2 * i386 specific functions for TCC assembler
4 * Copyright (c) 2001, 2002 Fabrice Bellard
5 * Copyright (c) 2009 Frédéric Feret (x86_64 support)
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define MAX_OPERANDS 3
26 #define TOK_ASM_first TOK_ASM_clc
27 #define TOK_ASM_last TOK_ASM_emms
28 #define TOK_ASM_alllast TOK_ASM_subps
30 #define OPC_B 0x01 /* only used with OPC_WL */
31 #define OPC_WL 0x02 /* accepts w, l or no suffix */
32 #define OPC_BWL (OPC_B | OPC_WL) /* accepts b, w, l or no suffix */
33 #define OPC_REG 0x04 /* register is added to opcode */
34 #define OPC_MODRM 0x08 /* modrm encoding */
36 #define OPCT_MASK 0x70
37 #define OPC_FWAIT 0x10 /* add fwait opcode */
38 #define OPC_SHIFT 0x20 /* shift opcodes */
39 #define OPC_ARITH 0x30 /* arithmetic opcodes */
40 #define OPC_FARITH 0x40 /* FPU arithmetic opcodes */
41 #define OPC_TEST 0x50 /* test opcodes */
42 #define OPCT_IS(v,i) (((v) & OPCT_MASK) == (i))
44 #define OPC_0F 0x100 /* Is secondary map (0x0f prefix) */
45 #define OPC_48 0x200 /* Always has REX prefix */
46 #ifdef TCC_TARGET_X86_64
47 # define OPC_WLQ 0x1000 /* accepts w, l, q or no suffix */
48 # define OPC_BWLQ (OPC_B | OPC_WLQ) /* accepts b, w, l, q or no suffix */
49 # define OPC_WLX OPC_WLQ
50 # define OPC_BWLX OPC_BWLQ
52 # define OPC_WLX OPC_WL
53 # define OPC_BWLX OPC_BWL
56 #define OPC_GROUP_SHIFT 13
58 /* in order to compress the operand type, we use specific operands and
61 OPT_REG8
=0, /* warning: value is hardcoded from TOK_ASM_xxx */
62 OPT_REG16
, /* warning: value is hardcoded from TOK_ASM_xxx */
63 OPT_REG32
, /* warning: value is hardcoded from TOK_ASM_xxx */
64 #ifdef TCC_TARGET_X86_64
65 OPT_REG64
, /* warning: value is hardcoded from TOK_ASM_xxx */
67 OPT_MMX
, /* warning: value is hardcoded from TOK_ASM_xxx */
68 OPT_SSE
, /* warning: value is hardcoded from TOK_ASM_xxx */
69 OPT_CR
, /* warning: value is hardcoded from TOK_ASM_xxx */
70 OPT_TR
, /* warning: value is hardcoded from TOK_ASM_xxx */
71 OPT_DB
, /* warning: value is hardcoded from TOK_ASM_xxx */
74 #ifdef TCC_TARGET_X86_64
75 OPT_REG8_LOW
, /* %spl,%bpl,%sil,%dil, encoded like ah,ch,dh,bh, but
76 with REX prefix, not used in insn templates */
82 #ifdef TCC_TARGET_X86_64
85 OPT_EAX
, /* %al, %ax, %eax or %rax register */
86 OPT_ST0
, /* %st(0) register */
87 OPT_CL
, /* %cl register */
88 OPT_DX
, /* %dx register */
89 OPT_ADDR
, /* OP_EA with only offset */
90 OPT_INDIR
, /* *(expr) */
93 OPT_IM
, /* IM8 | IM16 | IM32 */
94 OPT_REG
, /* REG8 | REG16 | REG32 | REG64 */
95 OPT_REGW
, /* REG16 | REG32 | REG64 */
96 OPT_IMW
, /* IM16 | IM32 */
97 OPT_MMXSSE
, /* MMX | SSE */
98 OPT_DISP
, /* Like OPT_ADDR, but emitted as displacement (for jumps) */
99 OPT_DISP8
, /* Like OPT_ADDR, but only 8bit (short jumps) */
100 /* can be ored with any OPT_xxx */
104 #define OP_REG8 (1 << OPT_REG8)
105 #define OP_REG16 (1 << OPT_REG16)
106 #define OP_REG32 (1 << OPT_REG32)
107 #define OP_MMX (1 << OPT_MMX)
108 #define OP_SSE (1 << OPT_SSE)
109 #define OP_CR (1 << OPT_CR)
110 #define OP_TR (1 << OPT_TR)
111 #define OP_DB (1 << OPT_DB)
112 #define OP_SEG (1 << OPT_SEG)
113 #define OP_ST (1 << OPT_ST)
114 #define OP_IM8 (1 << OPT_IM8)
115 #define OP_IM8S (1 << OPT_IM8S)
116 #define OP_IM16 (1 << OPT_IM16)
117 #define OP_IM32 (1 << OPT_IM32)
118 #define OP_EAX (1 << OPT_EAX)
119 #define OP_ST0 (1 << OPT_ST0)
120 #define OP_CL (1 << OPT_CL)
121 #define OP_DX (1 << OPT_DX)
122 #define OP_ADDR (1 << OPT_ADDR)
123 #define OP_INDIR (1 << OPT_INDIR)
124 #ifdef TCC_TARGET_X86_64
125 # define OP_REG64 (1 << OPT_REG64)
126 # define OP_REG8_LOW (1 << OPT_REG8_LOW)
127 # define OP_IM64 (1 << OPT_IM64)
128 # define OP_EA32 (OP_EA << 1)
131 # define OP_REG8_LOW 0
136 #define OP_EA 0x40000000
137 #define OP_REG (OP_REG8 | OP_REG16 | OP_REG32 | OP_REG64)
139 #ifdef TCC_TARGET_X86_64
140 # define TREG_XAX TREG_RAX
141 # define TREG_XCX TREG_RCX
142 # define TREG_XDX TREG_RDX
144 # define TREG_XAX TREG_EAX
145 # define TREG_XCX TREG_ECX
146 # define TREG_XDX TREG_EDX
149 typedef struct ASMInstr
{
154 uint8_t op_type
[MAX_OPERANDS
]; /* see OP_xxx */
