Adjustments to VdbeCoverage macros to deal with byte-code branches that
[sqlite.git] / src / os_unix.c
blob0dd461da0a241ad2bb23327728b192e3be0baadc
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
27 ** The layout of divisions is as follows:
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
33 ** + for no-op locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
50 ** There are various methods for file locking used for concurrency
51 ** control:
53 ** 1. POSIX locking (the default),
54 ** 2. No locking,
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
69 # else
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
71 # endif
72 #endif
74 /* Use pread() and pwrite() if they are available */
75 #if defined(__APPLE__)
76 # define HAVE_PREAD 1
77 # define HAVE_PWRITE 1
78 #endif
79 #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
80 # undef USE_PREAD
81 # define USE_PREAD64 1
82 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
83 # undef USE_PREAD64
84 # define USE_PREAD 1
85 #endif
88 ** standard include files.
90 #include <sys/types.h>
91 #include <sys/stat.h>
92 #include <fcntl.h>
93 #include <sys/ioctl.h>
94 #include <unistd.h>
95 #include <time.h>
96 #include <sys/time.h>
97 #include <errno.h>
98 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
99 # include <sys/mman.h>
100 #endif
102 #if SQLITE_ENABLE_LOCKING_STYLE
103 # include <sys/ioctl.h>
104 # include <sys/file.h>
105 # include <sys/param.h>
106 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
108 #if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
109 (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
110 # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
111 && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))
112 # define HAVE_GETHOSTUUID 1
113 # else
114 # warning "gethostuuid() is disabled."
115 # endif
116 #endif
119 #if OS_VXWORKS
120 # include <sys/ioctl.h>
121 # include <semaphore.h>
122 # include <limits.h>
123 #endif /* OS_VXWORKS */
125 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
126 # include <sys/mount.h>
127 #endif
129 #ifdef HAVE_UTIME
130 # include <utime.h>
131 #endif
134 ** Allowed values of unixFile.fsFlags
136 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
139 ** If we are to be thread-safe, include the pthreads header and define
140 ** the SQLITE_UNIX_THREADS macro.
142 #if SQLITE_THREADSAFE
143 # include <pthread.h>
144 # define SQLITE_UNIX_THREADS 1
145 #endif
148 ** Default permissions when creating a new file
150 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
151 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
152 #endif
155 ** Default permissions when creating auto proxy dir
157 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
158 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
159 #endif
162 ** Maximum supported path-length.
164 #define MAX_PATHNAME 512
167 ** Maximum supported symbolic links
169 #define SQLITE_MAX_SYMLINKS 100
171 /* Always cast the getpid() return type for compatibility with
172 ** kernel modules in VxWorks. */
173 #define osGetpid(X) (pid_t)getpid()
176 ** Only set the lastErrno if the error code is a real error and not
177 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
179 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
181 /* Forward references */
182 typedef struct unixShm unixShm; /* Connection shared memory */
183 typedef struct unixShmNode unixShmNode; /* Shared memory instance */
184 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
185 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
188 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
189 ** cannot be closed immediately. In these cases, instances of the following
190 ** structure are used to store the file descriptor while waiting for an
191 ** opportunity to either close or reuse it.
193 struct UnixUnusedFd {
194 int fd; /* File descriptor to close */
195 int flags; /* Flags this file descriptor was opened with */
196 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
200 ** The unixFile structure is subclass of sqlite3_file specific to the unix
201 ** VFS implementations.
203 typedef struct unixFile unixFile;
204 struct unixFile {
205 sqlite3_io_methods const *pMethod; /* Always the first entry */
206 sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
207 unixInodeInfo *pInode; /* Info about locks on this inode */
208 int h; /* The file descriptor */
209 unsigned char eFileLock; /* The type of lock held on this fd */
210 unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
211 int lastErrno; /* The unix errno from last I/O error */
212 void *lockingContext; /* Locking style specific state */
213 UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */
214 const char *zPath; /* Name of the file */
215 unixShm *pShm; /* Shared memory segment information */
216 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
217 #if SQLITE_MAX_MMAP_SIZE>0
218 int nFetchOut; /* Number of outstanding xFetch refs */
219 sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */
220 sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */
221 sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
222 void *pMapRegion; /* Memory mapped region */
223 #endif
224 int sectorSize; /* Device sector size */
225 int deviceCharacteristics; /* Precomputed device characteristics */
226 #if SQLITE_ENABLE_LOCKING_STYLE
227 int openFlags; /* The flags specified at open() */
228 #endif
229 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
230 unsigned fsFlags; /* cached details from statfs() */
231 #endif
232 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
233 unsigned iBusyTimeout; /* Wait this many millisec on locks */
234 #endif
235 #if OS_VXWORKS
236 struct vxworksFileId *pId; /* Unique file ID */
237 #endif
238 #ifdef SQLITE_DEBUG
239 /* The next group of variables are used to track whether or not the
240 ** transaction counter in bytes 24-27 of database files are updated
241 ** whenever any part of the database changes. An assertion fault will
242 ** occur if a file is updated without also updating the transaction
243 ** counter. This test is made to avoid new problems similar to the
244 ** one described by ticket #3584.
246 unsigned char transCntrChng; /* True if the transaction counter changed */
247 unsigned char dbUpdate; /* True if any part of database file changed */
248 unsigned char inNormalWrite; /* True if in a normal write operation */
250 #endif
252 #ifdef SQLITE_TEST
253 /* In test mode, increase the size of this structure a bit so that
254 ** it is larger than the struct CrashFile defined in test6.c.
256 char aPadding[32];
257 #endif
260 /* This variable holds the process id (pid) from when the xRandomness()
261 ** method was called. If xOpen() is called from a different process id,
262 ** indicating that a fork() has occurred, the PRNG will be reset.
264 static pid_t randomnessPid = 0;
267 ** Allowed values for the unixFile.ctrlFlags bitmask:
269 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
270 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
271 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
272 #ifndef SQLITE_DISABLE_DIRSYNC
273 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
274 #else
275 # define UNIXFILE_DIRSYNC 0x00
276 #endif
277 #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
278 #define UNIXFILE_DELETE 0x20 /* Delete on close */
279 #define UNIXFILE_URI 0x40 /* Filename might have query parameters */
280 #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
283 ** Include code that is common to all os_*.c files
285 #include "os_common.h"
288 ** Define various macros that are missing from some systems.
290 #ifndef O_LARGEFILE
291 # define O_LARGEFILE 0
292 #endif
293 #ifdef SQLITE_DISABLE_LFS
294 # undef O_LARGEFILE
295 # define O_LARGEFILE 0
296 #endif
297 #ifndef O_NOFOLLOW
298 # define O_NOFOLLOW 0
299 #endif
300 #ifndef O_BINARY
301 # define O_BINARY 0
302 #endif
305 ** The threadid macro resolves to the thread-id or to 0. Used for
306 ** testing and debugging only.
