added size info
[tinycc.git] / i386-gen.c
blob8d28c27ab094045459e0c9964b65faaa4ec416b8
1 /*
2 * X86 code generator for TCC
3 *
4 * Copyright (c) 2001, 2002 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 /* number of available registers */
22 #define NB_REGS 4
24 /* a register can belong to several classes. The classes must be
25 sorted from more general to more precise (see gv2() code which does
26 assumptions on it). */
27 #define RC_INT 0x0001 /* generic integer register */
28 #define RC_FLOAT 0x0002 /* generic float register */
29 #define RC_EAX 0x0004
30 #define RC_ST0 0x0008
31 #define RC_ECX 0x0010
32 #define RC_EDX 0x0020
33 #define RC_IRET RC_EAX /* function return: integer register */
34 #define RC_LRET RC_EDX /* function return: second integer register */
35 #define RC_FRET RC_ST0 /* function return: float register */
37 /* pretty names for the registers */
38 enum {
39 REG_EAX = 0,
40 REG_ECX,
41 REG_EDX,
42 REG_ST0,
45 int reg_classes[NB_REGS] = {
46 /* eax */ RC_INT | RC_EAX,
47 /* ecx */ RC_INT | RC_ECX,
48 /* edx */ RC_INT | RC_EDX,
49 /* st0 */ RC_FLOAT | RC_ST0,
52 /* return registers for function */
53 #define REG_IRET REG_EAX /* single word int return register */
54 #define REG_LRET REG_EDX /* second word return register (for long long) */
55 #define REG_FRET REG_ST0 /* float return register */
57 /* defined if function parameters must be evaluated in reverse order */
58 #define INVERT_FUNC_PARAMS
60 /* defined if structures are passed as pointers. Otherwise structures
61 are directly pushed on stack. */
62 //#define FUNC_STRUCT_PARAM_AS_PTR
64 /* pointer size, in bytes */
65 #define PTR_SIZE 4
67 /* long double size and alignment, in bytes */
68 #define LDOUBLE_SIZE 12
69 #define LDOUBLE_ALIGN 4
71 /* relocation type for 32 bit data relocation */
72 #define R_DATA_32 R_386_32
74 /* function call context */
75 typedef struct GFuncContext {
76 int args_size;
77 int func_call; /* func call type (FUNC_STDCALL or FUNC_CDECL) */
78 } GFuncContext;
80 /******************************************************/
82 static unsigned long func_sub_sp_offset;
83 static unsigned long func_bound_offset;
84 static int func_ret_sub;
86 void g(int c)
88 cur_text_section->data[ind] = c;
89 ind++;
92 void o(int c)
94 while (c) {
95 g(c);
96 c = c / 256;
100 void gen_le32(int c)
102 g(c);
103 g(c >> 8);
104 g(c >> 16);
105 g(c >> 24);
108 /* output a symbol and patch all calls to it */
109 void gsym_addr(int t, int a)
111 int n, *ptr;
112 while (t) {
113 ptr = (int *)(cur_text_section->data + t);
114 n = *ptr; /* next value */
115 *ptr = a - t - 4;
116 t = n;
120 void gsym(int t)
122 gsym_addr(t, ind);
125 /* psym is used to put an instruction with a data field which is a
126 reference to a symbol. It is in fact the same as oad ! */
127 #define psym oad
129 /* instruction + 4 bytes data. Return the address of the data */
130 int oad(int c, int s)
132 o(c);
133 *(int *)(cur_text_section->data + ind) = s;
134 s = ind;
135 ind = ind + 4;
136 return s;
139 /* output constant with relocation if 'r & VT_SYM' is true */
140 void gen_addr32(int r, int c)
