Fix rounding in zero-precision %f and %g printf conversions.
[sqlite.git] / src / util.c
blob4aa82d063641e0e6a30342b87cdd57bd72d957bb
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed further downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest){
45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
46 return xCallback ? xCallback(iTest) : SQLITE_OK;
48 #endif
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x){
58 int rc; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
60 u64 y;
61 memcpy(&y,&x,sizeof(y));
62 rc = IsNaN(y);
63 #else
64 rc = isnan(x);
65 #endif /* HAVE_ISNAN */
66 testcase( rc );
67 return rc;
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z){
80 if( z==0 ) return 0;
81 return 0x3fffffff & (int)strlen(z);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( pCol->colFlags & COLFLAG_HASTYPE ){
93 return pCol->zCnName + strlen(pCol->zCnName) + 1;
94 }else if( pCol->eCType ){
95 assert( pCol->eCType<=SQLITE_N_STDTYPE );
96 return (char*)sqlite3StdType[pCol->eCType-1];
97 }else{
98 return zDflt;
103 ** Helper function for sqlite3Error() - called rarely. Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
105 ** sqlite3Error().
107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
108 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
109 sqlite3SystemError(db, err_code);
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
117 void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( err_code || db->pErr ){
121 sqlite3ErrorFinish(db, err_code);
122 }else{
123 db->errByteOffset = -1;
128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
129 ** and error message.
131 void sqlite3ErrorClear(sqlite3 *db){
132 assert( db!=0 );
133 db->errCode = SQLITE_OK;
134 db->errByteOffset = -1;
135 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
142 void sqlite3SystemError(sqlite3 *db, int rc){
143 if( rc==SQLITE_IOERR_NOMEM ) return;
144 #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
145 if( rc==SQLITE_IOERR_IN_PAGE ){
146 int ii;
147 int iErr;
148 sqlite3BtreeEnterAll(db);
149 for(ii=0; ii<db->nDb; ii++){
150 if( db->aDb[ii].pBt ){
151 iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
152 if( iErr ){
153 db->iSysErrno = iErr;
157 sqlite3BtreeLeaveAll(db);
158 return;
160 #endif
161 rc &= 0xff;
162 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
163 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
168 ** Set the most recent error code and error string for the sqlite
169 ** handle "db". The error code is set to "err_code".
171 ** If it is not NULL, string zFormat specifies the format of the
172 ** error string. zFormat and any string tokens that follow it are
173 ** assumed to be encoded in UTF-8.
175 ** To clear the most recent error for sqlite handle "db", sqlite3Error
176 ** should be called with err_code set to SQLITE_OK and zFormat set
177 ** to NULL.
179 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
180 assert( db!=0 );
181 db->errCode = err_code;
182 sqlite3SystemError(db, err_code);
183 if( zFormat==0 ){
184 sqlite3Error(db, err_code);
185 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
186 char *z;
187 va_list ap;
188 va_start(ap, zFormat);
189 z = sqlite3VMPrintf(db, zFormat, ap);
190 va_end(ap);
191 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
196 ** Check for interrupts and invoke progress callback.
198 void sqlite3ProgressCheck(Parse *p){
199 sqlite3 *db = p->db;
200 if( AtomicLoad(&db->u1.isInterrupted) ){
201 p->nErr++;
202 p->rc = SQLITE_INTERRUPT;
204 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
205 if( db->xProgress ){
206 if( p->rc==SQLITE_INTERRUPT ){
207 p->nProgressSteps = 0;
208 }else if( (++p->nProgressSteps)>=db->nProgressOps ){
209 if( db->xProgress(db->pProgressArg) ){
210 p->nErr++;
211 p->rc = SQLITE_INTERRUPT;
213 p->nProgressSteps = 0;
216 #endif
220 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
222 ** This function should be used to report any error that occurs while
223 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
224 ** last thing the sqlite3_prepare() function does is copy the error
225 ** stored by this function into the database handle using sqlite3Error().
226 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
227 ** during statement execution (sqlite3_step() etc.).
229 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
230 char *zMsg;
231 va_list ap;
232 sqlite3 *db = pParse->db;
233 assert( db!=0 );
234 assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
235 db->errByteOffset = -2;
236 va_start(ap, zFormat);
237 zMsg = sqlite3VMPrintf(db, zFormat, ap);
238 va_end(ap);
239 if( db->errByteOffset<-1 ) db->errByteOffset = -1;
240 if( db->suppressErr ){
241 sqlite3DbFree(db, zMsg);
242 if( db->mallocFailed ){
243 pParse->nErr++;
244 pParse->rc = SQLITE_NOMEM;
246 }else{
247 pParse->nErr++;
248 sqlite3DbFree(db, pParse->zErrMsg);
249 pParse->zErrMsg = zMsg;
250 pParse->rc = SQLITE_ERROR;
251 pParse->pWith = 0;
256 ** If database connection db is currently parsing SQL, then transfer
257 ** error code errCode to that parser if the parser has not already
258 ** encountered some other kind of error.
260 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
261 Parse *pParse;
262 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
263 pParse->rc = errCode;
264 pParse->nErr++;
265 return errCode;
269 ** Convert an SQL-style quoted string into a normal string by removing
270 ** the quote characters. The conversion is done in-place. If the
271 ** input does not begin with a quote character, then this routine
272 ** is a no-op.
274 ** The input string must be zero-terminated. A new zero-terminator
275 ** is added to the dequoted string.
277 ** The return value is -1 if no dequoting occurs or the length of the
278 ** dequoted string, exclusive of the zero terminator, if dequoting does
279 ** occur.
281 ** 2002-02-14: This routine is extended to remove MS-Access style
282 ** brackets from around identifiers. For example: "[a-b-c]" becomes
283 ** "a-b-c".
