2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
27 #define NB_ASM_REGS 16
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
37 #define RC_ST0 0x0080 /* only for long double */
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
104 /******************************************************/
105 #else /* ! TARGET_DEFS_ONLY */
106 /******************************************************/
110 ST_DATA
const int reg_classes
[NB_REGS
] = {
111 /* eax */ RC_INT
| RC_RAX
,
112 /* ecx */ RC_INT
| RC_RCX
,
113 /* edx */ RC_INT
| RC_RDX
,
127 /* xmm0 */ RC_FLOAT
| RC_XMM0
,
128 /* xmm1 */ RC_FLOAT
| RC_XMM1
,
129 /* xmm2 */ RC_FLOAT
| RC_XMM2
,
130 /* xmm3 */ RC_FLOAT
| RC_XMM3
,
131 /* xmm4 */ RC_FLOAT
| RC_XMM4
,
132 /* xmm5 */ RC_FLOAT
| RC_XMM5
,
133 /* xmm6 an xmm7 are included so gv() can be used on them,
134 but they are not tagged with RC_FLOAT because they are
135 callee saved on Windows */
141 static unsigned long func_sub_sp_offset
;
142 static int func_ret_sub
;
144 /* XXX: make it faster ? */
145 ST_FUNC
void g(int c
)
151 if (ind1
> cur_text_section
->data_allocated
)
152 section_realloc(cur_text_section
, ind1
);
153 cur_text_section
->data
[ind
] = c
;
157 ST_FUNC
void o(unsigned int c
)
165 ST_FUNC
void gen_le16(int v
)
171 ST_FUNC
void gen_le32(int c
)
179 ST_FUNC
void gen_le64(int64_t c
)
191 static void orex(int ll
, int r
, int r2
, int b
)
193 if ((r
& VT_VALMASK
) >= VT_CONST
)
195 if ((r2
& VT_VALMASK
) >= VT_CONST
)
197 if (ll
|| REX_BASE(r
) || REX_BASE(r2
))
198 o(0x40 | REX_BASE(r
) | (REX_BASE(r2
) << 2) | (ll
<< 3));
202 /* output a symbol and patch all calls to it */
203 ST_FUNC
void gsym_addr(int t
, int a
)
206 unsigned char *ptr
= cur_text_section
->data
+ t
;
207 uint32_t n
= read32le(ptr
); /* next value */
208 write32le(ptr
, a
- t
- 4);
219 static int is64_type(int t
)
221 return ((t
& VT_BTYPE
) == VT_PTR
||
222 (t
& VT_BTYPE
) == VT_FUNC
||
223 (t
& VT_BTYPE
) == VT_LLONG
);
226 /* instruction + 4 bytes data. Return the address of the data */
227 static int oad(int c
, int s
)
238 /* generate jmp to a label */
239 #define gjmp2(instr,lbl) oad(instr,lbl)
241 ST_FUNC
void gen_addr32(int r
, Sym
*sym
, long c
)
244 greloca(cur_text_section
, sym
, ind
, R_X86_64_32S
, c
), c
=0;
248 /* output constant with relocation if 'r & VT_SYM' is true */
249 ST_FUNC
void gen_addr64(int r
, Sym
*sym
, int64_t c
)
252 greloca(cur_text_section
, sym
, ind
, R_X86_64_64
, c
), c
=0;
256 /* output constant with relocation if 'r & VT_SYM' is true */
257 ST_FUNC
void gen_addrpc32(int r
, Sym
*sym
, long c
)
260 greloca(cur_text_section
, sym
, ind
, R_X86_64_PC32
, c
-4), c
=4;
264 /* output got address with relocation */
265 static void gen_gotpcrel(int r
, Sym
*sym
, int c
)
267 #ifndef TCC_TARGET_PE
268 greloca(cur_text_section
, sym
, ind
, R_X86_64_GOTPCREL
, -4);
270 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
271 get_tok_str(sym
->v
, NULL
), c
, r
,
272 cur_text_section
->data
[ind
-3],
273 cur_text_section
->data
[ind
-2],
274 cur_text_section
->data
[ind
-1]
276 greloc(cur_text_section
, sym
, ind
, R_X86_64_PC32
);
280 /* we use add c, %xxx for displacement */
282 o(0xc0 + REG_VALUE(r
));
287 static void gen_modrm_impl(int op_reg
, int r
, Sym
*sym
, int c
, int is_got
)
289 op_reg
= REG_VALUE(op_reg
) << 3;
290 if ((r
& VT_VALMASK
) == VT_CONST
) {
291 /* constant memory reference */
294 gen_gotpcrel(r
, sym
, c
);
296 gen_addrpc32(r
, sym
, c
);
298 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
299 /* currently, we use only ebp as base */
301 /* short reference */
305 oad(0x85 | op_reg
, c
);
307 } else if ((r
& VT_VALMASK
) >= TREG_MEM
) {
309 g(0x80 | op_reg
| REG_VALUE(r
));
312 g(0x00 | op_reg
| REG_VALUE(r
));
315 g(0x00 | op_reg
| REG_VALUE(r
));
319 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
321 static void gen_modrm(int op_reg
, int r
, Sym
*sym
, int c
)
323 gen_modrm_impl(op_reg
, r
, sym
, c
, 0);
326 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
328 static void gen_modrm64(int opcode
, int op_reg
, int r
, Sym
*sym
, int c
)
331 is_got
= (op_reg
& TREG_MEM
) && !(sym
->type
.t
& VT_STATIC
);
332 orex(1, r
, op_reg
, opcode
);
333 gen_modrm_impl(op_reg
, r
, sym
, c
, is_got
);
337 /* load 'r' from value 'sv' */
338 void load(int r
, SValue
*sv
)
340 int v
, t
, ft
, fc
, fr
;
345 sv
= pe_getimport(sv
, &v2
);
349 ft
= sv
->type
.t
& ~VT_DEFSIGN
;
351 if (fc
!= sv
->c
.i
&& (fr
& VT_SYM
))
352 tcc_error("64 bit addend in load");
354 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
356 #ifndef TCC_TARGET_PE
357 /* we use indirect access via got */
358 if ((fr
& VT_VALMASK
) == VT_CONST
&& (fr
& VT_SYM
) &&
359 (fr
& VT_LVAL
) && !(sv
->sym
->type
.t
& VT_STATIC
)) {
360 /* use the result register as a temporal register */
361 int tr
= r
| TREG_MEM
;
363 /* we cannot use float registers as a temporal register */
364 tr
= get_reg(RC_INT
) | TREG_MEM
;
366 gen_modrm64(0x8b, tr
, fr
, sv
->sym
, 0);
368 /* load from the temporal register */
376 if (v
== VT_LLOCAL
) {
378 v1
.r
= VT_LOCAL
| VT_LVAL
;
381 if (!(reg_classes
[fr
] & (RC_INT
|RC_R11
)))
382 fr
= get_reg(RC_INT
);
386 /* Like GCC we can load from small enough properly sized
387 structs and unions as well.