157 typedef struct Operand
{
159 int8_t reg
; /* register, -1 if none */
160 int8_t reg2
; /* second register, -1 if none */
165 static const uint8_t reg_to_size
[9] = {
170 #ifdef TCC_TARGET_X86_64
174 0, 0, 1, 0, 2, 0, 0, 0, 3
177 #define NB_TEST_OPCODES 30
179 static const uint8_t test_bits
[NB_TEST_OPCODES
] = {
212 static const uint8_t segment_prefixes
[] = {
221 static const ASMInstr asm_instrs
[] = {
223 /* This removes a 0x0f in the second byte */
224 #define O(o) ((uint64_t) ((((o) & 0xff00) == 0x0f00) ? ((((o) >> 8) & ~0xff) | ((o) & 0xff)) : (o)))
225 /* This constructs instr_type from opcode, type and group. */
226 #define T(o,i,g) ((i) | ((g) << OPC_GROUP_SHIFT) | ((((o) & 0xff00) == 0x0f00) ? OPC_0F : 0))
227 #define DEF_ASM_OP0(name, opcode)
228 #define DEF_ASM_OP0L(name, opcode, group, instr_type) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 0, { 0 } },
229 #define DEF_ASM_OP1(name, opcode, group, instr_type, op0) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 1, { op0 }},
230 #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 2, { op0, op1 }},
231 #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2) { TOK_ASM_ ## name, O(opcode), T(opcode, instr_type, group), 3, { op0, op1, op2 }},
232 #ifdef TCC_TARGET_X86_64
233 # include "x86_64-asm.h"
235 # include "i386-asm.h"
241 static const uint16_t op0_codes
[] = {
243 #define DEF_ASM_OP0(x, opcode) opcode,
244 #define DEF_ASM_OP0L(name, opcode, group, instr_type)
245 #define DEF_ASM_OP1(name, opcode, group, instr_type, op0)
246 #define DEF_ASM_OP2(name, opcode, group, instr_type, op0, op1)
247 #define DEF_ASM_OP3(name, opcode, group, instr_type, op0, op1, op2)
248 #ifdef TCC_TARGET_X86_64
249 # include "x86_64-asm.h"
251 # include "i386-asm.h"
255 static inline int get_reg_shift(TCCState
*s1
)
258 v
= asm_int_expr(s1
);
273 expect("1, 2, 4 or 8 constant");
280 #ifdef TCC_TARGET_X86_64
281 static int asm_parse_numeric_reg(int t
, unsigned int *type
)
284 if (t
>= TOK_IDENT
&& t
< tok_ident
) {
285 const char *s
= table_ident
[t
- TOK_IDENT
]->str
;
294 /* Don't allow leading '0'. */
295 if ((c
= *s
++) >= '1' && c
<= '9')
299 if ((c
= *s
) >= '0' && c
<= '5')
300 s
++, reg
= reg
* 10 + c
- '0';
305 else if (*type
!= OP_REG64
)
307 else if (c
== 'b' && !s
[1])
309 else if (c
== 'w' && !s
[1])
311 else if (c
== 'd' && !s
[1])
320 static int asm_parse_reg(unsigned int *type
)
327 if (tok
>= TOK_ASM_eax
&& tok
<= TOK_ASM_edi
) {
328 reg
= tok
- TOK_ASM_eax
;
330 #ifdef TCC_TARGET_X86_64
331 } else if (tok
>= TOK_ASM_rax
&& tok
<= TOK_ASM_rdi
) {
332 reg
= tok
- TOK_ASM_rax
;
334 } else if (tok
== TOK_ASM_rip
) {
335 reg
= -2; /* Probably should use different escape code. */
337 } else if ((reg
= asm_parse_numeric_reg(tok
, type
)) >= 0
338 && (*type
== OP_REG32
|| *type
== OP_REG64
)) {
349 static void parse_operand(TCCState
*s1
, Operand
*op
)
363 if (tok
>= TOK_ASM_al
&& tok
<= TOK_ASM_db7
) {
364 reg
= tok
- TOK_ASM_al
;
365 op
->type
= 1 << (reg
>> 3); /* WARNING: do not change constant order */
367 if ((op
->type
& OP_REG
) && op
->reg
== TREG_XAX
)
369 else if (op
->type
== OP_REG8
&& op
->reg
== TREG_XCX
)
371 else if (op
->type
== OP_REG16
&& op
->reg
== TREG_XDX
)
373 } else if (tok
>= TOK_ASM_dr0
&& tok
<= TOK_ASM_dr7
) {
375 op
->reg
= tok
- TOK_ASM_dr0
;
376 } else if (tok
>= TOK_ASM_es
&& tok
<= TOK_ASM_gs
) {
378 op
->reg
= tok
- TOK_ASM_es
;
379 } else if (tok
== TOK_ASM_st
) {
385 if (tok
!= TOK_PPNUM
)
389 if ((unsigned)reg
>= 8 || p
[1] != '\0')
398 #ifdef TCC_TARGET_X86_64
399 } else if (tok
>= TOK_ASM_spl
&& tok
<= TOK_ASM_dil
) {
400 op
->type
= OP_REG8
| OP_REG8_LOW
;
401 op
->reg
= 4 + tok
- TOK_ASM_spl
;
402 } else if ((op
->reg
= asm_parse_numeric_reg(tok
, &op
->type
)) >= 0) {
407 tcc_error("unknown register %%%s", get_tok_str(tok
, &tokc
));
411 } else if (tok
== '$') {
418 if (op
->e
.v
== (uint8_t)op
->e
.v
)
420 if (op
->e
.v
== (int8_t)op
->e
.v
)
422 if (op
->e
.v
== (uint16_t)op
->e
.v
)
424 #ifdef TCC_TARGET_X86_64
425 if (op
->e
.v
!= (int32_t)op
->e
.v
&& op
->e
.v
!= (uint32_t)op
->e
.v
)
430 /* address(reg,reg2,shift) with all variants */
