Use string_ncopy when copying ref names
[tig.git] / compat / hashtab.c
blob10d9b381e4a696222882261103789d967210124e
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
25 Elements in the table are generic pointers.
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "compat.h"
41 #include <sys/types.h>
43 #ifdef HAVE_STDLIB_H
44 #include <stdlib.h>
45 #endif
46 #ifdef HAVE_STRING_H
47 #include <string.h>
48 #endif
49 #ifdef HAVE_MALLOC_H
50 #include <malloc.h>
51 #endif
52 #ifdef HAVE_LIMITS_H
53 #include <limits.h>
54 #endif
55 #ifdef HAVE_INTTYPES_H
56 #include <inttypes.h>
57 #endif
58 #ifdef HAVE_STDINT_H
59 #include <stdint.h>
60 #endif
62 #include <stdio.h>
64 #include "ansidecl.h"
65 #include "hashtab.h"
67 #ifndef CHAR_BIT
68 #define CHAR_BIT 8
69 #endif
71 static unsigned int higher_prime_index (unsigned long);
72 static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
73 static hashval_t htab_mod (hashval_t, htab_t);
74 static hashval_t htab_mod_m2 (hashval_t, htab_t);
75 static hashval_t hash_pointer (const void *);
76 static int eq_pointer (const void *, const void *);
77 static int htab_expand (htab_t);
78 static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
80 /* At some point, we could make these be NULL, and modify the
81 hash-table routines to handle NULL specially; that would avoid
82 function-call overhead for the common case of hashing pointers. */
83 htab_hash htab_hash_pointer = hash_pointer;
84 htab_eq htab_eq_pointer = eq_pointer;
86 /* Table of primes and multiplicative inverses.
88 Note that these are not minimally reduced inverses. Unlike when generating
89 code to divide by a constant, we want to be able to use the same algorithm
90 all the time. All of these inverses (are implied to) have bit 32 set.
92 For the record, here's the function that computed the table; it's a
93 vastly simplified version of the function of the same name from gcc. */
95 #if 0
96 unsigned int
97 ceil_log2 (unsigned int x)
99 int i;
100 for (i = 31; i >= 0 ; --i)
101 if (x > (1u << i))
102 return i+1;
103 abort ();
106 unsigned int
107 choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
109 unsigned long long mhigh;
110 double nx;
111 int lgup, post_shift;
112 int pow, pow2;
113 int n = 32, precision = 32;
115 lgup = ceil_log2 (d);
116 pow = n + lgup;
117 pow2 = n + lgup - precision;
119 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
120 mhigh = nx / d;
122 *shiftp = lgup - 1;
123 *mlp = mhigh;
124 return mhigh >> 32;
126 #endif
128 struct prime_ent
130 hashval_t prime;
131 hashval_t inv;
132 hashval_t inv_m2; /* inverse of prime-2 */
133 hashval_t shift;
136 static struct prime_ent const prime_tab[] = {
137 { 7, 0x24924925, 0x9999999b, 2 },
138 { 13, 0x3b13b13c, 0x745d1747, 3 },
139 { 31, 0x08421085, 0x1a7b9612, 4 },
140 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
141 { 127, 0x02040811, 0x0624dd30, 6 },
142 { 251, 0x05197f7e, 0x073260a5, 7 },
143 { 509, 0x01824366, 0x02864fc8, 8 },
144 { 1021, 0x00c0906d, 0x014191f7, 9 },
145 { 2039, 0x0121456f, 0x0161e69e, 10 },
146 { 4093, 0x00300902, 0x00501908, 11 },
147 { 8191, 0x00080041, 0x00180241, 12 },
148 { 16381, 0x000c0091, 0x00140191, 13 },
149 { 32749, 0x002605a5, 0x002a06e6, 14 },
150 { 65521, 0x000f00e2, 0x00110122, 15 },
151 { 131071, 0x00008001, 0x00018003, 16 },
152 { 262139, 0x00014002, 0x0001c004, 17 },
153 { 524287, 0x00002001, 0x00006001, 18 },
154 { 1048573, 0x00003001, 0x00005001, 19 },
155 { 2097143, 0x00004801, 0x00005801, 20 },
156 { 4194301, 0x00000c01, 0x00001401, 21 },
157 { 8388593, 0x00001e01, 0x00002201, 22 },
158 { 16777213, 0x00000301, 0x00000501, 23 },
159 { 33554393, 0x00001381, 0x00001481, 24 },
160 { 67108859, 0x00000141, 0x000001c1, 25 },
161 { 134217689, 0x000004e1, 0x00000521, 26 },
162 { 268435399, 0x00000391, 0x000003b1, 27 },
163 { 536870909, 0x00000019, 0x00000029, 28 },
164 { 1073741789, 0x0000008d, 0x00000095, 29 },
165 { 2147483647, 0x00000003, 0x00000007, 30 },
166 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
167 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
170 /* The following function returns an index into the above table of the
171 nearest prime number which is greater than N, and near a power of two. */
173 static unsigned int
174 higher_prime_index (unsigned long n)
176 unsigned int low = 0;
177 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
179 while (low != high)
181 unsigned int mid = low + (high - low) / 2;
182 if (n > prime_tab[mid].prime)
183 low = mid + 1;
184 else
185 high = mid;
188 /* If we've run out of primes, abort. */
189 if (n > prime_tab[low].prime)
191 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
192 abort ();
195 return low;
198 /* Returns non-zero if P1 and P2 are equal. */
200 static int
201 eq_pointer (const PTR p1, const PTR p2)
203 return p1 == p2;
207 /* The parens around the function names in the next two definitions
208 are essential in order to prevent macro expansions of the name.