308 #if SQLITE_THREADSAFE
309 #define threadid pthread_self()
310 #else
311 #define threadid 0
312 #endif
315 ** HAVE_MREMAP defaults to true on Linux and false everywhere else.
317 #if !defined(HAVE_MREMAP)
318 # if defined(__linux__) && defined(_GNU_SOURCE)
319 # define HAVE_MREMAP 1
320 # else
321 # define HAVE_MREMAP 0
322 # endif
323 #endif
326 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
327 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
329 #ifdef __ANDROID__
330 # define lseek lseek64
331 #endif
333 #ifdef __linux__
335 ** Linux-specific IOCTL magic numbers used for controlling F2FS
337 #define F2FS_IOCTL_MAGIC 0xf5
338 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
339 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
340 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
341 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
342 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32)
343 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
344 #endif /* __linux__ */
348 ** Different Unix systems declare open() in different ways. Same use
349 ** open(const char*,int,mode_t). Others use open(const char*,int,...).
350 ** The difference is important when using a pointer to the function.
352 ** The safest way to deal with the problem is to always use this wrapper
353 ** which always has the same well-defined interface.
355 static int posixOpen(const char *zFile, int flags, int mode){
356 return open(zFile, flags, mode);
359 /* Forward reference */
360 static int openDirectory(const char*, int*);
361 static int unixGetpagesize(void);
364 ** Many system calls are accessed through pointer-to-functions so that
365 ** they may be overridden at runtime to facilitate fault injection during
366 ** testing and sandboxing. The following array holds the names and pointers
367 ** to all overrideable system calls.
369 static struct unix_syscall {
370 const char *zName; /* Name of the system call */
371 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
372 sqlite3_syscall_ptr pDefault; /* Default value */
373 } aSyscall[] = {
374 { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
375 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
377 { "close", (sqlite3_syscall_ptr)close, 0 },
378 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
380 { "access", (sqlite3_syscall_ptr)access, 0 },
381 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
383 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
384 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
386 { "stat", (sqlite3_syscall_ptr)stat, 0 },
387 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
390 ** The DJGPP compiler environment looks mostly like Unix, but it
391 ** lacks the fcntl() system call. So redefine fcntl() to be something
392 ** that always succeeds. This means that locking does not occur under
393 ** DJGPP. But it is DOS - what did you expect?
395 #ifdef __DJGPP__
396 { "fstat", 0, 0 },
397 #define osFstat(a,b,c) 0
398 #else
399 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
400 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
401 #endif
403 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
404 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
406 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
407 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
409 { "read", (sqlite3_syscall_ptr)read, 0 },
410 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
412 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
413 { "pread", (sqlite3_syscall_ptr)pread, 0 },
414 #else
415 { "pread", (sqlite3_syscall_ptr)0, 0 },
416 #endif
417 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
419 #if defined(USE_PREAD64)
420 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
421 #else
422 { "pread64", (sqlite3_syscall_ptr)0, 0 },
423 #endif
424 #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
426 { "write", (sqlite3_syscall_ptr)write, 0 },
427 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
429 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
430 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
431 #else
432 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
433 #endif
434 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
435 aSyscall[12].pCurrent)
437 #if defined(USE_PREAD64)
438 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
439 #else
440 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
441 #endif
442 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\
443 aSyscall[13].pCurrent)
445 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
446 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
448 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
449 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
450 #else
451 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
452 #endif
453 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
455 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
456 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
458 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
459 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
461 { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
462 #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
464 { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
465 #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
467 #if defined(HAVE_FCHOWN)
468 { "fchown", (sqlite3_syscall_ptr)fchown, 0 },
469 #else
470 { "fchown", (sqlite3_syscall_ptr)0, 0 },
471 #endif
472 #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
474 #if defined(HAVE_FCHOWN)
475 { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 },
476 #else
477 { "geteuid", (sqlite3_syscall_ptr)0, 0 },
478 #endif
479 #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent)
481 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
482 { "mmap", (sqlite3_syscall_ptr)mmap, 0 },
483 #else
484 { "mmap", (sqlite3_syscall_ptr)0, 0 },
485 #endif
486 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
488 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
489 { "munmap", (sqlite3_syscall_ptr)munmap, 0 },
490 #else
491 { "munmap", (sqlite3_syscall_ptr)0, 0 },
492 #endif
493 #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
495 #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
496 { "mremap", (sqlite3_syscall_ptr)mremap, 0 },
497 #else
498 { "mremap", (sqlite3_syscall_ptr)0, 0 },
499 #endif
500 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
502 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
503 { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 },
504 #else
505 { "getpagesize", (sqlite3_syscall_ptr)0, 0 },
506 #endif
507 #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
509 #if defined(HAVE_READLINK)
510 { "readlink", (sqlite3_syscall_ptr)readlink, 0 },
511 #else
512 { "readlink", (sqlite3_syscall_ptr)0, 0 },
513 #endif
514 #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
516 #if defined(HAVE_LSTAT)
517 { "lstat", (sqlite3_syscall_ptr)lstat, 0 },
518 #else
519 { "lstat", (sqlite3_syscall_ptr)0, 0 },
520 #endif
521 #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
523 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
524 { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 },
525 #else
526 { "ioctl", (sqlite3_syscall_ptr)0, 0 },
527 #endif
528 #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
530 }; /* End of the overrideable system calls */
534 ** On some systems, calls to fchown() will trigger a message in a security
535 ** log if they come from non-root processes. So avoid calling fchown() if
536 ** we are not running as root.
538 static int robustFchown(int fd, uid_t uid, gid_t gid){
539 #if defined(HAVE_FCHOWN)
540 return osGeteuid() ? 0 : osFchown(fd,uid,gid);
541 #else
542 return 0;
543 #endif
547 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
548 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
549 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
550 ** system call named zName.
552 static int unixSetSystemCall(
553 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
554 const char *zName, /* Name of system call to override */
555 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
557 unsigned int i;
558 int rc = SQLITE_NOTFOUND;
560 UNUSED_PARAMETER(pNotUsed);
561 if( zName==0 ){
562 /* If no zName is given, restore all system calls to their default
563 ** settings and return NULL
565 rc = SQLITE_OK;
566 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
567 if( aSyscall[i].pDefault ){
568 aSyscall[i].pCurrent = aSyscall[i].pDefault;
571 }else{
572 /* If zName is specified, operate on only the one system call
573 ** specified.
575 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
576 if( strcmp(zName, aSyscall[i].zName)==0 ){
577 if( aSyscall[i].pDefault==0 ){
578 aSyscall[i].pDefault = aSyscall[i].pCurrent;
580 rc = SQLITE_OK;
581 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
582 aSyscall[i].pCurrent = pNewFunc;
583 break;
587 return rc;
591 ** Return the value of a system call. Return NULL if zName is not a
592 ** recognized system call name. NULL is also returned if the system call
593 ** is currently undefined.