445 /* bracketed offset expression */
456 unsigned int type
= 0;
459 op
->reg
= asm_parse_reg(&type
);
464 op
->reg2
= asm_parse_reg(&type
);
468 op
->shift
= get_reg_shift(s1
);
475 if (op
->reg
== -1 && op
->reg2
== -1)
481 /* XXX: unify with C code output ? */
482 ST_FUNC
void gen_expr32(ExprValue
*pe
)
485 /* If PC-relative, always set VT_SYM, even without symbol,
486 so as to force a relocation to be emitted. */
487 gen_addrpc32(VT_SYM
, pe
->sym
, pe
->v
);
489 gen_addr32(pe
->sym
? VT_SYM
: 0, pe
->sym
, pe
->v
);
492 #ifdef TCC_TARGET_X86_64
493 ST_FUNC
void gen_expr64(ExprValue
*pe
)
495 gen_addr64(pe
->sym
? VT_SYM
: 0, pe
->sym
, pe
->v
);
499 /* XXX: unify with C code output ? */
500 static void gen_disp32(ExprValue
*pe
)
503 if (sym
&& sym
->r
== cur_text_section
->sh_num
) {
504 /* same section: we can output an absolute value. Note
505 that the TCC compiler behaves differently here because
506 it always outputs a relocation to ease (future) code
507 elimination in the linker */
508 gen_le32(pe
->v
+ sym
->jnext
- ind
- 4);
510 if (sym
&& sym
->type
.t
== VT_VOID
) {
511 sym
->type
.t
= VT_FUNC
;
512 sym
->type
.ref
= NULL
;
514 gen_addrpc32(VT_SYM
, sym
, pe
->v
);
518 /* generate the modrm operand */
519 static inline int asm_modrm(int reg
, Operand
*op
)
521 int mod
, reg1
, reg2
, sib_reg1
;
523 if (op
->type
& (OP_REG
| OP_MMX
| OP_SSE
)) {
524 g(0xc0 + (reg
<< 3) + op
->reg
);
525 } else if (op
->reg
== -1 && op
->reg2
== -1) {
526 /* displacement only */
527 #ifdef TCC_TARGET_X86_64
528 g(0x04 + (reg
<< 3));
531 g(0x05 + (reg
<< 3));
534 #ifdef TCC_TARGET_X86_64
535 } else if (op
->reg
== -2) {
536 ExprValue
*pe
= &op
->e
;
537 g(0x05 + (reg
<< 3));
538 gen_addrpc32(pe
->sym
? VT_SYM
: 0, pe
->sym
, pe
->v
);
543 /* fist compute displacement encoding */
544 if (sib_reg1
== -1) {
547 } else if (op
->e
.v
== 0 && !op
->e
.sym
&& op
->reg
!= 5) {
549 } else if (op
->e
.v
== (int8_t)op
->e
.v
&& !op
->e
.sym
) {
554 /* compute if sib byte needed */
558 g(mod
+ (reg
<< 3) + reg1
);
563 reg2
= 4; /* indicate no index */
564 g((op
->shift
<< 6) + (reg2
<< 3) + sib_reg1
);
569 } else if (mod
== 0x80 || op
->reg
== -1) {
576 #ifdef TCC_TARGET_X86_64
582 static void asm_rex(int width64
, Operand
*ops
, int nb_ops
, int *op_type
,
585 unsigned char rex
= width64
? 0x48 : 0;
586 int saw_high_8bit
= 0;
589 /* No mod/rm byte, but we might have a register op nevertheless
590 (we will add it to the opcode later). */
591 for(i
= 0; i
< nb_ops
; i
++) {
592 if (op_type
[i
] & (OP_REG
| OP_ST
)) {
593 if (ops
[i
].reg
>= 8) {
596 } else if (ops
[i
].type
& OP_REG8_LOW
)
598 else if (ops
[i
].type
& OP_REG8
&& ops
[i
].reg
>= 4)
599 /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
600 saw_high_8bit
= ops
[i
].reg
;
606 if (ops
[regi
].reg
>= 8) {
609 } else if (ops
[regi
].type
& OP_REG8_LOW
)
611 else if (ops
[regi
].type
& OP_REG8
&& ops
[regi
].reg
>= 4)
612 /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
613 saw_high_8bit
= ops
[regi
].reg
;
615 if (ops
[rmi
].type
& (OP_REG
| OP_MMX
| OP_SSE
| OP_CR
| OP_EA
)) {
616 if (ops
[rmi
].reg
>= 8) {
619 } else if (ops
[rmi
].type
& OP_REG8_LOW
)
621 else if (ops
[rmi
].type
& OP_REG8
&& ops
[rmi
].reg
>= 4)
622 /* An 8 bit reg >= 4 without REG8 is ah/ch/dh/bh */
623 saw_high_8bit
= ops
[rmi
].reg
;
625 if (ops
[rmi
].type
& OP_EA
&& ops
[rmi
].reg2
>= 8) {
632 tcc_error("can't encode register %%%ch when REX prefix is required",
633 "acdb"[saw_high_8bit
-4]);
639 static void maybe_print_stats (void)
641 static int already
= 1;
643 /* print stats about opcodes */
645 const struct ASMInstr
*pa
;
648 int nb_op_vals
, i
, j
;
652 memset(freq
, 0, sizeof(freq
));
653 for(pa
= asm_instrs
; pa
->sym
!= 0; pa
++) {
655 //for(i=0;i<pa->nb_ops;i++) {
656 for(j
=0;j
<nb_op_vals
;j
++) {
657 //if (pa->op_type[i] == op_vals[j])
658 if (pa
->instr_type
== op_vals
[j
])
661 //op_vals[nb_op_vals++] = pa->op_type[i];
662 op_vals
[nb_op_vals
++] = pa
->instr_type
;
666 for(i
=0;i
<nb_op_vals
;i
++) {
668 //if ((v & (v - 1)) != 0)
669 printf("%3d: %08x\n", i
, v
);
