Workaround mktime() if it rejects years < 1970
[survex.git] / src / matrix.c
blobc24d8c33eb0407c40ef8bdb135e642bb92876505
1 /* matrix.c
2 * Matrix building and solving routines
3 * Copyright (C) 1993-2003,2010,2013 Olly Betts
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 /*#define SOR 1*/
22 #if 0
23 # define DEBUG_INVALID 1
24 #endif
26 #include <config.h>
28 #include "debug.h"
29 #include "cavern.h"
30 #include "filename.h"
31 #include "message.h"
32 #include "netbits.h"
33 #include "matrix.h"
34 #include "out.h"
36 #undef PRINT_MATRICES
37 #define PRINT_MATRICES 0
39 #undef DEBUG_MATRIX_BUILD
40 #define DEBUG_MATRIX_BUILD 0
42 #undef DEBUG_MATRIX
43 #define DEBUG_MATRIX 0
45 #if PRINT_MATRICES
46 static void print_matrix(real *M, real *B, long n);
47 #endif
49 static void choleski(real *M, real *B, long n);
51 #ifdef SOR
52 static void sor(real *M, real *B, long n);
53 #endif
55 /* for M(row, col) col must be <= row, so Y <= X */
56 # define M(X, Y) ((real *)M)[((((OSSIZE_T)(X)) * ((X) + 1)) >> 1) + (Y)]
57 /* +(Y>X?0*printf("row<col (line %d)\n",__LINE__):0) */
58 /*#define M_(X, Y) ((real *)M)[((((OSSIZE_T)(Y)) * ((Y) + 1)) >> 1) + (X)]*/
60 static int find_stn_in_tab(node *stn);
61 static int add_stn_to_tab(node *stn);
62 static void build_matrix(node *list);
64 static long n_stn_tab;
66 static pos **stn_tab;
68 extern void
69 solve_matrix(node *list)
71 node *stn;
72 long n = 0;
73 FOR_EACH_STN(stn, list) {
74 if (!fixed(stn)) n++;
76 if (n == 0) return;
78 /* we just need n to be a reasonable estimate >= the number
79 * of stations left after reduction. If memory is
80 * plentiful, we can be crass.
82 stn_tab = osmalloc((OSSIZE_T)(n * ossizeof(pos*)));
83 n_stn_tab = 0;
85 FOR_EACH_STN(stn, list) {
86 if (!fixed(stn)) add_stn_to_tab(stn);
89 if (n_stn_tab < n) {
90 /* release unused entries in stn_tab */
91 stn_tab = osrealloc(stn_tab, n_stn_tab * ossizeof(pos*));
94 build_matrix(list);
95 #if DEBUG_MATRIX
96 FOR_EACH_STN(stn, list) {
97 printf("(%8.2f, %8.2f, %8.2f ) ", POS(stn, 0), POS(stn, 1), POS(stn, 2));
98 print_prefix(stn->name);
99 putnl();
101 #endif
103 osfree(stn_tab);
106 #ifdef NO_COVARIANCES
107 # define FACTOR 1
108 #else
109 # define FACTOR 3
110 #endif
112 static void
113 build_matrix(node *list)
115 real *M;
116 real *B;
117 int dim;
119 if (n_stn_tab == 0) {
120 if (!fQuiet)
121 puts(msg(/*Network solved by reduction - no simultaneous equations to solve.*/74));
122 return;
124 /* (OSSIZE_T) cast may be needed if n_stn_tab>=181 */
125 M = osmalloc((OSSIZE_T)((((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1)) * ossizeof(real));
126 B = osmalloc((OSSIZE_T)(n_stn_tab * FACTOR * ossizeof(real)));
128 if (!fQuiet) {
129 if (n_stn_tab == 1)
130 out_current_action(msg(/*Solving one equation*/78));
131 else
132 out_current_action1(msg(/*Solving %d simultaneous equations*/75), n_stn_tab);
135 #ifdef NO_COVARIANCES
136 dim = 2;
137 #else
138 dim = 0; /* fudge next loop for now */
139 #endif
140 for ( ; dim >= 0; dim--) {
141 node *stn;
142 int row;
144 /* Initialise M and B to zero - zeroing "linearly" will minimise
145 * paging when the matrix is large */
147 int end = n_stn_tab * FACTOR;
148 for (row = 0; row < end; row++) B[row] = (real)0.0;
149 end = ((OSSIZE_T)n_stn_tab * FACTOR * (n_stn_tab * FACTOR + 1)) >> 1;
150 for (row = 0; row < end; row++) M[row] = (real)0.0;
153 /* Construct matrix - Go thru' stn list & add all forward legs between
154 * two unfixed stations to M (so each leg goes on exactly once).