285 void sqlite3Dequote(char *z){
286 char quote;
287 int i, j;
288 if( z==0 ) return;
289 quote = z[0];
290 if( !sqlite3Isquote(quote) ) return;
291 if( quote=='[' ) quote = ']';
292 for(i=1, j=0;; i++){
293 assert( z[i] );
294 if( z[i]==quote ){
295 if( z[i+1]==quote ){
296 z[j++] = quote;
297 i++;
298 }else{
299 break;
301 }else{
302 z[j++] = z[i];
305 z[j] = 0;
307 void sqlite3DequoteExpr(Expr *p){
308 assert( !ExprHasProperty(p, EP_IntValue) );
309 assert( sqlite3Isquote(p->u.zToken[0]) );
310 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
311 sqlite3Dequote(p->u.zToken);
315 ** If the input token p is quoted, try to adjust the token to remove
316 ** the quotes. This is not always possible:
318 ** "abc" -> abc
319 ** "ab""cd" -> (not possible because of the interior "")
321 ** Remove the quotes if possible. This is a optimization. The overall
322 ** system should still return the correct answer even if this routine
323 ** is always a no-op.
325 void sqlite3DequoteToken(Token *p){
326 unsigned int i;
327 if( p->n<2 ) return;
328 if( !sqlite3Isquote(p->z[0]) ) return;
329 for(i=1; i<p->n-1; i++){
330 if( sqlite3Isquote(p->z[i]) ) return;
332 p->n -= 2;
333 p->z++;
337 ** Generate a Token object from a string
339 void sqlite3TokenInit(Token *p, char *z){
340 p->z = z;
341 p->n = sqlite3Strlen30(z);
344 /* Convenient short-hand */
345 #define UpperToLower sqlite3UpperToLower
348 ** Some systems have stricmp(). Others have strcasecmp(). Because
349 ** there is no consistency, we will define our own.
351 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
352 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
353 ** the contents of two buffers containing UTF-8 strings in a
354 ** case-independent fashion, using the same definition of "case
355 ** independence" that SQLite uses internally when comparing identifiers.
357 int sqlite3_stricmp(const char *zLeft, const char *zRight){
358 if( zLeft==0 ){
359 return zRight ? -1 : 0;
360 }else if( zRight==0 ){
361 return 1;
363 return sqlite3StrICmp(zLeft, zRight);
365 int sqlite3StrICmp(const char *zLeft, const char *zRight){
366 unsigned char *a, *b;
367 int c, x;
368 a = (unsigned char *)zLeft;
369 b = (unsigned char *)zRight;
370 for(;;){
371 c = *a;
372 x = *b;
373 if( c==x ){
374 if( c==0 ) break;
375 }else{
376 c = (int)UpperToLower[c] - (int)UpperToLower[x];
377 if( c ) break;
379 a++;
380 b++;
382 return c;
384 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
385 register unsigned char *a, *b;
386 if( zLeft==0 ){
387 return zRight ? -1 : 0;
388 }else if( zRight==0 ){
389 return 1;
391 a = (unsigned char *)zLeft;
392 b = (unsigned char *)zRight;
393 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
394 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
398 ** Compute an 8-bit hash on a string that is insensitive to case differences
400 u8 sqlite3StrIHash(const char *z){
401 u8 h = 0;
402 if( z==0 ) return 0;
403 while( z[0] ){
404 h += UpperToLower[(unsigned char)z[0]];
405 z++;
407 return h;
410 /* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
412 ** Reference:
413 ** T. J. Dekker, "A Floating-Point Technique for Extending the
414 ** Available Precision". 1971-07-26.
416 static void dekkerMul2(volatile double *x, double y, double yy){
418 ** The "volatile" keywords on parameter x[] and on local variables
419 ** below are needed force intermediate results to be truncated to
420 ** binary64 rather than be carried around in an extended-precision
421 ** format. The truncation is necessary for the Dekker algorithm to
422 ** work. Intel x86 floating point might omit the truncation without
423 ** the use of volatile.
425 volatile double tx, ty, p, q, c, cc;
426 double hx, hy;
427 u64 m;
428 memcpy(&m, (void*)&x[0], 8);
429 m &= 0xfffffffffc000000LL;
430 memcpy(&hx, &m, 8);
431 tx = x[0] - hx;
432 memcpy(&m, &y, 8);
433 m &= 0xfffffffffc000000LL;
434 memcpy(&hy, &m, 8);
435 ty = y - hy;
436 p = hx*hy;
437 q = hx*ty + tx*hy;
438 c = p+q;
439 cc = p - c + q + tx*ty;
440 cc = x[0]*yy + x[1]*y + cc;
441 x[0] = c + cc;
442 x[1] = c - x[0];
443 x[1] += cc;
447 ** The string z[] is an text representation of a real number.
448 ** Convert this string to a double and write it into *pResult.
450 ** The string z[] is length bytes in length (bytes, not characters) and
451 ** uses the encoding enc. The string is not necessarily zero-terminated.
453 ** Return TRUE if the result is a valid real number (or integer) and FALSE
454 ** if the string is empty or contains extraneous text. More specifically
455 ** return
456 ** 1 => The input string is a pure integer
457 ** 2 or more => The input has a decimal point or eNNN clause
458 ** 0 or less => The input string is not a valid number
459 ** -1 => Not a valid number, but has a valid prefix which
460 ** includes a decimal point and/or an eNNN clause
462 ** Valid numbers are in one of these formats:
464 ** [+-]digits[E[+-]digits]
465 ** [+-]digits.[digits][E[+-]digits]
466 ** [+-].digits[E[+-]digits]
468 ** Leading and trailing whitespace is ignored for the purpose of determining
469 ** validity.
471 ** If some prefix of the input string is a valid number, this routine
472 ** returns FALSE but it still converts the prefix and writes the result
473 ** into *pResult.