388 XXX maybe move to generic operand handling, but should
389 occur only with asm, so tccasm.c might also be a better place */
390 if ((ft
& VT_BTYPE
) == VT_STRUCT
) {
392 switch (type_size(&sv
->type
, &align
)) {
393 case 1: ft
= VT_BYTE
; break;
394 case 2: ft
= VT_SHORT
; break;
395 case 4: ft
= VT_INT
; break;
396 case 8: ft
= VT_LLONG
; break;
398 tcc_error("invalid aggregate type for register load");
402 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
404 r
= REG_VALUE(r
); /* movd */
405 } else if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
406 b
= 0x7e0ff3; /* movq */
408 } else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
) {
409 b
= 0xdb, r
= 5; /* fldt */
410 } else if ((ft
& VT_TYPE
) == VT_BYTE
|| (ft
& VT_TYPE
) == VT_BOOL
) {
411 b
= 0xbe0f; /* movsbl */
412 } else if ((ft
& VT_TYPE
) == (VT_BYTE
| VT_UNSIGNED
)) {
413 b
= 0xb60f; /* movzbl */
414 } else if ((ft
& VT_TYPE
) == VT_SHORT
) {
415 b
= 0xbf0f; /* movswl */
416 } else if ((ft
& VT_TYPE
) == (VT_SHORT
| VT_UNSIGNED
)) {
417 b
= 0xb70f; /* movzwl */
419 assert(((ft
& VT_BTYPE
) == VT_INT
) || ((ft
& VT_BTYPE
) == VT_LLONG
)
420 || ((ft
& VT_BTYPE
) == VT_PTR
) || ((ft
& VT_BTYPE
) == VT_ENUM
)
421 || ((ft
& VT_BTYPE
) == VT_FUNC
));
426 gen_modrm64(b
, r
, fr
, sv
->sym
, fc
);
429 gen_modrm(r
, fr
, sv
->sym
, fc
);
436 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
437 gen_addrpc32(fr
, sv
->sym
, fc
);
439 if (sv
->sym
->type
.t
& VT_STATIC
) {
441 o(0x05 + REG_VALUE(r
) * 8); /* lea xx(%rip), r */
442 gen_addrpc32(fr
, sv
->sym
, fc
);
445 o(0x05 + REG_VALUE(r
) * 8); /* mov xx(%rip), r */
446 gen_gotpcrel(r
, sv
->sym
, fc
);
449 } else if (is64_type(ft
)) {
450 orex(1,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
453 orex(0,r
,0, 0xb8 + REG_VALUE(r
)); /* mov $xx, r */
456 } else if (v
== VT_LOCAL
) {
457 orex(1,0,r
,0x8d); /* lea xxx(%ebp), r */
458 gen_modrm(r
, VT_LOCAL
, sv
->sym
, fc
);
459 } else if (v
== VT_CMP
) {
461 if ((fc
& ~0x100) != TOK_NE
)
462 oad(0xb8 + REG_VALUE(r
), 0); /* mov $0, r */
464 oad(0xb8 + REG_VALUE(r
), 1); /* mov $1, r */
467 /* This was a float compare. If the parity bit is
468 set the result was unordered, meaning false for everything
469 except TOK_NE, and true for TOK_NE. */
471 o(0x037a + (REX_BASE(r
) << 8));
473 orex(0,r
,0, 0x0f); /* setxx %br */
475 o(0xc0 + REG_VALUE(r
));
476 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
479 oad(0xb8 + REG_VALUE(r
), t
); /* mov $1, r */
480 o(0x05eb + (REX_BASE(r
) << 8)); /* jmp after */
483 oad(0xb8 + REG_VALUE(r
), t
^ 1); /* mov $0, r */
485 if ((r
>= TREG_XMM0
) && (r
<= TREG_XMM7
)) {
487 /* gen_cvt_ftof(VT_DOUBLE); */
488 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
489 /* movsd -0x10(%rsp),%xmmN */
491 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
494 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
495 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
498 assert((ft
& VT_BTYPE
) == VT_DOUBLE
);
501 o(0xc0 + REG_VALUE(v
) + REG_VALUE(r
)*8);
503 } else if (r
== TREG_ST0
) {
504 assert((v
>= TREG_XMM0
) && (v
<= TREG_XMM7
));
505 /* gen_cvt_ftof(VT_LDOUBLE); */
506 /* movsd %xmmN,-0x10(%rsp) */
508 o(0x44 + REG_VALUE(r
)*8); /* %xmmN */
510 o(0xf02444dd); /* fldl -0x10(%rsp) */
513 o(0xc0 + REG_VALUE(r
) + REG_VALUE(v
) * 8); /* mov v, r */
519 /* store register 'r' in lvalue 'v' */
520 void store(int r
, SValue
*v
)
524 /* store the REX prefix in this variable when PIC is enabled */
529 v
= pe_getimport(v
, &v2
);
532 fr
= v
->r
& VT_VALMASK
;
535 if (fc
!= v
->c
.i
&& (fr
& VT_SYM
))
536 tcc_error("64 bit addend in store");
537 ft
&= ~(VT_VOLATILE
| VT_CONSTANT
);
540 #ifndef TCC_TARGET_PE
541 /* we need to access the variable via got */
542 if (fr
== VT_CONST
&& (v
->r
& VT_SYM
)) {
543 /* mov xx(%rip), %r11 */
545 gen_gotpcrel(TREG_R11
, v
->sym
, v
->c
.i
);
546 pic
= is64_type(bt
) ? 0x49 : 0x41;
550 /* XXX: incorrect if float reg to reg */
551 if (bt
== VT_FLOAT
) {
554 o(0x7e0f); /* movd */
556 } else if (bt
== VT_DOUBLE
) {
559 o(0xd60f); /* movq */
561 } else if (bt
== VT_LDOUBLE
) {
562 o(0xc0d9); /* fld %st(0) */
570 if (bt
== VT_BYTE
|| bt
== VT_BOOL
)
572 else if (is64_type(bt
))
578 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
583 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
584 gen_modrm64(op64
, r
, v
->r
, v
->sym
, fc
);
585 } else if (fr
!= r
) {
586 /* XXX: don't we really come here? */
588 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
591 if (fr
== VT_CONST
|| fr
== VT_LOCAL
|| (v
->r
& VT_LVAL
)) {
592 gen_modrm(r
, v
->r
, v
->sym
, fc
);
593 } else if (fr
!= r
) {
594 /* XXX: don't we really come here? */
596 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
601 /* 'is_jmp' is '1' if it is a jump */
602 static void gcall_or_jmp(int is_jmp
)
605 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
&&
606 ((vtop
->r
& VT_SYM
) || (vtop
->c
.i
-4) == (int)(vtop
->c
.i
-4))) {
608 if (vtop
->r
& VT_SYM
) {
609 /* relocation case */
611 greloca(cur_text_section
, vtop
->sym
, ind
+ 1, R_X86_64_PC32
, (int)(vtop
->c
.i
-4));
613 greloca(cur_text_section
, vtop
->sym
, ind
+ 1, R_X86_64_PLT32
, (int)(vtop
->c
.i
-4));
616 /* put an empty PC32 relocation */
617 put_elf_reloca(symtab_section
, cur_text_section
,
618 ind
+ 1, R_X86_64_PC32
, 0, (int)(vtop
->c
.i
-4));
620 oad(0xe8 + is_jmp
, 0); /* call/jmp im */
622 /* otherwise, indirect call */
626 o(0xff); /* call/jmp *r */
627 o(0xd0 + REG_VALUE(r
) + (is_jmp
<< 4));
631 #if defined(CONFIG_TCC_BCHECK)
632 #ifndef TCC_TARGET_PE
633 static addr_t func_bound_offset
;
634 static unsigned long func_bound_ind
;
637 static void gen_static_call(int v
)
639 Sym
*sym
= external_global_sym(v
, &func_old_type
, 0);
641 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PC32
, -4);
644 /* generate a bounded pointer addition */