671 printf("size=%d nb=%d f0=%d f1=%d f2=%d f3=%d\n",
672 (int)sizeof(asm_instrs
),
673 (int)sizeof(asm_instrs
) / (int)sizeof(ASMInstr
),
674 freq
[0], freq
[1], freq
[2], freq
[3]);
678 ST_FUNC
void asm_opcode(TCCState
*s1
, int opcode
)
681 int i
, modrm_index
, modreg_index
, reg
, v
, op1
, seg_prefix
, pc
;
683 Operand ops
[MAX_OPERANDS
], *pop
;
684 int op_type
[3]; /* decoded op type */
685 int alltypes
; /* OR of all operand types */
688 #ifdef TCC_TARGET_X86_64
693 /* force synthetic ';' after prefix instruction, so we can handle */
694 /* one-line things like "rep stosb" instead of only "rep\nstosb" */
695 if (opcode
>= TOK_ASM_wait
&& opcode
<= TOK_ASM_repnz
)
704 if (tok
== ';' || tok
== TOK_LINEFEED
)
706 if (nb_ops
>= MAX_OPERANDS
) {
707 tcc_error("incorrect number of operands");
709 parse_operand(s1
, pop
);
711 if (pop
->type
!= OP_SEG
|| seg_prefix
)
712 tcc_error("incorrect prefix");
713 seg_prefix
= segment_prefixes
[pop
->reg
];
715 parse_operand(s1
, pop
);
716 if (!(pop
->type
& OP_EA
)) {
717 tcc_error("segment prefix must be followed by memory reference");
727 s
= 0; /* avoid warning */
729 /* optimize matching by using a lookup table (no hashing is needed
731 for(pa
= asm_instrs
; pa
->sym
!= 0; pa
++) {
732 int it
= pa
->instr_type
& OPCT_MASK
;
734 if (it
== OPC_FARITH
) {
735 v
= opcode
- pa
->sym
;
736 if (!((unsigned)v
< 8 * 6 && (v
% 6) == 0))
738 } else if (it
== OPC_ARITH
) {
739 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ 8*NBWLX
))
741 s
= (opcode
- pa
->sym
) % NBWLX
;
742 if ((pa
->instr_type
& OPC_BWLX
) == OPC_WLX
)
744 /* We need to reject the xxxb opcodes that we accepted above.
745 Note that pa->sym for WLX opcodes is the 'w' token,
746 to get the 'b' token subtract one. */
747 if (((opcode
- pa
->sym
+ 1) % NBWLX
) == 0)
751 } else if (it
== OPC_SHIFT
) {
752 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ 7*NBWLX
))
754 s
= (opcode
- pa
->sym
) % NBWLX
;
755 } else if (it
== OPC_TEST
) {
756 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NB_TEST_OPCODES
))
758 /* cmovxx is a test opcode but accepts multiple sizes.
759 TCC doesn't accept the suffixed mnemonic, instead we
760 simply force size autodetection always. */
761 if (pa
->instr_type
& OPC_WLX
)
763 } else if (pa
->instr_type
& OPC_B
) {
764 #ifdef TCC_TARGET_X86_64
765 /* Some instructions don't have the full size but only
766 bwl form. insb e.g. */
767 if ((pa
->instr_type
& OPC_WLQ
) != OPC_WLQ
768 && !(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NBWLX
-1))
771 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NBWLX
))
773 s
= opcode
- pa
->sym
;
774 } else if (pa
->instr_type
& OPC_WLX
) {
775 if (!(opcode
>= pa
->sym
&& opcode
< pa
->sym
+ NBWLX
-1))
777 s
= opcode
- pa
->sym
+ 1;
779 if (pa
->sym
!= opcode
)
782 if (pa
->nb_ops
!= nb_ops
)
784 #ifdef TCC_TARGET_X86_64
785 /* Special case for moves. Selecting the IM64->REG64 form
786 should only be done if we really have an >32bit imm64, and that
787 is hardcoded. Ignore it here. */
788 if (pa
->opcode
== 0xb0 && ops
[0].type
!= OP_IM64
789 && (ops
[1].type
& OP_REG
) == OP_REG64
790 && !(pa
->instr_type
& OPC_0F
))
793 /* now decode and check each operand */
795 for(i
= 0; i
< nb_ops
; i
++) {
797 op1
= pa
->op_type
[i
];
801 v
= OP_IM8
| OP_IM16
| OP_IM32
;
804 v
= OP_REG8
| OP_REG16
| OP_REG32
| OP_REG64
;
807 v
= OP_REG16
| OP_REG32
| OP_REG64
;
810 v
= OP_IM16
| OP_IM32
;
826 if ((ops
[i
].type
& v
) == 0)
828 alltypes
|= ops
[i
].type
;
830 /* all is matching ! */
835 if (opcode
>= TOK_ASM_first
&& opcode
<= TOK_ASM_last
) {
837 b
= op0_codes
[opcode
- TOK_ASM_first
];
842 } else if (opcode
<= TOK_ASM_alllast
) {
843 tcc_error("bad operand with opcode '%s'",
844 get_tok_str(opcode
, NULL
));
846 tcc_error("unknown opcode '%s'",
847 get_tok_str(opcode
, NULL
));
850 /* if the size is unknown, then evaluate it (OPC_B or OPC_WL case) */
852 #ifdef TCC_TARGET_X86_64
853 /* XXX the autosize should rather be zero, to not have to adjust this
855 if ((pa
->instr_type
& OPC_BWLQ
) == OPC_B
)
859 /* Check for register operands providing hints about the size.