475 #if defined(_MSC_VER)
476 #pragma warning(disable : 4756)
477 #endif
478 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
479 #ifndef SQLITE_OMIT_FLOATING_POINT
480 int incr;
481 const char *zEnd;
482 /* sign * significand * (10 ^ (esign * exponent)) */
483 int sign = 1; /* sign of significand */
484 u64 s = 0; /* significand */
485 int d = 0; /* adjust exponent for shifting decimal point */
486 int esign = 1; /* sign of exponent */
487 int e = 0; /* exponent */
488 int eValid = 1; /* True exponent is either not used or is well-formed */
489 int nDigit = 0; /* Number of digits processed */
490 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
492 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
493 *pResult = 0.0; /* Default return value, in case of an error */
494 if( length==0 ) return 0;
496 if( enc==SQLITE_UTF8 ){
497 incr = 1;
498 zEnd = z + length;
499 }else{
500 int i;
501 incr = 2;
502 length &= ~1;
503 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
504 testcase( enc==SQLITE_UTF16LE );
505 testcase( enc==SQLITE_UTF16BE );
506 for(i=3-enc; i<length && z[i]==0; i+=2){}
507 if( i<length ) eType = -100;
508 zEnd = &z[i^1];
509 z += (enc&1);
512 /* skip leading spaces */
513 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
514 if( z>=zEnd ) return 0;
516 /* get sign of significand */
517 if( *z=='-' ){
518 sign = -1;
519 z+=incr;
520 }else if( *z=='+' ){
521 z+=incr;
524 /* copy max significant digits to significand */
525 while( z<zEnd && sqlite3Isdigit(*z) ){
526 s = s*10 + (*z - '0');
527 z+=incr; nDigit++;
528 if( s>=((LARGEST_UINT64-9)/10) ){
529 /* skip non-significant significand digits
530 ** (increase exponent by d to shift decimal left) */
531 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
534 if( z>=zEnd ) goto do_atof_calc;
536 /* if decimal point is present */
537 if( *z=='.' ){
538 z+=incr;
539 eType++;
540 /* copy digits from after decimal to significand
541 ** (decrease exponent by d to shift decimal right) */
542 while( z<zEnd && sqlite3Isdigit(*z) ){
543 if( s<((LARGEST_UINT64-9)/10) ){
544 s = s*10 + (*z - '0');
545 d--;
546 nDigit++;
548 z+=incr;
551 if( z>=zEnd ) goto do_atof_calc;
553 /* if exponent is present */
554 if( *z=='e' || *z=='E' ){
555 z+=incr;
556 eValid = 0;
557 eType++;
559 /* This branch is needed to avoid a (harmless) buffer overread. The
560 ** special comment alerts the mutation tester that the correct answer
561 ** is obtained even if the branch is omitted */
562 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
564 /* get sign of exponent */
565 if( *z=='-' ){
566 esign = -1;
567 z+=incr;
568 }else if( *z=='+' ){
569 z+=incr;
571 /* copy digits to exponent */
572 while( z<zEnd && sqlite3Isdigit(*z) ){
573 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
574 z+=incr;
575 eValid = 1;
579 /* skip trailing spaces */
580 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
582 do_atof_calc:
583 /* Zero is a special case */
584 if( s==0 ){
585 *pResult = sign<0 ? -0.0 : +0.0;
586 goto atof_return;
589 /* adjust exponent by d, and update sign */
590 e = (e*esign) + d;
592 /* Try to adjust the exponent to make it smaller */
593 while( e>0 && s<(LARGEST_UINT64/10) ){
594 s *= 10;
595 e--;
597 while( e<0 && (s%10)==0 ){
598 s /= 10;
599 e++;
602 if( e==0 ){
603 *pResult = s;
604 }else if( sqlite3Config.bUseLongDouble ){
605 LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s;
606 if( e>0 ){
607 while( e>=100 ){ e-=100; r *= 1.0e+100L; }
608 while( e>=10 ){ e-=10; r *= 1.0e+10L; }
609 while( e>=1 ){ e-=1; r *= 1.0e+01L; }
610 }else{
611 while( e<=-100 ){ e+=100; r *= 1.0e-100L; }
612 while( e<=-10 ){ e+=10; r *= 1.0e-10L; }
613 while( e<=-1 ){ e+=1; r *= 1.0e-01L; }
615 assert( r>=0.0 );
616 if( r>+1.7976931348623157081452742373e+308L ){
617 #ifdef INFINITY
618 *pResult = +INFINITY;
619 #else
620 *pResult = 1.0e308*10.0;
621 #endif
622 }else{
623 *pResult = (double)r;
625 }else{
626 double rr[2];
627 u64 s2;
628 rr[0] = (double)s;
629 s2 = (u64)rr[0];
630 rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
631 if( e>0 ){
632 while( e>=100 ){
633 e -= 100;
634 dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
636 while( e>=10 ){
637 e -= 10;
638 dekkerMul2(rr, 1.0e+10, 0.0);
640 while( e>=1 ){
641 e -= 1;
642 dekkerMul2(rr, 1.0e+01, 0.0);
644 }else{
645 while( e<=-100 ){
646 e += 100;
647 dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
649 while( e<=-10 ){
650 e += 10;
651 dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
653 while( e<=-1 ){
654 e += 1;
655 dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
658 *pResult = rr[0]+rr[1];
659 if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
661 if( sign<0 ) *pResult = -*pResult;
662 assert( !sqlite3IsNaN(*pResult) );
664 atof_return:
665 /* return true if number and no extra non-whitespace characters after */
666 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
667 return eType;
668 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
669 return -1;
670 }else{
671 return 0;
673 #else
674 return !sqlite3Atoi64(z, pResult, length, enc);
675 #endif /* SQLITE_OMIT_FLOATING_POINT */
677 #if defined(_MSC_VER)
678 #pragma warning(default : 4756)
679 #endif
682 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
683 ** return the length of the string that was stored, in bytes. The value
684 ** returned does not include the zero terminator at the end of the output
685 ** string.
687 ** The caller must ensure that zOut[] is at least 21 bytes in size.
689 int sqlite3Int64ToText(i64 v, char *zOut){
690 int i;
691 u64 x;
692 char zTemp[22];
693 if( v<0 ){
694 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
695 }else{
696 x = v;
698 i = sizeof(zTemp)-2;
699 zTemp[sizeof(zTemp)-1] = 0;
700 while( 1 /*exit-by-break*/ ){
701 zTemp[i] = (x%10) + '0';
702 x = x/10;
703 if( x==0 ) break;
704 i--;
706 if( v<0 ) zTemp[--i] = '-';
707 memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
708 return sizeof(zTemp)-1-i;
712 ** Compare the 19-character string zNum against the text representation
713 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
714 ** if zNum is less than, equal to, or greater than the string.
715 ** Note that zNum must contain exactly 19 characters.
717 ** Unlike memcmp() this routine is guaranteed to return the difference
718 ** in the values of the last digit if the only difference is in the
719 ** last digit. So, for example,
721 ** compare2pow63("9223372036854775800", 1)
723 ** will return -8.