645 ST_FUNC
void gen_bounded_ptr_add(void)
647 /* save all temporary registers */
650 /* prepare fast x86_64 function call */
652 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
656 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
659 /* do a fast function call */
660 gen_static_call(TOK___bound_ptr_add
);
662 /* returned pointer is in rax */
664 vtop
->r
= TREG_RAX
| VT_BOUNDED
;
667 /* relocation offset of the bounding function call point */
668 vtop
->c
.i
= (cur_text_section
->reloc
->data_offset
- sizeof(ElfW(Rela
)));
671 /* patch pointer addition in vtop so that pointer dereferencing is
673 ST_FUNC
void gen_bounded_ptr_deref(void)
681 /* XXX: put that code in generic part of tcc */
682 if (!is_float(vtop
->type
.t
)) {
683 if (vtop
->r
& VT_LVAL_BYTE
)
685 else if (vtop
->r
& VT_LVAL_SHORT
)
689 size
= type_size(&vtop
->type
, &align
);
691 case 1: func
= TOK___bound_ptr_indir1
; break;
692 case 2: func
= TOK___bound_ptr_indir2
; break;
693 case 4: func
= TOK___bound_ptr_indir4
; break;
694 case 8: func
= TOK___bound_ptr_indir8
; break;
695 case 12: func
= TOK___bound_ptr_indir12
; break;
696 case 16: func
= TOK___bound_ptr_indir16
; break;
698 tcc_error("unhandled size when dereferencing bounded pointer");
703 sym
= external_global_sym(func
, &func_old_type
, 0);
705 put_extern_sym(sym
, NULL
, 0, 0);
707 /* patch relocation */
708 /* XXX: find a better solution ? */
710 rel
= (ElfW(Rela
) *)(cur_text_section
->reloc
->data
+ vtop
->c
.i
);
711 rel
->r_info
= ELF64_R_INFO(sym
->c
, ELF64_R_TYPE(rel
->r_info
));
718 static const uint8_t arg_regs
[REGN
] = {
719 TREG_RCX
, TREG_RDX
, TREG_R8
, TREG_R9
722 /* Prepare arguments in R10 and R11 rather than RCX and RDX
723 because gv() will not ever use these */
724 static int arg_prepare_reg(int idx
) {
725 if (idx
== 0 || idx
== 1)
726 /* idx=0: r10, idx=1: r11 */
729 return arg_regs
[idx
];
732 static int func_scratch
;
734 /* Generate function call. The function address is pushed first, then
735 all the parameters in call order. This functions pops all the
736 parameters and the function address. */
738 void gen_offs_sp(int b
, int r
, int d
)
740 orex(1,0,r
& 0x100 ? 0 : r
, b
);
742 o(0x2444 | (REG_VALUE(r
) << 3));
745 o(0x2484 | (REG_VALUE(r
) << 3));
750 /* Return the number of registers needed to return the struct, or 0 if
751 returning via struct pointer. */
752 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
755 *ret_align
= 1; // Never have to re-align return values for x86-64
757 size
= type_size(vt
, &align
);
758 if (size
> 8 || (size
& (size
- 1)))
772 static int is_sse_float(int t
) {
775 return bt
== VT_DOUBLE
|| bt
== VT_FLOAT
;
778 int gfunc_arg_size(CType
*type
) {
780 if (type
->t
& (VT_ARRAY
|VT_BITFIELD
))
782 return type_size(type
, &align
);
785 void gfunc_call(int nb_args
)
787 int size
, r
, args_size
, i
, d
, bt
, struct_size
;
790 args_size
= (nb_args
< REGN
? REGN
: nb_args
) * PTR_SIZE
;
793 /* for struct arguments, we need to call memcpy and the function
794 call breaks register passing arguments we are preparing.
795 So, we process arguments which will be passed by stack first. */
796 struct_size
= args_size
;
797 for(i
= 0; i
< nb_args
; i
++) {
802 bt
= (sv
->type
.t
& VT_BTYPE
);
803 size
= gfunc_arg_size(&sv
->type
);
806 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
808 if (bt
== VT_STRUCT
) {
809 /* align to stack align size */
810 size
= (size
+ 15) & ~15;
811 /* generate structure store */
813 gen_offs_sp(0x8d, r
, struct_size
);
816 /* generate memcpy call */
817 vset(&sv
->type
, r
| VT_LVAL
, 0);
821 } else if (bt
== VT_LDOUBLE
) {
823 gen_offs_sp(0xdb, 0x107, struct_size
);
828 if (func_scratch
< struct_size
)
829 func_scratch
= struct_size
;
832 struct_size
= args_size
;
834 for(i
= 0; i
< nb_args
; i
++) {
836 bt
= (vtop
->type
.t
& VT_BTYPE
);
838 size
= gfunc_arg_size(&vtop
->type
);
840 /* align to stack align size */
841 size
= (size
+ 15) & ~15;
844 gen_offs_sp(0x8d, d
, struct_size
);
845 gen_offs_sp(0x89, d
, arg
*8);
847 d
= arg_prepare_reg(arg
);
848 gen_offs_sp(0x8d, d
, struct_size
);
852 if (is_sse_float(vtop
->type
.t
)) {
853 if (tcc_state
->nosse
)
854 tcc_error("SSE disabled");
855 gv(RC_XMM0
); /* only use one float register */
857 /* movq %xmm0, j*8(%rsp) */
858 gen_offs_sp(0xd60f66, 0x100, arg
*8);
860 /* movaps %xmm0, %xmmN */
862 o(0xc0 + (arg
<< 3));
863 d
= arg_prepare_reg(arg
);
864 /* mov %xmm0, %rxx */
867 o(0xc0 + REG_VALUE(d
));
870 if (bt
== VT_STRUCT
) {
871 vtop
->type
.ref
= NULL
;
872 vtop
->type
.t
= size
> 4 ? VT_LLONG
: size
> 2 ? VT_INT
873 : size
> 1 ? VT_SHORT
: VT_BYTE
;
878 gen_offs_sp(0x89, r
, arg
*8);
880 d
= arg_prepare_reg(arg
);
881 orex(1,d
,r
,0x89); /* mov */
882 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
890 /* Copy R10 and R11 into RCX and RDX, respectively */
892 o(0xd1894c); /* mov %r10, %rcx */
894 o(0xda894c); /* mov %r11, %rdx */
899 /* other compilers don't clear the upper bits when returning char/short */
900 bt
= vtop
->type
.ref
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
);
901 if (bt
== (VT_BYTE
| VT_UNSIGNED
))
902 o(0xc0b60f); /* movzbl %al, %eax */
903 else if (bt
== VT_BYTE
)
904 o(0xc0be0f); /* movsbl %al, %eax */
905 else if (bt
== VT_SHORT
)
907 else if (bt
== (VT_SHORT
| VT_UNSIGNED
))
908 o(0xc0b70f); /* movzbl %al, %eax */
909 #if 0 /* handled in gen_cast() */
910 else if (bt
== VT_INT
)
911 o(0x9848); /* cltq */
912 else if (bt
== (VT_INT
| VT_UNSIGNED
))
913 o(0xc089); /* mov %eax,%eax */
919 #define FUNC_PROLOG_SIZE 11
921 /* generate function prolog of type 't' */
922 void gfunc_prolog(CType
*func_type
)
924 int addr
, reg_param_index
, bt
, size
;
933 ind
+= FUNC_PROLOG_SIZE
;
934 func_sub_sp_offset
= ind
;
937 sym
= func_type
->ref
;
939 /* if the function returns a structure, then add an