860 Start from the end, i.e. destination operands. This matters
861 only for opcodes accepting different sized registers, lar and lsl
863 for(i
= nb_ops
- 1; s
== autosize
&& i
>= 0; i
--) {
864 if ((ops
[i
].type
& OP_REG
) && !(op_type
[i
] & (OP_CL
| OP_DX
)))
865 s
= reg_to_size
[ops
[i
].type
& OP_REG
];
868 if ((opcode
== TOK_ASM_push
|| opcode
== TOK_ASM_pop
) &&
869 (ops
[0].type
& (OP_SEG
| OP_IM8S
| OP_IM32
)))
871 else if ((opcode
== TOK_ASM_push
|| opcode
== TOK_ASM_pop
) &&
872 (ops
[0].type
& OP_EA
))
875 tcc_error("cannot infer opcode suffix");
879 #ifdef TCC_TARGET_X86_64
880 /* Generate addr32 prefix if needed */
881 for(i
= 0; i
< nb_ops
; i
++) {
882 if (ops
[i
].type
& OP_EA32
) {
888 /* generate data16 prefix if needed */
893 /* accepting mmx+sse in all operands --> needs 0x66 to
894 switch to sse mode. Accepting only sse in an operand --> is
895 already SSE insn and needs 0x66/f2/f3 handling. */
896 for (i
= 0; i
< nb_ops
; i
++)
897 if ((op_type
[i
] & (OP_MMX
| OP_SSE
)) == (OP_MMX
| OP_SSE
)
898 && ops
[i
].type
& OP_SSE
)
903 #ifdef TCC_TARGET_X86_64
905 if (pa
->instr_type
& OPC_48
)
907 else if (s
== 3 || (alltypes
& OP_REG64
)) {
908 /* generate REX prefix */
910 for(i
= 0; i
< nb_ops
; i
++) {
911 if (op_type
[i
] == OP_REG64
&& pa
->opcode
!= 0xb8) {
912 /* If only 64bit regs are accepted in one operand
913 this is a default64 instruction without need for
914 REX prefixes, except for movabs(0xb8). */
919 /* XXX find better encoding for the default64 instructions. */
920 if (((opcode
!= TOK_ASM_push
&& opcode
!= TOK_ASM_pop
921 && opcode
!= TOK_ASM_pushw
&& opcode
!= TOK_ASM_pushl
922 && opcode
!= TOK_ASM_pushq
&& opcode
!= TOK_ASM_popw
923 && opcode
!= TOK_ASM_popl
&& opcode
!= TOK_ASM_popq
924 && opcode
!= TOK_ASM_call
&& opcode
!= TOK_ASM_jmp
))
930 /* now generates the operation */
931 if (OPCT_IS(pa
->instr_type
, OPC_FWAIT
))
937 if (pa
->instr_type
& OPC_0F
)
938 v
= ((v
& ~0xff) << 8) | 0x0f00 | (v
& 0xff);
939 if ((v
== 0x69 || v
== 0x6b) && nb_ops
== 2) {
940 /* kludge for imul $im, %reg */
943 op_type
[2] = op_type
[1];
944 } else if (v
== 0xcd && ops
[0].e
.v
== 3 && !ops
[0].e
.sym
) {
945 v
--; /* int $3 case */
947 } else if ((v
== 0x06 || v
== 0x07)) {
948 if (ops
[0].reg
>= 4) {
949 /* push/pop %fs or %gs */
950 v
= 0x0fa0 + (v
- 0x06) + ((ops
[0].reg
- 4) << 3);
952 v
+= ops
[0].reg
<< 3;
955 } else if (v
<= 0x05) {
957 v
+= ((opcode
- TOK_ASM_addb
) / NBWLX
) << 3;
958 } else if ((pa
->instr_type
& (OPCT_MASK
| OPC_MODRM
)) == OPC_FARITH
) {
960 v
+= ((opcode
- pa
->sym
) / 6) << 3;
963 /* search which operand will be used for modrm */
966 if (pa
->instr_type
& OPC_MODRM
) {
968 /* A modrm opcode without operands is a special case (e.g. mfence).
969 It has a group and acts as if there's an register operand 0
972 ops
[i
].type
= OP_REG
;
976 /* first look for an ea operand */
977 for(i
= 0;i
< nb_ops
; i
++) {
978 if (op_type
[i
] & OP_EA
)
981 /* then if not found, a register or indirection (shift instructions) */
982 for(i
= 0;i
< nb_ops
; i
++) {
983 if (op_type
[i
] & (OP_REG
| OP_MMX
| OP_SSE
| OP_INDIR
))
987 tcc_error("bad op table");
991 /* if a register is used in another operand then it is
992 used instead of group */
993 for(i
= 0;i
< nb_ops
; i
++) {
995 if (i
!= modrm_index
&&
996 (t
& (OP_REG
| OP_MMX
| OP_SSE
| OP_CR
| OP_TR
| OP_DB
| OP_SEG
))) {
1002 #ifdef TCC_TARGET_X86_64
1003 asm_rex (rex64
, ops
, nb_ops
, op_type
, modreg_index
, modrm_index
);
1006 if (pa
->instr_type
& OPC_REG
) {
1007 /* mov $im, %reg case */
1008 if (v
== 0xb0 && s
>= 1)
1010 for(i
= 0; i
< nb_ops
; i
++) {
1011 if (op_type
[i
] & (OP_REG
| OP_ST
)) {
1017 if (pa
->instr_type
& OPC_B
)
1019 if (nb_ops
== 1 && pa
->op_type
[0] == OPT_DISP8
) {
1023 /* see if we can really generate the jump with a byte offset */
1027 if (sym
->r
!= cur_text_section
->sh_num
)
1029 jmp_disp
= ops
[0].e
.v
+ sym
->jnext
- ind
- 2 - (v
>= 0xff);
1030 if (jmp_disp
== (int8_t)jmp_disp
) {
1031 /* OK to generate jump */
1033 ops
[0].e
.v
= jmp_disp
;
1034 op_type
[0] = OP_IM8S
;
1037 /* long jump will be allowed. need to modify the
1039 if (v
== 0xeb) /* jmp */
1041 else if (v