725 static int compare2pow63(const char *zNum, int incr){
726 int c = 0;
727 int i;
728 /* 012345678901234567 */
729 const char *pow63 = "922337203685477580";
730 for(i=0; c==0 && i<18; i++){
731 c = (zNum[i*incr]-pow63[i])*10;
733 if( c==0 ){
734 c = zNum[18*incr] - '8';
735 testcase( c==(-1) );
736 testcase( c==0 );
737 testcase( c==(+1) );
739 return c;
743 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
744 ** routine does *not* accept hexadecimal notation.
746 ** Returns:
748 ** -1 Not even a prefix of the input text looks like an integer
749 ** 0 Successful transformation. Fits in a 64-bit signed integer.
750 ** 1 Excess non-space text after the integer value
751 ** 2 Integer too large for a 64-bit signed integer or is malformed
752 ** 3 Special case of 9223372036854775808
754 ** length is the number of bytes in the string (bytes, not characters).
755 ** The string is not necessarily zero-terminated. The encoding is
756 ** given by enc.
758 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
759 int incr;
760 u64 u = 0;
761 int neg = 0; /* assume positive */
762 int i;
763 int c = 0;
764 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
765 int rc; /* Baseline return code */
766 const char *zStart;
767 const char *zEnd = zNum + length;
768 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
769 if( enc==SQLITE_UTF8 ){
770 incr = 1;
771 }else{
772 incr = 2;
773 length &= ~1;
774 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
775 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
776 nonNum = i<length;
777 zEnd = &zNum[i^1];
778 zNum += (enc&1);
780 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
781 if( zNum<zEnd ){
782 if( *zNum=='-' ){
783 neg = 1;
784 zNum+=incr;
785 }else if( *zNum=='+' ){
786 zNum+=incr;
789 zStart = zNum;
790 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
791 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
792 u = u*10 + c - '0';
794 testcase( i==18*incr );
795 testcase( i==19*incr );
796 testcase( i==20*incr );
797 if( u>LARGEST_INT64 ){
798 /* This test and assignment is needed only to suppress UB warnings
799 ** from clang and -fsanitize=undefined. This test and assignment make
800 ** the code a little larger and slower, and no harm comes from omitting
801 ** them, but we must appease the undefined-behavior pharisees. */
802 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
803 }else if( neg ){
804 *pNum = -(i64)u;
805 }else{
806 *pNum = (i64)u;
808 rc = 0;
809 if( i==0 && zStart==zNum ){ /* No digits */
810 rc = -1;
811 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
812 rc = 1;
813 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
814 int jj = i;
816 if( !sqlite3Isspace(zNum[jj]) ){
817 rc = 1; /* Extra non-space text after the integer */
818 break;
820 jj += incr;
821 }while( &zNum[jj]<zEnd );
823 if( i<19*incr ){
824 /* Less than 19 digits, so we know that it fits in 64 bits */
825 assert( u<=LARGEST_INT64 );
826 return rc;
827 }else{
828 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
829 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
830 if( c<0 ){
831 /* zNum is less than 9223372036854775808 so it fits */
832 assert( u<=LARGEST_INT64 );
833 return rc;
834 }else{
835 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
836 if( c>0 ){
837 /* zNum is greater than 9223372036854775808 so it overflows */
838 return 2;
839 }else{
840 /* zNum is exactly 9223372036854775808. Fits if negative. The
841 ** special case 2 overflow if positive */
842 assert( u-1==LARGEST_INT64 );
843 return neg ? rc : 3;
850 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
851 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
852 ** whereas sqlite3Atoi64() does not.
854 ** Returns:
856 ** 0 Successful transformation. Fits in a 64-bit signed integer.
857 ** 1 Excess text after the integer value
858 ** 2 Integer too large for a 64-bit signed integer or is malformed
859 ** 3 Special case of 9223372036854775808
861 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
862 #ifndef SQLITE_OMIT_HEX_INTEGER
863 if( z[0]=='0'
864 && (z[1]=='x' || z[1]=='X')
866 u64 u = 0;
867 int i, k;
868 for(i=2; z[i]=='0'; i++){}
869 for(k=i; sqlite3Isxdigit(z[k]); k++){
870 u = u*16 + sqlite3HexToInt(z[k]);
872 memcpy(pOut, &u, 8);
873 if( k-i>16 ) return 2;
874 if( z[k]!=0 ) return 1;
875 return 0;
876 }else
877 #endif /* SQLITE_OMIT_HEX_INTEGER */
879 int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
880 if( z[n] ) n++;
881 return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
886 ** If zNum represents an integer that will fit in 32-bits, then set
887 ** *pValue to that integer and return true. Otherwise return false.
889 ** This routine accepts both decimal and hexadecimal notation for integers.
891 ** Any non-numeric characters that following zNum are ignored.
892 ** This is different from sqlite3Atoi64() which requires the
893 ** input number to be zero-terminated.
895 int sqlite3GetInt32(const char *zNum, int *pValue){
896 sqlite_int64 v = 0;
897 int i, c;
898 int neg = 0;
899 if( zNum[0]=='-' ){
900 neg = 1;
901 zNum++;
902 }else if( zNum[0]=='+' ){
903 zNum++;
905 #ifndef SQLITE_OMIT_HEX_INTEGER
906 else if( zNum[0]=='0'
907 && (zNum[1]=='x' || zNum[1]=='X')
908 && sqlite3Isxdigit(zNum[2])
910 u32 u = 0;
911 zNum += 2;
912 while( zNum[0]=='0' ) zNum++;
913 for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
914 u = u*16 + sqlite3HexToInt(zNum[i]);
916 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
917 memcpy(pValue, &u, 4);
918 return 1;
919 }else{
920 return 0;
923 #endif
924 if( !sqlite3Isdigit(zNum[0]) ) return 0;
925 while( zNum[0]=='0' ) zNum++;
926 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
927 v = v*10 + c;
930 /* The longest decimal representation of a 32 bit integer is 10 digits:
932 ** 1234567890
933 ** 2^31 -> 2147483648
935 testcase( i==10 );
936 if( i>10 ){
937 return 0;
939 testcase( v-neg==2147483647 );
940 if( v-neg>2147483647 ){
941 return 0;
943 if( neg ){
944 v = -v;
946 *pValue = (int)v;
947 return 1;
951 ** Return a 32-bit integer value extracted from a string. If the
952 ** string is not an integer, just return 0.
954 int sqlite3Atoi(const char *z){
955 int x = 0;
956 sqlite3GetInt32(z, &x);
957 return x;
961 ** Decode a floating-point value into an approximate decimal
962 ** representation.