142 if (!(r & VT_SYM)) {
143 gen_le32(c);
144 } else {
145 greloc(cur_text_section,
146 (Sym *)c, ind, R_386_32);
147 gen_le32(0);
151 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
152 opcode bits */
153 void gen_modrm(int op_reg, int r, int c)
155 op_reg = op_reg << 3;
156 if ((r & VT_VALMASK) == VT_CONST) {
157 /* constant memory reference */
158 o(0x05 | op_reg);
159 gen_addr32(r, c);
160 } else if ((r & VT_VALMASK) == VT_LOCAL) {
161 /* currently, we use only ebp as base */
162 if (c == (char)c) {
163 /* short reference */
164 o(0x45 | op_reg);
165 g(c);
166 } else {
167 oad(0x85 | op_reg, c);
169 } else {
170 g(0x00 | op_reg | (r & VT_VALMASK));
175 /* load 'r' from value 'sv' */
176 void load(int r, SValue *sv)
178 int v, t, ft, fc, fr;
179 SValue v1;
181 fr = sv->r;
182 ft = sv->t;
183 fc = sv->c.ul;
185 v = fr & VT_VALMASK;
186 if (fr & VT_LVAL) {
187 if (v == VT_LLOCAL) {
188 v1.t = VT_INT;
189 v1.r = VT_LOCAL | VT_LVAL;
190 v1.c.ul = fc;
191 load(r, &v1);
192 fr = r;
194 if ((ft & VT_BTYPE) == VT_FLOAT) {
195 o(0xd9); /* flds */
196 r = 0;
197 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
198 o(0xdd); /* fldl */
199 r = 0;
200 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
201 o(0xdb); /* fldt */
202 r = 5;
203 } else if ((ft & VT_TYPE) == VT_BYTE) {
204 o(0xbe0f); /* movsbl */
205 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
206 o(0xb60f); /* movzbl */
207 } else if ((ft & VT_TYPE) == VT_SHORT) {
208 o(0xbf0f); /* movswl */
209 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
210 o(0xb70f); /* movzwl */
211 } else {
212 o(0x8b); /* movl */
214 gen_modrm(r, fr, fc);
215 } else {
216 if (v == VT_CONST) {
217 o(0xb8 + r); /* mov $xx, r */
218 gen_addr32(fr, fc);
219 } else if (v == VT_LOCAL) {
220 o(0x8d); /* lea xxx(%ebp), r */
221 gen_modrm(r, VT_LOCAL, fc);
222 } else if (v == VT_CMP) {
223 oad(0xb8 + r, 0); /* mov $0, r */
224 o(0x0f); /* setxx %br */
225 o(fc);
226 o(0xc0 + r);
227 } else if (v == VT_JMP || v == VT_JMPI) {
228 t = v & 1;
229 oad(0xb8 + r, t); /* mov $1, r */
230 oad(0xe9, 5); /* jmp after */
231 gsym(fc);
232 oad(0xb8 + r, t ^ 1); /* mov $0, r */
233 } else if (v != r) {
234 o(0x89);
235 o(0xc0 + r + v * 8); /* mov v, r */
240 /* store register 'r' in lvalue 'v' */
241 void store(int r, SValue *v)
243 int fr, bt, ft, fc;
245 ft = v->t;
246 fc = v->c.ul;
247 fr = v->r & VT_VALMASK;
248 bt = ft & VT_BTYPE;
249 /* XXX: incorrect if float reg to reg */
250 if (bt == VT_FLOAT) {
251 o(0xd9); /* fsts */
252 r = 2;
253 } else if (bt == VT_DOUBLE) {
254 o(0xdd); /* fstpl */
255 r = 2;
256 } else if (bt == VT_LDOUBLE) {
257 o(0xc0d9); /* fld %st(0) */
258 o(0xdb); /* fstpt */
259 r = 7;
260 } else {
261 if (bt == VT_SHORT)
262 o(0x66);
263 if (bt == VT_BYTE)
264 o(0x88);
265 else
266 o(0x89);
268 if (fr == VT_CONST ||
269 fr == VT_LOCAL ||
270 (v->r & VT_LVAL)) {
271 gen_modrm(r, v->r, fc);
272 } else if (fr != r) {
273 o(0xc0 + fr + r * 8); /* mov r, fr */
277 /* start function call and return function call context */
278 void gfunc_start(GFuncContext *c, int func_call)