156 * All legs between two fixed stations can be ignored here.
158 * All legs between a fixed and an unfixed station are then considered
159 * from the unfixed end (if we consider them from the fixed end we'd
160 * need to somehow detect when we're at a fixed point cut line and work
161 * out which side we're dealing with at this time. */
162 FOR_EACH_STN(stn, list) {
163 #ifdef NO_COVARIANCES
164 real e;
165 #else
166 svar e;
167 delta a;
168 #endif
169 int f, t;
170 int dirn;
171 #if DEBUG_MATRIX_BUILD
172 print_prefix(stn->name);
173 printf(" used: %d colour %ld\n",
174 (!!stn->leg[2]) << 2 | (!!stn -> leg[1]) << 1 | (!!stn->leg[0]),
175 stn->colour);
177 for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
178 #ifdef NO_COVARIANCES
179 printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
180 stn->leg[dirn]->v[0], stn->leg[dirn]->l.reverse);
181 #else
182 printf("Leg %d, vx=%f, reverse=%d, to ", dirn,
183 stn->leg[dirn]->v[0][0], stn->leg[dirn]->l.reverse);
184 #endif
185 print_prefix(stn->leg[dirn]->l.to->name);
186 putnl();
188 putnl();
189 #endif /* DEBUG_MATRIX_BUILD */
191 if (!fixed(stn)) {
192 f = find_stn_in_tab(stn);
193 for (dirn = 0; dirn <= 2 && stn->leg[dirn]; dirn++) {
194 linkfor *leg = stn->leg[dirn];
195 node *to = leg->l.to;
196 if (fixed(to)) {
197 bool fRev = !data_here(leg);
198 if (fRev) leg = reverse_leg(leg);
199 /* Ignore equated nodes */
200 #ifdef NO_COVARIANCES
201 e = leg->v[dim];
202 if (e != (real)0.0) {
203 e = ((real)1.0) / e;
204 M(f,f) += e;
205 B[f] += e * POS(to, dim);
206 if (fRev) {
207 B[f] += leg->d[dim];
208 } else {
209 B[f] -= leg->d[dim];
212 #else
213 if (invert_svar(&e, &leg->v)) {
214 delta b;
215 int i;
216 if (fRev) {
217 adddd(&a, &POSD(to), &leg->d);
218 } else {
219 subdd(&a, &POSD(to), &leg->d);
221 mulsd(&b, &e, &a);
222 for (i = 0; i < 3; i++) {
223 M(f * FACTOR + i, f * FACTOR + i) += e[i];
224 B[f * FACTOR + i] += b[i];
226 M(f * FACTOR + 1, f * FACTOR) += e[3];
227 M(f * FACTOR + 2, f * FACTOR) += e[4];
228 M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
230 #endif
231 } else if (data_here(leg)) {
232 /* forward leg, unfixed -> unfixed */
233 t = find_stn_in_tab(to);
234 #if DEBUG_MATRIX
235 printf("Leg %d to %d, var %f, delta %f\n", f, t, e,
236 leg->d[dim]);
237 #endif
238 /* Ignore equated nodes & lollipops */
239 #ifdef NO_COVARIANCES
240 e = leg->v[dim];
241 if (t != f && e != (real)0.0) {
242 real a;
243 e = ((real)1.0) / e;
244 M(f,f) += e;
245 M(t,t) += e;
246 if (f < t) M(t,f) -= e; else M(f,t) -= e;
247 a = e * leg->d[dim];
248 B[f] -= a;
249 B[t] += a;
251 #else
252 if (t != f && invert_svar(&e, &leg->v)) {
253 int i;
254 mulsd(&a, &e, &leg->d);
255 for (i = 0; i < 3; i++) {
256 M(f * FACTOR + i, f * FACTOR + i) += e[i];
257 M(t * FACTOR + i, t * FACTOR + i) += e[i];
258 if (f < t)
259 M(t * FACTOR + i, f * FACTOR + i) -= e[i];
260 else