595 static sqlite3_syscall_ptr unixGetSystemCall(
596 sqlite3_vfs *pNotUsed,
597 const char *zName
599 unsigned int i;
601 UNUSED_PARAMETER(pNotUsed);
602 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
603 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
605 return 0;
609 ** Return the name of the first system call after zName. If zName==NULL
610 ** then return the name of the first system call. Return NULL if zName
611 ** is the last system call or if zName is not the name of a valid
612 ** system call.
614 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
615 int i = -1;
617 UNUSED_PARAMETER(p);
618 if( zName ){
619 for(i=0; i<ArraySize(aSyscall)-1; i++){
620 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
623 for(i++; i<ArraySize(aSyscall); i++){
624 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
626 return 0;
630 ** Do not accept any file descriptor less than this value, in order to avoid
631 ** opening database file using file descriptors that are commonly used for
632 ** standard input, output, and error.
634 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
635 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
636 #endif
639 ** Invoke open(). Do so multiple times, until it either succeeds or
640 ** fails for some reason other than EINTR.
642 ** If the file creation mode "m" is 0 then set it to the default for
643 ** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
644 ** 0644) as modified by the system umask. If m is not 0, then
645 ** make the file creation mode be exactly m ignoring the umask.
647 ** The m parameter will be non-zero only when creating -wal, -journal,
648 ** and -shm files. We want those files to have *exactly* the same
649 ** permissions as their original database, unadulterated by the umask.
650 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
651 ** transaction crashes and leaves behind hot journals, then any
652 ** process that is able to write to the database will also be able to
653 ** recover the hot journals.
655 static int robust_open(const char *z, int f, mode_t m){
656 int fd;
657 mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
658 while(1){
659 #if defined(O_CLOEXEC)
660 fd = osOpen(z,f|O_CLOEXEC,m2);
661 #else
662 fd = osOpen(z,f,m2);
663 #endif
664 if( fd<0 ){
665 if( errno==EINTR ) continue;
666 break;
668 if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
669 osClose(fd);
670 sqlite3_log(SQLITE_WARNING,
671 "attempt to open \"%s\" as file descriptor %d", z, fd);
672 fd = -1;
673 if( osOpen("/dev/null", f, m)<0 ) break;
675 if( fd>=0 ){
676 if( m!=0 ){
677 struct stat statbuf;
678 if( osFstat(fd, &statbuf)==0
679 && statbuf.st_size==0
680 && (statbuf.st_mode&0777)!=m
682 osFchmod(fd, m);
685 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
686 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
687 #endif
689 return fd;
693 ** Helper functions to obtain and relinquish the global mutex. The
694 ** global mutex is used to protect the unixInodeInfo and
695 ** vxworksFileId objects used by this file, all of which may be
696 ** shared by multiple threads.
698 ** Function unixMutexHeld() is used to assert() that the global mutex
699 ** is held when required. This function is only used as part of assert()
700 ** statements. e.g.
702 ** unixEnterMutex()
703 ** assert( unixMutexHeld() );
704 ** unixEnterLeave()
706 static sqlite3_mutex *unixBigLock = 0;
707 static void unixEnterMutex(void){
708 sqlite3_mutex_enter(unixBigLock);
710 static void unixLeaveMutex(void){
711 sqlite3_mutex_leave(unixBigLock);
713 #ifdef SQLITE_DEBUG
714 static int unixMutexHeld(void) {
715 return sqlite3_mutex_held(unixBigLock);
717 #endif
720 #ifdef SQLITE_HAVE_OS_TRACE
722 ** Helper function for printing out trace information from debugging
723 ** binaries. This returns the string representation of the supplied
724 ** integer lock-type.
726 static const char *azFileLock(int eFileLock){
727 switch( eFileLock ){
728 case NO_LOCK: return "NONE";
729 case SHARED_LOCK: return "SHARED";
730 case RESERVED_LOCK: return "RESERVED";
731 case PENDING_LOCK: return "PENDING";
732 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
734 return "ERROR";
736 #endif
738 #ifdef SQLITE_LOCK_TRACE
740 ** Print out information about all locking operations.
742 ** This routine is used for troubleshooting locks on multithreaded
743 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
744 ** command-line option on the compiler. This code is normally
745 ** turned off.
747 static int lockTrace(int fd, int op, struct flock *p){
748 char *zOpName, *zType;
749 int s;
750 int savedErrno;
751 if( op==F_GETLK ){
752 zOpName = "GETLK";
753 }else if( op==F_SETLK ){
754 zOpName = "SETLK";
755 }else{
756 s = osFcntl(fd, op, p);
757 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
758 return s;
760 if( p->l_type==F_RDLCK ){
761 zType = "RDLCK";
762 }else if( p->l_type==F_WRLCK ){
763 zType = "WRLCK";
764 }else if( p->l_type==F_UNLCK ){
765 zType = "UNLCK";
766 }else{
767 assert( 0 );
769 assert( p->l_whence==SEEK_SET );
770 s = osFcntl(fd, op, p);
771 savedErrno = errno;
772 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
773 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
774 (int)p->l_pid, s);
775 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
776 struct flock l2;
777 l2 = *p;
778 osFcntl(fd, F_GETLK, &l2);
779 if( l2.l_type==F_RDLCK ){
780 zType = "RDLCK";
781 }else if( l2.l_type==F_WRLCK ){
782 zType = "WRLCK";
783 }else if( l2.l_type==F_UNLCK ){
784 zType = "UNLCK";
785 }else{
786 assert( 0 );
788 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
789 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
791 errno = savedErrno;
792 return s;
794 #undef osFcntl
795 #define osFcntl lockTrace
796 #endif /* SQLITE_LOCK_TRACE */
799 ** Retry ftruncate() calls that fail due to EINTR
801 ** All calls to ftruncate() within this file should be made through
802 ** this wrapper. On the Android platform, bypassing the logic below
803 ** could lead to a corrupt database.
805 static int robust_ftruncate(int h, sqlite3_int64 sz){
806 int rc;
807 #ifdef __ANDROID__
808 /* On Android, ftruncate() always uses 32-bit offsets, even if
809 ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
810 ** truncate a file to any size larger than 2GiB. Silently ignore any
811 ** such attempts. */
812 if( sz>(sqlite3_int64)0x7FFFFFFF ){
813 rc = SQLITE_OK;
814 }else
815 #endif
816 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
817 return rc;
821 ** This routine translates a standard POSIX errno code into something
822 ** useful to the clients of the sqlite3 functions. Specifically, it is
823 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
824 ** and a variety of "please close the file descriptor NOW" errors into
825 ** SQLITE_IOERR
827 ** Errors during initialization of locks, or file system support for locks,
828 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
830 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
831 assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
832 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
833 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
834 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
835 switch (posixError) {
836 case EACCES:
837 case EAGAIN:
838 case ETIMEDOUT:
839 case EBUSY:
840 case EINTR:
841 case ENOLCK:
842 /* random NFS retry error, unless during file system support
843 * introspection, in which it actually means what it says */
844 return SQLITE_BUSY;
846 case EPERM:
847 return SQLITE_PERM;
849 default:
850 return sqliteIOErr;
855 /******************************************************************************
856 ****************** Begin Unique File ID Utility Used By VxWorks ***************
858 ** On most versions of unix, we can get a unique ID for a file by concatenating
859 ** the device number and the inode number. But this does not work on VxWorks.
