Bug 555045: Add regression test (r=cpeyer)
[tamarin-stm.git] / nanojit / NativeX64.h
blobeb98da84c612d8a8a792be7c45090e03675d89b2
1 /* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
2 /* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
3 /* ***** BEGIN LICENSE BLOCK *****
4 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
6 * The contents of this file are subject to the Mozilla Public License Version
7 * 1.1 (the "License"); you may not use this file except in compliance with
8 * the License. You may obtain a copy of the License at
9 * http://www.mozilla.org/MPL/
11 * Software distributed under the License is distributed on an "AS IS" basis,
12 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13 * for the specific language governing rights and limitations under the
14 * License.
16 * The Original Code is [Open Source Virtual Machine].
18 * The Initial Developer of the Original Code is
19 * Adobe System Incorporated.
20 * Portions created by the Initial Developer are Copyright (C) 2008
21 * the Initial Developer. All Rights Reserved.
23 * Contributor(s):
24 * Adobe AS3 Team
26 * Alternatively, the contents of this file may be used under the terms of
27 * either the GNU General Public License Version 2 or later (the "GPL"), or
28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
38 * ***** END LICENSE BLOCK ***** */
40 #ifndef __nanojit_NativeX64__
41 #define __nanojit_NativeX64__
43 #ifndef NANOJIT_64BIT
44 #error "NANOJIT_64BIT must be defined for X64 backend"
45 #endif
47 #ifdef PERFM
48 #define DOPROF
49 #include "../vprof/vprof.h"
50 #define count_instr() _nvprof("x64",1)
51 #define count_prolog() _nvprof("x64-prolog",1); count_instr();
52 #define count_imt() _nvprof("x64-imt",1) count_instr()
53 #else
54 #define count_instr()
55 #define count_prolog()
56 #define count_imt()
57 #endif
59 namespace nanojit
61 #define NJ_MAX_STACK_ENTRY 4096
62 #define NJ_ALIGN_STACK 16
64 #define NJ_JTBL_SUPPORTED 1
65 #define NJ_EXPANDED_LOADSTORE_SUPPORTED 1
66 #define NJ_F2I_SUPPORTED 1
67 #define NJ_SOFTFLOAT_SUPPORTED 0
69 enum Register {
70 RAX = 0, // 1st int return, # of sse varargs
71 RCX = 1, // 4th int arg
72 RDX = 2, // 3rd int arg 2nd return
73 RBX = 3, // saved
74 RSP = 4, // stack ptr
75 RBP = 5, // frame ptr, saved, sib reqd
76 RSI = 6, // 2nd int arg
77 RDI = 7, // 1st int arg
78 R8 = 8, // 5th int arg
79 R9 = 9, // 6th int arg
80 R10 = 10, // scratch
81 R11 = 11, // scratch
82 R12 = 12, // saved
83 R13 = 13, // saved, sib reqd like rbp
84 R14 = 14, // saved
85 R15 = 15, // saved
87 XMM0 = 16, // 1st double arg, return
88 XMM1 = 17, // 2nd double arg, return
89 XMM2 = 18, // 3rd double arg
90 XMM3 = 19, // 4th double arg
91 XMM4 = 20, // 5th double arg
92 XMM5 = 21, // 6th double arg
93 XMM6 = 22, // 7th double arg
94 XMM7 = 23, // 8th double arg
95 XMM8 = 24, // scratch
96 XMM9 = 25, // scratch
97 XMM10 = 26, // scratch
98 XMM11 = 27, // scratch
99 XMM12 = 28, // scratch
100 XMM13 = 29, // scratch
101 XMM14 = 30, // scratch
102 XMM15 = 31, // scratch
104 FP = RBP,
106 FirstReg = RAX,
107 LastReg = XMM15,
109 deprecated_UnknownReg = 32, // XXX: remove eventually, see bug 538924
110 UnspecifiedReg = 32
114 * Micro-templating variable-length opcodes, idea first
115 * describe by Mike Pall of Luajit.
117 * X86-64 opcode encodings: LSB encodes the length of the
118 * opcode in bytes, remaining bytes are encoded as 1-7 bytes
119 * in a single uint64_t value. The value is written as a single
120 * store into the code stream, and the code pointer is decremented
121 * by the length. each successive instruction partially overlaps
122 * the previous one.
124 * emit methods below are able to encode mod/rm, sib, rex, and
125 * register and small immediate values into these opcode values
126 * without much branchy code.
128 * these opcodes encapsulate all the const parts of the instruction.
129 * for example, the alu-immediate opcodes (add, sub, etc) encode
130 * part of their opcode in the R field of the mod/rm byte; this
131 * hardcoded value is in the constant below, and the R argument
132 * to emitrr() is 0. In a few cases, a whole instruction is encoded
133 * this way (eg callrax).