209 The bodies, however, are expanded as expected, so they are not
210 recursive definitions. */
212 /* Return the current size of given hash table. */
214 #define htab_size(htab) ((htab)->size)
216 size_t
217 (htab_size) (htab_t htab)
219 return htab_size (htab);
222 /* Return the current number of elements in given hash table. */
224 #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
226 size_t
227 (htab_elements) (htab_t htab)
229 return htab_elements (htab);
232 /* Return X % Y. */
234 static inline hashval_t
235 htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
237 /* The multiplicative inverses computed above are for 32-bit types, and
238 requires that we be able to compute a highpart multiply. */
239 #ifdef UNSIGNED_64BIT_TYPE
240 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
241 if (sizeof (hashval_t) * CHAR_BIT <= 32)
243 hashval_t t1, t2, t3, t4, q, r;
245 t1 = ((ull)x * inv) >> 32;
246 t2 = x - t1;
247 t3 = t2 >> 1;
248 t4 = t1 + t3;
249 q = t4 >> shift;
250 r = x - (q * y);
252 return r;
254 #endif
256 /* Otherwise just use the native division routines. */
257 return x % y;
260 /* Compute the primary hash for HASH given HTAB's current size. */
262 static inline hashval_t
263 htab_mod (hashval_t hash, htab_t htab)
265 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
266 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
269 /* Compute the secondary hash for HASH given HTAB's current size. */
271 static inline hashval_t
272 htab_mod_m2 (hashval_t hash, htab_t htab)
274 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
275 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
278 /* This function creates table with length slightly longer than given
279 source length. Created hash table is initiated as empty (all the
280 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
281 created hash table, or NULL if memory allocation fails. */
283 htab_t
284 htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
285 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
287 return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
288 free_f);
291 /* As above, but uses the variants of ALLOC_F and FREE_F which accept
292 an extra argument. */
294 htab_t
295 htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
296 htab_del del_f, void *alloc_arg,
297 htab_alloc_with_arg alloc_f,
298 htab_free_with_arg free_f)
300 htab_t result;
301 unsigned int size_prime_index;
303 size_prime_index = higher_prime_index (size);
304 size = prime_tab[size_prime_index].prime;
306 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
307 if (result == NULL)
308 return NULL;
309 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
310 if (result->entries == NULL)
312 if (free_f != NULL)
313 (*free_f) (alloc_arg, result);
314 return NULL;
316 result->size = size;
317 result->size_prime_index = size_prime_index;
318 result->hash_f = hash_f;
319 result->eq_f = eq_f;
320 result->del_f = del_f;
321 result->alloc_arg = alloc_arg;
322 result->alloc_with_arg_f = alloc_f;
323 result->free_with_arg_f = free_f;
324 return result;
329 @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
330 htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
331 htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
332 htab_free @var{free_f})
334 This function creates a hash table that uses two different allocators
335 @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
336 and its entries respectively. This is useful when variables of different
337 types need to be allocated with different allocators.
339 The created hash table is slightly larger than @var{size} and it is
340 initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
341 The function returns the created hash table, or @code{NULL} if memory
342 allocation fails.
