2 * X86 code generator for TCC
4 * Copyright (c) 2001-2004 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* number of available registers */
24 /* a register can belong to several classes. The classes must be
25 sorted from more general to more precise (see gv2() code which does
26 assumptions on it). */
27 #define RC_INT 0x0001 /* generic integer register */
28 #define RC_FLOAT 0x0002 /* generic float register */
33 #define RC_IRET RC_EAX /* function return: integer register */
34 #define RC_LRET RC_EDX /* function return: second integer register */
35 #define RC_FRET RC_ST0 /* function return: float register */
37 /* pretty names for the registers */
45 const int reg_classes
[NB_REGS
] = {
46 /* eax */ RC_INT
| RC_EAX
,
47 /* ecx */ RC_INT
| RC_ECX
,
48 /* edx */ RC_INT
| RC_EDX
,
49 /* st0 */ RC_FLOAT
| RC_ST0
,
52 /* return registers for function */
53 #define REG_IRET TREG_EAX /* single word int return register */
54 #define REG_LRET TREG_EDX /* second word return register (for long long) */
55 #define REG_FRET TREG_ST0 /* float return register */
57 /* defined if function parameters must be evaluated in reverse order */
58 #define INVERT_FUNC_PARAMS
60 /* defined if structures are passed as pointers. Otherwise structures
61 are directly pushed on stack. */
62 //#define FUNC_STRUCT_PARAM_AS_PTR
64 /* pointer size, in bytes */
67 /* long double size and alignment, in bytes */
68 #define LDOUBLE_SIZE 12
69 #define LDOUBLE_ALIGN 4
70 /* maximum alignment (for aligned attribute support) */
73 /******************************************************/
76 #define EM_TCC_TARGET EM_386
78 /* relocation type for 32 bit data relocation */
79 #define R_DATA_32 R_386_32
80 #define R_DATA_PTR R_386_32
81 #define R_JMP_SLOT R_386_JMP_SLOT
82 #define R_COPY R_386_COPY
84 #define ELF_START_ADDR 0x08048000
85 #define ELF_PAGE_SIZE 0x1000
87 /******************************************************/
89 static unsigned long func_sub_sp_offset
;
90 static unsigned long func_bound_offset
;
91 static int func_ret_sub
;
93 /* XXX: make it faster ? */
98 if (ind1
> cur_text_section
->data_allocated
)
99 section_realloc(cur_text_section
, ind1
);
100 cur_text_section
->data
[ind
] = c
;
104 void o(unsigned int c
)
120 /* output a symbol and patch all calls to it */
121 void gsym_addr(int t
, int a
)
125 ptr
= (int *)(cur_text_section
->data
+ t
);
126 n
= *ptr
; /* next value */
137 /* psym is used to put an instruction with a data field which is a
138 reference to a symbol. It is in fact the same as oad ! */
141 /* instruction + 4 bytes data. Return the address of the data */
142 static int oad(int c
, int s
)
148 if (ind1
> cur_text_section
->data_allocated
)
149 section_realloc(cur_text_section
, ind1
);
150 *(int *)(cur_text_section
->data
+ ind
) = s
;
156 /* output constant with relocation if 'r & VT_SYM' is true */
157 static void gen_addr32(int r
, Sym
*sym
, int c
)
160 greloc(cur_text_section
, sym
, ind
, R_386_32
);
164 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
166 static void gen_modrm(int op_reg
, int r
, Sym
*sym
, int c
)
168 op_reg
= op_reg
<< 3;
169 if ((r
& VT_VALMASK
) == VT_CONST
) {
170 /* constant memory reference */