135 * when a disp32, imm32, or imm64 suffix can't fit in an 8-byte
136 * opcode, then it is written into the code separately and not counted
137 * in the opcode length.
140 enum X64Opcode
141 #if defined(_MSC_VER) && _MSC_VER >= 1400
142 #pragma warning(disable:4480) // nonstandard extension used: specifying underlying type for enum
143 : uint64_t
144 #endif
146 // 64bit opcode constants
147 // msb lsb len
148 X64_addqrr = 0xC003480000000003LL, // 64bit add r += b
149 X64_addqri = 0xC081480000000003LL, // 64bit add r += int64(imm32)
150 X64_addqr8 = 0x00C0834800000004LL, // 64bit add r += int64(imm8)
151 X64_andqri = 0xE081480000000003LL, // 64bit and r &= int64(imm32)
152 X64_andqr8 = 0x00E0834800000004LL, // 64bit and r &= int64(imm8)
153 X64_orqri = 0xC881480000000003LL, // 64bit or r |= int64(imm32)
154 X64_orqr8 = 0x00C8834800000004LL, // 64bit or r |= int64(imm8)
155 X64_xorqri = 0xF081480000000003LL, // 64bit xor r ^= int64(imm32)
156 X64_xorqr8 = 0x00F0834800000004LL, // 64bit xor r ^= int64(imm8)
157 X64_addlri = 0xC081400000000003LL, // 32bit add r += imm32
158 X64_addlr8 = 0x00C0834000000004LL, // 32bit add r += imm8
159 X64_andlri = 0xE081400000000003LL, // 32bit and r &= imm32
160 X64_andlr8 = 0x00E0834000000004LL, // 32bit and r &= imm8
161 X64_orlri = 0xC881400000000003LL, // 32bit or r |= imm32
162 X64_orlr8 = 0x00C8834000000004LL, // 32bit or r |= imm8
163 X64_sublri = 0xE881400000000003LL, // 32bit sub r -= imm32
164 X64_sublr8 = 0x00E8834000000004LL, // 32bit sub r -= imm8
165 X64_xorlri = 0xF081400000000003LL, // 32bit xor r ^= imm32
166 X64_xorlr8 = 0x00F0834000000004LL, // 32bit xor r ^= imm8
167 X64_addrr = 0xC003400000000003LL, // 32bit add r += b
168 X64_andqrr = 0xC023480000000003LL, // 64bit and r &= b
169 X64_andrr = 0xC023400000000003LL, // 32bit and r &= b
170 X64_call = 0x00000000E8000005LL, // near call
171 X64_callrax = 0xD0FF000000000002LL, // indirect call to addr in rax (no REX)
172 X64_cmovqno = 0xC0410F4800000004LL, // 64bit conditional mov if (no overflow) r = b
173 X64_cmovqnae= 0xC0420F4800000004LL, // 64bit conditional mov if (uint <) r = b
174 X64_cmovqnb = 0xC0430F4800000004LL, // 64bit conditional mov if (uint >=) r = b
175 X64_cmovqne = 0xC0450F4800000004LL, // 64bit conditional mov if (c) r = b
176 X64_cmovqna = 0xC0460F4800000004LL, // 64bit conditional mov if (uint <=) r = b
177 X64_cmovqnbe= 0xC0470F4800000004LL, // 64bit conditional mov if (uint >) r = b
178 X64_cmovqnge= 0xC04C0F4800000004LL, // 64bit conditional mov if (int <) r = b
179 X64_cmovqnl = 0xC04D0F4800000004LL, // 64bit conditional mov if (int >=) r = b
180 X64_cmovqng = 0xC04E0F4800000004LL, // 64bit conditional mov if (int <=) r = b
181 X64_cmovqnle= 0xC04F0F4800000004LL, // 64bit conditional mov if (int >) r = b
182 X64_cmovno = 0xC0410F4000000004LL, // 32bit conditional mov if (no overflow) r = b
183 X64_cmovnae = 0xC0420F4000000004LL, // 32bit conditional mov if (uint <) r = b
184 X64_cmovnb = 0xC0430F4000000004LL, // 32bit conditional mov if (uint >=) r = b
185 X64_cmovne = 0xC0450F4000000004LL, // 32bit conditional mov if (c) r = b
186 X64_cmovna = 0xC0460F4000000004LL, // 32bit conditional mov if (uint <=) r = b
187 X64_cmovnbe = 0xC0470F4000000004LL, // 32bit conditional mov if (uint >) r = b
188 X64_cmovnge = 0xC04C0F4000000004LL, // 32bit conditional mov if (int <) r = b
189 X64_cmovnl = 0xC04D0F4000000004LL, // 32bit conditional mov if (int >=) r = b
