2 * ARMv4 code generator for TCC
4 * Copyright (c) 2003 Daniel Glöckner
5 * Copyright (c) 2012 Thomas Preud'homme
7 * Based on i386-gen.c by Fabrice Bellard
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef TARGET_DEFS_ONLY
26 #if defined(TCC_ARM_EABI) && !defined(TCC_ARM_VFP)
27 #error "Currently TinyCC only supports float computation with VFP instructions"
30 /* number of available registers */
37 #ifndef TCC_ARM_VERSION
38 # define TCC_ARM_VERSION 5
41 /* a register can belong to several classes. The classes must be
42 sorted from more general to more precise (see gv2() code which does
43 assumptions on it). */
44 #define RC_INT 0x0001 /* generic integer register */
45 #define RC_FLOAT 0x0002 /* generic float register */
61 #define RC_IRET RC_R0 /* function return: integer register */
62 #define RC_LRET RC_R1 /* function return: second integer register */
63 #define RC_FRET RC_F0 /* function return: float register */
65 /* pretty names for the registers */
87 #define T2CPR(t) (((t) & VT_BTYPE) != VT_FLOAT ? 0x100 : 0)
90 /* return registers for function */
91 #define REG_IRET TREG_R0 /* single word int return register */
92 #define REG_LRET TREG_R1 /* second word return register (for long long) */
93 #define REG_FRET TREG_F0 /* float return register */
96 #define TOK___divdi3 TOK___aeabi_ldivmod
97 #define TOK___moddi3 TOK___aeabi_ldivmod
98 #define TOK___udivdi3 TOK___aeabi_uldivmod
99 #define TOK___umoddi3 TOK___aeabi_uldivmod
102 /* defined if function parameters must be evaluated in reverse order */
103 #define INVERT_FUNC_PARAMS
105 /* defined if structures are passed as pointers. Otherwise structures
106 are directly pushed on stack. */
107 /* #define FUNC_STRUCT_PARAM_AS_PTR */
109 /* pointer size, in bytes */
112 /* long double size and alignment, in bytes */
114 #define LDOUBLE_SIZE 8
118 #define LDOUBLE_SIZE 8
122 #define LDOUBLE_ALIGN 8
124 #define LDOUBLE_ALIGN 4
127 /* maximum alignment (for aligned attribute support) */
130 #define CHAR_IS_UNSIGNED
132 /******************************************************/
133 #else /* ! TARGET_DEFS_ONLY */
134 /******************************************************/
137 enum float_abi float_abi
;
139 ST_DATA
const int reg_classes
[NB_REGS
] = {
140 /* r0 */ RC_INT
| RC_R0
,
141 /* r1 */ RC_INT
| RC_R1
,
142 /* r2 */ RC_INT
| RC_R2
,
143 /* r3 */ RC_INT
| RC_R3
,
144 /* r12 */ RC_INT
| RC_R12
,
145 /* f0 */ RC_FLOAT
| RC_F0
,
146 /* f1 */ RC_FLOAT
| RC_F1
,
147 /* f2 */ RC_FLOAT
| RC_F2
,
148 /* f3 */ RC_FLOAT
| RC_F3
,
150 /* d4/s8 */ RC_FLOAT
| RC_F4
,
151 /* d5/s10 */ RC_FLOAT
| RC_F5
,
152 /* d6/s12 */ RC_FLOAT
| RC_F6
,
153 /* d7/s14 */ RC_FLOAT
| RC_F7
,
157 static int func_sub_sp_offset
, last_itod_magic
;
160 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
161 static CType float_type
, double_type
, func_float_type
, func_double_type
;
162 ST_FUNC
void arm_init(struct TCCState
*s
)
164 float_type
.t
= VT_FLOAT
;
165 double_type
.t
= VT_DOUBLE
;
166 func_float_type
.t
= VT_FUNC
;
167 func_float_type
.ref
= sym_push(SYM_FIELD
, &float_type
, FUNC_CDECL
, FUNC_OLD
);
168 func_double_type
.t
= VT_FUNC
;
169 func_double_type
.ref
= sym_push(SYM_FIELD
, &double_type
, FUNC_CDECL
, FUNC_OLD
);
171 float_abi
= s
->float_abi
;
172 #ifndef TCC_ARM_HARDFLOAT
173 tcc_warning("soft float ABI currently not supported: default to softfp");
177 #define func_float_type func_old_type
178 #define func_double_type func_old_type
179 #define func_ldouble_type func_old_type
180 ST_FUNC
void arm_init(struct TCCState
*s
)
182 #if !defined (TCC_ARM_VFP)
183 tcc_warning("Support for FPA is deprecated and will be removed in next"
186 #if !defined (TCC_ARM_EABI)
187 tcc_warning("Support for OABI is deprecated and will be removed in next"
193 static int two2mask(int a
,int b
) {
194 return (reg_classes
[a
]|reg_classes
[b
])&~(RC_INT
|RC_FLOAT
);
197 static int regmask(int r
) {
198 return reg_classes
[r
]&~(RC_INT
|RC_FLOAT
);
201 /******************************************************/
203 #if defined(TCC_ARM_EABI) && !defined(CONFIG_TCC_ELFINTERP)
204 char *default_elfinterp(struct TCCState
*s
)
206 if (s
->float_abi
== ARM_HARD_FLOAT
)
207 return "/lib/ld-linux-armhf.so.3";
209 return "/lib/ld-linux.so.3";
215 /* this is a good place to start adding big-endian support*/
219 if (!cur_text_section
)
220 tcc_error("compiler error! This happens f.ex. if the compiler\n"
221 "can't evaluate constant expressions outside of a function.");
222 if (ind1
> cur_text_section
->data_allocated
)
223 section_realloc(cur_text_section
, ind1
);
224 cur_text_section
->data
[ind
++] = i
&255;
226 cur_text_section
->data
[ind
++] = i
&255;
228 cur_text_section
->data
[ind
++] = i
&255;
230 cur_text_section
->data
[ind
++] = i
;
233 static uint32_t stuff_const(uint32_t op
, uint32_t c
)