172 gen_addr32(r
, sym
, c
);
173 } else if ((r
& VT_VALMASK
) == VT_LOCAL
) {
174 /* currently, we use only ebp as base */
176 /* short reference */
180 oad(0x85 | op_reg
, c
);
183 g(0x00 | op_reg
| (r
& VT_VALMASK
));
188 static void mk_pointer(CType
*type
);
189 static void indir(void);
191 int handle_dllimport(int r
, SValue
*sv
, void (*fn
)(int r
, SValue
*sv
))
193 if ((sv
->r
& (VT_VALMASK
|VT_SYM
|VT_CONST
)) != (VT_SYM
|VT_CONST
))
195 if (0 == (sv
->sym
->type
.t
& VT_IMPORT
))
198 printf("import %d %04x %s\n", r
, ind
, get_tok_str(sv
->sym
->v
, NULL
));
200 sv
->sym
->type
.t
&= ~VT_IMPORT
;
204 mk_pointer(&vtop
->type
);
209 sv
->sym
->type
.t
|= VT_IMPORT
;
214 /* load 'r' from value 'sv' */
215 void load(int r
, SValue
*sv
)
217 int v
, t
, ft
, fc
, fr
;
221 if (handle_dllimport(r
, sv
, load
))
230 if (v
== VT_LLOCAL
) {
232 v1
.r
= VT_LOCAL
| VT_LVAL
;
237 if ((ft
& VT_BTYPE
) == VT_FLOAT
) {
240 } else if ((ft
& VT_BTYPE
) == VT_DOUBLE
) {
243 } else if ((ft
& VT_BTYPE
) == VT_LDOUBLE
) {
246 } else if ((ft
& VT_TYPE
) == VT_BYTE
) {
247 o(0xbe0f); /* movsbl */
248 } else if ((ft
& VT_TYPE
) == (VT_BYTE
| VT_UNSIGNED
)) {
249 o(0xb60f); /* movzbl */
250 } else if ((ft
& VT_TYPE
) == VT_SHORT
) {
251 o(0xbf0f); /* movswl */
252 } else if ((ft
& VT_TYPE
) == (VT_SHORT
| VT_UNSIGNED
)) {
253 o(0xb70f); /* movzwl */
257 gen_modrm(r
, fr
, sv
->sym
, fc
);
260 o(0xb8 + r
); /* mov $xx, r */
261 gen_addr32(fr
, sv
->sym
, fc
);
262 } else if (v
== VT_LOCAL
) {
263 o(0x8d); /* lea xxx(%ebp), r */
264 gen_modrm(r
, VT_LOCAL
, sv
->sym
, fc
);
265 } else if (v
== VT_CMP
) {
266 oad(0xb8 + r
, 0); /* mov $0, r */
267 o(0x0f); /* setxx %br */
270 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
272 oad(0xb8 + r
, t
); /* mov $1, r */
273 o(0x05eb); /* jmp after */
275 oad(0xb8 + r
, t
^ 1); /* mov $0, r */
278 o(0xc0 + r
+ v
* 8); /* mov v, r */
283 /* store register 'r' in lvalue 'v' */
284 void store(int r
, SValue
*v
)
289 if (handle_dllimport(r
, v
, store
))
294 fr
= v
->r
& VT_VALMASK
;
296 /* XXX: incorrect if float reg to reg */
297 if (bt
== VT_FLOAT
) {
300 } else if (bt
== VT_DOUBLE
) {
303 } else if (bt
== VT_LDOUBLE
) {
304 o(0xc0d9); /* fld %st(0) */
310 if (bt
== VT_BYTE
|| bt
== VT_BOOL
)
315 if (fr
== VT_CONST
||
318 gen_modrm(r
, v
->r
, v
->sym
, fc
);
319 } else if (fr
!= r
) {
320 o(0xc0 + fr
+ r
* 8); /* mov r, fr */
324 static void gadd_sp(int val
)
326 if (val
== (char)val
) {
330 oad(0xc481, val
); /* add $xxx, %esp */
334 /* 'is_jmp' is '1' if it is a jump */
335 static void gcall_or_jmp(int is_jmp
)
338 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
340 if (vtop
->r
& VT_SYM
) {
341 /* relocation case */
342 greloc(cur_text_section
, vtop
->sym
,
343 ind
+ 1, R_386_PC32
);
345 /* put an empty PC32 relocation */
346 put_elf_reloc(symtab_section
, cur_text_section
,
347 ind
+ 1, R_386_PC32
, 0);
349 oad(0xe8 + is_jmp
, vtop
->c
.ul
- 4); /* call/jmp im */
351 /* otherwise, indirect call */
353 o(0xff); /* call/jmp *r */
354 o(0xd0 + r
+ (is_jmp
<< 4));
358 static uint8_t fastcall_regs
[3] = { TREG_EAX
, TREG_EDX
, TREG_ECX
};
359 static uint8_t fastcallw_regs
[2] = { TREG_ECX