940 implicit pointer parameter */
942 func_var
= (sym
->c
== FUNC_ELLIPSIS
);
943 size
= gfunc_arg_size(&func_vt
);
945 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
951 /* define parameters */
952 while ((sym
= sym
->next
) != NULL
) {
954 bt
= type
->t
& VT_BTYPE
;
955 size
= gfunc_arg_size(type
);
957 if (reg_param_index
< REGN
) {
958 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
960 sym_push(sym
->v
& ~SYM_FIELD
, type
, VT_LLOCAL
| VT_LVAL
, addr
);
962 if (reg_param_index
< REGN
) {
963 /* save arguments passed by register */
964 if ((bt
== VT_FLOAT
) || (bt
== VT_DOUBLE
)) {
965 if (tcc_state
->nosse
)
966 tcc_error("SSE disabled");
967 o(0xd60f66); /* movq */
968 gen_modrm(reg_param_index
, VT_LOCAL
, NULL
, addr
);
970 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
973 sym_push(sym
->v
& ~SYM_FIELD
, type
, VT_LOCAL
| VT_LVAL
, addr
);
979 while (reg_param_index
< REGN
) {
980 if (func_type
->ref
->c
== FUNC_ELLIPSIS
) {
981 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, addr
);
988 /* generate function epilog */
989 void gfunc_epilog(void)
994 if (func_ret_sub
== 0) {
999 g(func_ret_sub
>> 8);
1003 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1004 /* align local size to word & save local variables */
1005 v
= (func_scratch
+ -loc
+ 15) & -16;
1008 Sym
*sym
= external_global_sym(TOK___chkstk
, &func_old_type
, 0);
1009 oad(0xb8, v
); /* mov stacksize, %eax */
1010 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1011 greloca(cur_text_section
, sym
, ind
-4, R_X86_64_PC32
, -4);
1012 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1014 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1015 o(0xec8148); /* sub rsp, stacksize */
1019 cur_text_section
->data_offset
= saved_ind
;
1020 pe_add_unwind_data(ind
, saved_ind
, v
);
1021 ind
= cur_text_section
->data_offset
;
1026 static void gadd_sp(int val
)
1028 if (val
== (char)val
) {
1032 oad(0xc48148, val
); /* add $xxx, %rsp */
1036 typedef enum X86_64_Mode
{
1039 x86_64_mode_integer
,
1044 static X86_64_Mode
classify_x86_64_merge(X86_64_Mode a
, X86_64_Mode b
)
1048 else if (a
== x86_64_mode_none
)
1050 else if (b
== x86_64_mode_none
)
1052 else if ((a
== x86_64_mode_memory
) || (b
== x86_64_mode_memory
))
1053 return x86_64_mode_memory
;
1054 else if ((a
== x86_64_mode_integer
) || (b
== x86_64_mode_integer
))
1055 return x86_64_mode_integer
;
1056 else if ((a
== x86_64_mode_x87
) || (b
== x86_64_mode_x87
))
1057 return x86_64_mode_memory
;
1059 return x86_64_mode_sse
;
1062 static X86_64_Mode
classify_x86_64_inner(CType
*ty
)
1067 switch (ty
->t
& VT_BTYPE
) {
1068 case VT_VOID
: return x86_64_mode_none
;
1077 case VT_ENUM
: return x86_64_mode_integer
;
1080 case VT_DOUBLE
: return x86_64_mode_sse
;
1082 case VT_LDOUBLE
: return x86_64_mode_x87
;
1087 mode
= x86_64_mode_none
;
1088 for (f
= f
->next
; f
; f
= f
->next
)
1089 mode
= classify_x86_64_merge(mode
, classify_x86_64_inner(&f
->type
));
1097 static X86_64_Mode
classify_x86_64_arg(CType
*ty
, CType
*ret
, int *psize
, int *palign
, int *reg_count
)
1100 int size
, align
, ret_t
= 0;
1102 if (ty
->t
& (VT_BITFIELD
|VT_ARRAY
)) {
1107 mode
= x86_64_mode_integer
;
1109 size
= type_size(ty
, &align
);
1110 *psize
= (size
+ 7) & ~7;
1111 *palign
= (align
+ 7) & ~7;
1114 mode
= x86_64_mode_memory
;
1116 mode
= classify_x86_64_inner(ty
);
1118 case x86_64_mode_integer
:
1124 ret_t
= (size
> 4) ? VT_LLONG
: VT_INT
;
1128 case x86_64_mode_x87
:
1133 case x86_64_mode_sse
:
1139 ret_t
= (size
> 4) ? VT_DOUBLE
: VT_FLOAT
;
1142 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1155 ST_FUNC
int classify_x86_64_va_arg(CType
*ty
)
1157 /* This definition must be synced with stdarg.h */
1158 enum __va_arg_type
{
1159 __va_gen_reg
, __va_float_reg
, __va_stack
1161 int size
, align
, reg_count
;
1162 X86_64_Mode mode
= classify_x86_64_arg(ty
, NULL
, &size
, &align
, ®_count
);
1164 default: return __va_stack
;
1165 case x86_64_mode_integer
: return __va_gen_reg
;
1166 case x86_64_mode_sse
: return __va_float_reg
;
1170 /* Return the number of registers needed to return the struct, or 0 if
1171 returning via struct pointer. */
1172 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
)
1174 int size
, align
, reg_count
;
1175 *ret_align
= 1; // Never have to re-align return values for x86-64
1177 return (classify_x86_64_arg(vt
, ret
, &size
, &align
, ®_count
) != x86_64_mode_memory
);
1181 static const uint8_t arg_regs
[REGN
] = {
1182 TREG_RDI
, TREG_RSI
, TREG_RDX
, TREG_RCX
, TREG_R8
, TREG_R9
1185 static int arg_prepare_reg(int idx
) {
1186 if (idx
== 2 || idx
== 3)
1187 /* idx=2: r10, idx=3: r11 */
1190 return arg_regs
[idx
];
1193 /* Generate function call. The function address is pushed first, then
1194 all the parameters in call order. This functions pops all the
1195 parameters and the function address. */
1196 void gfunc_call(int nb_args
)
1200 int size
, align
, r
, args_size
, stack_adjust
, run_start
, run_end
, i
, reg_count
;
1201 int nb_reg_args
= 0;
1202 int nb_sse_args
= 0;
1203 int sse_reg
, gen_reg
;
1205 /* calculate the number of integer/float register arguments */
1206 for(i
= 0; i
< nb_args
; i
++) {
1207 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1208 if (mode
== x86_64_mode_sse
)
1209 nb_sse_args
+= reg_count
;
1210 else if (mode
== x86_64_mode_integer
)
1211 nb_reg_args
+= reg_count
;
1214 if (nb_sse_args
&& tcc_state
->nosse
)
1215 tcc_error("SSE disabled but floating point arguments passed");
1217 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1218 and ended by a 16-byte aligned argument. This is because, from the point of view of
1219 the callee, argument alignment is computed from the bottom up. */
1220 /* for struct arguments, we need to call memcpy and the function
1221 call breaks register passing arguments we are preparing.