236 uint32_t nc
= 0, negop
= 0;
246 case 0x1A00000: //mov
247 case 0x1E00000: //mvn
254 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1E00000;
258 return (op
&0xF010F000)|((op
>>16)&0xF)|0x1A00000;
259 case 0x1C00000: //bic
264 case 0x1800000: //orr
266 return (op
&0xFFF0FFFF)|0x1E00000;
272 if(c
<256) /* catch undefined <<32 */
275 m
=(0xff>>i
)|(0xff<<(32-i
));
277 return op
|(i
<<7)|(c
<<i
)|(c
>>(32-i
));
287 void stuff_const_harder(uint32_t op
, uint32_t v
) {
293 uint32_t a
[16], nv
, no
, o2
, n2
;
296 o2
=(op
&0xfff0ffff)|((op
&0xf000)<<4);;
298 a
[i
]=(a
[i
-1]>>2)|(a
[i
-1]<<30);
300 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
301 if((v
&(a
[i
]|a
[j
]))==v
) {
302 o(stuff_const(op
,v
&a
[i
]));
303 o(stuff_const(o2
,v
&a
[j
]));
310 for(j
=i
<4?i
+12:15;j
>=i
+4;j
--)
311 if((nv
&(a
[i
]|a
[j
]))==nv
) {
312 o(stuff_const(no
,nv
&a
[i
]));
313 o(stuff_const(n2
,nv
&a
[j
]));
318 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
319 if((v
&(a
[i
]|a
[j
]|a
[k
]))==v
) {
320 o(stuff_const(op
,v
&a
[i
]));
321 o(stuff_const(o2
,v
&a
[j
]));
322 o(stuff_const(o2
,v
&a
[k
]));
329 for(k
=i
<4?i
+12:15;k
>=j
+4;k
--)
330 if((nv
&(a
[i
]|a
[j
]|a
[k
]))==nv
) {
331 o(stuff_const(no
,nv
&a
[i
]));
332 o(stuff_const(n2
,nv
&a
[j
]));
333 o(stuff_const(n2
,nv
&a
[k
]));
336 o(stuff_const(op
,v
&a
[0]));
337 o(stuff_const(o2
,v
&a
[4]));
338 o(stuff_const(o2
,v
&a
[8]));
339 o(stuff_const(o2
,v
&a
[12]));
343 ST_FUNC
uint32_t encbranch(int pos
, int addr
, int fail
)
347 if(addr
>=0x1000000 || addr
<-0x1000000) {
349 tcc_error("FIXME: function bigger than 32MB");
352 return 0x0A000000|(addr
&0xffffff);
355 int decbranch(int pos
)
358 x
=*(uint32_t *)(cur_text_section
->data
+ pos
);
365 /* output a symbol and patch all calls to it */
366 void gsym_addr(int t
, int a
)
371 x
=(uint32_t *)(cur_text_section
->data
+ t
);
374 *x
=0xE1A00000; // nop
377 *x
|= encbranch(lt
,a
,1);
388 static uint32_t vfpr(int r
)
390 if(r
<TREG_F0
|| r
>TREG_F7
)
391 tcc_error("compiler error! register %i is no vfp register",r
);
395 static uint32_t fpr(int r
)
397 if(r
<TREG_F0
|| r
>TREG_F3
)
398 tcc_error("compiler error! register %i is no fpa register",r
);
403 static uint32_t intr(int r
)
407 if(r
>= TREG_R0
&& r
<= TREG_R3
)
409 if (r
>= TREG_SP
&& r
<= TREG_LR
)
410 return r
+ (13 - TREG_SP
);
411 tcc_error("compiler error! register %i is no int register",r
);
414 static void calcaddr(uint32_t *base
, int *off
, int *sgn
, int maxoff
, unsigned shift
)
416 if(*off
>maxoff
|| *off
&((1<<shift
)-1)) {
423 y
=stuff_const(x
,*off
&~maxoff
);
429 y
=stuff_const(x
,(*off
+maxoff
)&~maxoff
);
433 *off
=((*off
+maxoff
)&~maxoff
)-*off
;
436 stuff_const_harder(x
,*off
&~maxoff
);
441 static uint32_t mapcc(int cc
)
446 return 0x30000000; /* CC/LO */
448 return 0x20000000; /* CS/HS */
450 return 0x00000000; /* EQ */
452 return 0x10000000; /* NE */
454 return 0x90000000; /* LS */
456 return 0x80000000; /* HI */
458 return 0x40000000; /* MI */
460 return 0x50000000; /* PL */
462 return 0xB0000000; /* LT */
464 return 0xA0000000; /* GE */
466 return 0xD0000000; /* LE */
468 return 0xC0000000; /* GT */
470 tcc_error("unexpected condition code");
471 return 0xE0000000; /* AL */
474 static int negcc(int cc
)
503 tcc_error("unexpected condition code");
507 /* load 'r' from value 'sv' */
508 void load(int r
, SValue
*sv
)
510 int v
, ft
, fc
, fr
, sign
;
527 uint32_t base
= 0xB; // fp
530 v1
.r
= VT_LOCAL
| VT_LVAL
;
536 } else if(v
== VT_CONST
) {
545 } else if(v
< VT_CONST
) {
552 calcaddr(&base
,&fc
,&sign
,1020,2);
554 op
=0xED100A00; /* flds */
557 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
558 op
|=0x100; /* flds -> fldd */
559 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
564 #if LDOUBLE_SIZE == 8
565 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
568 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
570 else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
573 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
575 } else if((ft
& (VT_BTYPE
|VT_UNSIGNED
)) == VT_BYTE
576 || (ft
& VT_BTYPE
) == VT_SHORT
) {
577 calcaddr(&base
,&fc
,&sign
,255,0);
579 if ((ft
& VT_BTYPE
) == VT_SHORT
)
581 if ((ft
& VT_UNSIGNED
) == 0)
585 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
587 calcaddr(&base
,&fc
,&sign
,4095,0);
591 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
593 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
599 op
=stuff_const(0xE3A00000|(intr(r
)<<12),sv
->c
.i
);
600 if (fr
& VT_SYM
|| !op
) {
601 o(0xE59F0000|(intr(r
)<<12));
604 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
609 } else if (v
== VT_LOCAL
) {
610 op
=stuff_const(0xE28B0000|(intr(r
)<<12),sv
->c
.i
);
611 if (fr
& VT_SYM
|| !op
) {
612 o(0xE59F0000|(intr(r
)<<12));
614 if(fr
& VT_SYM
) // needed ?