344 @end deftypefn
348 htab_t
349 htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
350 htab_del del_f, htab_alloc alloc_tab_f,
351 htab_alloc alloc_f, htab_free free_f)
353 htab_t result;
354 unsigned int size_prime_index;
356 size_prime_index = higher_prime_index (size);
357 size = prime_tab[size_prime_index].prime;
359 result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
360 if (result == NULL)
361 return NULL;
362 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
363 if (result->entries == NULL)
365 if (free_f != NULL)
366 (*free_f) (result);
367 return NULL;
369 result->size = size;
370 result->size_prime_index = size_prime_index;
371 result->hash_f = hash_f;
372 result->eq_f = eq_f;
373 result->del_f = del_f;
374 result->alloc_f = alloc_f;
375 result->free_f = free_f;
376 return result;
380 /* Update the function pointers and allocation parameter in the htab_t. */
382 void
383 htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
384 htab_del del_f, PTR alloc_arg,
385 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
387 htab->hash_f = hash_f;
388 htab->eq_f = eq_f;
389 htab->del_f = del_f;
390 htab->alloc_arg = alloc_arg;
391 htab->alloc_with_arg_f = alloc_f;
392 htab->free_with_arg_f = free_f;
395 /* These functions exist solely for backward compatibility. */
397 #undef htab_create
399 htab_t
400 htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
402 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
405 htab_t
406 htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
408 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
412 /* This function frees all memory allocated for given hash table.
413 Naturally the hash table must already exist. */
415 void
416 htab_delete (htab_t htab)
418 size_t size = htab_size (htab);
419 PTR *entries = htab->entries;
420 int i;
422 if (htab->del_f)
423 for (i = size - 1; i >= 0; i--)
424 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
425 (*htab->del_f) (entries[i]);
427 if (htab->free_f != NULL)
429 (*htab->free_f) (entries);
430 (*htab->free_f) (htab);
432 else if (htab->free_with_arg_f != NULL)
434 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
435 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
439 /* This function clears all entries in the given hash table. */
441 void
442 htab_empty (htab_t htab)
444 size_t size = htab_size (htab);
445 PTR *entries = htab->entries;
446 int i;
448 if (htab->del_f)
449 for (i = size - 1; i >= 0; i--)
450 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
451 (*htab->del_f) (entries[i]);
453 /* Instead of clearing megabyte, downsize the table. */
454 if (size > 1024*1024 / sizeof (PTR))
456 int nindex = higher_prime_index (1024 / sizeof (PTR));
457 int nsize = prime_tab[nindex].prime;
459 if (htab->free_f != NULL)
460 (*htab->free_f) (htab->entries);
461 else if (htab->free_with_arg_f != NULL)
462 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
463 if (htab->alloc_with_arg_f != NULL)
464 htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
465 sizeof (PTR *));
466 else
467 htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
468 htab->size = nsize;
469 htab->size_prime_index = nindex;
471 else
472 memset (entries, 0, size * sizeof (PTR));
473 htab->n_deleted = 0;
474 htab->n_elements = 0;
477 /* Similar to htab_find_slot, but without several unwanted side effects:
478 - Does not call htab->eq_f when it finds an existing entry.
479 - Does not change the count of elements/searches/collisions in the
480 hash table.