, TREG_EDX
};
361 /* Generate function call. The function address is pushed first, then
362 all the parameters in call order. This functions pops all the
363 parameters and the function address. */
364 void gfunc_call(int nb_args
)
366 int size
, align
, r
, args_size
, i
, func_call
;
370 for(i
= 0;i
< nb_args
; i
++) {
371 if ((vtop
->type
.t
& VT_BTYPE
) == VT_STRUCT
) {
372 size
= type_size(&vtop
->type
, &align
);
373 /* align to stack align size */
374 size
= (size
+ 3) & ~3;
375 /* allocate the necessary size on stack */
376 oad(0xec81, size
); /* sub $xxx, %esp */
377 /* generate structure store */
379 o(0x89); /* mov %esp, r */
381 vset(&vtop
->type
, r
| VT_LVAL
, 0);
385 } else if (is_float(vtop
->type
.t
)) {
386 gv(RC_FLOAT
); /* only one float register */
387 if ((vtop
->type
.t
& VT_BTYPE
) == VT_FLOAT
)
389 else if ((vtop
->type
.t
& VT_BTYPE
) == VT_DOUBLE
)
393 oad(0xec81, size
); /* sub $xxx, %esp */
397 o(0x5cd9 + size
- 4); /* fstp[s|l] 0(%esp) */
402 /* simple type (currently always same size) */
403 /* XXX: implicit cast ? */
405 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
407 o(0x50 + vtop
->r2
); /* push r */
411 o(0x50 + r
); /* push r */
416 save_regs(0); /* save used temporary registers */
417 func_sym
= vtop
->type
.ref
;
418 func_call
= FUNC_CALL(func_sym
->r
);
420 if ((func_call
>= FUNC_FASTCALL1
&& func_call
<= FUNC_FASTCALL3
) ||
421 func_call
== FUNC_FASTCALLW
) {
422 int fastcall_nb_regs
;
423 uint8_t *fastcall_regs_ptr
;
424 if (func_call
== FUNC_FASTCALLW
) {
425 fastcall_regs_ptr
= fastcallw_regs
;
426 fastcall_nb_regs
= 2;
428 fastcall_regs_ptr
= fastcall_regs
;
429 fastcall_nb_regs
= func_call
- FUNC_FASTCALL1
+ 1;
431 for(i
= 0;i
< fastcall_nb_regs
; i
++) {
434 o(0x58 + fastcall_regs_ptr
[i
]); /* pop r */
435 /* XXX: incorrect for struct/floats */
442 if ((func_sym
->type
.t
& VT_BTYPE
) == VT_STRUCT
)
445 if (args_size
&& func_call
!= FUNC_STDCALL
)
451 #define FUNC_PROLOG_SIZE 10
453 #define FUNC_PROLOG_SIZE 9
456 /* generate function prolog of type 't' */
457 void gfunc_prolog(CType
*func_type
)
459 int addr
, align
, size
, func_call
, fastcall_nb_regs
;
460 int param_index
, param_addr
;
461 uint8_t *fastcall_regs_ptr
;
465 sym
= func_type
->ref
;
466 func_call
= FUNC_CALL(sym
->r
);
471 if (func_call
>= FUNC_FASTCALL1
&& func_call
<= FUNC_FASTCALL3
) {
472 fastcall_nb_regs
= func_call
- FUNC_FASTCALL1
+ 1;
473 fastcall_regs_ptr
= fastcall_regs
;
474 } else if (func_call
== FUNC_FASTCALLW
) {
475 fastcall_nb_regs
= 2;
476 fastcall_regs_ptr
= fastcallw_regs
;
478 fastcall_nb_regs
= 0;
479 fastcall_regs_ptr
= NULL
;
483 ind
+= FUNC_PROLOG_SIZE
;
484 func_sub_sp_offset
= ind
;
485 /* if the function returns a structure, then add an
486 implicit pointer parameter */
488 if ((func_vt
.t
& VT_BTYPE
) == VT_STRUCT
) {
489 /* XXX: fastcall case ? */
494 /* define parameters */
495 while ((sym
= sym
->next
) != NULL
) {
497 size
= type_size(type
, &align
);
498 size
= (size
+ 3) & ~3;
499 #ifdef FUNC_STRUCT_PARAM_AS_PTR
500 /* structs are passed as pointer */
501 if ((type
->t
& VT_BTYPE
) == VT_STRUCT
) {
505 if (param_index
< fastcall_nb_regs
) {
506 /* save FASTCALL register */