261 M(f * FACTOR + i, t * FACTOR + i) -= e[i];
262 B[f * FACTOR + i] -= a[i];
263 B[t * FACTOR + i] += a[i];
265 M(f * FACTOR + 1, f * FACTOR) += e[3];
266 M(t * FACTOR + 1, t * FACTOR) += e[3];
267 M(f * FACTOR + 2, f * FACTOR) += e[4];
268 M(t * FACTOR + 2, t * FACTOR) += e[4];
269 M(f * FACTOR + 2, f * FACTOR + 1) += e[5];
270 M(t * FACTOR + 2, t * FACTOR + 1) += e[5];
271 if (f < t) {
272 M(t * FACTOR + 1, f * FACTOR) -= e[3];
273 M(t * FACTOR, f * FACTOR + 1) -= e[3];
274 M(t * FACTOR + 2, f * FACTOR) -= e[4];
275 M(t * FACTOR, f * FACTOR + 2) -= e[4];
276 M(t * FACTOR + 2, f * FACTOR + 1) -= e[5];
277 M(t * FACTOR + 1, f * FACTOR + 2) -= e[5];
278 } else {
279 M(f * FACTOR + 1, t * FACTOR) -= e[3];
280 M(f * FACTOR, t * FACTOR + 1) -= e[3];
281 M(f * FACTOR + 2, t * FACTOR) -= e[4];
282 M(f * FACTOR, t * FACTOR + 2) -= e[4];
283 M(f * FACTOR + 2, t * FACTOR + 1) -= e[5];
284 M(f * FACTOR + 1, t * FACTOR + 2) -= e[5];
287 #endif
293 #if PRINT_MATRICES
294 print_matrix(M, B, n_stn_tab * FACTOR); /* 'ave a look! */
295 #endif
297 #ifdef SOR
298 /* defined in network.c, may be altered by -z<letters> on command line */
299 if (optimize & BITA('i'))
300 sor(M, B, n_stn_tab * FACTOR);
301 else
302 #endif
303 choleski(M, B, n_stn_tab * FACTOR);
306 int m;
307 for (m = (int)(n_stn_tab - 1); m >= 0; m--) {
308 #ifdef NO_COVARIANCES
309 stn_tab[m]->p[dim] = B[m];
310 if (dim == 0) {
311 SVX_ASSERT2(pos_fixed(stn_tab[m]),
312 "setting station coordinates didn't mark pos as fixed");
314 #else
315 int i;
316 for (i = 0; i < 3; i++) {
317 stn_tab[m]->p[i] = B[m * FACTOR + i];
319 SVX_ASSERT2(pos_fixed(stn_tab[m]),
320 "setting station coordinates didn't mark pos as fixed");
321 #endif
323 #if EXPLICIT_FIXED_FLAG
324 for (m = n_stn_tab - 1; m >= 0; m--) fixpos(stn_tab[m]);
325 #endif
328 osfree(B);
329 osfree(M);
332 static int
333 find_stn_in_tab(node *stn)
335 int i = 0;
336 pos *p = stn->name->pos;
337 while (stn_tab[i] != p)
338 if (++i == n_stn_tab) {
339 #if DEBUG_INVALID
340 fputs("Station ", stderr);
341 fprint_prefix(stderr, stn->name);
342 fputs(" not in table\n\n", stderr);
343 #endif
344 #if 0
345 print_prefix(stn->name);
346 printf(" used: %d colour %d\n",
347 (!!stn->leg[2])<<2 | (!!stn->leg[1])<<1 | (!!stn->leg[0]),
348 stn->colour);
349 #endif
350 fatalerror(/*Bug in program detected! Please report this to the authors*/11);
352 return i;
355 static int
356 add_stn_to_tab(node *stn)
358 int i;
359 pos *p = stn->name->pos;
360 for (i = 0; i < n_stn_tab; i++) {
361 if (stn_tab[i] == p) return i;
363 stn_tab[n_stn_tab++] = p;
364 return i;
367 /* Solve MX=B for X by Choleski factorisation - modified Choleski actually
368 * since we factor into LDL' while Choleski is just LL'
370 /* Note M must be symmetric positive definite */
371 /* routine is entitled to scribble on M and B if it wishes */
372 static void