== 0x70) /* jcc */
1044 tcc_error("invalid displacement");
1047 if (OPCT_IS(pa
->instr_type
, OPC_TEST
))
1048 v
+= test_bits
[opcode
- pa
->sym
];
1052 op1
= (v
>> 8) & 0xff;
1057 if (OPCT_IS(pa
->instr_type
, OPC_SHIFT
)) {
1058 reg
= (opcode
- pa
->sym
) / NBWLX
;
1061 } else if (OPCT_IS(pa
->instr_type
, OPC_ARITH
)) {
1062 reg
= (opcode
- pa
->sym
) / NBWLX
;
1063 } else if (OPCT_IS(pa
->instr_type
, OPC_FARITH
)) {
1064 reg
= (opcode
- pa
->sym
) / 6;
1066 reg
= (pa
->instr_type
>> OPC_GROUP_SHIFT
) & 7;
1070 if (pa
->instr_type
& OPC_MODRM
) {
1071 /* if a register is used in another operand then it is
1072 used instead of group */
1073 if (modreg_index
>= 0)
1074 reg
= ops
[modreg_index
].reg
;
1075 pc
= asm_modrm(reg
, &ops
[modrm_index
]);
1078 /* emit constants */
1079 #ifndef TCC_TARGET_X86_64
1080 if (!(pa
->instr_type
& OPC_0F
)
1081 && (pa
->opcode
== 0x9a || pa
->opcode
== 0xea)) {
1082 /* ljmp or lcall kludge */
1083 gen_expr32(&ops
[1].e
);
1085 tcc_error("cannot relocate");
1086 gen_le16(ops
[0].e
.v
);
1090 for(i
= 0;i
< nb_ops
; i
++) {
1092 if (v
& (OP_IM8
| OP_IM16
| OP_IM32
| OP_IM64
| OP_IM8S
| OP_ADDR
)) {
1093 /* if multiple sizes are given it means we must look
1095 if ((v
| OP_IM8
| OP_IM64
) == (OP_IM8
| OP_IM16
| OP_IM32
| OP_IM64
)) {
1100 else if (s
== 2 || (v
& OP_IM64
) == 0)
1106 if ((v
& (OP_IM8
| OP_IM8S
| OP_IM16
)) && ops
[i
].e
.sym
)
1107 tcc_error("cannot relocate");
1109 if (v
& (OP_IM8
| OP_IM8S
)) {
1111 } else if (v
& OP_IM16
) {
1112 gen_le16(ops
[i
].e
.v
);
1113 #ifdef TCC_TARGET_X86_64
1114 } else if (v
& OP_IM64
) {
1115 gen_expr64(&ops
[i
].e
);
1117 } else if (pa
->op_type
[i
] == OPT_DISP
|| pa
->op_type
[i
] == OPT_DISP8
) {
1118 gen_disp32(&ops
[i
].e
);
1120 gen_expr32(&ops
[i
].e
);
1125 /* after immediate operands, adjust pc-relative address */
1127 add32le(cur_text_section
->data
+ pc
- 4, pc
- ind
);
1130 /* return the constraint priority (we allocate first the lowest
1131 numbered constraints) */
1132 static inline int constraint_priority(const char *str
)
1134 int priority
, c
, pr
;
1136 /* we take the lowest priority */
1173 tcc_error("unknown constraint '%c'", c
);
1182 static const char *skip_constraint_modifiers(const char *p
)
1184 while (*p
== '=' || *p
== '&' || *p
== '+' || *p
== '%')
1189 /* If T (a token) is of the form "%reg" returns the register
1190 number and type, otherwise return -1. */
1191 ST_FUNC
int asm_parse_regvar (int t
)
1197 s
= table_ident
[t
- TOK_IDENT
]->str
;
1200 t
= tok_alloc(s
+1, strlen(s
)-1)->tok
;
1203 parse_operand(tcc_state
, &op
);
1204 /* Accept only integer regs for now. */
1205 if (op
.type
& OP_REG
)
1211 #define REG_OUT_MASK 0x01
1212 #define REG_IN_MASK 0x02
1214 #define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
1216 ST_FUNC
void asm_compute_constraints(ASMOperand
*operands
,
1217 int nb_operands
, int nb_outputs
,
1218 const uint8_t *clobber_regs
,
1222 int sorted_op
[MAX_ASM_OPERANDS
];
1223 int i
, j
, k
, p1
, p2
, tmp
, reg
, c
, reg_mask
;
1225 uint8_t regs_allocated
[NB_ASM_REGS
];
1228 for(i
=0;i
<nb_operands
;i
++) {
1230 op
->input_index
= -1;
1236 /* compute constraint priority and evaluate references to output
1237 constraints if input constraints */
1238 for(i
=0;i
<nb_operands
;i
++) {
1240 str
= op
->constraint
;
1241 str
= skip_constraint_modifiers(str
);
1242 if (isnum(*str
) || *str
== '[') {
1243 /* this is a reference to another constraint */
1244 k
= find_constraint(operands
, nb_operands
, str
, NULL
);
1245 if ((unsigned)k
>= i
|| i
< nb_outputs
)
1246 tcc_error("invalid reference in constraint %d ('%s')",
1249 if (operands
[k
].input_index
>= 0)
1250 tcc_error("cannot reference twice the same operand");
1251 operands
[k
].input_index
= i
;
1253 } else if ((op
->vt
->r
& VT_VALMASK
) == VT_LOCAL
1255 && (reg
= op
->vt
->sym
->r
& VT_VALMASK
) < VT_CONST
) {
1259 op
->priority
= constraint_priority(str
);
1263 /* sort operands according to their priority */
1264 for(i
=0;i
<nb_operands
;i
++)
1266 for(i
=0;i
<nb_operands
- 1;i
++) {
1267 for(j
=i
+1;j
<nb_operands
;j
++) {
1268 p1
= operands
[sorted_op
[i
]].priority
;
1269 p2
= operands
[sorted_op
[j
]].priority
;