190 X64_cmovng = 0xC04E0F4000000004LL, // 32bit conditional mov if (int <=) r = b
191 X64_cmovnle = 0xC04F0F4000000004LL, // 32bit conditional mov if (int >) r = b
192 X64_cmplr = 0xC03B400000000003LL, // 32bit compare r,b
193 X64_cmpqr = 0xC03B480000000003LL, // 64bit compare r,b
194 X64_cmplri = 0xF881400000000003LL, // 32bit compare r,imm32
195 X64_cmpqri = 0xF881480000000003LL, // 64bit compare r,int64(imm32)
196 X64_cmplr8 = 0x00F8834000000004LL, // 32bit compare r,imm8
197 X64_cmpqr8 = 0x00F8834800000004LL, // 64bit compare r,int64(imm8)
198 X64_cvtsi2sd= 0xC02A0F40F2000005LL, // convert int32 to double r = (double) b
199 X64_cvtsq2sd= 0xC02A0F48F2000005LL, // convert int64 to double r = (double) b
200 X64_cvtss2sd= 0xC05A0F40F3000005LL, // convert float to double r = (double) b
201 X64_cvtsd2ss= 0xC05A0F40F2000005LL, // convert double to float r = (float) b
202 X64_cvtsd2si= 0xC02D0F40F2000005LL, // convert double to int32 r = (int32) b
203 X64_divsd = 0xC05E0F40F2000005LL, // divide scalar double r /= b
204 X64_mulsd = 0xC0590F40F2000005LL, // multiply scalar double r *= b
205 X64_addsd = 0xC0580F40F2000005LL, // add scalar double r += b
206 X64_idiv = 0xF8F7400000000003LL, // 32bit signed div (rax = rdx:rax/r, rdx=rdx:rax%r)
207 X64_imul = 0xC0AF0F4000000004LL, // 32bit signed mul r *= b
208 X64_imuli = 0xC069400000000003LL, // 32bit signed mul r = b * imm32
209 X64_imul8 = 0x00C06B4000000004LL, // 32bit signed mul r = b * imm8
210 X64_jmpi = 0x0000000025FF0006LL, // jump *0(rip)
211 X64_jmp = 0x00000000E9000005LL, // jump near rel32
212 X64_jmp8 = 0x00EB000000000002LL, // jump near rel8
213 X64_jo = 0x00000000800F0006LL, // jump near if overflow
214 X64_jb = 0x00000000820F0006LL, // jump near if below (uint <)
215 X64_jae = 0x00000000830F0006LL, // jump near if above or equal (uint >=)
216 X64_ja = 0x00000000870F0006LL, // jump near if above (uint >)
217 X64_jbe = 0x00000000860F0006LL, // jump near if below or equal (uint <=)
218 X64_je = 0x00000000840F0006LL, // near jump if equal
219 X64_jl = 0x000000008C0F0006LL, // jump near if less (int <)
220 X64_jge = 0x000000008D0F0006LL, // jump near if greater or equal (int >=)
221 X64_jg = 0x000000008F0F0006LL, // jump near if greater (int >)
222 X64_jle = 0x000000008E0F0006LL, // jump near if less or equal (int <=)
223 X64_jp = 0x000000008A0F0006LL, // jump near if parity (PF == 1)
224 X64_jneg = 0x0000000001000000LL, // xor with this mask to negate the condition
225 X64_jo8 = 0x0070000000000002LL, // jump near if overflow
226 X64_jb8 = 0x0072000000000002LL, // jump near if below (uint <)
227 X64_jae8 = 0x0073000000000002LL, // jump near if above or equal (uint >=)
228 X64_ja8 = 0x0077000000000002LL, // jump near if above (uint >)
229 X64_jbe8 = 0x0076000000000002LL, // jump near if below or equal (uint <=)
230 X64_je8 = 0x0074000000000002LL, // near jump if equal
231 X64_jne8 = 0x0075000000000002LL, // jump near if not equal
232 X64_jl8 = 0x007C000000000002LL, // jump near if less (int <)
233 X64_jge8 = 0x007D000000000002LL, // jump near if greater or equal (int >=)
234 X64_jg8 = 0x007F000000000002LL, // jump near if greater (int >)
235 X64_jle8 = 0x007E000000000002LL, // jump near if less or equal (int <=)
236 X64_jp8 = 0x007A000000000002LL, // jump near if parity (PF == 1)
237 X64_jnp8 = 0x007B000000000002LL, // jump near if not parity (PF == 0)
238 X64_jneg8 = 0x0001000000000000LL, // xor with this mask to negate the condition