1222 So, we process arguments which will be passed by stack first. */
1223 gen_reg
= nb_reg_args
;
1224 sse_reg
= nb_sse_args
;
1227 while (run_start
!= nb_args
) {
1228 int run_gen_reg
= gen_reg
, run_sse_reg
= sse_reg
;
1232 for(i
= run_start
; (i
< nb_args
) && (run_end
== nb_args
); i
++) {
1233 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1235 case x86_64_mode_memory
:
1236 case x86_64_mode_x87
:
1241 stack_adjust
+= size
;
1244 case x86_64_mode_sse
:
1245 sse_reg
-= reg_count
;
1246 if (sse_reg
+ reg_count
> 8) goto stack_arg
;
1249 case x86_64_mode_integer
:
1250 gen_reg
-= reg_count
;
1251 if (gen_reg
+ reg_count
> REGN
) goto stack_arg
;
1253 default: break; /* nothing to be done for x86_64_mode_none */
1257 gen_reg
= run_gen_reg
;
1258 sse_reg
= run_sse_reg
;
1260 /* adjust stack to align SSE boundary */
1261 if (stack_adjust
&= 15) {
1262 /* fetch cpu flag before the following sub will change the value */
1263 if (vtop
>= vstack
&& (vtop
->r
& VT_VALMASK
) == VT_CMP
)
1266 stack_adjust
= 16 - stack_adjust
;
1268 oad(0xec81, stack_adjust
); /* sub $xxx, %rsp */
1269 args_size
+= stack_adjust
;
1272 for(i
= run_start
; i
< run_end
;) {
1273 /* Swap argument to top, it will possibly be changed here,
1274 and might use more temps. At the end of the loop we keep
1275 in on the stack and swap it back to its original position
1276 if it is a register. */
1277 SValue tmp
= vtop
[0];
1282 mode
= classify_x86_64_arg(&vtop
->type
, NULL
, &size
, &align
, ®_count
);
1284 switch (vtop
->type
.t
& VT_BTYPE
) {
1286 if (mode
== x86_64_mode_sse
) {
1288 sse_reg
-= reg_count
;
1291 } else if (mode
== x86_64_mode_integer
) {
1293 gen_reg
-= reg_count
;
1299 /* allocate the necessary size on stack */
1301 oad(0xec81, size
); /* sub $xxx, %rsp */
1302 /* generate structure store */
1303 r
= get_reg(RC_INT
);
1304 orex(1, r
, 0, 0x89); /* mov %rsp, r */
1305 o(0xe0 + REG_VALUE(r
));
1306 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1319 assert(mode
== x86_64_mode_sse
);
1323 o(0x50); /* push $rax */
1324 /* movq %xmmN, (%rsp) */
1326 o(0x04 + REG_VALUE(r
)*8);
1335 assert(mode
== x86_64_mode_integer
);
1337 /* XXX: implicit cast ? */
1338 if (gen_reg
> REGN
) {
1341 orex(0,r
,0,0x50 + REG_VALUE(r
)); /* push r */
1349 /* And swap the argument back to it's original position. */
1356 assert((vtop
->type
.t
== tmp
.type
.t
) && (vtop
->r
== tmp
.r
));
1365 /* handle 16 byte aligned arguments at end of run */
1366 run_start
= i
= run_end
;
1367 while (i
< nb_args
) {
1368 /* Rotate argument to top since it will always be popped */
1369 mode
= classify_x86_64_arg(&vtop
[-i
].type
, NULL
, &size
, &align
, ®_count
);
1375 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
) {
1377 oad(0xec8148, size
); /* sub $xxx, %rsp */
1378 o(0x7cdb); /* fstpt 0(%rsp) */
1383 assert(mode
== x86_64_mode_memory
);
1385 /* allocate the necessary size on stack */
1387 oad(0xec81, size
); /* sub $xxx, %rsp */
1388 /* generate structure store */
1389 r
= get_reg(RC_INT
);
1390 orex(1, r
, 0, 0x89); /* mov %rsp, r */
1391 o(0xe0 + REG_VALUE(r
));
1392 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1403 /* XXX This should be superfluous. */
1404 save_regs(0); /* save used temporary registers */
1406 /* then, we prepare register passing arguments.
1407 Note that we cannot set RDX and RCX in this loop because gv()
1408 may break these temporary registers. Let's use R10 and R11
1410 assert(gen_reg
<= REGN
);
1411 assert(sse_reg
<= 8);
1412 for(i
= 0; i
< nb_args
; i
++) {
1413 mode
= classify_x86_64_arg(&vtop
->type
, &type
, &size
, &align
, ®_count
);
1414 /* Alter stack entry type so that gv() knows how to treat it */
1416 if (mode
== x86_64_mode_sse
) {
1417 if (reg_count
== 2) {
1419 gv(RC_FRET
); /* Use pair load into xmm0 & xmm1 */
1420 if (sse_reg
) { /* avoid redundant movaps %xmm0, %xmm0 */
1421 /* movaps %xmm0, %xmmN */
1423 o(0xc0 + (sse_reg
<< 3));
1424 /* movaps %xmm1, %xmmN */
1426 o(0xc1 + ((sse_reg
+1) << 3));
1429 assert(reg_count
== 1);
1431 /* Load directly to register */
1432 gv(RC_XMM0
<< sse_reg
);
1434 } else if (mode
== x86_64_mode_integer
) {
1436 /* XXX: implicit cast ? */
1438 gen_reg
-= reg_count
;
1440 d
= arg_prepare_reg(gen_reg
);
1441 orex(1,d
,r
,0x89); /* mov */
1442 o(0xc0 + REG_VALUE(r
) * 8 + REG_VALUE(d
));
1443 if (reg_count
== 2) {
1444 d
= arg_prepare_reg(gen_reg
+1);
1445 orex(1,d
,vtop
->r2
,0x89); /* mov */
1446 o(0xc0 + REG_VALUE(vtop
->r2
) * 8 + REG_VALUE(d
));
1451 assert(gen_reg
== 0);
1452 assert(sse_reg
== 0);
1454 /* We shouldn't have many operands on the stack anymore, but the
1455 call address itself is still there, and it might be in %eax
1456 (or edx/ecx) currently, which the below writes would clobber.