1272 sorted_op
[i
] = sorted_op
[j
];
1278 for(i
= 0;i
< NB_ASM_REGS
; i
++) {
1279 if (clobber_regs
[i
])
1280 regs_allocated
[i
] = REG_IN_MASK
| REG_OUT_MASK
;
1282 regs_allocated
[i
] = 0;
1284 /* esp cannot be used */
1285 regs_allocated
[4] = REG_IN_MASK
| REG_OUT_MASK
;
1286 /* ebp cannot be used yet */
1287 regs_allocated
[5] = REG_IN_MASK
| REG_OUT_MASK
;
1289 /* allocate registers and generate corresponding asm moves */
1290 for(i
=0;i
<nb_operands
;i
++) {
1293 str
= op
->constraint
;
1294 /* no need to allocate references */
1295 if (op
->ref_index
>= 0)
1297 /* select if register is used for output, input or both */
1298 if (op
->input_index
>= 0) {
1299 reg_mask
= REG_IN_MASK
| REG_OUT_MASK
;
1300 } else if (j
< nb_outputs
) {
1301 reg_mask
= REG_OUT_MASK
;
1303 reg_mask
= REG_IN_MASK
;
1306 if (is_reg_allocated(op
->reg
))
1307 tcc_error("asm regvar requests register that's taken already");
1320 if (j
>= nb_outputs
)
1321 tcc_error("'%c' modifier can only be applied to outputs", c
);
1322 reg_mask
= REG_IN_MASK
| REG_OUT_MASK
;
1325 /* allocate both eax and edx */
1326 if (is_reg_allocated(TREG_XAX
) ||
1327 is_reg_allocated(TREG_XDX
))
1331 regs_allocated
[TREG_XAX
] |= reg_mask
;
1332 regs_allocated
[TREG_XDX
] |= reg_mask
;
1352 if (is_reg_allocated(reg
))
1356 /* eax, ebx, ecx or edx */
1357 for(reg
= 0; reg
< 4; reg
++) {
1358 if (!is_reg_allocated(reg
))
1364 case 'p': /* A general address, for x86(64) any register is acceptable*/
1365 /* any general register */
1366 for(reg
= 0; reg
< 8; reg
++) {
1367 if (!is_reg_allocated(reg
))
1372 /* now we can reload in the register */
1375 regs_allocated
[reg
] |= reg_mask
;
1379 if (!((op
->vt
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
))
1385 if (!((op
->vt
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
))
1390 /* nothing special to do because the operand is already in
1391 memory, except if the pointer itself is stored in a
1392 memory variable (VT_LLOCAL case) */
1393 /* XXX: fix constant case */
1394 /* if it is a reference to a memory zone, it must lie
1395 in a register, so we reserve the register in the
1396 input registers and a load will be generated
1398 if (j
< nb_outputs
|| c
== 'm') {
1399 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
) {
1400 /* any general register */
1401 for(reg
= 0; reg
< 8; reg
++) {
1402 if (!(regs_allocated
[reg
] & REG_IN_MASK
))
1407 /* now we can reload in the register */
1408 regs_allocated
[reg
] |= REG_IN_MASK
;
1415 tcc_error("asm constraint %d ('%s') could not be satisfied",
1419 /* if a reference is present for that operand, we assign it too */
1420 if (op
->input_index
>= 0) {
1421 operands
[op
->input_index
].reg
= op
->reg
;
1422 operands
[op
->input_index
].is_llong
= op
->is_llong
;
1426 /* compute out_reg. It is used to store outputs registers to memory
1427 locations references by pointers (VT_LLOCAL case) */
1429 for(i
=0;i
<nb_operands
;i
++) {
1432 (op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
&&
1434 for(reg
= 0; reg
< 8; reg
++) {
1435 if (!(regs_allocated
[reg
] & REG_OUT_MASK
))
1438 tcc_error("could not find free output register for reloading");
1445 /* print sorted constraints */
1447 for(i
=0;i
<nb_operands
;i
++) {
1450 printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
1452 op
->id
? get_tok_str(op
->id
, NULL
) : "",
1458 printf("out_reg=%d\n", *pout_reg
);
1462 ST_FUNC
void subst_asm_operand(CString
*add_str
,
1463 SValue
*sv
, int modifier
)
1465 int r
, reg
, size
, val
;
1469 if ((r
& VT_VALMASK
) == VT_CONST
) {
1470 if (!(r
& VT_LVAL
) && modifier
!= 'c' && modifier
!= 'n' &&
1472 cstr_ccat(add_str
, '$');
1474 const char *name
= get_tok_str(sv
->sym
->v
, NULL
);
1475 if (sv
->sym
->v
>= SYM_FIRST_ANOM
) {
1476 /* In case of anonymous symbols ("L.42", used
1477 for static data labels) we can't find them
1478 in the C symbol table when later looking up
1479 this name. So enter them now into the asm label
1480 list when we still know the symbol. */
1481 get_asm_sym(tok_alloc(name
, strlen(name
))->tok
, sv
->sym
);
1483 cstr_cat(add_str
, name
, -1);
1484 if ((uint32_t)sv
->c
.i
== 0)
1486 cstr_ccat(add_str
, '+');