509 gen_modrm(fastcall_regs_ptr
[param_index
], VT_LOCAL
, NULL
, loc
);
515 sym_push(sym
->v
& ~SYM_FIELD
, type
,
516 VT_LOCAL
| lvalue_type(type
->t
), param_addr
);
520 /* pascal type call ? */
521 if (func_call
== FUNC_STDCALL
)
522 func_ret_sub
= addr
- 8;
528 /* leave some room for bound checking code */
529 if (tcc_state
->do_bounds_check
) {
530 oad(0xb8, 0); /* lbound section pointer */
531 oad(0xb8, 0); /* call to function */
532 func_bound_offset
= lbounds_section
->data_offset
;
536 /* generate function epilog */
537 void gfunc_epilog(void)
541 #ifdef CONFIG_TCC_BCHECK
542 if (tcc_state
->do_bounds_check
543 && func_bound_offset
!= lbounds_section
->data_offset
) {
547 /* add end of table info */
548 bounds_ptr
= section_ptr_add(lbounds_section
, sizeof(int));
550 /* generate bound local allocation */
552 ind
= func_sub_sp_offset
;
553 sym_data
= get_sym_ref(&char_pointer_type
, lbounds_section
,
554 func_bound_offset
, lbounds_section
->data_offset
);
555 greloc(cur_text_section
, sym_data
,
557 oad(0xb8, 0); /* mov %eax, xxx */
558 sym
= external_global_sym(TOK___bound_local_new
, &func_old_type
, 0);
559 greloc(cur_text_section
, sym
,
560 ind
+ 1, R_386_PC32
);
563 /* generate bound check local freeing */
564 o(0x5250); /* save returned value, if any */
565 greloc(cur_text_section
, sym_data
,
567 oad(0xb8, 0); /* mov %eax, xxx */
568 sym
= external_global_sym(TOK___bound_local_delete
, &func_old_type
, 0);
569 greloc(cur_text_section
, sym
,
570 ind
+ 1, R_386_PC32
);
572 o(0x585a); /* restore returned value, if any */
576 if (func_ret_sub
== 0) {
581 g(func_ret_sub
>> 8);
583 /* align local size to word & save local variables */
587 ind
= func_sub_sp_offset
- FUNC_PROLOG_SIZE
;
590 Sym
*sym
= external_global_sym(TOK___chkstk
, &func_old_type
, 0);
591 oad(0xb8, v
); /* mov stacksize, %eax */
592 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
593 greloc(cur_text_section
, sym
, ind
-4, R_386_PC32
);
597 o(0xe58955); /* push %ebp, mov %esp, %ebp */
598 o(0xec81); /* sub esp, stacksize */
600 #if FUNC_PROLOG_SIZE == 10
601 o(0x90); /* adjust to FUNC_PROLOG_SIZE */
607 /* generate a jump to a label */
610 return psym(0xe9, t
);
613 /* generate a jump to a fixed address */
614 void gjmp_addr(int a
)
622 oad(0xe9, a
- ind
- 5);
626 /* generate a test. set 'inv' to invert test. Stack entry is popped */
627 int gtst(int inv
, int t
)
631 v
= vtop
->r
& VT_VALMASK
;
633 /* fast case : can jump directly since flags are set */
635 t
= psym((vtop
->c
.i
- 16) ^ inv
, t
);
636 } else if (v
== VT_JMP
|| v
== VT_JMPI
) {
637 /* && or || optimization */
638 if ((v
& 1) == inv
) {
639 /* insert vtop->c jump list in t */
642 p
= (int *)(cur_text_section
->data
+ *p
);
650 if (is_float(vtop
->type
.t
) ||
651 (vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
655 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
656 /* constant jmp optimization */
657 if ((vtop
->c
.i
!= 0) != inv
)
664 t
= psym(0x85 ^ inv
, t
);
671 /* generate an integer binary operation */
678 case TOK_ADDC1
: /* add with carry generation */
681 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
688 /* XXX: generate inc and dec for smaller code ? */