481 This function also assumes there are no deleted entries in the table.
482 HASH is the hash value for the element to be inserted. */
484 static PTR *
485 find_empty_slot_for_expand (htab_t htab, hashval_t hash)
487 hashval_t index = htab_mod (hash, htab);
488 size_t size = htab_size (htab);
489 PTR *slot = htab->entries + index;
490 hashval_t hash2;
492 if (*slot == HTAB_EMPTY_ENTRY)
493 return slot;
494 else if (*slot == HTAB_DELETED_ENTRY)
495 abort ();
497 hash2 = htab_mod_m2 (hash, htab);
498 for (;;)
500 index += hash2;
501 if (index >= size)
502 index -= size;
504 slot = htab->entries + index;
505 if (*slot == HTAB_EMPTY_ENTRY)
506 return slot;
507 else if (*slot == HTAB_DELETED_ENTRY)
508 abort ();
512 /* The following function changes size of memory allocated for the
513 entries and repeatedly inserts the table elements. The occupancy
514 of the table after the call will be about 50%. Naturally the hash
515 table must already exist. Remember also that the place of the
516 table entries is changed. If memory allocation failures are allowed,
517 this function will return zero, indicating that the table could not be
518 expanded. If all goes well, it will return a non-zero value. */
520 static int
521 htab_expand (htab_t htab)
523 PTR *oentries;
524 PTR *olimit;
525 PTR *p;
526 PTR *nentries;
527 size_t nsize, osize, elts;
528 unsigned int oindex, nindex;
530 oentries = htab->entries;
531 oindex = htab->size_prime_index;
532 osize = htab->size;
533 olimit = oentries + osize;
534 elts = htab_elements (htab);
536 /* Resize only when table after removal of unused elements is either
537 too full or too empty. */
538 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
540 nindex = higher_prime_index (elts * 2);
541 nsize = prime_tab[nindex].prime;
543 else
545 nindex = oindex;
546 nsize = osize;
549 if (htab->alloc_with_arg_f != NULL)
550 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
551 sizeof (PTR *));
552 else
553 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
554 if (nentries == NULL)
555 return 0;
556 htab->entries = nentries;
557 htab->size = nsize;
558 htab->size_prime_index = nindex;
559 htab->n_elements -= htab->n_deleted;
560 htab->n_deleted = 0;
562 p = oentries;
565 PTR x = *p;
567 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
569 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
571 *q = x;
574 p++;
576 while (p < olimit);
578 if (htab->free_f != NULL)
579 (*htab->free_f) (oentries);
580 else if (htab->free_with_arg_f != NULL)
581 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
582 return 1;
585 /* This function searches for a hash table entry equal to the given
586 element. It cannot be used to insert or delete an element. */
589 htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
591 hashval_t index, hash2;
592 size_t size;
593 PTR entry;
595 htab->searches++;
596 size = htab_size (htab);
597 index = htab_mod (hash, htab);
599 entry = htab->entries[index];
600 if (entry == HTAB_EMPTY_ENTRY
601 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
602 return entry;
604 hash2 = htab_mod_m2 (hash, htab);
605 for (;;)
607 htab->collisions++;
608 index += hash2;
609 if (index >= size)
610 index -= size;
612 entry = htab->entries[index];
613 if (entry == HTAB_EMPTY_ENTRY
614 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
615 return entry;
619 /* Like htab_find_slot_with_hash, but compute the hash value from the
620 element. */
623 htab_find (htab_t htab, const PTR element)
625 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
628 /* This function searches for a hash table slot containing an entry
629 equal to the given element. To delete an entry, call this with
630 insert=NO_INSERT, then call htab_clear_slot on the slot returned
631 (possibly after doing some checks). To insert an entry, call this
632 with insert=INSERT, then write the value you want into the returned
633 slot. When inserting an entry, NULL may be returned if memory
634 allocation fails. */
636 PTR *
637 htab_find_slot_with_hash (htab_t htab, const PTR element,
638 hashval_t hash, enum insert_option insert)
640 PTR *first_deleted_slot;
641 hashval_t index, hash2;
642 size_t size;
643 PTR entry;
645 size = htab_size (htab);
646 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
648 if (htab_expand (htab) == 0)
649 return NULL;
650 size = htab_size (htab);
653 index = htab_mod (hash, htab);
655 htab->searches++;
656 first_deleted_slot = NULL;
658 entry = htab->entries[index];
659 if (entry == HTAB_EMPTY_ENTRY)
660 goto empty_entry;
661 else if (entry == HTAB_DELETED_ENTRY)
662 first_deleted_slot = &htab->entries[index];
663 else if ((*htab->eq_f) (entry, element))
664 return &htab->entries[index];
666 hash2 = htab_mod_m2 (hash, htab);
667 for (;;)
669 htab->collisions++;
670 index += hash2;
671 if (index >= size)
672 index -= size;
674 entry = htab->entries[index];
675 if (entry == HTAB_EMPTY_ENTRY)
676 goto empty_entry;
677 else if (entry == HTAB_DELETED_ENTRY)
679 if (!first_deleted_slot)
680 first_deleted_slot = &htab->entries[index];
682 else if ((*htab->eq_f) (entry, element))