280 c->args_size = 0;
281 c->func_call = func_call;
284 /* push function parameter which is in (vtop->t, vtop->c). Stack entry
285 is then popped. */
286 void gfunc_param(GFuncContext *c)
288 int size, align, r;
290 if ((vtop->t & VT_BTYPE) == VT_STRUCT) {
291 size = type_size(vtop->t, &align);
292 /* align to stack align size */
293 size = (size + 3) & ~3;
294 /* allocate the necessary size on stack */
295 oad(0xec81, size); /* sub $xxx, %esp */
296 /* generate structure store */
297 r = get_reg(RC_INT);
298 o(0x89); /* mov %esp, r */
299 o(0xe0 + r);
300 vset(vtop->t, r | VT_LVAL, 0);
301 vswap();
302 vstore();
303 c->args_size += size;
304 } else if (is_float(vtop->t)) {
305 gv(RC_FLOAT); /* only one float register */
306 if ((vtop->t & VT_BTYPE) == VT_FLOAT)
307 size = 4;
308 else if ((vtop->t & VT_BTYPE) == VT_DOUBLE)
309 size = 8;
310 else
311 size = 12;
312 oad(0xec81, size); /* sub $xxx, %esp */
313 if (size == 12)
314 o(0x7cdb);
315 else
316 o(0x5cd9 + size - 4); /* fstp[s|l] 0(%esp) */
317 g(0x24);
318 g(0x00);
319 c->args_size += size;
320 } else {
321 /* simple type (currently always same size) */
322 /* XXX: implicit cast ? */
323 r = gv(RC_INT);
324 if ((vtop->t & VT_BTYPE) == VT_LLONG) {
325 size = 8;
326 o(0x50 + vtop->r2); /* push r */
327 } else {
328 size = 4;
330 o(0x50 + r); /* push r */
331 c->args_size += size;
333 vtop--;
336 static void gadd_sp(int val)
338 if (val == (char)val) {
339 o(0xc483);
340 g(val);
341 } else {
342 oad(0xc481, val); /* add $xxx, %esp */
346 /* generate function call with address in (vtop->t, vtop->c) and free function
347 context. Stack entry is popped */
348 void gfunc_call(GFuncContext *c)
350 int r;
351 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
352 /* constant case */
353 if (vtop->r & VT_SYM) {
354 /* relocation case */
355 greloc(cur_text_section, vtop->c.sym,
356 ind + 1, R_386_PC32);
357 oad(0xe8, -4);
358 } else {
359 oad(0xe8, vtop->c.ul - ind - 5);
361 } else {
362 /* otherwise, indirect call */
363 r = gv(RC_INT);
364 o(0xff); /* call *r */
365 o(0xd0 + r);
367 if (c->args_size && c->func_call == FUNC_CDECL)
368 gadd_sp(c->args_size);
369 vtop--;
372 /* generate function prolog of type 't' */
373 void gfunc_prolog(int t)
375 int addr, align, size, u, func_call;
376 Sym *sym;
378 sym = sym_find((unsigned)t >> VT_STRUCT_SHIFT);
379 func_call = sym->r;
380 addr = 8;
381 /* if the function returns a structure, then add an
382 implicit pointer parameter */
383 func_vt = sym->t;
384 if ((func_vt & VT_BTYPE) == VT_STRUCT) {
385 func_vc = addr;
386 addr += 4;
388 /* define parameters */
389 while ((sym = sym->next) != NULL) {
390 u = sym->t;
391 sym_push(sym->v & ~SYM_FIELD, u,
392 VT_LOCAL | VT_LVAL, addr);
393 size = type_size(u, &align);
394 size = (size + 3) & ~3;
395 #ifdef FUNC_STRUCT_PARAM_AS_PTR
396 /* structs are passed as pointer */
397 if ((u & VT_BTYPE) == VT_STRUCT) {
398 size = 4;
400 #endif
401 addr += size;
403 func_ret_sub = 0;
404 /* pascal type call ? */
405 if (func_call == FUNC_STDCALL)
406 func_ret_sub = addr - 8;
407 o(0xe58955); /* push %ebp, mov %esp, %ebp */