615 greloc(cur_text_section
, sv
->sym
, ind
, R_ARM_ABS32
);
617 o(0xE08B0000|(intr(r
)<<12)|intr(r
));
621 } else if(v
== VT_CMP
) {
622 o(mapcc(sv
->c
.i
)|0x3A00001|(intr(r
)<<12));
623 o(mapcc(negcc(sv
->c
.i
))|0x3A00000|(intr(r
)<<12));
625 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
628 o(0xE3A00000|(intr(r
)<<12)|t
);
631 o(0xE3A00000|(intr(r
)<<12)|(t
^1));
633 } else if (v
< VT_CONST
) {
636 o(0xEEB00A40|(vfpr(r
)<<12)|vfpr(v
)|T2CPR(ft
)); /* fcpyX */
638 o(0xEE008180|(fpr(r
)<<12)|fpr(v
));
641 o(0xE1A00000|(intr(r
)<<12)|intr(v
));
645 tcc_error("load unimplemented!");
648 /* store register 'r' in lvalue 'v' */
649 void store(int r
, SValue
*sv
)
652 int v
, ft
, fc
, fr
, sign
;
667 if (fr
& VT_LVAL
|| fr
== VT_LOCAL
) {
668 uint32_t base
= 0xb; /* fp */
673 } else if(v
== VT_CONST
) {
685 calcaddr(&base
,&fc
,&sign
,1020,2);
687 op
=0xED000A00; /* fsts */
690 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
691 op
|=0x100; /* fsts -> fstd */
692 o(op
|(vfpr(r
)<<12)|(fc
>>2)|(base
<<16));
697 #if LDOUBLE_SIZE == 8
698 if ((ft
& VT_BTYPE
) != VT_FLOAT
)
701 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
703 if ((ft
& VT_BTYPE
) == VT_LDOUBLE
)
706 o(op
|(fpr(r
)<<12)|(fc
>>2)|(base
<<16));
709 } else if((ft
& VT_BTYPE
) == VT_SHORT
) {
710 calcaddr(&base
,&fc
,&sign
,255,0);
714 o(op
|(intr(r
)<<12)|(base
<<16)|((fc
&0xf0)<<4)|(fc
&0xf));
716 calcaddr(&base
,&fc
,&sign
,4095,0);
720 if ((ft
& VT_BTYPE
) == VT_BYTE
|| (ft
& VT_BTYPE
) == VT_BOOL
)
722 o(op
|(intr(r
)<<12)|fc
|(base
<<16));
727 tcc_error("store unimplemented");
730 static void gadd_sp(int val
)
732 stuff_const_harder(0xE28DD000,val
);
735 /* 'is_jmp' is '1' if it is a jump */
736 static void gcall_or_jmp(int is_jmp
)
739 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
742 x
=encbranch(ind
,ind
+vtop
->c
.i
,0);
744 if (vtop
->r
& VT_SYM
) {
745 /* relocation case */
746 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_PC24
);
748 put_elf_reloc(symtab_section
, cur_text_section
, ind
, R_ARM_PC24
, 0);
749 o(x
|(is_jmp
?0xE0000000:0xE1000000));
752 o(0xE28FE004); // add lr,pc,#4
753 o(0xE51FF004); // ldr pc,[pc,#-4]
754 if (vtop
->r
& VT_SYM
)
755 greloc(cur_text_section
, vtop
->sym
, ind
, R_ARM_ABS32
);
759 /* otherwise, indirect call */
762 o(0xE1A0E00F); // mov lr,pc
763 o(0xE1A0F000|intr(r
)); // mov pc,r
767 static int unalias_ldbl(int btype
)
769 #if LDOUBLE_SIZE == 8
770 if (btype
== VT_LDOUBLE
)
776 /* Return whether a structure is an homogeneous float aggregate or not.
777 The answer is true if all the elements of the structure are of the same
778 primitive float type and there is less than 4 elements.
780 type: the type corresponding to the structure to be tested */
781 static int is_hgen_float_aggr(CType
*type
)
783 if ((type
->t
& VT_BTYPE
) == VT_STRUCT
) {
785 int btype
, nb_fields
= 0;
787 ref
= type
->ref
->next
;
788 btype
= unalias_ldbl(ref
->type
.t
& VT_BTYPE
);
789 if (btype
== VT_FLOAT
|| btype
== VT_DOUBLE
) {
790 for(; ref
&& btype
== unalias_ldbl(ref
->type
.t
& VT_BTYPE
); ref
= ref
->next
, nb_fields
++);
791 return !ref
&& nb_fields
<= 4;
798 signed char avail
[3]; /* 3 holes max with only float and double alignments */
799 int first_hole
; /* first available hole */
800 int last_hole
; /* last available hole (none if equal to first_hole) */
801 int first_free_reg
; /* next free register in the sequence, hole excluded */
804 #define AVAIL_REGS_INITIALIZER (struct avail_regs) { { 0, 0, 0}, 0, 0, 0 }
806 /* Find suitable registers for a VFP Co-Processor Register Candidate (VFP CPRC
807 param) according to the rules described in the procedure call standard for
808 the ARM architecture (AAPCS). If found, the registers are assigned to this
809 VFP CPRC parameter. Registers are allocated in sequence unless a hole exists
810 and the parameter is a single float.
812 avregs: opaque structure to keep track of available VFP co-processor regs
813 align: alignment contraints for the param, as returned by type_size()
814 size: size of the parameter, as returned by type_size() */
815 int assign_vfpreg(struct avail_regs
*avregs
, int align
, int size
)
819 if (avregs
->first_free_reg
== -1)
821 if (align
>> 3) { /* double alignment */
822 first_reg
= avregs
->first_free_reg
;
823 /* alignment contraint not respected so use next reg and record hole */
825 avregs
->avail
[avregs
->last_hole
++] = first_reg
++;
826 } else { /* no special alignment (float or array of float) */
827 /* if single float and a hole is available, assign the param to it */
828 if (size
== 4 && avregs
->first_hole
!= avregs
->last_hole
)
829 return avregs
->avail
[avregs
->first_hole
++];
831 first_reg
= avregs
->first_free_reg
;
833 if (first_reg
+ size
/ 4 <= 16) {
834 avregs
->first_free_reg
= first_reg
+ size
/ 4;
837 avregs
->first_free_reg
= -1;
841 /* Returns whether all params need to be passed in core registers or not.