239 X64_leaqrm = 0x00000000808D4807LL, // 64bit load effective addr reg <- disp32+base
240 X64_learm = 0x00000000808D4007LL, // 32bit load effective addr reg <- disp32+base
241 X64_learip = 0x00000000058D4807LL, // 64bit RIP-relative lea. reg <- disp32+rip (modrm = 00rrr101 = 05)
242 X64_movlr = 0xC08B400000000003LL, // 32bit mov r <- b
243 X64_movbmr = 0x0000000080884007LL, // 8bit store r -> [b+d32]
244 X64_movsmr = 0x8089406600000004LL, // 16bit store r -> [b+d32]
245 X64_movlmr = 0x0000000080894007LL, // 32bit store r -> [b+d32]
246 X64_movlrm = 0x00000000808B4007LL, // 32bit load r <- [b+d32]
247 X64_movqmr = 0x0000000080894807LL, // 64bit store gpr -> [b+d32]
248 X64_movqspr = 0x0024448948000005LL, // 64bit store gpr -> [rsp+d32] (sib required)
249 X64_movqr = 0xC08B480000000003LL, // 64bit mov r <- b
250 X64_movqi = 0xB848000000000002LL, // 64bit mov r <- imm64
251 X64_movi = 0xB840000000000002LL, // 32bit mov r <- imm32
252 X64_movqi32 = 0xC0C7480000000003LL, // 64bit mov r <- int64(imm32)
253 X64_movapsr = 0xC0280F4000000004LL, // 128bit mov xmm <- xmm
254 X64_movqrx = 0xC07E0F4866000005LL, // 64bit mov b <- xmm-r (reverses the usual r/b order)
255 X64_movqxr = 0xC06E0F4866000005LL, // 64bit mov b -> xmm-r
256 X64_movqrm = 0x00000000808B4807LL, // 64bit load r <- [b+d32]
257 X64_movsdrr = 0xC0100F40F2000005LL, // 64bit mov xmm-r <- xmm-b (upper 64bits unchanged)
258 X64_movsdrm = 0x80100F40F2000005LL, // 64bit load xmm-r <- [b+d32] (upper 64 cleared)
259 X64_movsdmr = 0x80110F40F2000005LL, // 64bit store xmm-r -> [b+d32]
260 X64_movssrm = 0x80100F40F3000005LL, // 32bit load xmm-r <- [b+d32] (upper 96 cleared)
261 X64_movssmr = 0x80110F40F3000005LL, // 32bit store xmm-r -> [b+d32]
262 X64_movsxdr = 0xC063480000000003LL, // sign extend i32 to i64 r = (int64)(int32) b
263 X64_movzx8 = 0xC0B60F4000000004LL, // zero extend i8 to i64 r = (uint64)(uint8) b
264 X64_movzx8m = 0x80B60F4000000004LL, // zero extend i8 load to i32 r <- [b+d32]
265 X64_movzx16m= 0x80B70F4000000004LL, // zero extend i16 load to i32 r <- [b+d32]
266 X64_movsx8m = 0x80BE0F4000000004LL, // sign extend i8 load to i32 r <- [b+d32]
267 X64_movsx16m= 0x80BF0F4000000004LL, // sign extend i16 load to i32 r <- [b+d32]
268 X64_neg = 0xD8F7400000000003LL, // 32bit two's compliment b = -b
269 X64_nop1 = 0x9000000000000001LL, // one byte NOP
270 X64_nop2 = 0x9066000000000002LL, // two byte NOP
271 X64_nop3 = 0x001F0F0000000003LL, // three byte NOP
272 X64_nop4 = 0x00401F0F00000004LL, // four byte NOP
273 X64_nop5 = 0x0000441F0F000005LL, // five byte NOP
274 X64_nop6 = 0x0000441F0F660006LL, // six byte NOP
275 X64_nop7 = 0x00000000801F0F07LL, // seven byte NOP
276 X64_not = 0xD0F7400000000003LL, // 32bit ones compliment b = ~b
277 X64_orlrr = 0xC00B400000000003LL, // 32bit or r |= b
278 X64_orqrr = 0xC00B480000000003LL, // 64bit or r |= b
279 X64_popr = 0x5840000000000002LL, // 64bit pop r <- [rsp++]
280 X64_pushr = 0x5040000000000002LL, // 64bit push r -> [--rsp]
281 X64_pxor = 0xC0EF0F4066000005LL, // 128bit xor xmm-r ^= xmm-b
282 X64_ret = 0xC300000000000001LL, // near return from called procedure
283 X64_sete = 0xC0940F4000000004LL, // set byte if equal (ZF == 1)
284 X64_seto = 0xC0900F4000000004LL, // set byte if overflow (OF == 1)
285 X64_setc = 0xC0920F4000000004LL, // set byte if carry (CF == 1)
286 X64_setl = 0xC09C0F4000000004LL, // set byte if less (int <) (SF != OF)