964 ** Round the decimal representation to n significant digits if
965 ** n is positive. Or round to -n signficant digits after the
966 ** decimal point if n is negative. No rounding is performed if
967 ** n is zero.
969 ** The significant digits of the decimal representation are
970 ** stored in p->z[] which is a often (but not always) a pointer
971 ** into the middle of p->zBuf[]. There are p->n significant digits.
972 ** The p->z[] array is *not* zero-terminated.
974 void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
975 int i;
976 u64 v;
977 int e, exp = 0;
978 p->isSpecial = 0;
979 p->z = p->zBuf;
981 /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
982 ** NaN. */
983 if( r<0.0 ){
984 p->sign = '-';
985 r = -r;
986 }else if( r==0.0 ){
987 p->sign = '+';
988 p->n = 1;
989 p->iDP = 1;
990 p->z = "0";
991 return;
992 }else{
993 p->sign = '+';
995 memcpy(&v,&r,8);
996 e = v>>52;
997 if( (e&0x7ff)==0x7ff ){
998 p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
999 p->n = 0;
1000 p->iDP = 0;
1001 return;
1004 /* Multiply r by powers of ten until it lands somewhere in between
1005 ** 1.0e+19 and 1.0e+17.
1007 if( sqlite3Config.bUseLongDouble ){
1008 LONGDOUBLE_TYPE rr = r;
1009 if( rr>=1.0e+19 ){
1010 while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; }
1011 while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; }
1012 while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; }
1013 }else{
1014 while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; }
1015 while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; }
1016 while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; }
1018 v = (u64)rr;
1019 }else{
1020 /* If high-precision floating point is not available using "long double",
1021 ** then use Dekker-style double-double computation to increase the
1022 ** precision.
1024 ** The error terms on constants like 1.0e+100 computed using the
1025 ** decimal extension, for example as follows:
1027 ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
1029 double rr[2];
1030 rr[0] = r;
1031 rr[1] = 0.0;
1032 if( rr[0]>9.223372036854774784e+18 ){
1033 while( rr[0]>9.223372036854774784e+118 ){
1034 exp += 100;
1035 dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
1037 while( rr[0]>9.223372036854774784e+28 ){
1038 exp += 10;
1039 dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
1041 while( rr[0]>9.223372036854774784e+18 ){
1042 exp += 1;
1043 dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
1045 }else{
1046 while( rr[0]<9.223372036854774784e-83 ){
1047 exp -= 100;
1048 dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
1050 while( rr[0]<9.223372036854774784e+07 ){
1051 exp -= 10;
1052 dekkerMul2(rr, 1.0e+10, 0.0);
1054 while( rr[0]<9.22337203685477478e+17 ){
1055 exp -= 1;
1056 dekkerMul2(rr, 1.0e+01, 0.0);
1059 v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
1063 /* Extract significant digits. */
1064 i = sizeof(p->zBuf)-1;
1065 assert( v>0 );
1066 while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; }
1067 assert( i>=0 && i<sizeof(p->zBuf)-1 );
1068 p->n = sizeof(p->zBuf) - 1 - i;
1069 assert( p->n>0 );
1070 assert( p->n<sizeof(p->zBuf) );
1071 p->iDP = p->n + exp;
1072 if( iRound<=0 ){
1073 iRound = p->iDP - iRound;
1074 if( iRound==0 && p->zBuf[i+1]>='5' ){
1075 iRound = 1;
1076 p->zBuf[i--] = '0';
1077 p->n++;
1078 p->iDP++;
1081 if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
1082 char *z = &p->zBuf[i+1];
1083 if( iRound>mxRound ) iRound = mxRound;
1084 p->n = iRound;
1085 if( z[iRound]>='5' ){
1086 int j = iRound-1;
1087 while( 1 /*exit-by-break*/ ){
1088 z[j]++;
1089 if( z[j]<='9' ) break;
1090 z[j] = '0';
1091 if( j==0 ){
1092 p->z[i--] = '1';
1093 p->n++;
1094 p->iDP++;
1095 break;
1096 }else{
1097 j--;
1102 p->z = &p->zBuf[i+1];
1103 assert( i+p->n < sizeof(p->zBuf) );
1104 while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
1108 ** Try to convert z into an unsigned 32-bit integer. Return true on
1109 ** success and false if there is an error.
1111 ** Only decimal notation is accepted.
1113 int sqlite3GetUInt32(const char *z, u32 *pI){
1114 u64 v = 0;
1115 int i;
1116 for(i=0; sqlite3Isdigit(z[i]); i++){
1117 v = v*10 + z[i] - '0';
1118 if( v>4294967296LL ){ *pI = 0; return 0; }
1120 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
1121 *pI = (u32)v;
1122 return 1;
1126 ** The variable-length integer encoding is as follows:
1128 ** KEY:
1129 ** A = 0xxxxxxx 7 bits of data and one flag bit
1130 ** B = 1xxxxxxx 7 bits of data and one flag bit
1131 ** C = xxxxxxxx 8 bits of data
1133 ** 7 bits - A
1134 ** 14 bits - BA
1135 ** 21 bits - BBA
1136 ** 28 bits - BBBA
1137 ** 35 bits - BBBBA
1138 ** 42 bits - BBBBBA
1139 ** 49 bits - BBBBBBA
1140 ** 56 bits - BBBBBBBA
1141 ** 64 bits - BBBBBBBBC
1145 ** Write a 64-bit variable-length integer to memory starting at p[0].
1146 ** The length of data write will be between 1 and 9 bytes. The number
1147 ** of bytes written is returned.
1149 ** A variable-length integer consists of the lower 7 bits of each byte
1150 ** for all bytes that have the 8th bit set and one byte with the 8th
1151 ** bit clear. Except, if we get to the 9th byte, it stores the full
1152 ** 8 bits and is the last byte.