842 This is the case for function part of the runtime ABI. */
843 int floats_in_core_regs(SValue
*sval
)
848 switch (sval
->sym
->v
) {
849 case TOK___floatundisf
:
850 case TOK___floatundidf
:
851 case TOK___fixunssfdi
:
852 case TOK___fixunsdfdi
:
854 case TOK___fixunsxfdi
:
856 case TOK___floatdisf
:
857 case TOK___floatdidf
:
867 /* Return the number of registers needed to return the struct, or 0 if
868 returning via struct pointer. */
869 ST_FUNC
int gfunc_sret(CType
*vt
, int variadic
, CType
*ret
, int *ret_align
, int *regsize
) {
872 size
= type_size(vt
, &align
);
873 if (float_abi
== ARM_HARD_FLOAT
&& !variadic
&&
874 (is_float(vt
->t
) || is_hgen_float_aggr(vt
))) {
879 return (size
+ 7) >> 3;
880 } else if (size
<= 4) {
893 /* Parameters are classified according to how they are copied to their final
894 destination for the function call. Because the copying is performed class
895 after class according to the order in the union below, it is important that
896 some constraints about the order of the members of this union are respected:
897 - CORE_STRUCT_CLASS must come after STACK_CLASS;
898 - CORE_CLASS must come after STACK_CLASS, CORE_STRUCT_CLASS and
900 - VFP_STRUCT_CLASS must come after VFP_CLASS.
901 See the comment for the main loop in copy_params() for the reason. */
912 int start
; /* first reg or addr used depending on the class */
913 int end
; /* last reg used or next free addr depending on the class */
914 SValue
*sval
; /* pointer to SValue on the value stack */
915 struct param_plan
*prev
; /* previous element in this class */
919 struct param_plan
*pplans
; /* array of all the param plans */
920 struct param_plan
*clsplans
[NB_CLASSES
]; /* per class lists of param plans */
923 #define add_param_plan(plan,pplan,class) \
925 pplan.prev = plan->clsplans[class]; \
926 plan->pplans[plan ## _nb] = pplan; \
927 plan->clsplans[class] = &plan->pplans[plan ## _nb++]; \
930 /* Assign parameters to registers and stack with alignment according to the
931 rules in the procedure call standard for the ARM architecture (AAPCS).
932 The overall assignment is recorded in an array of per parameter structures
933 called parameter plans. The parameter plans are also further organized in a
934 number of linked lists, one per class of parameter (see the comment for the
935 definition of union reg_class).
937 nb_args: number of parameters of the function for which a call is generated
938 float_abi: float ABI in use for this function call
939 plan: the structure where the overall assignment is recorded
940 todo: a bitmap that record which core registers hold a parameter
942 Returns the amount of stack space needed for parameter passing
944 Note: this function allocated an array in plan->pplans with tcc_malloc. It
945 is the responsibility of the caller to free this array once used (ie not
946 before copy_params). */
947 static int assign_regs(int nb_args
, int float_abi
, struct plan
*plan
, int *todo
)
950 int ncrn
/* next core register number */, nsaa
/* next stacked argument address*/;
952 struct param_plan pplan
;
953 struct avail_regs avregs
= AVAIL_REGS_INITIALIZER
;
957 plan
->pplans
= tcc_malloc(nb_args
* sizeof(*plan
->pplans
));
958 memset(plan
->clsplans
, 0, sizeof(plan
->clsplans
));
959 for(i
= nb_args
; i
-- ;) {
960 int j
, start_vfpreg
= 0;
961 CType type
= vtop
[-i
].type
;
963 size
= type_size(&type
, &align
);
964 size
= (size
+ 3) & ~3;
965 align
= (align
+ 3) & ~3;
966 switch(vtop
[-i
].type
.t
& VT_BTYPE
) {
971 if (float_abi
== ARM_HARD_FLOAT
) {
972 int is_hfa
= 0; /* Homogeneous float aggregate */
974 if (is_float(vtop
[-i
].type
.t
)
975 || (is_hfa
= is_hgen_float_aggr(&vtop
[-i
].type
))) {
978 start_vfpreg
= assign_vfpreg(&avregs
, align
, size
);
979 end_vfpreg
= start_vfpreg
+ ((size
- 1) >> 2);
980 if (start_vfpreg
>= 0) {
981 pplan
= (struct param_plan
) {start_vfpreg
, end_vfpreg
, &vtop
[-i
]};
983 add_param_plan(plan
, pplan
, VFP_STRUCT_CLASS
);
985 add_param_plan(plan
, pplan
, VFP_CLASS
);
991 ncrn
= (ncrn
+ (align
-1)/4) & ~((align
/4) - 1);
992 if (ncrn
+ size
/4 <= 4 || (ncrn
< 4 && start_vfpreg
!= -1)) {
993 /* The parameter is allocated both in core register and on stack. As
994 * such, it can be of either class: it would either be the last of
995 * CORE_STRUCT_CLASS or the first of STACK_CLASS. */
996 for (j
= ncrn
; j
< 4 && j
< ncrn
+ size
/ 4; j
++)
998 pplan
= (struct param_plan
) {ncrn
, j
, &vtop
[-i
]};
999 add_param_plan(plan
, pplan
, CORE_STRUCT_CLASS
);
1002 nsaa
= (ncrn
- 4) * 4;
1010 int is_long
= (vtop
[-i
].type
.t
& VT_BTYPE
) == VT_LLONG
;
1013 ncrn
= (ncrn
+ 1) & -2;
1017 pplan
= (struct param_plan
) {ncrn
, ncrn
, &vtop
[-i
]};
1021 add_param_plan(plan
, pplan
, CORE_CLASS
);
1025 nsaa
= (nsaa
+ (align
- 1)) & ~(align
- 1);
1026 pplan
= (struct param_plan
) {nsaa
, nsaa
+ size
, &vtop
[-i
]};
1027 add_param_plan(plan
, pplan
, STACK_CLASS
);
1028 nsaa
+= size
; /* size already rounded up before */
1033 #undef add_param_plan
1035 /* Copy parameters to their final destination (core reg, VFP reg or stack) for
1038 nb_args: number of parameters the function take
1039 plan: the overall assignment plan for parameters
1040 todo: a bitmap indicating what core reg will hold a parameter
1042 Returns the number of SValue added by this function on the value stack */
1043 static int copy_params(int nb_args
, struct plan
*plan
, int todo
)
1045 int size
, align
, r
, i
, nb_extra_sval
= 0;
1046 struct param_plan
*pplan
;
1049 /* Several constraints require parameters to be copied in a specific order:
1050 - structures are copied to the stack before being loaded in a reg;
1051 - floats loaded to an odd numbered VFP reg are first copied to the
1052 preceding even numbered VFP reg and then moved to the next VFP reg.