287 X64_setle = 0xC09E0F4000000004LL, // set byte if less or equal (int <=) (ZF == 1 || SF != OF)
288 X64_setg = 0xC09F0F4000000004LL, // set byte if greater (int >) (ZF == 0 && SF == OF)
289 X64_setge = 0xC09D0F4000000004LL, // set byte if greater or equal (int >=) (SF == OF)
290 X64_seta = 0xC0970F4000000004LL, // set byte if above (uint >) (CF == 0 && ZF == 0)
291 X64_setae = 0xC0930F4000000004LL, // set byte if above or equal (uint >=) (CF == 0)
292 X64_setb = 0xC0920F4000000004LL, // set byte if below (uint <) (CF == 1)
293 X64_setbe = 0xC0960F4000000004LL, // set byte if below or equal (uint <=) (ZF == 1 || CF == 1)
294 X64_subsd = 0xC05C0F40F2000005LL, // subtract scalar double r -= b
295 X64_shl = 0xE0D3400000000003LL, // 32bit left shift r <<= rcx
296 X64_shlq = 0xE0D3480000000003LL, // 64bit left shift r <<= rcx
297 X64_shr = 0xE8D3400000000003LL, // 32bit uint right shift r >>= rcx
298 X64_shrq = 0xE8D3480000000003LL, // 64bit uint right shift r >>= rcx
299 X64_sar = 0xF8D3400000000003LL, // 32bit int right shift r >>= rcx
300 X64_sarq = 0xF8D3480000000003LL, // 64bit int right shift r >>= rcx
301 X64_shli = 0x00E0C14000000004LL, // 32bit left shift r <<= imm8
302 X64_shlqi = 0x00E0C14800000004LL, // 64bit left shift r <<= imm8
303 X64_sari = 0x00F8C14000000004LL, // 32bit int right shift r >>= imm8
304 X64_sarqi = 0x00F8C14800000004LL, // 64bit int right shift r >>= imm8
305 X64_shri = 0x00E8C14000000004LL, // 32bit uint right shift r >>= imm8
306 X64_shrqi = 0x00E8C14800000004LL, // 64bit uint right shift r >>= imm8
307 X64_subqrr = 0xC02B480000000003LL, // 64bit sub r -= b
308 X64_subrr = 0xC02B400000000003LL, // 32bit sub r -= b
309 X64_subqri = 0xE881480000000003LL, // 64bit sub r -= int64(imm32)
310 X64_subqr8 = 0x00E8834800000004LL, // 64bit sub r -= int64(imm8)
311 X64_ucomisd = 0xC02E0F4066000005LL, // unordered compare scalar double
312 X64_xorqrr = 0xC033480000000003LL, // 64bit xor r &= b
313 X64_xorrr = 0xC033400000000003LL, // 32bit xor r &= b
314 X64_xorpd = 0xC0570F4066000005LL, // 128bit xor xmm (two packed doubles)
315 X64_xorps = 0xC0570F4000000004LL, // 128bit xor xmm (four packed singles), one byte shorter
316 X64_xorpsm = 0x05570F4000000004LL, // 128bit xor xmm, [rip+disp32]
317 X64_xorpsa = 0x2504570F40000005LL, // 128bit xor xmm, [disp32]
318 X64_inclmRAX= 0x00FF000000000002LL, // incl (%rax)
319 X64_jmpx = 0xC524ff4000000004LL, // jmp [d32+x*8]
320 X64_jmpxb = 0xC024ff4000000004LL, // jmp [b+x*8]
322 X86_and8r = 0xC022000000000002LL, // and rl,rh
323 X86_sete = 0xC0940F0000000003LL, // no-rex version of X64_sete
324 X86_setnp = 0xC09B0F0000000003LL // no-rex set byte if odd parity (ordered fcmp result) (PF == 0)
327 typedef uint32_t RegisterMask;
329 static const RegisterMask GpRegs = 0xffff;
330 static const RegisterMask FpRegs = 0xffff0000;
331 #ifdef _MSC_VER
332 static const RegisterMask SavedRegs = 1<<RBX | 1<<RSI | 1<<RDI | 1<<R12 | 1<<R13 | 1<<R14 | 1<<R15;
333 static const int NumSavedRegs = 7; // rbx, rsi, rdi, r12-15
334 static const int NumArgRegs = 4;
335 #else
336 static const RegisterMask SavedRegs = 1<<RBX | 1<<R12 | 1<<R13 | 1<<R14 | 1<<R15;
337 static const int NumSavedRegs = 5; // rbx, r12-15
338 static const int NumArgRegs = 6;
339 #endif
340 // Warning: when talking about single byte registers, RSP/RBP/RSI/RDI are
341 // actually synonyms for AH/CH/DH/BH. So this value means "any
342 // single-byte GpReg except AH/CH/DH/BH".