1154 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
1155 int i, j, n;
1156 u8 buf[10];
1157 if( v & (((u64)0xff000000)<<32) ){
1158 p[8] = (u8)v;
1159 v >>= 8;
1160 for(i=7; i>=0; i--){
1161 p[i] = (u8)((v & 0x7f) | 0x80);
1162 v >>= 7;
1164 return 9;
1166 n = 0;
1168 buf[n++] = (u8)((v & 0x7f) | 0x80);
1169 v >>= 7;
1170 }while( v!=0 );
1171 buf[0] &= 0x7f;
1172 assert( n<=9 );
1173 for(i=0, j=n-1; j>=0; j--, i++){
1174 p[i] = buf[j];
1176 return n;
1178 int sqlite3PutVarint(unsigned char *p, u64 v){
1179 if( v<=0x7f ){
1180 p[0] = v&0x7f;
1181 return 1;
1183 if( v<=0x3fff ){
1184 p[0] = ((v>>7)&0x7f)|0x80;
1185 p[1] = v&0x7f;
1186 return 2;
1188 return putVarint64(p,v);
1192 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1193 ** are defined here rather than simply putting the constant expressions
1194 ** inline in order to work around bugs in the RVT compiler.
1196 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1198 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1200 #define SLOT_2_0 0x001fc07f
1201 #define SLOT_4_2_0 0xf01fc07f
1205 ** Read a 64-bit variable-length integer from memory starting at p[0].
1206 ** Return the number of bytes read. The value is stored in *v.
1208 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1209 u32 a,b,s;
1211 if( ((signed char*)p)[0]>=0 ){
1212 *v = *p;
1213 return 1;
1215 if( ((signed char*)p)[1]>=0 ){
1216 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1217 return 2;
1220 /* Verify that constants are precomputed correctly */
1221 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1222 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1224 a = ((u32)p[0])<<14;
1225 b = p[1];
1226 p += 2;
1227 a |= *p;
1228 /* a: p0<<14 | p2 (unmasked) */
1229 if (!(a&0x80))
1231 a &= SLOT_2_0;
1232 b &= 0x7f;
1233 b = b<<7;
1234 a |= b;
1235 *v = a;
1236 return 3;
1239 /* CSE1 from below */
1240 a &= SLOT_2_0;
1241 p++;
1242 b = b<<14;
1243 b |= *p;
1244 /* b: p1<<14 | p3 (unmasked) */
1245 if (!(b&0x80))
1247 b &= SLOT_2_0;
1248 /* moved CSE1 up */
1249 /* a &= (0x7f<<14)|(0x7f); */
1250 a = a<<7;
1251 a |= b;
1252 *v = a;
1253 return 4;
1256 /* a: p0<<14 | p2 (masked) */
1257 /* b: p1<<14 | p3 (unmasked) */
1258 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1259 /* moved CSE1 up */
1260 /* a &= (0x7f<<14)|(0x7f); */
1261 b &= SLOT_2_0;
1262 s = a;
1263 /* s: p0<<14 | p2 (masked) */
1265 p++;
1266 a = a<<14;
1267 a |= *p;
1268 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1269 if (!(a&0x80))
1271 /* we can skip these cause they were (effectively) done above
1272 ** while calculating s */
1273 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1274 /* b &= (0x7f<<14)|(0x7f); */
1275 b = b<<7;
1276 a |= b;
1277 s = s>>18;
1278 *v = ((u64)s)<<32 | a;
1279 return 5;
1282 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1283 s = s<<7;
1284 s |= b;
1285 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1287 p++;
1288 b = b<<14;
1289 b |= *p;
1290 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1291 if (!(b&0x80))
1293 /* we can skip this cause it was (effectively) done above in calc'ing s */
1294 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1295 a &= SLOT_2_0;
1296 a = a<<7;
1297 a |= b;
1298 s = s>>18;
1299 *v = ((u64)s)<<32 | a;
1300 return 6;
1303 p++;
1304 a = a<<14;
1305 a |= *p;
1306 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1307 if (!(a&0x80))
1309 a &= SLOT_4_2_0;
1310 b &= SLOT_2_0;
1311 b = b<<7;
1312 a |= b;
1313 s = s>>11;
1314 *v = ((u64)s)<<32 | a;
1315 return 7;
1318 /* CSE2 from below */
1319 a &= SLOT_2_0;
1320 p++;
1321 b = b<<14;
1322 b |= *p;
1323 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1324 if (!(b&0x80))
1326 b &= SLOT_4_2_0;
1327 /* moved CSE2 up */
1328 /* a &= (0x7f<<14)|(0x7f); */
1329 a = a<<7;
1330 a |= b;
1331 s = s>>4;
1332 *v = ((u64)s)<<32 | a;
1333 return 8;
1336 p++;
1337 a = a<<15;
1338 a |= *p;
1339 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1341 /* moved CSE2 up */
1342 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1343 b &= SLOT_2_0;
1344 b = b<<8;
1345 a |= b;
1347 s = s<<4;
1348 b = p[-4];
1349 b &= 0x7f;
1350 b = b>>3;
1351 s |= b;
1353 *v = ((u64)s)<<32 | a;
1355 return 9;
1359 ** Read a 32-bit variable-length integer from memory starting at p[0].
1360 ** Return the number of bytes read. The value is stored in *v.
1362 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1363 ** integer, then set *v to 0xffffffff.
1365 ** A MACRO version, getVarint32, is provided which inlines the
1366 ** single-byte case. All code should use the MACRO version as
1367 ** this function assumes the single-byte case has already been handled.
1369 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1370 u64 v64;
1371 u8 n;
1373 /* Assume that the single-byte case has already been handled by
1374 ** the getVarint32() macro */
1375 assert( (p[0] & 0x80)!=0 );
1377 if( (p[1] & 0x80)==0 ){
1378 /* This is the two-byte case */
1379 *v = ((p[0]&0x7f)<<7) | p[1];
1380 return 2;
1382 if( (p[2] & 0x80)==0 ){
1383 /* This is the three-byte case */
1384 *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
1385 return 3;
1387 /* four or more bytes */
1388 n = sqlite3GetVarint(p, &v64);
1389 assert( n>3 && n<=9 );
1390 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1391 *v = 0xffffffff;
1392 }else{
1393 *v = (u32)v64;
1395 return n;
1399 ** Return the number of bytes that will be needed to store the given
1400 ** 64-bit integer.
1402 int sqlite3VarintLen(u64 v){
1403 int i;
1404 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1405 return i;
1410 ** Read or write a four-byte big-endian integer value.