690 o(0xc0 | (opc
<< 3) | r
);
694 oad(0xc0 | (opc
<< 3) | r
, c
);
700 o((opc
<< 3) | 0x01);
701 o(0xc0 + r
+ fr
* 8);
704 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
710 case TOK_SUBC1
: /* sub with carry generation */
713 case TOK_ADDC2
: /* add with carry use */
716 case TOK_SUBC2
: /* sub with carry use */
733 o(0xaf0f); /* imul fr, r */
734 o(0xc0 + fr
+ r
* 8);
745 opc
= 0xc0 | (opc
<< 3);
746 if ((vtop
->r
& (VT_VALMASK
| VT_LVAL
| VT_SYM
)) == VT_CONST
) {
751 c
= vtop
->c
.i
& 0x1f;
752 o(0xc1); /* shl/shr/sar $xxx, r */
756 /* we generate the shift in ecx */
759 o(0xd3); /* shl/shr/sar %cl, r */
770 /* first operand must be in eax */
771 /* XXX: need better constraint for second operand */
777 if (op
== TOK_UMULL
) {
778 o(0xf7); /* mul fr */
783 if (op
== TOK_UDIV
|| op
== TOK_UMOD
) {
784 o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
787 o(0xf799); /* cltd, idiv fr, %eax */
790 if (op
== '%' || op
== TOK_UMOD
)
803 /* generate a floating point operation 'v = t1 op t2' instruction. The
804 two operands are guaranted to have the same floating point type */
805 /* XXX: need to use ST1 too */
808 int a
, ft
, fc
, swapped
, r
;
810 /* convert constants to memory references */
811 if ((vtop
[-1].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
) {
816 if ((vtop
[0].r
& (VT_VALMASK
| VT_LVAL
)) == VT_CONST
)
819 /* must put at least one value in the floating point register */
820 if ((vtop
[-1].r
& VT_LVAL
) &&
821 (vtop
[0].r
& VT_LVAL
)) {
827 /* swap the stack if needed so that t1 is the register and t2 is
828 the memory reference */
829 if (vtop
[-1].r
& VT_LVAL
) {
833 if (op
>= TOK_ULT
&& op
<= TOK_GT
) {
834 /* load on stack second operand */
835 load(TREG_ST0
, vtop
);
836 save_reg(TREG_EAX
); /* eax is used by FP comparison code */
837 if (op
== TOK_GE
|| op
== TOK_GT
)
839 else if (op
== TOK_EQ
|| op
== TOK_NE
)
842 o(0xc9d9); /* fxch %st(1) */
843 o(0xe9da); /* fucompp */
844 o(0xe0df); /* fnstsw %ax */
846 o(0x45e480); /* and $0x45, %ah */
847 o(0x40fC80); /* cmp $0x40, %ah */
848 } else if (op
== TOK_NE
) {
849 o(0x45e480); /* and $0x45, %ah */
850 o(0x40f480); /* xor $0x40, %ah */
852 } else if (op
== TOK_GE
|| op
== TOK_LE
) {
853 o(0x05c4f6); /* test $0x05, %ah */
856 o(0x45c4f6); /* test $0x45, %ah */
863 /* no memory reference possible for long double operations */
864 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LDOUBLE
) {
865 load(TREG_ST0
, vtop
);
890 if ((ft
& VT_BTYPE
) == VT_LDOUBLE
) {
891 o(0xde); /* fxxxp %st, %st(1) */
894 /* if saved lvalue, then we must reload it */
896 if ((r
& VT_VALMASK
) == VT_LLOCAL
) {
900 v1
.r
= VT_LOCAL
| VT_LVAL
;
906 if ((ft
& VT_BTYPE
) == VT_DOUBLE
)
910 gen_modrm(a
, r
, vtop
->sym
, fc
);
916 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
917 and 'long long' cases. */
918 void gen_cvt_itof(int t
)
922 if ((vtop
->type
.t
& VT_BTYPE
) == VT_LLONG
) {
923 /* signed long long to float/double/long double (unsigned case
924 is handled generically) */
925 o(0x50 + vtop
->r2
); /* push r2 */
926 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
927 o(0x242cdf); /* fildll (%esp) */
928 o(0x08c483); /* add $8, %esp */