408 func_sub_sp_offset = oad(0xec81, 0); /* sub $xxx, %esp */
409 /* leave some room for bound checking code */
410 if (do_bounds_check) {
411 oad(0xb8, 0); /* lbound section pointer */
412 oad(0xb8, 0); /* call to function */
413 func_bound_offset = lbounds_section->data_offset;
417 /* generate function epilog */
418 void gfunc_epilog(void)
420 #ifdef CONFIG_TCC_BCHECK
421 if (do_bounds_check && func_bound_offset != lbounds_section->data_offset) {
422 int saved_ind;
423 int *bounds_ptr;
424 Sym *sym, *sym_data;
425 /* add end of table info */
426 bounds_ptr = section_ptr_add(lbounds_section, sizeof(int));
427 *bounds_ptr = 0;
428 /* generate bound local allocation */
429 saved_ind = ind;
430 ind = func_sub_sp_offset + 4;
431 sym_data = get_sym_ref(char_pointer_type, lbounds_section,
432 func_bound_offset, lbounds_section->data_offset);
433 greloc(cur_text_section, sym_data,
434 ind + 1, R_386_32);
435 oad(0xb8, 0); /* mov %eax, xxx */
436 sym = external_sym(TOK___bound_local_new, func_old_type, 0);
437 greloc(cur_text_section, sym,
438 ind + 1, R_386_PC32);
439 oad(0xe8, -4);
440 ind = saved_ind;
441 /* generate bound check local freeing */
442 o(0x5250); /* save returned value, if any */
443 greloc(cur_text_section, sym_data,
444 ind + 1, R_386_32);
445 oad(0xb8, 0); /* mov %eax, xxx */
446 sym = external_sym(TOK___bound_local_delete, func_old_type, 0);
447 greloc(cur_text_section, sym,
448 ind + 1, R_386_PC32);
449 oad(0xe8, -4);
450 o(0x585a); /* restore returned value, if any */
452 #endif
453 o(0xc9); /* leave */
454 if (func_ret_sub == 0) {
455 o(0xc3); /* ret */
456 } else {
457 o(0xc2); /* ret n */
458 g(func_ret_sub);
459 g(func_ret_sub >> 8);
461 /* align local size to word & save local variables */
462 *(int *)(cur_text_section->data + func_sub_sp_offset) = (-loc + 3) & -4;
465 /* generate a jump to a label */
466 int gjmp(int t)
468 return psym(0xe9, t);
471 /* generate a jump to a fixed address */
472 void gjmp_addr(int a)
474 oad(0xe9, a - ind - 5);
477 /* generate a test. set 'inv' to invert test. Stack entry is popped */
478 int gtst(int inv, int t)
480 int v, *p;
481 v = vtop->r & VT_VALMASK;
482 if (v == VT_CMP) {
483 /* fast case : can jump directly since flags are set */
484 g(0x0f);
485 t = psym((vtop->c.i - 16) ^ inv, t);
486 } else if (v == VT_JMP || v == VT_JMPI) {
487 /* && or || optimization */
488 if ((v & 1) == inv) {
489 /* insert vtop->c jump list in t */
490 p = &vtop->c.i;
491 while (*p != 0)
492 p = (int *)(cur_text_section->data + *p);
493 *p = t;
494 t = vtop->c.i;
495 } else {
496 t = gjmp(t);
497 gsym(vtop->c.i);
499 } else {
500 if (is_float(vtop->t)) {
501 vpushi(0);
502 gen_op(TOK_NE);
504 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
505 /* constant jmp optimization */
506 if ((vtop->c.i != 0) != inv)
507 t = gjmp(t);
508 } else {
509 v = gv(RC_INT);
510 o(0x85);
511 o(0xc0 + v * 9);
512 g(0x0f);
513 t = psym(0x85 ^ inv, t);
516 vtop--;
517 return t;
520 /* generate an integer binary operation */
521 void gen_opi(int op)
523 int r, fr, opc, c;
525 switch(op) {
526 case '+':