1457 So evict all remaining operands here. */
1460 /* Copy R10 and R11 into RDX and RCX, respectively */
1461 if (nb_reg_args
> 2) {
1462 o(0xd2894c); /* mov %r10, %rdx */
1463 if (nb_reg_args
> 3) {
1464 o(0xd9894c); /* mov %r11, %rcx */
1468 if (vtop
->type
.ref
->c
!= FUNC_NEW
) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1469 oad(0xb8, nb_sse_args
< 8 ? nb_sse_args
: 8); /* mov nb_sse_args, %eax */
1477 #define FUNC_PROLOG_SIZE 11
1479 static void push_arg_reg(int i
) {
1481 gen_modrm64(0x89, arg_regs
[i
], VT_LOCAL
, NULL
, loc
);
1484 /* generate function prolog of type 't' */
1485 void gfunc_prolog(CType
*func_type
)
1488 int i
, addr
, align
, size
, reg_count
;
1489 int param_addr
= 0, reg_param_index
, sse_param_index
;
1493 sym
= func_type
->ref
;
1494 addr
= PTR_SIZE
* 2;
1496 ind
+= FUNC_PROLOG_SIZE
;
1497 func_sub_sp_offset
= ind
;
1500 if (func_type
->ref
->c
== FUNC_ELLIPSIS
) {
1501 int seen_reg_num
, seen_sse_num
, seen_stack_size
;
1502 seen_reg_num
= seen_sse_num
= 0;
1503 /* frame pointer and return address */
1504 seen_stack_size
= PTR_SIZE
* 2;
1505 /* count the number of seen parameters */
1506 sym
= func_type
->ref
;
1507 while ((sym
= sym
->next
) != NULL
) {
1509 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1513 seen_stack_size
= ((seen_stack_size
+ align
- 1) & -align
) + size
;
1516 case x86_64_mode_integer
:
1517 if (seen_reg_num
+ reg_count
<= 8) {
1518 seen_reg_num
+= reg_count
;
1525 case x86_64_mode_sse
:
1526 if (seen_sse_num
+ reg_count
<= 8) {
1527 seen_sse_num
+= reg_count
;
1537 /* movl $0x????????, -0x10(%rbp) */
1539 gen_le32(seen_reg_num
* 8);
1540 /* movl $0x????????, -0xc(%rbp) */
1542 gen_le32(seen_sse_num
* 16 + 48);
1543 /* movl $0x????????, -0x8(%rbp) */
1545 gen_le32(seen_stack_size
);
1547 /* save all register passing arguments */
1548 for (i
= 0; i
< 8; i
++) {
1550 if (!tcc_state
->nosse
) {
1551 o(0xd60f66); /* movq */
1552 gen_modrm(7 - i
, VT_LOCAL
, NULL
, loc
);
1554 /* movq $0, loc+8(%rbp) */
1559 for (i
= 0; i
< REGN
; i
++) {
1560 push_arg_reg(REGN
-1-i
);
1564 sym
= func_type
->ref
;
1565 reg_param_index
= 0;
1566 sse_param_index
= 0;
1568 /* if the function returns a structure, then add an
1569 implicit pointer parameter */
1570 func_vt
= sym
->type
;
1571 mode
= classify_x86_64_arg(&func_vt
, NULL
, &size
, &align
, ®_count
);
1572 if (mode
== x86_64_mode_memory
) {
1573 push_arg_reg(reg_param_index
);
1577 /* define parameters */
1578 while ((sym
= sym
->next
) != NULL
) {
1580 mode
= classify_x86_64_arg(type
, NULL
, &size
, &align
, ®_count
);
1582 case x86_64_mode_sse
:
1583 if (tcc_state
->nosse
)
1584 tcc_error("SSE disabled but floating point arguments used");
1585 if (sse_param_index
+ reg_count
<= 8) {
1586 /* save arguments passed by register */
1587 loc
-= reg_count
* 8;
1589 for (i
= 0; i
< reg_count
; ++i
) {
1590 o(0xd60f66); /* movq */
1591 gen_modrm(sse_param_index
, VT_LOCAL
, NULL
, param_addr
+ i
*8);
1595 addr
= (addr
+ align
- 1) & -align
;
1601 case x86_64_mode_memory
:
1602 case x86_64_mode_x87
:
1603 addr
= (addr
+ align
- 1) & -align
;
1608 case x86_64_mode_integer
: {
1609 if (reg_param_index
+ reg_count
<= REGN
) {
1610 /* save arguments passed by register */
1611 loc
-= reg_count
* 8;
1613 for (i
= 0; i
< reg_count
; ++i
) {
1614 gen_modrm64(0x89, arg_regs
[reg_param_index
], VT_LOCAL
, NULL
, param_addr
+ i
*8);
1618 addr
= (addr
+ align
- 1) & -align
;
1624 default: break; /* nothing to be done for x86_64_mode_none */
1626 sym_push(sym
->v
& ~SYM_FIELD
, type
,
1627 VT_LOCAL
| VT_LVAL
, param_addr
);
1630 #ifdef CONFIG_TCC_BCHECK
1631 /* leave some room for bound checking code */
1632 if (tcc_state
->do_bounds_check
) {
1633 func_bound_offset
= lbounds_section
->data_offset
;
1634 func_bound_ind
= ind
;
1635 oad(0xb8, 0); /* lbound section pointer */
1636 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1637 oad(0xb8, 0); /* call to function */
1642 /* generate function epilog */
1643 void gfunc_epilog(void)
1647 #ifdef CONFIG_TCC_BCHECK
1648 if (tcc_state
->do_bounds_check
1649 && func_bound_offset
!= lbounds_section
->data_offset
)
1655 /* add end of table info */
1656 bounds_ptr
= section_ptr_add(lbounds_section
, sizeof(addr_t
));
1659 /* generate bound local allocation */
1660 sym_data
= get_sym_ref(&char_pointer_type
, lbounds_section
,
1661 func_bound_offset
, lbounds_section
->data_offset
);
1663 ind
= func_bound_ind
;
1664 greloc(cur_text_section
, sym_data
, ind
+ 1, R_386_32
);
1666 gen_static_call(TOK___bound_local_new
);
1669 /* generate bound check local freeing */
1670 o(0x5250); /* save returned value, if any */
1671 greloc(cur_text_section
, sym_data
, ind
+ 1, R_386_32
);
1672 oad(0xb8, 0); /* mov xxx, %rax */
1673 o(0xc78948); /* mov %rax,%rdi # first arg in %rdi, this must be ptr */
1674 gen_static_call(TOK___bound_local_delete
);
1675 o(0x585a); /* restore returned value, if any */
1678 o(0xc9); /* leave */
1679 if (func_ret_sub
== 0) {
1682 o(0xc2); /* ret n */
1684 g(func_ret_sub
>> 8);
1686 /* align local size to word & save local variables */
1687 v
= (-loc
+ 15) & -16;
1689 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