1054 It is thus important that:
1055 - structures assigned to core regs must be copied after parameters
1056 assigned to the stack but before structures assigned to VFP regs because
1057 a structure can lie partly in core registers and partly on the stack;
1058 - parameters assigned to the stack and all structures be copied before
1059 parameters assigned to a core reg since copying a parameter to the stack
1060 require using a core reg;
1061 - parameters assigned to VFP regs be copied before structures assigned to
1062 VFP regs as the copy might use an even numbered VFP reg that already
1063 holds part of a structure. */
1065 for(i
= 0; i
< NB_CLASSES
; i
++) {
1066 for(pplan
= plan
->clsplans
[i
]; pplan
; pplan
= pplan
->prev
) {
1069 && (i
!= CORE_CLASS
|| pplan
->sval
->r
< VT_CONST
))
1072 vpushv(pplan
->sval
);
1073 pplan
->sval
->r
= pplan
->sval
->r2
= VT_CONST
; /* disable entry */
1076 case CORE_STRUCT_CLASS
:
1077 case VFP_STRUCT_CLASS
:
1078 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_STRUCT
) {
1080 size
= type_size(&pplan
->sval
->type
, &align
);
1081 /* align to stack align size */
1082 size
= (size
+ 3) & ~3;
1083 if (i
== STACK_CLASS
&& pplan
->prev
)
1084 padding
= pplan
->start
- pplan
->prev
->end
;
1085 size
+= padding
; /* Add padding if any */
1086 /* allocate the necessary size on stack */
1088 /* generate structure store */
1089 r
= get_reg(RC_INT
);
1090 o(0xE28D0000|(intr(r
)<<12)|padding
); /* add r, sp, padding */
1091 vset(&vtop
->type
, r
| VT_LVAL
, 0);
1093 vstore(); /* memcpy to current sp + potential padding */
1095 /* Homogeneous float aggregate are loaded to VFP registers
1096 immediately since there is no way of loading data in multiple
1097 non consecutive VFP registers as what is done for other
1098 structures (see the use of todo). */
1099 if (i
== VFP_STRUCT_CLASS
) {
1100 int first
= pplan
->start
, nb
= pplan
->end
- first
+ 1;
1101 /* vpop.32 {pplan->start, ..., pplan->end} */
1102 o(0xECBD0A00|(first
&1)<<22|(first
>>1)<<12|nb
);
1103 /* No need to write the register used to a SValue since VFP regs
1104 cannot be used for gcall_or_jmp */
1107 if (is_float(pplan
->sval
->type
.t
)) {
1109 r
= vfpr(gv(RC_FLOAT
)) << 12;
1110 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1114 r
|= 0x101; /* vpush.32 -> vpush.64 */
1116 o(0xED2D0A01 + r
); /* vpush */
1118 r
= fpr(gv(RC_FLOAT
)) << 12;
1119 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
1121 else if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1124 size
= LDOUBLE_SIZE
;
1131 o(0xED2D0100|r
|(size
>>2)); /* some kind of vpush for FPA */
1134 /* simple type (currently always same size) */
1135 /* XXX: implicit cast ? */
1137 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1141 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1145 o(0xE52D0004|(intr(r
)<<12)); /* push r */
1147 if (i
== STACK_CLASS
&& pplan
->prev
)
1148 gadd_sp(pplan
->prev
->end
- pplan
->start
); /* Add padding if any */
1153 gv(regmask(TREG_F0
+ (pplan
->start
>> 1)));
1154 if (pplan
->start
& 1) { /* Must be in upper part of double register */
1155 o(0xEEF00A40|((pplan
->start
>>1)<<12)|(pplan
->start
>>1)); /* vmov.f32 s(n+1), sn */
1156 vtop
->r
= VT_CONST
; /* avoid being saved on stack by gv for next float */
1161 if ((pplan
->sval
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
1163 gv(regmask(pplan
->end
));
1164 pplan
->sval
->r2
= vtop
->r
;
1167 gv(regmask(pplan
->start
));
1168 /* Mark register as used so that gcall_or_jmp use another one
1169 (regs >=4 are free as never used to pass parameters) */
1170 pplan
->sval
->r
= vtop
->r
;
1177 /* second pass to restore registers that were saved on stack by accident.
1178 Maybe redundant after the "lvalue_save" patch in tccgen.c:gv() */
1182 /* Manually free remaining registers since next parameters are loaded
1183 * manually, without the help of gv(int). */
1187 o(0xE8BD0000|todo
); /* pop {todo} */
1188 for(pplan
= plan
->clsplans
[CORE_STRUCT_CLASS
]; pplan
; pplan
= pplan
->prev
) {
1190 pplan
->sval
->r
= pplan
->start
;
1191 /* An SValue can only pin 2 registers at best (r and r2) but a structure
1192 can occupy more than 2 registers. Thus, we need to push on the value
1193 stack some fake parameter to have on SValue for each registers used
1194 by a structure (r2 is not used). */
1195 for (r
= pplan
->start
+ 1; r
<= pplan
->end
; r
++) {
1196 if (todo
& (1 << r
)) {
1204 return nb_extra_sval
;
1207 /* Generate function call. The function address is pushed first, then
1208 all the parameters in call order. This functions pops all the
1209 parameters and the function address. */
1210 void gfunc_call(int nb_args