373 choleski(real *M, real *B, long n)
375 int i, j, k;
377 for (j = 1; j < n; j++) {
378 real V;
379 for (i = 0; i < j; i++) {
380 V = (real)0.0;
381 for (k = 0; k < i; k++) V += M(i,k) * M(j,k) * M(k,k);
382 M(j,i) = (M(j,i) - V) / M(i,i);
384 V = (real)0.0;
385 for (k = 0; k < j; k++) V += M(j,k) * M(j,k) * M(k,k);
386 M(j,j) -= V; /* may be best to add M() last for numerical reasons too */
389 /* Multiply x by L inverse */
390 for (i = 0; i < n - 1; i++) {
391 for (j = i + 1; j < n; j++) {
392 B[j] -= M(j,i) * B[i];
396 /* Multiply x by D inverse */
397 for (i = 0; i < n; i++) {
398 B[i] /= M(i,i);
401 /* Multiply x by (L transpose) inverse */
402 for (i = (int)(n - 1); i > 0; i--) {
403 for (j = i - 1; j >= 0; j--) {
404 B[j] -= M(i,j) * B[i];
408 /* printf("\n%ld/%ld\n\n",flops,flopsTot); */
411 #ifdef SOR
412 /* factor to use for SOR (must have 1 <= SOR_factor < 2) */
413 #define SOR_factor 1.93 /* 1.95 */
415 /* Solve MX=B for X by SOR of Gauss-Siedel */
416 /* routine is entitled to scribble on M and B if it wishes */
417 static void
418 sor(real *M, real *B, long n)
420 real t, x, delta, threshold, t2;
421 int row, col;
422 real *X;
423 long it = 0;
425 X = osmalloc(n * ossizeof(real));
427 threshold = 0.00001;
429 printf("reciprocating diagonal\n"); /* TRANSLATE */
431 /* munge diagonal so we can multiply rather than divide */
432 for (row = n - 1; row >= 0; row--) {
433 M(row,row) = 1 / M(row,row);
434 X[row] = 0;
437 printf("starting iteration\n"); /* TRANSLATE */
439 do {
440 /*printf("*");*/
441 it++;
442 t = 0.0;
443 for (row = 0; row < n; row++) {
444 x = B[row];
445 for (col = 0; col < row; col++) x -= M(row,col) * X[col];
446 for (col++; col < n; col++) x -= M(col,row) * X[col];
447 x *= M(row,row);
448 delta = (x - X[row]) * SOR_factor;
449 X[row] += delta;
450 t2 = fabs(delta);
451 if (t2 > t) t = t2;
453 printf("% 6d: %8.6f\n", it, t);
454 } while (t >= threshold && it < 100000);
456 if (t >= threshold) {
457 fprintf(stderr, "*not* converged after %ld iterations\n", it);
458 BUG("iteration stinks");
461 printf("%ld iterations\n", it); /* TRANSLATE */
463 #if 0
464 putnl();
465 for (row = n - 1; row >= 0; row--) {
466 t = 0.0;
467 for (col = 0; col < row; col++) t += M(row, col) * X[col];
468 t += X[row] / M(row, row);
469 for (col = row + 1; col < n; col++)
470 t += M(col, row) * X[col];
471 printf("[ %f %f ]\n", t, B[row]);
473 #endif
475 for (row = n - 1; row >= 0; row--) B[row] = X[row];
477 osfree(X);
478 printf("\ndone\n"); /* TRANSLATE */
480 #endif
482 #if PRINT_MATRICES
483 static void
484 print_matrix(real *M, real *B, long n)
486 long row, col;
487 printf("Matrix, M and vector, B:\n");
488 for (row = 0; row < n; row++) {
489 for (col = 0; col <= row; col++) printf("%6.2f\t", M(row, col));
490 for (; col <= n; col++) printf(" \t");
491 printf("\t%6.2f\n", B[row]);
493 putnl();
494 return;
496 #endif