527 case TOK_ADDC1: /* add with carry generation */
528 opc = 0;
529 gen_op8:
530 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
531 /* constant case */
532 vswap();
533 r = gv(RC_INT);
534 vswap();
535 c = vtop->c.i;
536 if (c == (char)c) {
537 /* XXX: generate inc and dec for smaller code ? */
538 o(0x83);
539 o(0xc0 | (opc << 3) | r);
540 g(c);
541 } else {
542 o(0x81);
543 oad(0xc0 | (opc << 3) | r, c);
545 } else {
546 gv2(RC_INT, RC_INT);
547 r = vtop[-1].r;
548 fr = vtop[0].r;
549 o((opc << 3) | 0x01);
550 o(0xc0 + r + fr * 8);
552 vtop--;
553 if (op >= TOK_ULT && op <= TOK_GT) {
554 vtop--;
555 vset(VT_INT, VT_CMP, op);
557 break;
558 case '-':
559 case TOK_SUBC1: /* sub with carry generation */
560 opc = 5;
561 goto gen_op8;
562 case TOK_ADDC2: /* add with carry use */
563 opc = 2;
564 goto gen_op8;
565 case TOK_SUBC2: /* sub with carry use */
566 opc = 3;
567 goto gen_op8;
568 case '&':
569 opc = 4;
570 goto gen_op8;
571 case '^':
572 opc = 6;
573 goto gen_op8;
574 case '|':
575 opc = 1;
576 goto gen_op8;
577 case '*':
578 gv2(RC_INT, RC_INT);
579 r = vtop[-1].r;
580 fr = vtop[0].r;
581 vtop--;
582 o(0xaf0f); /* imul fr, r */
583 o(0xc0 + fr + r * 8);
584 break;
585 case TOK_SHL:
586 opc = 4;
587 goto gen_shift;
588 case TOK_SHR:
589 opc = 5;
590 goto gen_shift;
591 case TOK_SAR:
592 opc = 7;
593 gen_shift:
594 opc = 0xc0 | (opc << 3);
595 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
596 /* constant case */
597 vswap();
598 r = gv(RC_INT);
599 vswap();
600 c = vtop->c.i & 0x1f;
601 o(0xc1); /* shl/shr/sar $xxx, r */
602 o(opc | r);
603 g(c);
604 } else {
605 /* we generate the shift in ecx */
606 gv2(RC_INT, RC_ECX);
607 r = vtop[-1].r;
608 o(0xd3); /* shl/shr/sar %cl, r */
609 o(opc | r);
611 vtop--;
612 break;
613 case '/':
614 case TOK_UDIV:
615 case TOK_PDIV:
616 case '%':
617 case TOK_UMOD:
618 case TOK_UMULL:
619 /* first operand must be in eax */
620 /* XXX: need better constraint for second operand */
621 gv2(RC_EAX, RC_ECX);
622 r = vtop[-1].r;
623 fr = vtop[0].r;
624 vtop--;
625 save_reg(REG_EDX);
626 if (op == TOK_UMULL) {
627 o(0xf7); /* mul fr */
628 o(0xe0 + fr);
629 vtop->r2 = REG_EDX;
630 r = REG_EAX;
631 } else {
632 if (op == TOK_UDIV || op == TOK_UMOD) {
633 o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
634 o(0xf0 + fr);
635 } else {
636 o(0xf799); /* cltd, idiv fr, %eax */
637 o(0xf8 + fr);
639 if (op == '%' || op == TOK_UMOD)
640 r = REG_EDX;
641 else
642 r = REG_EAX;
644 vtop->r = r;
645 break;
646 default:
647 opc = 7;
648 goto gen_op8;
652 /* generate a floating point operation 'v = t1 op t2' instruction. The
653 two operands are guaranted to have the same floating point type */
654 /* XXX: need to use ST1 too */
655 void gen_opf(int op)
657 int a, ft, fc, swapped, r;
659 /* convert constants to memory references */
660 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
661 vswap();
662 gv(RC_FLOAT);
663 vswap();
665 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
666 gv(RC_FLOAT);
668 /* must put at least one value in the floating point register */
669 if ((vtop[-1].r & VT_LVAL) &&