343 static const int SingleByteStoreRegs = GpRegs & ~(1<<RSP | 1<<RBP | 1<<RSI | 1<<RDI);
345 static inline bool IsFpReg(Register r) {
346 return ((1<<r) & FpRegs) != 0;
348 static inline bool IsGpReg(Register r) {
349 return ((1<<r) & GpRegs) != 0;
352 verbose_only( extern const char* regNames[]; )
353 verbose_only( extern const char* gpRegNames32[]; )
354 verbose_only( extern const char* gpRegNames8[]; )
355 verbose_only( extern const char* gpRegNames8hi[]; )
357 #define DECLARE_PLATFORM_STATS()
358 #define DECLARE_PLATFORM_REGALLOC()
360 #define DECLARE_PLATFORM_ASSEMBLER() \
361 const static Register argRegs[NumArgRegs], retRegs[1]; \
362 void underrunProtect(ptrdiff_t bytes); \
363 void nativePageReset(); \
364 void nativePageSetup(); \
365 void asm_qbinop(LIns*); \
366 void MR(Register, Register);\
367 void JMP(NIns*);\
368 void JMPl(NIns*);\
369 void emit(uint64_t op);\
370 void emit8(uint64_t op, int64_t val);\
371 void emit_target8(size_t underrun, uint64_t op, NIns* target);\
372 void emit_target32(size_t underrun, uint64_t op, NIns* target);\
373 void emit_target64(size_t underrun, uint64_t op, NIns* target); \
374 void emitrr(uint64_t op, Register r, Register b);\
375 void emitrxb(uint64_t op, Register r, Register x, Register b);\
376 void emitxb(uint64_t op, Register x, Register b) { emitrxb(op, (Register)0, x, b); }\
377 void emitrr8(uint64_t op, Register r, Register b);\
378 void emitr(uint64_t op, Register b) { emitrr(op, (Register)0, b); }\
379 void emitr8(uint64_t op, Register b) { emitrr8(op, (Register)0, b); }\
380 void emitprr(uint64_t op, Register r, Register b);\
381 void emitrm8(uint64_t op, Register r, int32_t d, Register b);\
382 void emitrm(uint64_t op, Register r, int32_t d, Register b);\
383 void emitrm_wide(uint64_t op, Register r, int32_t d, Register b);\
384 uint64_t emit_disp32(uint64_t op, int32_t d);\
385 void emitprm(uint64_t op, Register r, int32_t d, Register b);\
386 void emitrr_imm(uint64_t op, Register r, Register b, int32_t imm);\
387 void emitr_imm64(uint64_t op, Register r, uint64_t imm);\
388 void emitrxb_imm(uint64_t op, Register r, Register x, Register b, int32_t imm);\
389 void emitr_imm(uint64_t op, Register r, int32_t imm) { emitrr_imm(op, (Register)0, r, imm); }\
390 void emitr_imm8(uint64_t op, Register b, int32_t imm8);\
391 void emitxm_abs(uint64_t op, Register r, int32_t addr32);\
392 void emitxm_rel(uint64_t op, Register r, NIns* addr64);\
393 bool isTargetWithinS8(NIns* target);\
394 bool isTargetWithinS32(NIns* target);\
395 void asm_immi(Register r, int32_t v, bool canClobberCCs);\
396 void asm_immq(Register r, uint64_t v, bool canClobberCCs);\
397 void asm_immf(Register r, uint64_t v, bool canClobberCCs);\
398 void asm_regarg(ArgType, LIns*, Register);\
399 void asm_stkarg(ArgType, LIns*, int);\
400 void asm_shift(LIns*);\
401 void asm_shift_imm(LIns*);\
402 void asm_arith_imm(LIns*);\
403 void beginOp1Regs(LIns *ins, RegisterMask allow, Register &rr, Register &ra);\
404 void beginOp2Regs(LIns *ins, RegisterMask allow, Register &rr, Register &ra, Register &rb);\
405 void endOpRegs(LIns *ins, Register rr, Register ra);\
406 void beginLoadRegs(LIns *ins, RegisterMask allow, Register &rr, int32_t &d, Register &rb);\
407 void endLoadRegs(LIns *ins);\
408 void dis(NIns *p, int bytes);\
409 void asm_cmp(LIns*);\
410 void asm_cmp_imm(LIns*);\
411 void asm_fcmp(LIns*, LIns*);\
412 NIns* asm_fbranch(bool, LIns*, NIns*);\
413 void asm_div(LIns *ins);\
414 void asm_div_mod(LIns *ins);\
415 int max_stk_used;\
416 void PUSHR(Register r);\
417 void POPR(Register r);\