860 ** On VxWorks, a unique file id must be based on the canonical filename.
862 ** A pointer to an instance of the following structure can be used as a
863 ** unique file ID in VxWorks. Each instance of this structure contains
864 ** a copy of the canonical filename. There is also a reference count.
865 ** The structure is reclaimed when the number of pointers to it drops to
866 ** zero.
868 ** There are never very many files open at one time and lookups are not
869 ** a performance-critical path, so it is sufficient to put these
870 ** structures on a linked list.
872 struct vxworksFileId {
873 struct vxworksFileId *pNext; /* Next in a list of them all */
874 int nRef; /* Number of references to this one */
875 int nName; /* Length of the zCanonicalName[] string */
876 char *zCanonicalName; /* Canonical filename */
879 #if OS_VXWORKS
881 ** All unique filenames are held on a linked list headed by this
882 ** variable:
884 static struct vxworksFileId *vxworksFileList = 0;
887 ** Simplify a filename into its canonical form
888 ** by making the following changes:
890 ** * removing any trailing and duplicate /
891 ** * convert /./ into just /
892 ** * convert /A/../ where A is any simple name into just /
894 ** Changes are made in-place. Return the new name length.
896 ** The original filename is in z[0..n-1]. Return the number of
897 ** characters in the simplified name.
899 static int vxworksSimplifyName(char *z, int n){
900 int i, j;
901 while( n>1 && z[n-1]=='/' ){ n--; }
902 for(i=j=0; i<n; i++){
903 if( z[i]=='/' ){
904 if( z[i+1]=='/' ) continue;
905 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
906 i += 1;
907 continue;
909 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
910 while( j>0 && z[j-1]!='/' ){ j--; }
911 if( j>0 ){ j--; }
912 i += 2;
913 continue;
916 z[j++] = z[i];
918 z[j] = 0;
919 return j;
923 ** Find a unique file ID for the given absolute pathname. Return
924 ** a pointer to the vxworksFileId object. This pointer is the unique
925 ** file ID.
927 ** The nRef field of the vxworksFileId object is incremented before
928 ** the object is returned. A new vxworksFileId object is created
929 ** and added to the global list if necessary.
931 ** If a memory allocation error occurs, return NULL.
933 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
934 struct vxworksFileId *pNew; /* search key and new file ID */
935 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
936 int n; /* Length of zAbsoluteName string */
938 assert( zAbsoluteName[0]=='/' );
939 n = (int)strlen(zAbsoluteName);
940 pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
941 if( pNew==0 ) return 0;
942 pNew->zCanonicalName = (char*)&pNew[1];
943 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
944 n = vxworksSimplifyName(pNew->zCanonicalName, n);
946 /* Search for an existing entry that matching the canonical name.
947 ** If found, increment the reference count and return a pointer to
948 ** the existing file ID.
950 unixEnterMutex();
951 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
952 if( pCandidate->nName==n
953 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
955 sqlite3_free(pNew);
956 pCandidate->nRef++;
957 unixLeaveMutex();
958 return pCandidate;
962 /* No match was found. We will make a new file ID */
963 pNew->nRef = 1;
964 pNew->nName = n;
965 pNew->pNext = vxworksFileList;
966 vxworksFileList = pNew;
967 unixLeaveMutex();
968 return pNew;
972 ** Decrement the reference count on a vxworksFileId object. Free
973 ** the object when the reference count reaches zero.
975 static void vxworksReleaseFileId(struct vxworksFileId *pId){
976 unixEnterMutex();
977 assert( pId->nRef>0 );
978 pId->nRef--;
979 if( pId->nRef==0 ){
980 struct vxworksFileId **pp;
981 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
982 assert( *pp==pId );
983 *pp = pId->pNext;
984 sqlite3_free(pId);
986 unixLeaveMutex();
988 #endif /* OS_VXWORKS */
989 /*************** End of Unique File ID Utility Used By VxWorks ****************
990 ******************************************************************************/
993 /******************************************************************************
994 *************************** Posix Advisory Locking ****************************
996 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
997 ** section 6.5.2.2 lines 483 through 490 specify that when a process
998 ** sets or clears a lock, that operation overrides any prior locks set
999 ** by the same process. It does not explicitly say so, but this implies
1000 ** that it overrides locks set by the same process using a different
1001 ** file descriptor. Consider this test case:
1003 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
1004 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
1006 ** Suppose ./file1 and ./file2 are really the same file (because
1007 ** one is a hard or symbolic link to the other) then if you set
1008 ** an exclusive lock on fd1, then try to get an exclusive lock
1009 ** on fd2, it works. I would have expected the second lock to
1010 ** fail since there was already a lock on the file due to fd1.
1011 ** But not so. Since both locks came from the same process, the
1012 ** second overrides the first, even though they were on different
1013 ** file descriptors opened on different file names.
1015 ** This means that we cannot use POSIX locks to synchronize file access
1016 ** among competing threads of the same process. POSIX locks will work fine
1017 ** to synchronize access for threads in separate processes, but not
1018 ** threads within the same process.
1020 ** To work around the problem, SQLite has to manage file locks internally
1021 ** on its own. Whenever a new database is opened, we have to find the
1022 ** specific inode of the database file (the inode is determined by the
1023 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
1024 ** and check for locks already existing on that inode. When locks are
1025 ** created or removed, we have to look at our own internal record of the
1026 ** locks to see if another thread has previously set a lock on that same
1027 ** inode.
1029 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
1030 ** For VxWorks, we have to use the alternative unique ID system based on
1031 ** canonical filename and implemented in the previous division.)
1033 ** The sqlite3_file structure for POSIX is no longer just an integer file
1034 ** descriptor. It is now a structure that holds the integer file
1035 ** descriptor and a pointer to a structure that describes the internal
1036 ** locks on the corresponding inode. There is one locking structure
1037 ** per inode, so if the same inode is opened twice, both unixFile structures
1038 ** point to the same locking structure. The locking structure keeps
1039 ** a reference count (so we will know when to delete it) and a "cnt"
1040 ** field that tells us its internal lock status. cnt==0 means the
1041 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
1042 ** cnt>0 means there are cnt shared locks on the file.
1044 ** Any attempt to lock or unlock a file first checks the locking
1045 ** structure. The fcntl() system call is only invoked to set a
1046 ** POSIX lock if the internal lock structure transitions between
1047 ** a locked and an unlocked state.
1049 ** But wait: there are yet more problems with POSIX advisory locks.