670 (vtop[0].r & VT_LVAL)) {
671 vswap();
672 gv(RC_FLOAT);
673 vswap();
675 swapped = 0;
676 /* swap the stack if needed so that t1 is the register and t2 is
677 the memory reference */
678 if (vtop[-1].r & VT_LVAL) {
679 vswap();
680 swapped = 1;
682 if (op >= TOK_ULT && op <= TOK_GT) {
683 /* load on stack second operand */
684 load(REG_ST0, vtop);
685 save_reg(REG_EAX); /* eax is used by FP comparison code */
686 if (op == TOK_GE || op == TOK_GT)
687 swapped = !swapped;
688 else if (op == TOK_EQ || op == TOK_NE)
689 swapped = 0;
690 if (swapped)
691 o(0xc9d9); /* fxch %st(1) */
692 o(0xe9da); /* fucompp */
693 o(0xe0df); /* fnstsw %ax */
694 if (op == TOK_EQ) {
695 o(0x45e480); /* and $0x45, %ah */
696 o(0x40fC80); /* cmp $0x40, %ah */
697 } else if (op == TOK_NE) {
698 o(0x45e480); /* and $0x45, %ah */
699 o(0x40f480); /* xor $0x40, %ah */
700 op = TOK_NE;
701 } else if (op == TOK_GE || op == TOK_LE) {
702 o(0x05c4f6); /* test $0x05, %ah */
703 op = TOK_EQ;
704 } else {
705 o(0x45c4f6); /* test $0x45, %ah */
706 op = TOK_EQ;
708 vtop--;
709 vtop->r = VT_CMP;
710 vtop->c.i = op;
711 } else {
712 /* no memory reference possible for long double operations */
713 if ((vtop->t & VT_BTYPE) == VT_LDOUBLE) {
714 load(REG_ST0, vtop);
715 swapped = !swapped;
718 switch(op) {
719 default:
720 case '+':
721 a = 0;
722 break;
723 case '-':
724 a = 4;
725 if (swapped)
726 a++;
727 break;
728 case '*':
729 a = 1;
730 break;
731 case '/':
732 a = 6;
733 if (swapped)
734 a++;
735 break;
737 ft = vtop->t;
738 fc = vtop->c.ul;
739 if ((ft & VT_BTYPE) == VT_LDOUBLE) {
740 o(0xde); /* fxxxp %st, %st(1) */
741 o(0xc1 + (a << 3));
742 } else {
743 /* if saved lvalue, then we must reload it */
744 r = vtop->r;
745 if ((r & VT_VALMASK) == VT_LLOCAL) {
746 SValue v1;
747 r = get_reg(RC_INT);
748 v1.t = VT_INT;
749 v1.r = VT_LOCAL | VT_LVAL;
750 v1.c.ul = fc;
751 load(r, &v1);
752 fc = 0;
755 if ((ft & VT_BTYPE) == VT_DOUBLE)
756 o(0xdc);
757 else
758 o(0xd8);
759 gen_modrm(a, r, fc);
761 vtop--;
765 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
766 and 'long long' cases. */
767 void gen_cvt_itof(int t)
769 save_reg(REG_ST0);
770 gv(RC_INT);
771 if ((vtop->t & VT_BTYPE) == VT_LLONG) {
772 /* signed long long to float/double/long double (unsigned case
773 is handled generically) */
774 o(0x50 + vtop->r2); /* push r2 */
775 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
776 o(0x242cdf); /* fildll (%esp) */
777 o(0x08c483); /* add $8, %esp */
778 } else if ((vtop->t & (VT_BTYPE | VT_UNSIGNED)) ==
779 (VT_INT | VT_UNSIGNED)) {
780 /* unsigned int to float/double/long double */
781 o(0x6a); /* push $0 */
782 g(0x00);
783 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
784 o(0x242cdf); /* fildll (%esp) */
785 o(0x08c483); /* add $8, %esp */
786 } else {
787 /* int to float/double/long double */
788 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
789 o(0x2404db); /* fildl (%esp) */
790 o(0x04c483); /* add $4, %esp */
792 vtop->r = REG_ST0;
795 /* convert fp to int 't' type */
796 /* XXX: handle long long case */
797 void gen_cvt_ftoi(int t)
