves */
1125 for(i
=0;i
<nb_operands
;i
++) {
1128 str
= op
->constraint
;
1129 /* no need to allocate references */
1130 if (op
->ref_index
>= 0)
1132 /* select if register is used for output, input or both */
1133 if (op
->input_index
>= 0) {
1134 reg_mask
= REG_IN_MASK
| REG_OUT_MASK
;
1135 } else if (j
< nb_outputs
) {
1136 reg_mask
= REG_OUT_MASK
;
1138 reg_mask
= REG_IN_MASK
;
1149 if (j
>= nb_outputs
)
1150 error("'%c' modifier can only be applied to outputs", c
);
1151 reg_mask
= REG_IN_MASK
| REG_OUT_MASK
;
1154 /* allocate both eax and edx */
1155 if (is_reg_allocated(TREG_XAX
) ||
1156 is_reg_allocated(TREG_XDX
))
1160 regs_allocated
[TREG_XAX
] |= reg_mask
;
1161 regs_allocated
[TREG_XDX
] |= reg_mask
;
1181 if (is_reg_allocated(reg
))
1185 /* eax, ebx, ecx or edx */
1186 for(reg
= 0; reg
< 4; reg
++) {
1187 if (!is_reg_allocated(reg
))
1192 /* any general register */
1193 for(reg
= 0; reg
< 8; reg
++) {
1194 if (!is_reg_allocated(reg
))
1199 /* now we can reload in the register */
1202 regs_allocated
[reg
] |= reg_mask
;
1205 if (!((op
->vt
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
))
1211 if (!((op
->vt
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
))
1216 /* nothing special to do because the operand is already in
1217 memory, except if the pointer itself is stored in a
1218 memory variable (VT_LLOCAL case) */
1219 /* XXX: fix constant case */
1220 /* if it is a reference to a memory zone, it must lie
1221 in a register, so we reserve the register in the
1222 input registers and a load will be generated
1224 if (j
< nb_outputs
|| c
== 'm') {
1225 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
) {
1226 /* any general register */
1227 for(reg
= 0; reg
< 8; reg
++) {
1228 if (!(regs_allocated
[reg
] & REG_IN_MASK
))
1233 /* now we can reload in the register */
1234 regs_allocated
[reg
] |= REG_IN_MASK
;
1241 error("asm constraint %d ('%s') could not be satisfied",
1245 /* if a reference is present for that operand, we assign it too */
1246 if (op
->input_index
>= 0) {
1247 operands
[op
->input_index
].reg
= op
->reg
;
1248 operands
[op
->input_index
].is_llong
= op
->is_llong
;
1252 /* compute out_reg. It is used to store outputs registers to memory
1253 locations references by pointers (VT_LLOCAL case) */
1255 for(i
=0;i
<nb_operands
;i
++) {
1258 (op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
&&
1260 for(reg
= 0; reg
< 8; reg
++) {
1261 if (!(regs_allocated
[reg
] & REG_OUT_MASK
))
1264 error("could not find free output register for reloading");
1271 /* print sorted constraints */
1273 for(i
=0;i
<nb_operands
;i
++) {
1276 printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
1278 op
->id
? get_tok_str(op
->id
, NULL
) : "",
1284 printf("out_reg=%d\n", *pout_reg
);
1288 ST_FUNC
void subst_asm_operand(CString
*add_str
,
1289 SValue
*sv
, int modifier
)
1291 int r
, reg
, size
, val
;
1295 if ((r
& VT_VALMASK
) == VT_CONST
) {
1296 if (!(r
& VT_LVAL
) && modifier
!= 'c' && modifier
!= 'n')
1297 cstr_ccat(add_str
, '$');
1299 cstr_cat(add_str
, get_tok_str(sv
->sym
->v
, NULL
));
1301 cstr_ccat(add_str
, '+');
1307 if (modifier
== 'n')
1309 snprintf(buf
, sizeof(buf
), "%d", sv
->c
.i
);
1310 cstr_cat(add_str
, buf
);