)
1213 int def_float_abi
= float_abi
;
1220 if (float_abi
== ARM_HARD_FLOAT
) {
1221 variadic
= (vtop
[-nb_args
].type
.ref
->c
== FUNC_ELLIPSIS
);
1222 if (variadic
|| floats_in_core_regs(&vtop
[-nb_args
]))
1223 float_abi
= ARM_SOFTFP_FLOAT
;
1226 /* cannot let cpu flags if other instruction are generated. Also avoid leaving
1227 VT_JMP anywhere except on the top of the stack because it would complicate
1228 the code generator. */
1229 r
= vtop
->r
& VT_VALMASK
;
1230 if (r
== VT_CMP
|| (r
& ~1) == VT_JMP
)
1233 args_size
= assign_regs(nb_args
, float_abi
, &plan
, &todo
);
1236 if (args_size
& 7) { /* Stack must be 8 byte aligned at fct call for EABI */
1237 args_size
= (args_size
+ 7) & ~7;
1238 o(0xE24DD004); /* sub sp, sp, #4 */
1242 nb_args
+= copy_params(nb_args
, &plan
, todo
);
1243 tcc_free(plan
.pplans
);
1245 /* Move fct SValue on top as required by gcall_or_jmp */
1249 gadd_sp(args_size
); /* pop all parameters passed on the stack */
1250 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1251 if(float_abi
== ARM_SOFTFP_FLOAT
&& is_float(vtop
->type
.ref
->type
.t
)) {
1252 if((vtop
->type
.ref
->type
.t
& VT_BTYPE
) == VT_FLOAT
) {
1253 o(0xEE000A10); /*vmov s0, r0 */
1255 o(0xEE000B10); /* vmov.32 d0[0], r0 */
1256 o(0xEE201B10); /* vmov.32 d0[1], r1 */
1260 vtop
-= nb_args
+ 1; /* Pop all params and fct address from value stack */
1261 leaffunc
= 0; /* we are calling a function, so we aren't in a leaf function */
1262 float_abi
= def_float_abi
;
1265 /* generate function prolog of type 't' */
1266 void gfunc_prolog(CType
*func_type
)
1269 int n
, nf
, size
, align
, rs
, struct_ret
= 0;
1270 int addr
, pn
, sn
; /* pn=core, sn=stack */
1274 struct avail_regs avregs
= AVAIL_REGS_INITIALIZER
;
1277 sym
= func_type
->ref
;
1278 func_vt
= sym
->type
;
1279 func_var
= (func_type
->ref
->c
== FUNC_ELLIPSIS
);
1282 if ((func_vt
.t
& VT_BTYPE
) == VT_STRUCT
&&
1283 !gfunc_sret(&func_vt
, func_var
, &ret_type
, &align
, &rs
))
1287 func_vc
= 12; /* Offset from fp of the place to store the result */
1289 for(sym2
= sym
->next
; sym2
&& (n
< 4 || nf
< 16); sym2
= sym2
->next
) {
1290 size
= type_size(&sym2
->type
, &align
);
1292 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&&
1293 (is_float(sym2
->type
.t
) || is_hgen_float_aggr(&sym2
->type
))) {
1294 int tmpnf
= assign_vfpreg(&avregs
, align
, size
);
1295 tmpnf
+= (size
+ 3) / 4;
1296 nf
= (tmpnf
> nf
) ? tmpnf
: nf
;
1300 n
+= (size
+ 3) / 4;
1302 o(0xE1A0C00D); /* mov ip,sp */
1311 o(0xE92D0000|((1<<n
)-1)); /* save r0-r4 on stack if needed */
1316 nf
=(nf
+1)&-2; /* nf => HARDFLOAT => EABI */
1317 o(0xED2D0A00|nf
); /* save s0-s15 on stack if needed */
1319 o(0xE92D5800); /* save fp, ip, lr */
1320 o(0xE1A0B00D); /* mov fp, sp */
1321 func_sub_sp_offset
= ind
;
1322 o(0xE1A00000); /* nop, leave space for stack adjustment in epilog */
1325 if (float_abi
== ARM_HARD_FLOAT
) {
1327 avregs
= AVAIL_REGS_INITIALIZER
;
1330 pn
= struct_ret
, sn
= 0;
1331 while ((sym
= sym
->next
)) {
1334 size
= type_size(type
, &align
);
1335 size
= (size
+ 3) >> 2;
1336 align
= (align
+ 3) & ~3;
1338 if (float_abi
== ARM_HARD_FLOAT
&& !func_var
&& (is_float(sym
->type
.t
)
1339 || is_hgen_float_aggr(&sym
->type
))) {
1340 int fpn
= assign_vfpreg(&avregs
, align
, size
<< 2);
1349 pn
= (pn
+ (align
-1)/4) & -(align
/4);
1351 addr
= (nf
+ pn
) * 4;
1358 sn
= (sn
+ (align
-1)/4) & -(align
/4);
1360 addr
= (n
+ nf
+ sn
) * 4;
1363 sym_push(sym
->v
& ~SYM_FIELD
, type
, VT_LOCAL
| lvalue_type(type
->t
),
1371 /* generate function epilog */
1372 void gfunc_epilog(void)
1376 /* Copy float return value to core register if base standard is used and
1377 float computation is made with VFP */
1378 #if defined(TCC_ARM_EABI) && defined(TCC_ARM_VFP)
1379 if ((float_abi
== ARM_SOFTFP_FLOAT
|| func_var
) && is_float(func_vt
.t
)) {
1380 if((func_vt
.t
& VT_BTYPE
) == VT_FLOAT
)
1381 o(0xEE100A10); /* fmrs r0, s0 */
1383 o(0xEE100B10); /* fmrdl r0, d0 */
1384 o(0xEE301B10); /* fmrdh r1, d0 */
1388 o(0xE89BA800); /* restore fp, sp, pc */
1389 diff
= (-loc
+ 3) & -4;
1392 diff
= ((diff
+ 11) & -8) - 4;
1395 x
=stuff_const(0xE24BD000, diff
); /* sub sp,fp,# */
1397 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = x
;
1401 o(0xE59FC004); /* ldr ip,[pc+4] */
1402 o(0xE04BD00C); /* sub sp,fp,ip */
1403 o(0xE1A0F00E); /* mov pc,lr */
1405 *(uint32_t *)(cur_text_section
->data
+ func_sub_sp_offset
) = 0xE1000000|encbranch(func_sub_sp_offset
,addr
,1);
1410 /* generate a jump to a label */
1415 o(0xE0000000|encbranch(r
,t
,1));
1419 /* generate a jump to a fixed address */
1420 void gjmp_addr(int a
)