799 int r, r2, size;
800 Sym *sym;
802 gv(RC_FLOAT);
803 if (t != VT_INT)
804 size = 8;
805 else
806 size = 4;
808 o(0x2dd9); /* ldcw xxx */
809 sym = external_sym(TOK___tcc_int_fpu_control,
810 VT_SHORT | VT_UNSIGNED, VT_LVAL);
811 greloc(cur_text_section, sym,
812 ind, R_386_32);
813 gen_le32(0);
815 oad(0xec81, size); /* sub $xxx, %esp */
816 if (size == 4)
817 o(0x1cdb); /* fistpl */
818 else
819 o(0x3cdf); /* fistpll */
820 o(0x24);
821 o(0x2dd9); /* ldcw xxx */
822 sym = external_sym(TOK___tcc_fpu_control,
823 VT_SHORT | VT_UNSIGNED, VT_LVAL);
824 greloc(cur_text_section, sym,
825 ind, R_386_32);
826 gen_le32(0);
828 r = get_reg(RC_INT);
829 o(0x58 + r); /* pop r */
830 if (size == 8) {
831 if (t == VT_LLONG) {
832 vtop->r = r; /* mark reg as used */
833 r2 = get_reg(RC_INT);
834 o(0x58 + r2); /* pop r2 */
835 vtop->r2 = r2;
836 } else {
837 o(0x04c483); /* add $4, %esp */
840 vtop->r = r;
843 /* convert from one floating point type to another */
844 void gen_cvt_ftof(int t)
846 /* all we have to do on i386 is to put the float in a register */
847 gv(RC_FLOAT);
850 /* bound check support functions */
851 #ifdef CONFIG_TCC_BCHECK
853 /* generate a bounded pointer addition */
854 void gen_bounded_ptr_add(void)
856 Sym *sym;
858 /* prepare fast i386 function call (args in eax and edx) */
859 gv2(RC_EAX, RC_EDX);
860 /* save all temporary registers */
861 vtop -= 2;
862 save_regs(0);
863 /* do a fast function call */
864 sym = external_sym(TOK___bound_ptr_add, func_old_type, 0);
865 greloc(cur_text_section, sym,
866 ind + 1, R_386_PC32);
867 oad(0xe8, -4);
868 /* returned pointer is in eax */
869 vtop++;
870 vtop->r = REG_EAX | VT_BOUNDED;
871 /* address of bounding function call point */
872 vtop->c.ul = (cur_text_section->reloc->data_offset - sizeof(Elf32_Rel));
875 /* patch pointer addition in vtop so that pointer dereferencing is
876 also tested */
877 void gen_bounded_ptr_deref(void)
879 int func;
880 int size, align;
881 Elf32_Rel *rel;
882 Sym *sym;
884 size = 0;
885 /* XXX: put that code in generic part of tcc */
886 if (!is_float(vtop->t)) {
887 if (vtop->r & VT_LVAL_BYTE)
888 size = 1;
889 else if (vtop->r & VT_LVAL_SHORT)
890 size = 2;
892 if (!size)
893 size = type_size(vtop->t, &align);
894 switch(size) {
895 case 1: func = TOK___bound_ptr_indir1; break;
896 case 2: func = TOK___bound_ptr_indir2; break;
897 case 4: func = TOK___bound_ptr_indir4; break;
898 case 8: func = TOK___bound_ptr_indir8; break;
899 case 12: func = TOK___bound_ptr_indir12; break;
900 case 16: func = TOK___bound_ptr_indir16; break;
901 default:
902 error("unhandled size when derefencing bounded pointer");
903 func = 0;
904 break;
907 /* patch relocation */
908 /* XXX: find a better solution ? */
909 rel = (Elf32_Rel *)(cur_text_section->reloc->data + vtop->c.ul);
910 sym = external_sym(func, func_old_type, 0);
911 if (!sym->c)
912 put_extern_sym(sym, NULL, 0, 0);
913 rel->r_info = ELF32_R_INFO(sym->c, ELF32_R_TYPE(rel->r_info));
915 #endif
917 /* end of X86 code generator */
918 /*************************************************************/