1412 u32 sqlite3Get4byte(const u8 *p){
1413 #if SQLITE_BYTEORDER==4321
1414 u32 x;
1415 memcpy(&x,p,4);
1416 return x;
1417 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1418 u32 x;
1419 memcpy(&x,p,4);
1420 return __builtin_bswap32(x);
1421 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1422 u32 x;
1423 memcpy(&x,p,4);
1424 return _byteswap_ulong(x);
1425 #else
1426 testcase( p[0]&0x80 );
1427 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1428 #endif
1430 void sqlite3Put4byte(unsigned char *p, u32 v){
1431 #if SQLITE_BYTEORDER==4321
1432 memcpy(p,&v,4);
1433 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1434 u32 x = __builtin_bswap32(v);
1435 memcpy(p,&x,4);
1436 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1437 u32 x = _byteswap_ulong(v);
1438 memcpy(p,&x,4);
1439 #else
1440 p[0] = (u8)(v>>24);
1441 p[1] = (u8)(v>>16);
1442 p[2] = (u8)(v>>8);
1443 p[3] = (u8)v;
1444 #endif
1450 ** Translate a single byte of Hex into an integer.
1451 ** This routine only works if h really is a valid hexadecimal
1452 ** character: 0..9a..fA..F
1454 u8 sqlite3HexToInt(int h){
1455 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1456 #ifdef SQLITE_ASCII
1457 h += 9*(1&(h>>6));
1458 #endif
1459 #ifdef SQLITE_EBCDIC
1460 h += 9*(1&~(h>>4));
1461 #endif
1462 return (u8)(h & 0xf);
1465 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1467 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1468 ** value. Return a pointer to its binary value. Space to hold the
1469 ** binary value has been obtained from malloc and must be freed by
1470 ** the calling routine.
1472 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1473 char *zBlob;
1474 int i;
1476 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1477 n--;
1478 if( zBlob ){
1479 for(i=0; i<n; i+=2){
1480 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1482 zBlob[i/2] = 0;
1484 return zBlob;
1486 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1489 ** Log an error that is an API call on a connection pointer that should
1490 ** not have been used. The "type" of connection pointer is given as the
1491 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1493 static void logBadConnection(const char *zType){
1494 sqlite3_log(SQLITE_MISUSE,
1495 "API call with %s database connection pointer",
1496 zType
1501 ** Check to make sure we have a valid db pointer. This test is not
1502 ** foolproof but it does provide some measure of protection against
1503 ** misuse of the interface such as passing in db pointers that are
1504 ** NULL or which have been previously closed. If this routine returns
1505 ** 1 it means that the db pointer is valid and 0 if it should not be
1506 ** dereferenced for any reason. The calling function should invoke
1507 ** SQLITE_MISUSE immediately.
1509 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1510 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1511 ** open properly and is not fit for general use but which can be
1512 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1514 int sqlite3SafetyCheckOk(sqlite3 *db){
1515 u8 eOpenState;
1516 if( db==0 ){
1517 logBadConnection("NULL");
1518 return 0;
1520 eOpenState = db->eOpenState;
1521 if( eOpenState!=SQLITE_STATE_OPEN ){
1522 if( sqlite3SafetyCheckSickOrOk(db) ){
1523 testcase( sqlite3GlobalConfig.xLog!=0 );
1524 logBadConnection("unopened");
1526 return 0;
1527 }else{
1528 return 1;
1531 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1532 u8 eOpenState;
1533 eOpenState = db->eOpenState;
1534 if( eOpenState!=SQLITE_STATE_SICK &&
1535 eOpenState!=SQLITE_STATE_OPEN &&
1536 eOpenState!=SQLITE_STATE_BUSY ){
1537 testcase( sqlite3GlobalConfig.xLog!=0 );
1538 logBadConnection("invalid");
1539 return 0;
1540 }else{
1541 return 1;
1546 ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
1547 ** the other 64-bit signed integer at *pA and store the result in *pA.
1548 ** Return 0 on success. Or if the operation would have resulted in an
1549 ** overflow, leave *pA unchanged and return 1.
1551 int sqlite3AddInt64(i64 *pA, i64 iB){
1552 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1553 return __builtin_add_overflow(*pA, iB, pA);
1554 #else
1555 i64 iA = *pA;
1556 testcase( iA==0 ); testcase( iA==1 );
1557 testcase( iB==-1 ); testcase( iB==0 );
1558 if( iB>=0 ){
1559 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1560 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1561 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1562 }else{
1563 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1564 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1565 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1567 *pA += iB;
1568 return 0;
1569 #endif
1571 int sqlite3SubInt64(i64 *pA, i64 iB){
1572 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1573 return __builtin_sub_overflow(*pA, iB, pA);
1574 #else
1575 testcase( iB==SMALLEST_INT64+1 );
1576 if( iB==SMALLEST_INT64 ){
1577 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1578 if( (*pA)>=0 ) return 1;
1579 *pA -= iB;
1580 return 0;
1581 }else{
1582 return sqlite3AddInt64(pA, -iB);
1584 #endif
1586 int sqlite3MulInt64(i64 *pA, i64 iB){
1587 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1588 return __builtin_mul_overflow(*pA, iB, pA);
1589 #else
1590 i64 iA = *pA;
1591 if( iB>0 ){
1592 if( iA>LARGEST_INT64/iB ) return 1;
1593 if( iA<SMALLEST_INT64/iB ) return 1;
1594 }else if( iB<0 ){
1595 if( iA>0 ){
1596 if( iB<SMALLEST_INT64/iA ) return 1;
1597 }else if( iA<0 ){
1598 if( iB==SMALLEST_INT64 ) return 1;
1599 if( iA==SMALLEST_INT64 ) return 1;
1600 if( -iA>LARGEST_INT64/-iB ) return 1;
1603 *pA = iA*iB;
1604 return 0;
1605 #endif
1609 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1610 ** if the integer has a value of -2147483648, return +2147483647
1612 int sqlite3AbsInt32(int x){
1613 if( x>=0 ) return x;
1614 if( x==(int)0x80000000 ) return 0x7fffffff;
1615 return -x;
1618 #ifdef SQLITE_ENABLE_8_3_NAMES
1620 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1621 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1622 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1623 ** three characters, then shorten the suffix on z[] to be the last three
1624 ** characters of the original suffix.
1626 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1627 ** do the suffix shortening regardless of URI parameter.