1425 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1426 int gtst(int inv
, int t
)
1430 v
= vtop
->r
& VT_VALMASK
;
1433 op
=mapcc(inv
?negcc(vtop
->c
.i
):vtop
->c
.i
);
1434 op
|=encbranch(r
,t
,1);
1437 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
1438 if ((v
& 1) == inv
) {
1447 p
= decbranch(lp
=p
);
1449 x
= (uint32_t *)(cur_text_section
->data
+ lp
);
1451 *x
|= encbranch(lp
,t
,1);
1464 /* generate an integer binary operation */
1465 void gen_opi(int op
)
1468 uint32_t opc
= 0, r
, fr
;
1469 unsigned short retreg
= REG_IRET
;
1477 case TOK_ADDC1
: /* add with carry generation */
1485 case TOK_SUBC1
: /* sub with carry generation */
1489 case TOK_ADDC2
: /* add with carry use */
1493 case TOK_SUBC2
: /* sub with carry use */
1510 gv2(RC_INT
, RC_INT
);
1514 o(0xE0000090|(intr(r
)<<16)|(intr(r
)<<8)|intr(fr
));
1539 func
=TOK___aeabi_idivmod
;
1548 func
=TOK___aeabi_uidivmod
;
1556 gv2(RC_INT
, RC_INT
);
1557 r
=intr(vtop
[-1].r2
=get_reg(RC_INT
));
1559 vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(c
));
1561 o(0xE0800090|(r
<<16)|(intr(vtop
->r
)<<12)|(intr(c
)<<8)|intr(vtop
[1].r
));
1570 if((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1571 if(opc
== 4 || opc
== 5 || opc
== 0xc) {
1573 opc
|=2; // sub -> rsb
1576 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1577 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1582 opc
=0xE0000000|(opc
<<20)|(c
<<16);
1583 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1585 x
=stuff_const(opc
|0x2000000,vtop
->c
.i
);
1587 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1592 fr
=intr(gv(RC_INT
));
1593 r
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1597 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
1603 opc
=0xE1A00000|(opc
<<5);
1604 if ((vtop
->r
& VT_VALMASK
) == VT_CMP
||
1605 (vtop
->r
& (VT_VALMASK
& ~1)) == VT_JMP
)
1611 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
1612 fr
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,regmask(vtop
[-1].r
)));
1613 c
= vtop
->c
.i
& 0x1f;
1614 o(opc
|(c
<<7)|(fr
<<12));
1616 fr
=intr(gv(RC_INT
));
1617 c
=intr(vtop
[-1].r
=get_reg_ex(RC_INT
,two2mask(vtop
->r
,vtop
[-1].r
)));
1618 o(opc
|(c
<<12)|(fr
<<8)|0x10);
1623 vpush_global_sym(&func_old_type
, func
);
1630 tcc_error("gen_opi %i unimplemented!",op
);
1635 static int is_zero(int i
)
1637 if((vtop
[i
].r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1639 if (vtop
[i
].type
.t
== VT_FLOAT
)
1640 return (vtop
[i
].c
.f
== 0.f
);
1641 else if (vtop
[i
].type
.t
== VT_DOUBLE
)
1642 return (vtop
[i
].c
.d
== 0.0);
1643 return (vtop
[i
].c
.ld
== 0.l
);
1646 /* generate a floating point operation 'v = t1 op t2' instruction. The
1647 * two operands are guaranted to have the same floating point type */
1648 void gen_opf(int op
)
1652 x
=0xEE000A00|T2CPR(vtop
->type
.t
);
1670 x
|=0x810000; /* fsubX -> fnegX */
1683 if(op
< TOK_ULT
|| op
> TOK_GT
) {
1684 tcc_error("unknown fp op %x!",op
);
1690 case TOK_LT
: op
=TOK_GT
; break;
1691 case TOK_GE
: op
=TOK_ULE
; break;
1692 case TOK_LE
: op
=TOK_GE
; break;
1693 case TOK_GT
: op
=TOK_ULT
; break;
1696 x
|=0xB40040; /* fcmpX */
1697 if(op
!=TOK_EQ
&& op
!=TOK_NE
)
1698 x
|=0x80; /* fcmpX -> fcmpeX */
1701 o(x
|0x10000|(vfpr(gv(RC_FLOAT
))<<12)); /* fcmp(e)X -> fcmp(e)zX */
1703 x
|=vfpr(gv(RC_FLOAT
));
1705 o(x
|(vfpr(gv(RC_FLOAT
))<<12));
1708 o(0xEEF1FA10); /* fmstat */
1711 case TOK_LE
: op
=TOK_ULE
; break;
1712 case TOK_LT
: op
=TOK_ULT
; break;
1713 case TOK_UGE
: op
=TOK_GE
; break;
1714 case TOK_UGT
: op
=TOK_GT
; break;
1731 vtop
->r
=get_reg_ex(RC_FLOAT
,r
);
1734 o(x
|(vfpr(vtop
->r
)<<12));
1738 static uint32_t is_fconst()
1742 if((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) != VT_CONST
)
1744 if (vtop
->type
.t
== VT_FLOAT
)
1746 else if (vtop
->type
.t
== VT_DOUBLE
)
1776 /* generate a floating point operation 'v = t1 op t2' instruction. The
1777 two operands are guaranted to have the same floating point type */
1778 void gen_opf(int op
)
1780 uint32_t x
, r
, r2
, c1
, c2
;
1781 //fputs("gen_opf\n",stderr);
1787 #if LDOUBLE_SIZE == 8
1788 if ((vtop
->type
.t
& VT_BTYPE
) != VT_FLOAT
)
1791 if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
1793 else if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
)
1804 r
=fpr(gv(RC_FLOAT
));
1811 r2
=fpr(gv(RC_FLOAT
));
1820 r
=fpr(gv(RC_FLOAT
));
1822 } else if(c1
&& c1
<=0xf) {
1825 r
=fpr(gv(RC_FLOAT
));
1830 r
=fpr(gv(RC_FLOAT
));
1832 r2
=fpr(gv(RC_FLOAT
));
1841 r
=fpr(gv(RC_FLOAT
));
1846 r2
=fpr(gv(RC_FLOAT
));
1854 r
=fpr(gv(RC_FLOAT
));
1856 } else if(c1
&& c1
<=0xf) {
1859 r
=fpr(gv(RC_FLOAT
));
1864 r
=fpr(gv(RC_FLOAT
));
1866 r2
=fpr(gv(RC_FLOAT