418 void NOT(Register r);\
419 void NEG(Register r);\
420 void IDIV(Register r);\
421 void SHR(Register r);\
422 void SAR(Register r);\
423 void SHL(Register r);\
424 void SHRQ(Register r);\
425 void SARQ(Register r);\
426 void SHLQ(Register r);\
427 void SHRI(Register r, int i);\
428 void SARI(Register r, int i);\
429 void SHLI(Register r, int i);\
430 void SHRQI(Register r, int i);\
431 void SARQI(Register r, int i);\
432 void SHLQI(Register r, int i);\
433 void SETE(Register r);\
434 void SETL(Register r);\
435 void SETLE(Register r);\
436 void SETG(Register r);\
437 void SETGE(Register r);\
438 void SETB(Register r);\
439 void SETBE(Register r);\
440 void SETA(Register r);\
441 void SETAE(Register r);\
442 void SETO(Register r);\
443 void ADDRR(Register l, Register r);\
444 void SUBRR(Register l, Register r);\
445 void ANDRR(Register l, Register r);\
446 void ORLRR(Register l, Register r);\
447 void XORRR(Register l, Register r);\
448 void IMUL(Register l, Register r);\
449 void CMPLR(Register l, Register r);\
450 void MOVLR(Register l, Register r);\
451 void ADDQRR(Register l, Register r);\
452 void SUBQRR(Register l, Register r);\
453 void ANDQRR(Register l, Register r);\
454 void ORQRR(Register l, Register r);\
455 void XORQRR(Register l, Register r);\
456 void CMPQR(Register l, Register r);\
457 void MOVQR(Register l, Register r);\
458 void MOVAPSR(Register l, Register r);\
459 void CMOVNO(Register l, Register r);\
460 void CMOVNE(Register l, Register r);\
461 void CMOVNL(Register l, Register r);\
462 void CMOVNLE(Register l, Register r);\
463 void CMOVNG(Register l, Register r);\
464 void CMOVNGE(Register l, Register r);\
465 void CMOVNB(Register l, Register r);\
466 void CMOVNBE(Register l, Register r);\
467 void CMOVNA(Register l, Register r);\
468 void CMOVNAE(Register l, Register r);\
469 void CMOVQNO(Register l, Register r);\
470 void CMOVQNE(Register l, Register r);\
471 void CMOVQNL(Register l, Register r);\
472 void CMOVQNLE(Register l, Register r);\
473 void CMOVQNG(Register l, Register r);\
474 void CMOVQNGE(Register l, Register r);\
475 void CMOVQNB(Register l, Register r);\
476 void CMOVQNBE(Register l, Register r);\
477 void CMOVQNA(Register l, Register r);\
478 void CMOVQNAE(Register l, Register r);\
479 void MOVSXDR(Register l, Register r);\
480 void MOVZX8(Register l, Register r);\
481 void XORPS(Register r);\
482 void XORPS(Register l, Register r);\
483 void DIVSD(Register l, Register r);\
484 void MULSD(Register l, Register r);\
485 void ADDSD(Register l, Register r);\
486 void SUBSD(Register l, Register r);\
487 void CVTSQ2SD(Register l, Register r);\
488 void CVTSI2SD(Register l, Register r);\
489 void CVTSS2SD(Register l, Register r);\
490 void CVTSD2SS(Register l, Register r);\
491 void CVTSD2SI(Register l, Register r);\
492 void UCOMISD(Register l, Register r);\
493 void MOVQRX(Register l, Register r);\
494 void MOVQXR(Register l, Register r);\
495 void MOVI(Register r, int32_t i32);\
496 void ADDLRI(Register r, int32_t i32);\
497 void SUBLRI(Register r, int32_t i32);\
498 void ANDLRI(Register r, int32_t i32);\
499 void ORLRI(Register r, int32_t i32);\
500 void XORLRI(Register r, int32_t i32);\
501 void CMPLRI(Register r, int32_t i32);\
502 void ADDQRI(Register r, int32_t i32);\
503 void SUBQRI(Register r, int32_t i32);\
504 void ANDQRI(Register r, int32_t i32);\
505 void ORQRI(Register r, int32_t i32);\
506 void XORQRI(Register r, int32_t i32);\
507 void CMPQRI(Register r, int32_t i32);\
508 void MOVQI32(Register r, int32_t i32);\
509 void ADDLR8(Register r, int32_t i8);\