1051 ** If you close a file descriptor that points to a file that has locks,
1052 ** all locks on that file that are owned by the current process are
1053 ** released. To work around this problem, each unixInodeInfo object
1054 ** maintains a count of the number of pending locks on tha inode.
1055 ** When an attempt is made to close an unixFile, if there are
1056 ** other unixFile open on the same inode that are holding locks, the call
1057 ** to close() the file descriptor is deferred until all of the locks clear.
1058 ** The unixInodeInfo structure keeps a list of file descriptors that need to
1059 ** be closed and that list is walked (and cleared) when the last lock
1060 ** clears.
1062 ** Yet another problem: LinuxThreads do not play well with posix locks.
1064 ** Many older versions of linux use the LinuxThreads library which is
1065 ** not posix compliant. Under LinuxThreads, a lock created by thread
1066 ** A cannot be modified or overridden by a different thread B.
1067 ** Only thread A can modify the lock. Locking behavior is correct
1068 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
1069 ** on linux - with NPTL a lock created by thread A can override locks
1070 ** in thread B. But there is no way to know at compile-time which
1071 ** threading library is being used. So there is no way to know at
1072 ** compile-time whether or not thread A can override locks on thread B.
1073 ** One has to do a run-time check to discover the behavior of the
1074 ** current process.
1076 ** SQLite used to support LinuxThreads. But support for LinuxThreads
1077 ** was dropped beginning with version 3.7.0. SQLite will still work with
1078 ** LinuxThreads provided that (1) there is no more than one connection
1079 ** per database file in the same process and (2) database connections
1080 ** do not move across threads.
1084 ** An instance of the following structure serves as the key used
1085 ** to locate a particular unixInodeInfo object.
1087 struct unixFileId {
1088 dev_t dev; /* Device number */
1089 #if OS_VXWORKS
1090 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
1091 #else
1092 /* We are told that some versions of Android contain a bug that
1093 ** sizes ino_t at only 32-bits instead of 64-bits. (See
1094 ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
1095 ** To work around this, always allocate 64-bits for the inode number.
1096 ** On small machines that only have 32-bit inodes, this wastes 4 bytes,
1097 ** but that should not be a big deal. */
1098 /* WAS: ino_t ino; */
1099 u64 ino; /* Inode number */
1100 #endif
1104 ** An instance of the following structure is allocated for each open
1105 ** inode. Or, on LinuxThreads, there is one of these structures for
1106 ** each inode opened by each thread.
1108 ** A single inode can have multiple file descriptors, so each unixFile
1109 ** structure contains a pointer to an instance of this object and this
1110 ** object keeps a count of the number of unixFile pointing to it.
1112 struct unixInodeInfo {
1113 struct unixFileId fileId; /* The lookup key */
1114 int nShared; /* Number of SHARED locks held */
1115 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1116 unsigned char bProcessLock; /* An exclusive process lock is held */
1117 int nRef; /* Number of pointers to this structure */
1118 unixShmNode *pShmNode; /* Shared memory associated with this inode */
1119 int nLock; /* Number of outstanding file locks */
1120 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
1121 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
1122 unixInodeInfo *pPrev; /* .... doubly linked */
1123 #if SQLITE_ENABLE_LOCKING_STYLE
1124 unsigned long long sharedByte; /* for AFP simulated shared lock */
1125 #endif
1126 #if OS_VXWORKS
1127 sem_t *pSem; /* Named POSIX semaphore */
1128 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
1129 #endif
1133 ** A lists of all unixInodeInfo objects.
1135 static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */
1136 static unsigned int nUnusedFd = 0; /* Total unused file descriptors */
1140 ** This function - unixLogErrorAtLine(), is only ever called via the macro
1141 ** unixLogError().
1143 ** It is invoked after an error occurs in an OS function and errno has been
1144 ** set. It logs a message using sqlite3_log() containing the current value of
1145 ** errno and, if possible, the human-readable equivalent from strerror() or
1146 ** strerror_r().
1148 ** The first argument passed to the macro should be the error code that
1149 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1150 ** The two subsequent arguments should be the name of the OS function that
1151 ** failed (e.g. "unlink", "open") and the associated file-system path,
1152 ** if any.
1154 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
1155 static int unixLogErrorAtLine(
1156 int errcode, /* SQLite error code */
1157 const char *zFunc, /* Name of OS function that failed */
1158 const char *zPath, /* File path associated with error */
1159 int iLine /* Source line number where error occurred */
1161 char *zErr; /* Message from strerror() or equivalent */
1162 int iErrno = errno; /* Saved syscall error number */
1164 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1165 ** the strerror() function to obtain the human-readable error message
1166 ** equivalent to errno. Otherwise, use strerror_r().
1168 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1169 char aErr[80];
1170 memset(aErr, 0, sizeof(aErr));
1171 zErr = aErr;
1173 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1174 ** assume that the system provides the GNU version of strerror_r() that
1175 ** returns a pointer to a buffer containing the error message. That pointer
1176 ** may point to aErr[], or it may point to some static storage somewhere.
1177 ** Otherwise, assume that the system provides the POSIX version of
1178 ** strerror_r(), which always writes an error message into aErr[].
1180 ** If the code incorrectly assumes that it is the POSIX version that is
1181 ** available, the error message will often be an empty string. Not a
1182 ** huge problem. Incorrectly concluding that the GNU version is available
1183 ** could lead to a segfault though.
1185 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1186 zErr =
1187 # endif
1188 strerror_r(iErrno, aErr, sizeof(aErr)-1);
1190 #elif SQLITE_THREADSAFE
1191 /* This is a threadsafe build, but strerror_r() is not available. */
1192 zErr = "";
1193 #else
1194 /* Non-threadsafe build, use strerror(). */
1195 zErr = strerror(iErrno);
1196 #endif
1198 if( zPath==0 ) zPath = "";
1199 sqlite3_log(errcode,
1200 "os_unix.c:%d: (%d) %s(%s) - %s",
1201 iLine, iErrno, zFunc, zPath, zErr
1204 return errcode;
1208 ** Close a file descriptor.
1210 ** We assume that close() almost always works, since it is only in a
1211 ** very sick application or on a very sick platform that it might fail.
1212 ** If it does fail, simply leak the file descriptor, but do log the
1213 ** error.
1215 ** Note that it is not safe to retry close() after EINTR since the
1216 ** file descriptor might have already been reused by another thread.
1217 ** So we don't even try to recover from an EINTR. Just log the error
1218 ** and move on.
1220 static void robust_close(unixFile *pFile, int h, int lineno){
1221 if( osClose(h) ){
1222 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1223 pFile ? pFile->zPath : 0, lineno);
1228 ** Set the pFile->lastErrno. Do this in a subroutine as that provides
1229 ** a convenient place to set a breakpoint.