683 return &htab->entries[index];
686 empty_entry:
687 if (insert == NO_INSERT)
688 return NULL;
690 if (first_deleted_slot)
692 htab->n_deleted--;
693 *first_deleted_slot = HTAB_EMPTY_ENTRY;
694 return first_deleted_slot;
697 htab->n_elements++;
698 return &htab->entries[index];
701 /* Like htab_find_slot_with_hash, but compute the hash value from the
702 element. */
704 PTR *
705 htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
707 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
708 insert);
711 /* This function deletes an element with the given value from hash
712 table (the hash is computed from the element). If there is no matching
713 element in the hash table, this function does nothing. */
715 void
716 htab_remove_elt (htab_t htab, PTR element)
718 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
722 /* This function deletes an element with the given value from hash
723 table. If there is no matching element in the hash table, this
724 function does nothing. */
726 void
727 htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
729 PTR *slot;
731 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
732 if (*slot == HTAB_EMPTY_ENTRY)
733 return;
735 if (htab->del_f)
736 (*htab->del_f) (*slot);
738 *slot = HTAB_DELETED_ENTRY;
739 htab->n_deleted++;
742 /* This function clears a specified slot in a hash table. It is
743 useful when you've already done the lookup and don't want to do it
744 again. */
746 void
747 htab_clear_slot (htab_t htab, PTR *slot)
749 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
750 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
751 abort ();
753 if (htab->del_f)
754 (*htab->del_f) (*slot);
756 *slot = HTAB_DELETED_ENTRY;
757 htab->n_deleted++;
760 /* This function scans over the entire hash table calling
761 CALLBACK for each live entry. If CALLBACK returns false,
762 the iteration stops. INFO is passed as CALLBACK's second
763 argument. */
765 void
766 htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
768 PTR *slot;
769 PTR *limit;
771 slot = htab->entries;
772 limit = slot + htab_size (htab);
776 PTR x = *slot;
778 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
779 if (!(*callback) (slot, info))
780 break;
782 while (++slot < limit);
785 /* Like htab_traverse_noresize, but does resize the table when it is
786 too empty to improve effectivity of subsequent calls. */
788 void
789 htab_traverse (htab_t htab, htab_trav callback, PTR info)
791 size_t size = htab_size (htab);
792 if (htab_elements (htab) * 8 < size && size > 32)
793 htab_expand (htab);
795 htab_traverse_noresize (htab, callback, info);
798 /* Return the fraction of fixed collisions during all work with given
799 hash table. */
801 double
802 htab_collisions (htab_t htab)
804 if (htab->searches == 0)
805 return 0.0;
807 return (double) htab->collisions / (double) htab->searches;
810 /* Hash P as a null-terminated string.
812 Copied from gcc/hashtable.c. Zack had the following to say with respect
813 to applicability, though note that unlike hashtable.c, this hash table
814 implementation re-hashes rather than chain buckets.
816 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
817 From: Zack Weinberg <zackw@panix.com>
818 Date: Fri, 17 Aug 2001 02:15:56 -0400
820 I got it by extracting all the identifiers from all the source code
821 I had lying around in mid-1999, and testing many recurrences of
822 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
823 prime numbers or the appropriate identity. This was the best one.
824 I don't remember exactly what constituted "best", except I was
825 looking at bucket-length distributions mostly.
827 So it should be very good at hashing identifiers, but might not be
828 as good at arbitrary strings.
830 I'll add that it thoroughly trounces the hash functions recommended
831 for this use at http://burtleburtle.net/bob/hash/index.html, both
832 on speed and bucket distribution. I haven't tried it against the
833 function they just started using for Perl's hashes. */
835 hashval_t
836 htab_hash_string (const PTR p)
838 const unsigned char *str = (const unsigned char *) p;
839 hashval_t r = 0;
840 unsigned char c;
842 while ((c = *str++) != 0)
843 r = r * 67 + c - 113;
845 return r;
848 /* DERIVED FROM:
849 --------------------------------------------------------------------
850 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
851 hash(), hash2(), hash3, and mix() are externally useful functions.
852 Routines to test the hash are included if SELF_TEST is defined.
853 You can use this free for any purpose. It has no warranty.
854 --------------------------------------------------------------------
858 --------------------------------------------------------------------
859 mix -- mix 3 32-bit values reversibly.
860 For every delta with one or two bit set, and the deltas of all three
861 high bits or all three low bits, whether the original value of a,b,c
862 is almost all zero or is uniformly distributed,
863 * If mix() is run forward or backward, at least 32 bits in a,b,c
864 have at least 1/4 probability of changing.