929 } else if ((vtop
->type
.t
& (VT_BTYPE
| VT_UNSIGNED
)) ==
930 (VT_INT
| VT_UNSIGNED
)) {
931 /* unsigned int to float/double/long double */
932 o(0x6a); /* push $0 */
934 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
935 o(0x242cdf); /* fildll (%esp) */
936 o(0x08c483); /* add $8, %esp */
938 /* int to float/double/long double */
939 o(0x50 + (vtop
->r
& VT_VALMASK
)); /* push r */
940 o(0x2404db); /* fildl (%esp) */
941 o(0x04c483); /* add $4, %esp */
946 /* convert fp to int 't' type */
947 /* XXX: handle long long case */
948 void gen_cvt_ftoi(int t
)
954 ushort_type
.t
= VT_SHORT
| VT_UNSIGNED
;
962 o(0x2dd9); /* ldcw xxx */
963 sym
= external_global_sym(TOK___tcc_int_fpu_control
,
964 &ushort_type
, VT_LVAL
);
965 greloc(cur_text_section
, sym
,
969 oad(0xec81, size
); /* sub $xxx, %esp */
971 o(0x1cdb); /* fistpl */
973 o(0x3cdf); /* fistpll */
975 o(0x2dd9); /* ldcw xxx */
976 sym
= external_global_sym(TOK___tcc_fpu_control
,
977 &ushort_type
, VT_LVAL
);
978 greloc(cur_text_section
, sym
,
983 o(0x58 + r
); /* pop r */
986 vtop
->r
= r
; /* mark reg as used */
987 r2
= get_reg(RC_INT
);
988 o(0x58 + r2
); /* pop r2 */
991 o(0x04c483); /* add $4, %esp */
997 /* convert from one floating point type to another */
998 void gen_cvt_ftof(int t
)
1000 /* all we have to do on i386 is to put the float in a register */
1004 /* computed goto support */
1011 /* bound check support functions */
1012 #ifdef CONFIG_TCC_BCHECK
1014 /* generate a bounded pointer addition */
1015 void gen_bounded_ptr_add(void)
1019 /* prepare fast i386 function call (args in eax and edx) */
1020 gv2(RC_EAX
, RC_EDX
);
1021 /* save all temporary registers */
1024 /* do a fast function call */
1025 sym
= external_global_sym(TOK___bound_ptr_add
, &func_old_type
, 0);
1026 greloc(cur_text_section
, sym
,
1027 ind
+ 1, R_386_PC32
);
1029 /* returned pointer is in eax */
1031 vtop
->r
= TREG_EAX
| VT_BOUNDED
;
1032 /* address of bounding function call point */
1033 vtop
->c
.ul
= (cur_text_section
->reloc
->data_offset
- sizeof(Elf32_Rel
));
1036 /* patch pointer addition in vtop so that pointer dereferencing is
1038 void gen_bounded_ptr_deref(void)
1046 /* XXX: put that code in generic part of tcc */
1047 if (!is_float(vtop
->type
.t
)) {
1048 if (vtop
->r
& VT_LVAL_BYTE
)
1050 else if (vtop
->r
& VT_LVAL_SHORT
)
1054 size
= type_size(&vtop
->type
, &align
);
1056 case 1: func
= TOK___bound_ptr_indir1
; break;
1057 case 2: func
= TOK___bound_ptr_indir2
; break;
1058 case 4: func
= TOK___bound_ptr_indir4
; break;
1059 case 8: func
= TOK___bound_ptr_indir8
; break;
1060 case 12: func
= TOK___bound_ptr_indir12
; break;
1061 case 16: func
= TOK___bound_ptr_indir16
; break;
1063 error("unhandled size when derefencing bounded pointer");
1068 /* patch relocation */
1069 /* XXX: find a better solution ? */
1070 rel
= (Elf32_Rel
*)(cur_text_section
->reloc
->data
+ vtop
->c
.ul
);
1071 sym
= external_global_sym(func
, &func_old_type
, 0);
1073 put_extern_sym(sym
, NULL
, 0, 0);
1074 rel
->r_info
= ELF32_R_INFO(sym
->c
, ELF32_R_TYPE(rel
->r_info
));
1078 /* end of X86 code generator */
1079 /*************************************************************/