1489 if (modifier
== 'n')
1491 snprintf(buf
, sizeof(buf
), "%d", (int)sv
->c
.i
);
1492 cstr_cat(add_str
, buf
, -1);
1494 #ifdef TCC_TARGET_X86_64
1496 cstr_cat(add_str
, "(%rip)", -1);
1498 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
1499 #ifdef TCC_TARGET_X86_64
1500 snprintf(buf
, sizeof(buf
), "%d(%%rbp)", (int)sv
->c
.i
);
1502 snprintf(buf
, sizeof(buf
), "%d(%%ebp)", (int)sv
->c
.i
);
1504 cstr_cat(add_str
, buf
, -1);
1505 } else if (r
& VT_LVAL
) {
1506 reg
= r
& VT_VALMASK
;
1507 if (reg
>= VT_CONST
)
1508 tcc_error("internal compiler error");
1509 snprintf(buf
, sizeof(buf
), "(%%%s)",
1510 #ifdef TCC_TARGET_X86_64
1511 get_tok_str(TOK_ASM_rax
+ reg
, NULL
)
1513 get_tok_str(TOK_ASM_eax
+ reg
, NULL
)
1516 cstr_cat(add_str
, buf
, -1);
1519 reg
= r
& VT_VALMASK
;
1520 if (reg
>= VT_CONST
)
1521 tcc_error("internal compiler error");
1523 /* choose register operand size */
1524 if ((sv
->type
.t
& VT_BTYPE
) == VT_BYTE
||
1525 (sv
->type
.t
& VT_BTYPE
) == VT_BOOL
)
1527 else if ((sv
->type
.t
& VT_BTYPE
) == VT_SHORT
)
1529 #ifdef TCC_TARGET_X86_64
1530 else if ((sv
->type
.t
& VT_BTYPE
) == VT_LLONG
||
1531 (sv
->type
.t
& VT_BTYPE
) == VT_PTR
)
1536 if (size
== 1 && reg
>= 4)
1539 if (modifier
== 'b') {
1541 tcc_error("cannot use byte register");
1543 } else if (modifier
== 'h') {
1545 tcc_error("cannot use byte register");
1547 } else if (modifier
== 'w') {
1549 } else if (modifier
== 'k') {
1551 #ifdef TCC_TARGET_X86_64
1552 } else if (modifier
== 'q') {
1559 reg
= TOK_ASM_ah
+ reg
;
1562 reg
= TOK_ASM_al
+ reg
;
1565 reg
= TOK_ASM_ax
+ reg
;
1568 reg
= TOK_ASM_eax
+ reg
;
1570 #ifdef TCC_TARGET_X86_64
1572 reg
= TOK_ASM_rax
+ reg
;
1576 snprintf(buf
, sizeof(buf
), "%%%s", get_tok_str(reg
, NULL
));
1577 cstr_cat(add_str
, buf
, -1);
1581 /* generate prolog and epilog code for asm statement */
1582 ST_FUNC
void asm_gen_code(ASMOperand
*operands
, int nb_operands
,
1583 int nb_outputs
, int is_output
,
1584 uint8_t *clobber_regs
,
1587 uint8_t regs_allocated
[NB_ASM_REGS
];
1591 /* Strictly speaking %Xbp and %Xsp should be included in the
1592 call-preserved registers, but currently it doesn't matter. */
1593 #ifdef TCC_TARGET_X86_64
1594 #ifdef TCC_TARGET_PE
1595 static uint8_t reg_saved
[] = { 3, 6, 7, 12, 13, 14, 15 };
1597 static uint8_t reg_saved
[] = { 3, 12, 13, 14, 15 };
1600 static uint8_t reg_saved
[] = { 3, 6, 7 };
1603 /* mark all used registers */
1604 memcpy(regs_allocated
, clobber_regs
, sizeof(regs_allocated
));
1605 for(i
= 0; i
< nb_operands
;i
++) {
1608 regs_allocated
[op
->reg
] = 1;
1611 /* generate reg save code */
1612 for(i
= 0; i
< sizeof(reg_saved
)/sizeof(reg_saved
[0]); i
++) {
1614 if (regs_allocated
[reg
]) {
1621 /* generate load code */
1622 for(i
= 0; i
< nb_operands
; i
++) {
1625 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
&&
1627 /* memory reference case (for both input and
1631 sv
.r
= (sv
.r
& ~VT_VALMASK
) | VT_LOCAL
| VT_LVAL
;
1634 } else if (i
>= nb_outputs
|| op
->is_rw
) {
1635 /* load value in register */
1636 load(op
->reg
, op
->vt
);
1641 load(TREG_XDX
, &sv
);
1647 /* generate save code */
1648 for(i
= 0 ; i
< nb_outputs
; i
++) {
1651 if ((op
->vt
->r
& VT_VALMASK
) == VT_LLOCAL
) {
1652 if (!op
->is_memory
) {
1655 sv
.r
= (sv
.r
& ~VT_VALMASK
) | VT_LOCAL
;
1660 sv
.r
= (sv
.r
& ~VT_VALMASK
) | out_reg
;
1661 store(op
->reg
, &sv
);
1664 store(op
->reg
, op
->vt
);
1669 store(TREG_XDX
, &sv
);
1674 /* generate reg restore code */
1675 for(i
= sizeof(reg_saved
)/sizeof(reg_saved
[0]) - 1; i
>= 0; i
--) {
1677 if (regs_allocated
[reg
]) {
1686 ST_FUNC
void asm_clobber(uint8_t *clobber_regs
, const char *str
)
1690 #ifdef TCC_TARGET_X86_64
1694 if (!strcmp(str
, "memory") ||
1695 !strcmp(str
, "cc") ||
1696 !strcmp(str
, "flags"))
1698 ts
= tok_alloc(str
, strlen(str
));
1700 if (reg
>= TOK_ASM_eax
&& reg
<= TOK_ASM_edi
) {
1702 } else if (reg
>= TOK_ASM_ax
&& reg
<= TOK_ASM_di
) {
1704 #ifdef TCC_TARGET_X86_64
1705 } else if (reg
>= TOK_ASM_rax
&& reg
<= TOK_ASM_rdi
) {
1707 } else if ((reg
= asm_parse_numeric_reg(reg
, &type
)) >= 0) {
1711 tcc_error("invalid clobber register '%s'", str
);
1713 clobber_regs
[reg
] = 1;