1690 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1691 o(0xec8148); /* sub rsp, stacksize */
1698 /* generate a jump to a label */
1701 return gjmp2(0xe9, t
);
1704 /* generate a jump to a fixed address */
1705 void gjmp_addr(int a
)
1713 oad(0xe9, a
- ind
- 5);
1717 ST_FUNC
void gtst_addr(int inv
, int a
)
1719 int v
= vtop
->r
& VT_VALMASK
;
1721 inv
^= (vtop
--)->c
.i
;
1728 oad(inv
- 16, a
- 4);
1730 } else if ((v
& ~1) == VT_JMP
) {
1731 if ((v
& 1) != inv
) {
1743 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1744 ST_FUNC
int gtst(int inv
, int t
)
1746 int v
= vtop
->r
& VT_VALMASK
;
1748 if (nocode_wanted
) {
1750 } else if (v
== VT_CMP
) {
1751 /* fast case : can jump directly since flags are set */
1752 if (vtop
->c
.i
& 0x100)
1754 /* This was a float compare. If the parity flag is set
1755 the result was unordered. For anything except != this
1756 means false and we don't jump (anding both conditions).
1757 For != this means true (oring both).
1758 Take care about inverting the test. We need to jump
1759 to our target if the result was unordered and test wasn't NE,
1760 otherwise if unordered we don't want to jump. */
1761 vtop
->c
.i
&= ~0x100;
1762 if (inv
== (vtop
->c
.i
== TOK_NE
))
1763 o(0x067a); /* jp +6 */
1767 t
= gjmp2(0x8a, t
); /* jp t */
1771 t
= gjmp2((vtop
->c
.i
- 16) ^ inv
, t
);
1772 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
1773 /* && or || optimization */
1774 if ((v
& 1) == inv
) {
1775 /* insert vtop->c jump list in t */
1776 uint32_t n1
, n
= vtop
->c
.i
;
1778 while ((n1
= read32le(cur_text_section
->data
+ n
)))
1780 write32le(cur_text_section
->data
+ n
, t
);
1792 /* generate an integer binary operation */
1793 void gen_opi(int op
)
1798 ll
= is64_type(vtop
[-1].type
.t
);
1799 uu
= (vtop
[-1].type
.t
& VT_UNSIGNED
) != 0;
1800 cc
= (vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
;
1804 case TOK_ADDC1
: /* add with carry generation */
1807 if (cc
&& (!ll
|| (int)vtop
->c
.i
== vtop
->c
.i
)) {
1814 /* XXX: generate inc and dec for smaller code ? */
1815 orex(ll
, r
, 0, 0x83);
1816 o(0xc0 | (opc
<< 3) | REG_VALUE(r
));
1819 orex(ll
, r
, 0, 0x81);
1820 oad(0xc0 | (opc
<< 3) | REG_VALUE(r
), c
);
1823 gv2(RC_INT
, RC_INT
);
1826 orex(ll
, r
, fr
, (opc
<< 3) | 0x01);
1827 o(0xc0 + REG_VALUE(r
) + REG_VALUE(fr
) * 8);
1830 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1836 case TOK_SUBC1
: /* sub with carry generation */
1839 case TOK_ADDC2
: /* add with carry use */
1842 case TOK_SUBC2
: /* sub with carry use */
1855 gv2(RC_INT
, RC_INT
);
1858 orex(ll
, fr
, r
, 0xaf0f); /* imul fr, r */
1859 o(0xc0 + REG_VALUE(fr
) + REG_VALUE(r
) * 8);
1871 opc
= 0xc0 | (opc
<< 3);
1877 orex(ll
, r
, 0, 0xc1); /* shl/shr/sar $xxx, r */
1878 o(opc
| REG_VALUE(r
));
1879 g(vtop
->c
.i
& (ll
? 63 : 31));
1881 /* we generate the shift in ecx */
1882 gv2(RC_INT
, RC_RCX
);
1884 orex(ll
, r
, 0, 0xd3); /* shl/shr/sar %cl, r */
1885 o(opc
| REG_VALUE(r
));
1898 /* first operand must be in eax */
1899 /* XXX: need better constraint for second operand */
1900 gv2(RC_RAX
, RC_RCX
);
1905 orex(ll
, 0, 0, uu
? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1906 orex(ll
, fr
, 0, 0xf7); /* div fr, %eax */
1907 o((uu
? 0xf0 : 0xf8) + REG_VALUE(fr
));
1908 if (op
== '%' || op
== TOK_UMOD
)
1920 void gen_opl(int op
)
1925 /* generate a floating point operation 'v = t1 op t2' instruction. The
1926 two operands are guaranted to have the same floating point type */
1927 /* XXX: need to use ST1 too */
1928 void gen_opf(int op
)
1930 int a
, ft
, fc
, swapped
, r
;
1932 (vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
? RC_ST0
: RC_FLOAT
;
1934 /* convert constants to memory references */
1935 if ((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
1940 if ((vtop
[0].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
)
1943 /* must put at least one value in the floating point register */
1944 if ((vtop
[-1].r
& VT_LVAL
) &&
1945 (vtop
[0].r
& VT_LVAL
)) {
1951 /* swap the stack if needed so that t1 is the register and t2 is
1952 the memory reference */
1953 if (vtop
[-1].r
& VT_LVAL
) {
1957 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
) {
1958 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1959 /* load on stack second operand */
1960 load(TREG_ST0
, vtop
);
1961 save_reg(TREG_RAX
); /* eax is used by FP comparison code */
1962 if (op
== TOK_GE
|| op
== TOK_GT
)
1964 else if (op
== TOK_EQ
|| op
== TOK_NE
)
1967 o(0xc9d9); /* fxch %st(1) */
1968 if (op
== TOK_EQ
|| op
== TOK_NE
)
1969 o(0xe9da); /* fucompp */
1971 o(0xd9de); /* fcompp */
1972 o(0xe0df); /* fnstsw %ax */
1974 o(0x45e480); /* and $0x45, %ah */
1975 o(0x40fC80); /* cmp $0x40, %ah */
1976 } else if (op
== TOK_NE
) {
1977 o(0x45e480); /* and $0x45, %ah */
1978 o(0x40f480); /* xor $0x40, %ah */
1980 } else if (op
== TOK_GE
|| op
== TOK_LE
) {
1981 o(0x05c4f6); /* test $0x05, %ah */
1984 o(0x45c4f6); /* test $0x45, %ah */
1991 /* no memory reference possible for long double operations */
1992 load(TREG_ST0
, vtop
);
2016 o(0xde); /* fxxxp %st, %st(1) */
2021 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
2022 /* if saved lvalue, then we must reload it */