1311 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
1312 snprintf(buf
, sizeof(buf
), "%d(%%ebp)", sv
->c
.i
);
1313 cstr_cat(add_str
, buf
);
1314 } else if (r
& VT_LVAL
) {
1315 reg
= r
& VT_VALMASK
;
1316 if (reg
>= VT_CONST
)
1317 error("internal compiler error");
1318 snprintf(buf
, sizeof(buf
), "(%%%s)",
1319 get_tok_str(TOK_ASM_eax
+ reg
, NULL
));
1320 cstr_cat(add_str
, buf
);
1323 reg
= r
& VT_VALMASK
;
1324 if (reg
>= VT_CONST
)
1325 error("internal compiler error");
1327 /* choose register operand size */
1328 if ((sv
->type
.t
& VT_BTYPE
) == VT_BYTE
)
1330 else if ((sv
->type
.t
& VT_BTYPE
) == VT_SHORT
)
1332 #ifdef TCC_TARGET_X86_64
1333 else if ((sv
->type
.t
& VT_BTYPE
) == VT_LLONG
)
1338 if (size
== 1 && reg
>= 4)
1341 if (modifier
== 'b') {
1343 error("cannot use byte register");
1345 } else if (modifier
== 'h') {
1347 error("cannot use byte register");
1349 } else if (modifier
== 'w') {
1351 #ifdef TCC_TARGET_X86_64
1352 } else if (modifier
== 'q') {
1359 reg
= TOK_ASM_ah
+ reg
;
1362 reg
= TOK_ASM_al
+ reg
;
1365 reg
= TOK_ASM_ax
+ reg
;
1368 reg
= TOK_ASM_eax
+ reg
;
1370 #ifdef TCC_TARGET_X86_64
1372 reg
= TOK_ASM_rax
+ reg
;
1376 snprintf(buf
, sizeof(buf
), "%%%s", get_tok_str(reg
, NULL
));
1377 cstr_cat(add_str
, buf
);
1381 /* generate prolog and epilog code for asm statment */
1382 ST_FUNC
void asm_gen_code(ASMOperand
*operands
, int nb_operands
,
1383 int nb_outputs
, int is_output
,
1384 uint8_t *clobber_regs
,
1387 uint8_t regs_allocated
[NB_ASM_REGS
];
1390 static uint8_t reg_saved
[NB_SAVED_REGS
] = { 3, 6, 7 };
1392 /* mark all used registers */
1393 memcpy(regs_allocated
, clobber_regs
, sizeof(regs_allocated
));
1394 for(i
= 0; i
< nb_operands
;i
++) {
1397 regs_allocated
[op
->reg
] = 1;
1400 /* generate reg save code */
1401 for(i
= 0; i
< NB_SAVED_REGS
; i
++) {
1403 if (regs_allocated
[reg
]) {
1405 if (tcc_state
->seg_size
== 16)
1412 /* generate load code */
1413 for(i
= 0; i
< nb_operands
; i
++) {
1416 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
&&
1418 /* memory reference case (for both input and
1422 sv
.r
= (sv
.r
& ~VT_VALMASK
) | VT_LOCAL
;
1424 } else if (i
>= nb_outputs
|| op
->is_rw
) {
1425 /* load value in register */
1426 load(op
->reg
, op
->vt
);
1431 load(TREG_XDX
, &sv
);
1437 /* generate save code */
1438 for(i
= 0 ; i
< nb_outputs
; i
++) {
1441 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
) {
1442 if (!op
->is_memory
) {
1445 sv
.r
= (sv
.r
& ~VT_VALMASK
) | VT_LOCAL
;
1448 sv
.r
= (sv
.r
& ~VT_VALMASK
) | out_reg
;
1449 store(op
->reg
, &sv
);
1452 store(op
->reg
, op
->vt
);
1457 store(TREG_XDX
, &sv
);
1462 /* generate reg restore code */
1463 for(i
= NB_SAVED_REGS
- 1; i
>= 0; i
--) {
1465 if (regs_allocated
[reg
]) {
1467 if (tcc_state
->seg_size
== 16)
1476 ST_FUNC
void asm_clobber(uint8_t *clobber_regs
, const char *str
)
1481 if (!strcmp(str
, "memory") ||
1484 ts
= tok_alloc(str
, strlen(str
));
1486 if (reg
>= TOK_ASM_eax
&& reg
<= TOK_ASM_edi
) {
1488 } else if (reg
>= TOK_ASM_ax
&& reg
<= TOK_ASM_di
) {
1490 #ifdef TCC_TARGET_X86_64
1491 } else if (reg
>= TOK_ASM_rax
&& reg
<= TOK_ASM_rdi
) {
1495 error("invalid clobber register '%s'", str
);
1497 clobber_regs
[reg
] = 1;