1629 ** Examples:
1631 ** test.db-journal => test.nal
1632 ** test.db-wal => test.wal
1633 ** test.db-shm => test.shm
1634 ** test.db-mj7f3319fa => test.9fa
1636 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1637 #if SQLITE_ENABLE_8_3_NAMES<2
1638 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1639 #endif
1641 int i, sz;
1642 sz = sqlite3Strlen30(z);
1643 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1644 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1647 #endif
1650 ** Find (an approximate) sum of two LogEst values. This computation is
1651 ** not a simple "+" operator because LogEst is stored as a logarithmic
1652 ** value.
1655 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1656 static const unsigned char x[] = {
1657 10, 10, /* 0,1 */
1658 9, 9, /* 2,3 */
1659 8, 8, /* 4,5 */
1660 7, 7, 7, /* 6,7,8 */
1661 6, 6, 6, /* 9,10,11 */
1662 5, 5, 5, /* 12-14 */
1663 4, 4, 4, 4, /* 15-18 */
1664 3, 3, 3, 3, 3, 3, /* 19-24 */
1665 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1667 if( a>=b ){
1668 if( a>b+49 ) return a;
1669 if( a>b+31 ) return a+1;
1670 return a+x[a-b];
1671 }else{
1672 if( b>a+49 ) return b;
1673 if( b>a+31 ) return b+1;
1674 return b+x[b-a];
1679 ** Convert an integer into a LogEst. In other words, compute an
1680 ** approximation for 10*log2(x).
1682 LogEst sqlite3LogEst(u64 x){
1683 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1684 LogEst y = 40;
1685 if( x<8 ){
1686 if( x<2 ) return 0;
1687 while( x<8 ){ y -= 10; x <<= 1; }
1688 }else{
1689 #if GCC_VERSION>=5004000
1690 int i = 60 - __builtin_clzll(x);
1691 y += i*10;
1692 x >>= i;
1693 #else
1694 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1695 while( x>15 ){ y += 10; x >>= 1; }
1696 #endif
1698 return a[x&7] + y - 10;
1702 ** Convert a double into a LogEst
1703 ** In other words, compute an approximation for 10*log2(x).
1705 LogEst sqlite3LogEstFromDouble(double x){
1706 u64 a;
1707 LogEst e;
1708 assert( sizeof(x)==8 && sizeof(a)==8 );
1709 if( x<=1 ) return 0;
1710 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1711 memcpy(&a, &x, 8);
1712 e = (a>>52) - 1022;
1713 return e*10;
1717 ** Convert a LogEst into an integer.
1719 u64 sqlite3LogEstToInt(LogEst x){
1720 u64 n;
1721 n = x%10;
1722 x /= 10;
1723 if( n>=5 ) n -= 2;
1724 else if( n>=1 ) n -= 1;
1725 if( x>60 ) return (u64)LARGEST_INT64;
1726 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1730 ** Add a new name/number pair to a VList. This might require that the
1731 ** VList object be reallocated, so return the new VList. If an OOM
1732 ** error occurs, the original VList returned and the
1733 ** db->mallocFailed flag is set.
1735 ** A VList is really just an array of integers. To destroy a VList,
1736 ** simply pass it to sqlite3DbFree().
1738 ** The first integer is the number of integers allocated for the whole
1739 ** VList. The second integer is the number of integers actually used.
1740 ** Each name/number pair is encoded by subsequent groups of 3 or more
1741 ** integers.
1743 ** Each name/number pair starts with two integers which are the numeric
1744 ** value for the pair and the size of the name/number pair, respectively.
1745 ** The text name overlays one or more following integers. The text name
1746 ** is always zero-terminated.
1748 ** Conceptually:
1750 ** struct VList {
1751 ** int nAlloc; // Number of allocated slots
1752 ** int nUsed; // Number of used slots
1753 ** struct VListEntry {
1754 ** int iValue; // Value for this entry
1755 ** int nSlot; // Slots used by this entry
1756 ** // ... variable name goes here
1757 ** } a[0];
1758 ** }
1760 ** During code generation, pointers to the variable names within the
1761 ** VList are taken. When that happens, nAlloc is set to zero as an
1762 ** indication that the VList may never again be enlarged, since the
1763 ** accompanying realloc() would invalidate the pointers.
1765 VList *sqlite3VListAdd(
1766 sqlite3 *db, /* The database connection used for malloc() */
1767 VList *pIn, /* The input VList. Might be NULL */
1768 const char *zName, /* Name of symbol to add */
1769 int nName, /* Bytes of text in zName */
1770 int iVal /* Value to associate with zName */
1772 int nInt; /* number of sizeof(int) objects needed for zName */
1773 char *z; /* Pointer to where zName will be stored */
1774 int i; /* Index in pIn[] where zName is stored */
1776 nInt = nName/4 + 3;
1777 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1778 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1779 /* Enlarge the allocation */
1780 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1781 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1782 if( pOut==0 ) return pIn;
1783 if( pIn==0 ) pOut[1] = 2;
1784 pIn = pOut;
1785 pIn[0] = nAlloc;
1787 i = pIn[1];
1788 pIn[i] = iVal;
1789 pIn[i+1] = nInt;
1790 z = (char*)&pIn[i+2];
1791 pIn[1] = i+nInt;
1792 assert( pIn[1]<=pIn[0] );
1793 memcpy(z, zName, nName);
1794 z[nName] = 0;
1795 return pIn;
1799 ** Return a pointer to the name of a variable in the given VList that
1800 ** has the value iVal. Or return a NULL if there is no such variable in
1801 ** the list
1803 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1804 int i, mx;
1805 if( pIn==0 ) return 0;
1806 mx = pIn[1];
1807 i = 2;
1809 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1810 i += pIn[i+1];
1811 }while( i<mx );
1812 return 0;
1816 ** Return the number of the variable named zName, if it is in VList.
1817 ** or return 0 if there is no such variable.
1819 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1820 int i, mx;
1821 if( pIn==0 ) return 0;
1822 mx = pIn[1];
1823 i = 2;
1825 const char *z = (const char*)&pIn[i+2];
1826 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1827 i += pIn[i+1];
1828 }while( i<mx );
1829 return 0;
1833 ** High-resolution hardware timer used for debugging and testing only.
1835 #if defined(VDBE_PROFILE) \
1836 || defined(SQLITE_PERFORMANCE_TRACE) \
1837 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1838 # include "hwtime.h"
1839 #endif