1231 static void storeLastErrno(unixFile *pFile, int error){
1232 pFile->lastErrno = error;
1236 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1238 static void closePendingFds(unixFile *pFile){
1239 unixInodeInfo *pInode = pFile->pInode;
1240 UnixUnusedFd *p;
1241 UnixUnusedFd *pNext;
1242 for(p=pInode->pUnused; p; p=pNext){
1243 pNext = p->pNext;
1244 robust_close(pFile, p->fd, __LINE__);
1245 sqlite3_free(p);
1246 nUnusedFd--;
1248 pInode->pUnused = 0;
1252 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1254 ** The mutex entered using the unixEnterMutex() function must be held
1255 ** when this function is called.
1257 static void releaseInodeInfo(unixFile *pFile){
1258 unixInodeInfo *pInode = pFile->pInode;
1259 assert( unixMutexHeld() );
1260 if( ALWAYS(pInode) ){
1261 pInode->nRef--;
1262 if( pInode->nRef==0 ){
1263 assert( pInode->pShmNode==0 );
1264 closePendingFds(pFile);
1265 if( pInode->pPrev ){
1266 assert( pInode->pPrev->pNext==pInode );
1267 pInode->pPrev->pNext = pInode->pNext;
1268 }else{
1269 assert( inodeList==pInode );
1270 inodeList = pInode->pNext;
1272 if( pInode->pNext ){
1273 assert( pInode->pNext->pPrev==pInode );
1274 pInode->pNext->pPrev = pInode->pPrev;
1276 sqlite3_free(pInode);
1279 assert( inodeList!=0 || nUnusedFd==0 );
1283 ** Given a file descriptor, locate the unixInodeInfo object that
1284 ** describes that file descriptor. Create a new one if necessary. The
1285 ** return value might be uninitialized if an error occurs.
1287 ** The mutex entered using the unixEnterMutex() function must be held
1288 ** when this function is called.
1290 ** Return an appropriate error code.
1292 static int findInodeInfo(
1293 unixFile *pFile, /* Unix file with file desc used in the key */
1294 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
1296 int rc; /* System call return code */
1297 int fd; /* The file descriptor for pFile */
1298 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
1299 struct stat statbuf; /* Low-level file information */
1300 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
1302 assert( unixMutexHeld() );
1304 /* Get low-level information about the file that we can used to
1305 ** create a unique name for the file.
1307 fd = pFile->h;
1308 rc = osFstat(fd, &statbuf);
1309 if( rc!=0 ){
1310 storeLastErrno(pFile, errno);
1311 #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
1312 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1313 #endif
1314 return SQLITE_IOERR;
1317 #ifdef __APPLE__
1318 /* On OS X on an msdos filesystem, the inode number is reported
1319 ** incorrectly for zero-size files. See ticket #3260. To work
1320 ** around this problem (we consider it a bug in OS X, not SQLite)
1321 ** we always increase the file size to 1 by writing a single byte
1322 ** prior to accessing the inode number. The one byte written is
1323 ** an ASCII 'S' character which also happens to be the first byte
1324 ** in the header of every SQLite database. In this way, if there
1325 ** is a race condition such that another thread has already populated
1326 ** the first page of the database, no damage is done.
1328 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1329 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1330 if( rc!=1 ){
1331 storeLastErrno(pFile, errno);
1332 return SQLITE_IOERR;
1334 rc = osFstat(fd, &statbuf);
1335 if( rc!=0 ){
1336 storeLastErrno(pFile, errno);
1337 return SQLITE_IOERR;
1340 #endif
1342 memset(&fileId, 0, sizeof(fileId));
1343 fileId.dev = statbuf.st_dev;
1344 #if OS_VXWORKS
1345 fileId.pId = pFile->pId;
1346 #else
1347 fileId.ino = (u64)statbuf.st_ino;
1348 #endif
1349 assert( inodeList!=0 || nUnusedFd==0 );
1350 pInode = inodeList;
1351 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1352 pInode = pInode->pNext;
1354 if( pInode==0 ){
1355 pInode = sqlite3_malloc64( sizeof(*pInode) );
1356 if( pInode==0 ){
1357 return SQLITE_NOMEM_BKPT;
1359 memset(pInode, 0, sizeof(*pInode));
1360 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1361 pInode->nRef = 1;
1362 pInode->pNext = inodeList;
1363 pInode->pPrev = 0;
1364 if( inodeList ) inodeList->pPrev = pInode;
1365 inodeList = pInode;
1366 }else{
1367 pInode->nRef++;
1369 *ppInode = pInode;
1370 return SQLITE_OK;
1374 ** Return TRUE if pFile has been renamed or unlinked since it was first opened.
1376 static int fileHasMoved(unixFile *pFile){
1377 #if OS_VXWORKS
1378 return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
1379 #else
1380 struct stat buf;
1381 return pFile->pInode!=0 &&
1382 (osStat(pFile->zPath, &buf)!=0
1383 || (u64)buf.st_ino!=pFile->pInode->fileId.ino);
1384 #endif
1389 ** Check a unixFile that is a database. Verify the following:
1391 ** (1) There is exactly one hard link on the file
1392 ** (2) The file is not a symbolic link
1393 ** (3) The file has not been renamed or unlinked
1395 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
1397 static void verifyDbFile(unixFile *pFile){
1398 struct stat buf;
1399 int rc;
1401 /* These verifications occurs for the main database only */
1402 if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
1404 rc = osFstat(pFile->h, &buf);
1405 if( rc!=0 ){
1406 sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
1407 return;
1409 if( buf.st_nlink==0 ){
1410 sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
1411 return;
1413 if( buf.st_nlink>1 ){
1414 sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
1415 return;
1417 if( fileHasMoved(pFile) ){
1418 sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
1419 return;
1425 ** This routine checks if there is a RESERVED lock held on the specified
1426 ** file by this or any other process. If such a lock is held, set *pResOut
1427 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1428 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1430 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1431 int rc = SQLITE_OK;
1432 int reserved = 0;
1433 unixFile *pFile = (unixFile*)id;
1435 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1437 assert( pFile );
1438 assert( pFile->eFileLock<=SHARED_LOCK );
1439 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1441 /* Check if a thread in this process holds such a lock */
1442 if( pFile->pInode->eFileLock>SHARED_LOCK ){
1443 reserved = 1;
1446 /* Otherwise see if some other process holds it.
1448 #ifndef __DJGPP__
1449 if( !reserved && !pFile->pInode->bProcessLock ){
1450 struct flock lock;
1451 lock.l_whence = SEEK_SET;
1452 lock.l_start = RESERVED_BYTE;
1453 lock.l_len = 1;
1454 lock.l_type = F_WRLCK;
1455 if( osFcntl(pFile->h, F_GETLK, &lock) ){
1456 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1457 storeLastErrno(pFile, errno);
1458 } else if( lock.l_type!=F_UNLCK ){
1459 reserved = 1;
1462 #endif
1464 unixLeaveMutex();
1465 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1467 *pResOut = reserved;
1468 return rc;
1472 ** Set a posix-advisory-lock.