865 * If mix() is run forward, every bit of c will change between 1/3 and
866 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
867 mix() was built out of 36 single-cycle latency instructions in a
868 structure that could supported 2x parallelism, like so:
869 a -= b;
870 a -= c; x = (c>>13);
871 b -= c; a ^= x;
872 b -= a; x = (a<<8);
873 c -= a; b ^= x;
874 c -= b; x = (b>>13);
876 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
877 of that parallelism. They've also turned some of those single-cycle
878 latency instructions into multi-cycle latency instructions. Still,
879 this is the fastest good hash I could find. There were about 2^^68
880 to choose from. I only looked at a billion or so.
881 --------------------------------------------------------------------
883 /* same, but slower, works on systems that might have 8 byte hashval_t's */
884 #define mix(a,b,c) \
886 a -= b; a -= c; a ^= (c>>13); \
887 b -= c; b -= a; b ^= (a<< 8); \
888 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
889 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
890 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
891 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
892 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
893 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
894 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
898 --------------------------------------------------------------------
899 hash() -- hash a variable-length key into a 32-bit value
900 k : the key (the unaligned variable-length array of bytes)
901 len : the length of the key, counting by bytes
902 level : can be any 4-byte value
903 Returns a 32-bit value. Every bit of the key affects every bit of
904 the return value. Every 1-bit and 2-bit delta achieves avalanche.
905 About 36+6len instructions.
907 The best hash table sizes are powers of 2. There is no need to do
908 mod a prime (mod is sooo slow!). If you need less than 32 bits,
909 use a bitmask. For example, if you need only 10 bits, do
910 h = (h & hashmask(10));
911 In which case, the hash table should have hashsize(10) elements.
913 If you are hashing n strings (ub1 **)k, do it like this:
914 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
916 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
917 code any way you wish, private, educational, or commercial. It's free.
919 See http://burtleburtle.net/bob/hash/evahash.html
920 Use for hash table lookup, or anything where one collision in 2^32 is
921 acceptable. Do NOT use for cryptographic purposes.
922 --------------------------------------------------------------------
925 hashval_t
926 iterative_hash (const PTR k_in /* the key */,
927 register size_t length /* the length of the key */,
928 register hashval_t initval /* the previous hash, or
929 an arbitrary value */)
931 register const unsigned char *k = (const unsigned char *)k_in;
932 register hashval_t a,b,c,len;
934 /* Set up the internal state */
935 len = length;
936 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
937 c = initval; /* the previous hash value */
939 /*---------------------------------------- handle most of the key */
940 #ifndef WORDS_BIGENDIAN
941 /* On a little-endian machine, if the data is 4-byte aligned we can hash
942 by word for better speed. This gives nondeterministic results on
943 big-endian machines. */
944 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
945 while (len >= 12) /* aligned */
947 a += *(hashval_t *)(k+0);
948 b += *(hashval_t *)(k+4);
949 c += *(hashval_t *)(k+8);
950 mix(a,b,c);
951 k += 12; len -= 12;
953 else /* unaligned */
954 #endif
955 while (len >= 12)
957 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
958 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
959 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
960 mix(a,b,c);
961 k += 12; len -= 12;
964 /*------------------------------------- handle the last 11 bytes */
965 c += length;
966 switch(len) /* all the case statements fall through */
968 case 11: c+=((hashval_t)k[10]<<24);
969 case 10: c+=((hashval_t)k[9]<<16);
970 case 9 : c+=((hashval_t)k[8]<<8);
971 /* the first byte of c is reserved for the length */
972 case 8 : b+=((hashval_t)k[7]<<24);
973 case 7 : b+=((hashval_t)k[6]<<16);
974 case 6 : b+=((hashval_t)k[5]<<8);
975 case 5 : b+=k[4];
976 case 4 : a+=((hashval_t)k[3]<<24);
977 case 3 : a+=((hashval_t)k[2]<<16);
978 case 2 : a+=((hashval_t)k[1]<<8);
979 case 1 : a+=k[0];
980 /* case 0: nothing left to add */
982 mix(a,b,c);
983 /*-------------------------------------------- report the result */
984 return c;
987 /* Returns a hash code for pointer P. Simplified version of evahash */
989 static hashval_t
990 hash_pointer (const PTR p)
992 intptr_t v = (intptr_t) p;
993 unsigned a, b, c;
995 a = b = 0x9e3779b9;
996 a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
997 b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
998 c = 0x42135234;
999 mix (a, b, c);
1000 return c;