2025 if ((r
& VT_VALMASK
) == VT_LLOCAL
) {
2027 r
= get_reg(RC_INT
);
2029 v1
.r
= VT_LOCAL
| VT_LVAL
;
2035 if (op
== TOK_EQ
|| op
== TOK_NE
) {
2038 if (op
== TOK_LE
|| op
== TOK_LT
)
2040 if (op
== TOK_LE
|| op
== TOK_GE
) {
2041 op
= 0x93; /* setae */
2043 op
= 0x97; /* seta */
2051 assert(!(vtop
[-1].r
& VT_LVAL
));
2053 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
2055 if (op
== TOK_EQ
|| op
== TOK_NE
)
2056 o(0x2e0f); /* ucomisd */
2058 o(0x2f0f); /* comisd */
2060 if (vtop
->r
& VT_LVAL
) {
2061 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
2063 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2068 vtop
->c
.i
= op
| 0x100;
2070 assert((vtop
->type
.t
& VT_BTYPE
) != VT_LDOUBLE
);
2088 assert((ft
& VT_BTYPE
) != VT_LDOUBLE
);
2091 /* if saved lvalue, then we must reload it */
2092 if ((vtop
->r
& VT_VALMASK
) == VT_LLOCAL
) {
2094 r
= get_reg(RC_INT
);
2096 v1
.r
= VT_LOCAL
| VT_LVAL
;
2102 assert(!(vtop
[-1].r
& VT_LVAL
));
2104 assert(vtop
->r
& VT_LVAL
);
2109 if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
2117 if (vtop
->r
& VT_LVAL
) {
2118 gen_modrm(vtop
[-1].r
, r
, vtop
->sym
, fc
);
2120 o(0xc0 + REG_VALUE(vtop
[0].r
) + REG_VALUE(vtop
[-1].r
)*8);
2128 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2129 and 'long long' cases. */
2130 void gen_cvt_itof(int t
)
2132 if ((t
& VT_BTYPE
) == VT_LDOUBLE
) {
2135 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2136 /* signed long long to float/double/long double (unsigned case
2137 is handled generically) */
2138 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2139 o(0x242cdf); /* fildll (%rsp) */
2140 o(0x08c48348); /* add $8, %rsp */
2141 } else if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2142 (VT_INT
| VT_UNSIGNED
)) {
2143 /* unsigned int to float/double/long double */
2144 o(0x6a); /* push $0 */
2146 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2147 o(0x242cdf); /* fildll (%rsp) */
2148 o(0x10c48348); /* add $16, %rsp */
2150 /* int to float/double/long double */
2151 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
2152 o(0x2404db); /* fildl (%rsp) */
2153 o(0x08c48348); /* add $8, %rsp */
2157 int r
= get_reg(RC_FLOAT
);
2159 o(0xf2 + ((t
& VT_BTYPE
) == VT_FLOAT
?1:0));
2160 if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
2161 (VT_INT
| VT_UNSIGNED
) ||
2162 (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
2166 o(0xc0 + (vtop
->r
& VT_VALMASK
) + REG_VALUE(r
)*8); /* cvtsi2sd */
2171 /* convert from one floating point type to another */
2172 void gen_cvt_ftof(int t
)
2180 if (bt
== VT_FLOAT
) {
2182 if (tbt
== VT_DOUBLE
) {
2183 o(0x140f); /* unpcklps */
2184 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2185 o(0x5a0f); /* cvtps2pd */
2186 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2187 } else if (tbt
== VT_LDOUBLE
) {
2189 /* movss %xmm0,-0x10(%rsp) */
2191 o(0x44 + REG_VALUE(vtop
->r
)*8);
2193 o(0xf02444d9); /* flds -0x10(%rsp) */
2196 } else if (bt
== VT_DOUBLE
) {
2198 if (tbt
== VT_FLOAT
) {
2199 o(0x140f66); /* unpcklpd */
2200 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2201 o(0x5a0f66); /* cvtpd2ps */
2202 o(0xc0 + REG_VALUE(vtop
->r
)*9);
2203 } else if (tbt
== VT_LDOUBLE
) {
2205 /* movsd %xmm0,-0x10(%rsp) */
2207 o(0x44 + REG_VALUE(vtop
->r
)*8);
2209 o(0xf02444dd); /* fldl -0x10(%rsp) */
2215 r
= get_reg(RC_FLOAT
);
2216 if (tbt
== VT_DOUBLE
) {
2217 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2218 /* movsd -0x10(%rsp),%xmm0 */
2220 o(0x44 + REG_VALUE(r
)*8);
2223 } else if (tbt
== VT_FLOAT
) {
2224 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2225 /* movss -0x10(%rsp),%xmm0 */
2227 o(0x44 + REG_VALUE(r
)*8);
2234 /* convert fp to int 't' type */
2235 void gen_cvt_ftoi(int t
)
2237 int ft
, bt
, size
, r
;
2240 if (bt
== VT_LDOUBLE
) {
2241 gen_cvt_ftof(VT_DOUBLE
);
2251 r
= get_reg(RC_INT
);
2252 if (bt
== VT_FLOAT
) {
2254 } else if (bt
== VT_DOUBLE
) {
2259 orex(size
== 8, r
, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2260 o(0xc0 + REG_VALUE(vtop
->r
) + REG_VALUE(r
)*8);
2264 /* computed goto support */
2271 /* Save the stack pointer onto the stack and return the location of its address */
2272 ST_FUNC
void gen_vla_sp_save(int addr
) {
2273 /* mov %rsp,addr(%rbp)*/
2274 gen_modrm64(0x89, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2277 /* Restore the SP from a location on the stack */
2278 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2279 gen_modrm64(0x8b, TREG_RSP
, VT_LOCAL
, NULL
, addr
);
2282 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2283 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2284 #ifdef TCC_TARGET_PE
2285 /* alloca does more than just adjust %rsp on Windows */
2286 vpush_global_sym(&func_old_type
, TOK_alloca
);
2287 vswap(); /* Move alloca ref past allocation size */
2291 r
= gv(RC_INT
); /* allocation size */
2294 o(0xe0 | REG_VALUE(r
));
2295 /* We align to 16 bytes rather than align */
2303 /* end of x86-64 code generator */
2304 /*************************************************************/
2305 #endif /* ! TARGET_DEFS_ONLY */
2306 /******************************************************/