2 import iam_sympy_example
4 from sympy
import Basic
,exp
,Symbol
,sin
,Rational
,I
,Mul
,NCSymbol
, Matrix
, \
5 gamma
, sigma
, one
, Pauli
27 """ p = (p1, p2, p3); r = 0,1 """
31 ksi
= Matrix([ [1],[0] ])
33 ksi
= Matrix([ [0],[1] ])
34 a
= (sigma1
*p1
+ sigma2
*p2
+ sigma3
*p3
) / (E
+m
) * ksi
37 return (E
+m
).sqrt() * Matrix([ [ksi
[0,0]], [ksi
[1,0]], [a
[0,0]], [a
[1,0]] ])
40 """ p = (p1, p2, p3); r = 0,1 """
44 ksi
= Matrix([ [1],[0] ])
46 ksi
= -Matrix([ [0],[1] ])
47 a
= (sigma1
*p1
+ sigma2
*p2
+ sigma3
*p3
) / (E
+m
) * ksi
50 return sqrt(E
+m
) * Matrix([ [a
[0,0]], [a
[1,0]], [ksi
[0,0]], [ksi
[1,0]] ])
54 p0
= sqrt(m
**2+p1
**2+p2
**2+p3
**2)
55 return gamma0
*p0
-gamma1
*p1
-gamma2
*p2
-gamma3
*p3
58 assert M
.lines
== M
.cols
60 for i
in range(M
.lines
):
66 assert u(p
, 1).D
* u(p
, 2) == 0
67 assert u(p
, 2).D
* u(p
, 1) == 0
69 p1
,p2
,p3
=[Symbol(x
) for x
in ["p1","p2","p3"]]
70 pp1
,pp2
,pp3
=[Symbol(x
) for x
in ["pp1","pp2","pp3"]]
71 k1
,k2
,k3
=[Symbol(x
) for x
in ["k1","k2","k3"]]
72 kp1
,kp2
,kp3
=[Symbol(x
) for x
in ["kp1","kp2","kp3"]]
82 #e = (pslash(p)+m*one(4))*(pslash(k)-m*one(4))
83 #f = pslash(p)+m*one(4)
84 #g = pslash(p)-m*one(4)
86 #print Tr(pslash(p) * pslash(k)).expand()
88 #M0 = [ ( v(pp, 1).D * gamma(mu) * u(p, 1) ) * ( u(k, 1).D * gamma(mu,True) * \
89 # v(kp, 1) ) for mu in range(4)]
90 #M = M0[0]+M0[1]+M0[2]+M0[3]
91 #assert isinstance(M, Basic)
93 #d=Symbol("d",True) #d=E+m
97 #M = ((M.subs(E,d-m)).expand() * d**2 ).expand()
98 #print "1/(E+m)**2 * ",M
105 print Pauli(1)*Pauli(1)
107 #print Pauli(1)*2*Pauli(1)