));
1870 if(op
>= TOK_ULT
&& op
<= TOK_GT
) {
1871 x
|=0xd0f110; // cmfe
1872 /* bug (intention?) in Linux FPU emulator
1873 doesn't set carry if equal */
1879 tcc_error("unsigned comparison on floats?");
1885 op
=TOK_ULE
; /* correct in unordered case only if AC bit in FPSR set */
1889 x
&=~0x400000; // cmfe -> cmf
1911 r
=fpr(gv(RC_FLOAT
));
1918 r2
=fpr(gv(RC_FLOAT
));
1920 vtop
[-1].r
= VT_CMP
;
1923 tcc_error("unknown fp op %x!",op
);
1927 if(vtop
[-1].r
== VT_CMP
)
1933 vtop
[-1].r
=get_reg_ex(RC_FLOAT
,two2mask(vtop
[-1].r
,c1
));
1937 o(x
|(r
<<16)|(c1
<<12)|r2
);
1941 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1942 and 'long long' cases. */
1943 ST_FUNC
void gen_cvt_itof1(int t
)
1947 bt
=vtop
->type
.t
& VT_BTYPE
;
1948 if(bt
== VT_INT
|| bt
== VT_SHORT
|| bt
== VT_BYTE
) {
1954 r2
=vfpr(vtop
->r
=get_reg(RC_FLOAT
));
1955 o(0xEE000A10|(r
<<12)|(r2
<<16)); /* fmsr */
1957 if(!(vtop
->type
.t
& VT_UNSIGNED
))
1958 r2
|=0x80; /* fuitoX -> fsituX */
1959 o(0xEEB80A40|r2
|T2CPR(t
)); /* fYitoX*/
1961 r2
=fpr(vtop
->r
=get_reg(RC_FLOAT
));
1962 if((t
& VT_BTYPE
) != VT_FLOAT
)
1963 dsize
=0x80; /* flts -> fltd */
1964 o(0xEE000110|dsize
|(r2
<<16)|(r
<<12)); /* flts */
1965 if((vtop
->type
.t
& (VT_UNSIGNED
|VT_BTYPE
)) == (VT_UNSIGNED
|VT_INT
)) {
1967 o(0xE3500000|(r
<<12)); /* cmp */
1968 r
=fpr(get_reg(RC_FLOAT
));
1969 if(last_itod_magic
) {
1970 off
=ind
+8-last_itod_magic
;
1975 o(0xBD1F0100|(r
<<12)|off
); /* ldflts */
1977 o(0xEA000000); /* b */
1978 last_itod_magic
=ind
;
1979 o(0x4F800000); /* 4294967296.0f */
1981 o(0xBE000100|dsize
|(r2
<<16)|(r2
<<12)|r
); /* adflt */
1985 } else if(bt
== VT_LLONG
) {
1987 CType
*func_type
= 0;
1988 if((t
& VT_BTYPE
) == VT_FLOAT
) {
1989 func_type
= &func_float_type
;
1990 if(vtop
->type
.t
& VT_UNSIGNED
)
1991 func
=TOK___floatundisf
;
1993 func
=TOK___floatdisf
;
1994 #if LDOUBLE_SIZE != 8
1995 } else if((t
& VT_BTYPE
) == VT_LDOUBLE
) {
1996 func_type
= &func_ldouble_type
;
1997 if(vtop
->type
.t
& VT_UNSIGNED
)
1998 func
=TOK___floatundixf
;
2000 func
=TOK___floatdixf
;
2001 } else if((t
& VT_BTYPE
) == VT_DOUBLE
) {
2003 } else if((t
& VT_BTYPE
) == VT_DOUBLE
|| (t
& VT_BTYPE
) == VT_LDOUBLE
) {
2005 func_type
= &func_double_type
;
2006 if(vtop
->type
.t
& VT_UNSIGNED
)
2007 func
=TOK___floatundidf
;
2009 func
=TOK___floatdidf
;
2012 vpush_global_sym(func_type
, func
);
2020 tcc_error("unimplemented gen_cvt_itof %x!",vtop
->type
.t
);
2023 /* convert fp to int 't' type */
2024 void gen_cvt_ftoi(int t
)
2030 r2
=vtop
->type
.t
& VT_BTYPE
;
2033 r
=vfpr(gv(RC_FLOAT
));
2035 o(0xEEBC0AC0|(r
<<12)|r
|T2CPR(r2
)|u
); /* ftoXizY */
2036 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2037 o(0xEE100A10|(r
<<16)|(r2
<<12));
2042 func
=TOK___fixunssfsi
;
2043 #if LDOUBLE_SIZE != 8
2044 else if(r2
== VT_LDOUBLE
)
2045 func
=TOK___fixunsxfsi
;
2046 else if(r2
== VT_DOUBLE
)
2048 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2050 func
=TOK___fixunsdfsi
;
2052 r
=fpr(gv(RC_FLOAT
));
2053 r2
=intr(vtop
->r
=get_reg(RC_INT
));
2054 o(0xEE100170|(r2
<<12)|r
);
2058 } else if(t
== VT_LLONG
) { // unsigned handled in gen_cvt_ftoi1
2061 #if LDOUBLE_SIZE != 8
2062 else if(r2
== VT_LDOUBLE
)
2064 else if(r2
== VT_DOUBLE
)
2066 else if(r2
== VT_LDOUBLE
|| r2
== VT_DOUBLE
)
2071 vpush_global_sym(&func_old_type
, func
);
2076 vtop
->r2
= REG_LRET
;
2080 tcc_error("unimplemented gen_cvt_ftoi!");
2083 /* convert from one floating point type to another */
2084 void gen_cvt_ftof(int t
)
2087 if(((vtop
->type
.t
& VT_BTYPE
) == VT_FLOAT
) != ((t
& VT_BTYPE
) == VT_FLOAT
)) {
2088 uint32_t r
= vfpr(gv(RC_FLOAT
));
2089 o(0xEEB70AC0|(r
<<12)|r
|T2CPR(vtop
->type
.t
));
2092 /* all we have to do on i386 and FPA ARM is to put the float in a register */
2097 /* computed goto support */
2104 /* Save the stack pointer onto the stack and return the location of its address */
2105 ST_FUNC
void gen_vla_sp_save(int addr
) {
2108 v
.r
= VT_LOCAL
| VT_LVAL
;
2113 /* Restore the SP from a location on the stack */
2114 ST_FUNC
void gen_vla_sp_restore(int addr
) {
2117 v
.r
= VT_LOCAL
| VT_LVAL
;
2122 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2123 ST_FUNC
void gen_vla_alloc(CType
*type
, int align
) {
2124 int r
= intr(gv(RC_INT
));
2125 o(0xE04D0000|(r
<<12)|r
); /* sub r, sp, r */
2133 if (align
& (align
- 1))
2134 tcc_error("alignment is not a power of 2: %i", align
);
2135 o(stuff_const(0xE3C0D000|(r
<<16), align
- 1)); /* bic sp, r, #align-1 */
2139 /* end of ARM code generator */
2140 /*************************************************************/
2142 /*************************************************************/