510 void SUBLR8(Register r, int32_t i8);\
511 void ANDLR8(Register r, int32_t i8);\
512 void ORLR8(Register r, int32_t i8);\
513 void XORLR8(Register r, int32_t i8);\
514 void CMPLR8(Register r, int32_t i8);\
515 void ADDQR8(Register r, int32_t i8);\
516 void SUBQR8(Register r, int32_t i8);\
517 void ANDQR8(Register r, int32_t i8);\
518 void ORQR8(Register r, int32_t i8);\
519 void XORQR8(Register r, int32_t i8);\
520 void CMPQR8(Register r, int32_t i8);\
521 void IMULI(Register l, Register r, int32_t i32);\
522 void MOVQI(Register r, uint64_t u64);\
523 void LEARIP(Register r, int32_t d);\
524 void LEAQRM(Register r, int d, Register b);\
525 void MOVLRM(Register r, int d, Register b);\
526 void MOVQRM(Register r, int d, Register b);\
527 void MOVBMR(Register r, int d, Register b);\
528 void MOVSMR(Register r, int d, Register b);\
529 void MOVLMR(Register r, int d, Register b);\
530 void MOVQMR(Register r, int d, Register b);\
531 void MOVZX8M(Register r, int d, Register b);\
532 void MOVZX16M(Register r, int d, Register b);\
533 void MOVSX8M(Register r, int d, Register b);\
534 void MOVSX16M(Register r, int d, Register b);\
535 void MOVSDRM(Register r, int d, Register b);\
536 void MOVSDMR(Register r, int d, Register b);\
537 void MOVSSMR(Register r, int d, Register b);\
538 void MOVSSRM(Register r, int d, Register b);\
539 void JMP8(size_t n, NIns* t);\
540 void JMP32(size_t n, NIns* t);\
541 void JMP64(size_t n, NIns* t);\
542 void JMPX(Register indexreg, NIns** table);\
543 void JMPXB(Register indexreg, Register tablereg);\
544 void JO(size_t n, NIns* t);\
545 void JE(size_t n, NIns* t);\
546 void JL(size_t n, NIns* t);\
547 void JLE(size_t n, NIns* t);\
548 void JG(size_t n, NIns* t);\
549 void JGE(size_t n, NIns* t);\
550 void JB(size_t n, NIns* t);\
551 void JBE(size_t n, NIns* t);\
552 void JA(size_t n, NIns* t);\
553 void JAE(size_t n, NIns* t);\
554 void JP(size_t n, NIns* t);\
555 void JNO(size_t n, NIns* t);\
556 void JNE(size_t n, NIns* t);\
557 void JNL(size_t n, NIns* t);\
558 void JNLE(size_t n, NIns* t);\
559 void JNG(size_t n, NIns* t);\
560 void JNGE(size_t n, NIns* t);\
561 void JNB(size_t n, NIns* t);\
562 void JNBE(size_t n, NIns* t);\
563 void JNA(size_t n, NIns* t);\
564 void JNAE(size_t n, NIns* t);\
565 void JO8(size_t n, NIns* t);\
566 void JE8(size_t n, NIns* t);\
567 void JL8(size_t n, NIns* t);\
568 void JLE8(size_t n, NIns* t);\
569 void JG8(size_t n, NIns* t);\
570 void JGE8(size_t n, NIns* t);\
571 void JB8(size_t n, NIns* t);\
572 void JBE8(size_t n, NIns* t);\
573 void JA8(size_t n, NIns* t);\
574 void JAE8(size_t n, NIns* t);\
575 void JP8(size_t n, NIns* t);\
576 void JNO8(size_t n, NIns* t);\
577 void JNE8(size_t n, NIns* t);\
578 void JNL8(size_t n, NIns* t);\
579 void JNLE8(size_t n, NIns* t);\
580 void JNG8(size_t n, NIns* t);\
581 void JNGE8(size_t n, NIns* t);\
582 void JNB8(size_t n, NIns* t);\
583 void JNBE8(size_t n, NIns* t);\
584 void JNA8(size_t n, NIns* t);\
585 void JNAE8(size_t n, NIns* t);\
586 void CALL(size_t n, NIns* t);\
587 void CALLRAX();\
588 void RET();\
589 void MOVQSPR(int d, Register r);\
590 void XORPSA(Register r, int32_t i32);\
591 void XORPSM(Register r, NIns* a64);\
592 void X86_AND8R(Register r);\
593 void X86_SETNP(Register r);\
594 void X86_SETE(Register r);\
596 const int LARGEST_UNDERRUN_PROT = 32; // largest value passed to underrunProtect
598 typedef uint8_t NIns;
600 // Bytes of icache to flush after Assembler::patch
601 const size_t LARGEST_BRANCH_PATCH = 16 * sizeof(NIns);
603 } // namespace nanojit
605 #endif // __nanojit_NativeX64__