1474 ** There are two versions of this routine. If compiled with
1475 ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
1476 ** which is a pointer to a unixFile. If the unixFile->iBusyTimeout
1477 ** value is set, then it is the number of milliseconds to wait before
1478 ** failing the lock. The iBusyTimeout value is always reset back to
1479 ** zero on each call.
1481 ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
1482 ** attempt to set the lock.
1484 #ifndef SQLITE_ENABLE_SETLK_TIMEOUT
1485 # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
1486 #else
1487 static int osSetPosixAdvisoryLock(
1488 int h, /* The file descriptor on which to take the lock */
1489 struct flock *pLock, /* The description of the lock */
1490 unixFile *pFile /* Structure holding timeout value */
1492 int rc = osFcntl(h,F_SETLK,pLock);
1493 while( rc<0 && pFile->iBusyTimeout>0 ){
1494 /* On systems that support some kind of blocking file lock with a timeout,
1495 ** make appropriate changes here to invoke that blocking file lock. On
1496 ** generic posix, however, there is no such API. So we simply try the
1497 ** lock once every millisecond until either the timeout expires, or until
1498 ** the lock is obtained. */
1499 usleep(1000);
1500 rc = osFcntl(h,F_SETLK,pLock);
1501 pFile->iBusyTimeout--;
1503 return rc;
1505 #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
1509 ** Attempt to set a system-lock on the file pFile. The lock is
1510 ** described by pLock.
1512 ** If the pFile was opened read/write from unix-excl, then the only lock
1513 ** ever obtained is an exclusive lock, and it is obtained exactly once
1514 ** the first time any lock is attempted. All subsequent system locking
1515 ** operations become no-ops. Locking operations still happen internally,
1516 ** in order to coordinate access between separate database connections
1517 ** within this process, but all of that is handled in memory and the
1518 ** operating system does not participate.
1520 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1521 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1522 ** and is read-only.
1524 ** Zero is returned if the call completes successfully, or -1 if a call
1525 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1527 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1528 int rc;
1529 unixInodeInfo *pInode = pFile->pInode;
1530 assert( unixMutexHeld() );
1531 assert( pInode!=0 );
1532 if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
1533 if( pInode->bProcessLock==0 ){
1534 struct flock lock;
1535 assert( pInode->nLock==0 );
1536 lock.l_whence = SEEK_SET;
1537 lock.l_start = SHARED_FIRST;
1538 lock.l_len = SHARED_SIZE;
1539 lock.l_type = F_WRLCK;
1540 rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile);
1541 if( rc<0 ) return rc;
1542 pInode->bProcessLock = 1;
1543 pInode->nLock++;
1544 }else{
1545 rc = 0;
1547 }else{
1548 rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile);
1550 return rc;
1554 ** Lock the file with the lock specified by parameter eFileLock - one
1555 ** of the following:
1557 ** (1) SHARED_LOCK
1558 ** (2) RESERVED_LOCK
1559 ** (3) PENDING_LOCK
1560 ** (4) EXCLUSIVE_LOCK
1562 ** Sometimes when requesting one lock state, additional lock states
1563 ** are inserted in between. The locking might fail on one of the later
1564 ** transitions leaving the lock state different from what it started but
1565 ** still short of its goal. The following chart shows the allowed
1566 ** transitions and the inserted intermediate states:
1568 ** UNLOCKED -> SHARED
1569 ** SHARED -> RESERVED
1570 ** SHARED -> (PENDING) -> EXCLUSIVE
1571 ** RESERVED -> (PENDING) -> EXCLUSIVE
1572 ** PENDING -> EXCLUSIVE
1574 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1575 ** routine to lower a locking level.
1577 static int unixLock(sqlite3_file *id, int eFileLock){
1578 /* The following describes the implementation of the various locks and
1579 ** lock transitions in terms of the POSIX advisory shared and exclusive
1580 ** lock primitives (called read-locks and write-locks below, to avoid
1581 ** confusion with SQLite lock names). The algorithms are complicated
1582 ** slightly in order to be compatible with Windows95 systems simultaneously
1583 ** accessing the same database file, in case that is ever required.
1585 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1586 ** byte', each single bytes at well known offsets, and the 'shared byte
1587 ** range', a range of 510 bytes at a well known offset.
1589 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1590 ** byte'. If this is successful, 'shared byte range' is read-locked
1591 ** and the lock on the 'pending byte' released. (Legacy note: When
1592 ** SQLite was first developed, Windows95 systems were still very common,
1593 ** and Widnows95 lacks a shared-lock capability. So on Windows95, a
1594 ** single randomly selected by from the 'shared byte range' is locked.
1595 ** Windows95 is now pretty much extinct, but this work-around for the
1596 ** lack of shared-locks on Windows95 lives on, for backwards
1597 ** compatibility.)
1599 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1600 ** A RESERVED lock is implemented by grabbing a write-lock on the
1601 ** 'reserved byte'.
1603 ** A process may only obtain a PENDING lock after it has obtained a
1604 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1605 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1606 ** obtained, but existing SHARED locks are allowed to persist. A process
1607 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1608 ** This property is used by the algorithm for rolling back a journal file
1609 ** after a crash.
1611 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1612 ** implemented by obtaining a write-lock on the entire 'shared byte
1613 ** range'. Since all other locks require a read-lock on one of the bytes
1614 ** within this range, this ensures that no other locks are held on the
1615 ** database.
1617 int rc = SQLITE_OK;
1618 unixFile *pFile = (unixFile*)id;
1619 unixInodeInfo *pInode;
1620 struct flock lock;
1621 int tErrno = 0;
1623 assert( pFile );
1624 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1625 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1626 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
1627 osGetpid(0)));
1629 /* If there is already a lock of this type or more restrictive on the
1630 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1631 ** unixEnterMutex() hasn't been called yet.
1633 if( pFile->eFileLock>=eFileLock ){
1634 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
1635 azFileLock(eFileLock)));
1636 return SQLITE_OK;
1639 /* Make sure the locking sequence is correct.
1640 ** (1) We never move from unlocked to anything higher than shared lock.
1641 ** (2) SQLite never explicitly requests a pendig lock.
1642 ** (3) A shared lock is always held when a reserve lock is requested.
1644 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1645 assert( eFileLock!=PENDING_LOCK );
1646 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1648 /* This mutex is needed because pFile->pInode is shared across threads
1650 unixEnterMutex();
1651 pInode = pFile->pInode;
1653 /* If some thread using this PID has a lock via a different unixFile*
1654 ** handle that precludes the requested lock, return BUSY.
1656 if( (pFile->eFileLock!=pInode->eFileLock &&
1657 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1659 rc = SQLITE_BUSY;
1660 goto end_lock;
1663 /* If a SHARED lock is requested, and some thread using this PID already
1664 ** has a SHARED or RESERVED lock, then increment reference counts and
1665 ** return SQLITE_OK.
1667 if( eFileLock==SHARED_LOCK &&
1668 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1669 assert( eFileLock==SHARED_LOCK );
1670 assert( pFile->eFileLock==0 );
1671 assert( pInode->nShared>0 );
1672 pFile->eFileLock = SHARED_LOCK;
1673 pInode->nShared++;
1674 pInode->nLock++;
1675 goto end_lock;
1679 /* A PENDING lock is needed before acquiring a SHARED lock and before
1680 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1681 ** be released.
1683 lock.l_len = 1L;
1684 lock.l_whence = SEEK_SET;
1685 if( eFileLock==SHARED_LOCK
1686 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1688 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1689 lock.l_start = PENDING_BYTE;
1690 if( unixFileLock(pFile, &lock) ){
1691 tErrno = errno;
1692 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1693 if( rc!=SQLITE_BUSY ){
1694 storeLastErrno(pFile, tErrno);
1696 goto end_lock;
1701 /* If control gets to this point, then actually go ahead and make
1702 ** operating system calls for the specified lock.
1704 if( eFileLock==SHARED_LOCK ){
1705 assert( pInode->nShared==0 );
1706 assert( pInode->eFileLock==0 );
1707 assert( rc==SQLITE_OK );
1709 /* Now get the read-lock */
1710 lock.l_start = SHARED_FIRST;
1711 lock.l_len = SHARED_SIZE;
1712 if( unixFileLock(pFile, &lock) ){
1713 tErrno = errno;
1714 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1717 /* Drop the temporary PENDING lock */
1718 lock.l_start = PENDING_BYTE;
1719 lock.l_len = 1L;
1720 lock.l_type = F_UNLCK;
1721 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1722 /* This could happen with a network mount */
1723 tErrno = errno;
1724 rc = SQLITE_IOERR_UNLOCK;
1727 if( rc ){
1728 if( rc!=SQLITE_BUSY ){
1729 storeLastErrno(pFile, tErrno);
1731 goto end_lock;
1732 }else{
1733 pFile->eFileLock = SHARED_LOCK;
1734 pInode->nLock++;
1735 pInode->nShared = 1;
1737 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1738 /* We are trying for an exclusive lock but another thread in this
1739 ** same process is still holding a shared lock. */
1740 rc = SQLITE_BUSY;
1741 }else{
1742 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1743 ** assumed that there is a SHARED or greater lock on the file
1744 ** already.
1746 assert( 0!=pFile->eFileLock );
1747 lock.l_type = F_WRLCK;
1749 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1750 if( eFileLock==RESERVED_LOCK ){
1751 lock.l_start = RESERVED_BYTE;
1752 lock.l_len = 1L;
1753 }else{
1754 lock.l_start = SHARED_FIRST;
1755 lock.l_len = SHARED_SIZE;
1758 if( unixFileLock(pFile, &lock) ){
1759 tErrno = errno;
1760 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1761 if( rc!=SQLITE_BUSY ){
1762 storeLastErrno(pFile, tErrno);
1768 #ifdef SQLITE_DEBUG
1769 /* Set up the transaction-counter change checking flags when
1770 ** transitioning from a SHARED to a RESERVED lock. The change
1771 ** from SHARED to RESERVED marks the beginning of a normal
1772 ** write operation (not a hot journal rollback).
1774 if( rc==SQLITE_OK
1775 && pFile->eFileLock<=SHARED_LOCK
1776 && eFileLock==RESERVED_LOCK
1778 pFile->transCntrChng = 0;
1779 pFile->dbUpdate = 0;
1780 pFile->inNormalWrite = 1;
1782 #endif
1785 if( rc==SQLITE_OK ){
1786 pFile->eFileLock = eFileLock;
1787 pInode->eFileLock = eFileLock;
1788 }else if( eFileLock==EXCLUSIVE_LOCK ){
1789 pFile->eFileLock = PENDING_LOCK;
1790 pInode->eFileLock = PENDING_LOCK;
1793 end_lock:
1794 unixLeaveMutex();
1795 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1796 rc==SQLITE_OK ? "ok" : "failed"));
1797 return rc;
1801 ** Add the file descriptor used by file handle pFile to the corresponding
1802 ** pUnused list.
1804 static void setPendingFd(unixFile *pFile){
1805 unixInodeInfo *pInode = pFile->pInode;
1806 UnixUnusedFd *p = pFile->pPreallocatedUnused;
1807 p->pNext = pInode->pUnused;
1808 pInode->pUnused = p;
1809 pFile->h = -1;
1810 pFile->pPreallocatedUnused = 0;
1811 nUnusedFd++;
1815 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1816 ** must be either NO_LOCK or SHARED_LOCK.
1818 ** If the locking level of the file descriptor is already at or below
1819 ** the requested locking level, this routine is a no-op.
1821 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1822 ** the byte range is divided into 2 parts and the first part is unlocked then
1823 ** set to a read lock, then the other part is simply unlocked. This works
1824 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1825 ** remove the write lock on a region when a read lock is set.
1827 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1828 unixFile *pFile = (unixFile*)id;
1829 unixInodeInfo *pInode;
1830 struct flock lock;
1831 int rc = SQLITE_OK;
1833 assert( pFile );
1834 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1835 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1836 osGetpid(0)));
1838 assert( eFileLock<=SHARED_LOCK );
1839 if( pFile->eFileLock<=eFileLock ){
1840 return SQLITE_OK;
1842 unixEnterMutex();
1843 pInode = pFile->pInode;
1844 assert( pInode->nShared!=0 );
1845 if( pFile->eFileLock>SHARED_LOCK ){
1846 assert( pInode->eFileLock==pFile->eFileLock );
1848 #ifdef SQLITE_DEBUG
1849 /* When reducing a lock such that other processes can start
1850 ** reading the database file again, make sure that the
1851 ** transaction counter was updated if any part of the database
1852 ** file changed. If the transaction counter is not updated,
1853 ** other connections to the same file might not realize that
1854 ** the file has changed and hence might not know to flush their
1855 ** cache. The use of a stale cache can lead to database corruption.
1857 pFile->inNormalWrite = 0;
1858 #endif
1860 /* downgrading to a shared lock on NFS involves clearing the write lock
1861 ** before establishing the readlock - to avoid a race condition we downgrade
1862 ** the lock in 2 blocks, so that part of the range will be covered by a
1863 ** write lock until the rest is covered by a read lock:
1864 ** 1: [WWWWW]
1865 ** 2: [....W]
1866 ** 3: [RRRRW]
1867 ** 4: [RRRR.]
1869 if( eFileLock==SHARED_LOCK ){
1870 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1871 (void)handleNFSUnlock;
1872 assert( handleNFSUnlock==0 );
1873 #endif
1874 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1875 if( handleNFSUnlock ){
1876 int tErrno; /* Error code from system call errors */
1877 off_t divSize = SHARED_SIZE - 1;
1879 lock.l_type = F_UNLCK;
1880 lock.l_whence = SEEK_SET;
1881 lock.l_start = SHARED_FIRST;
1882 lock.l_len = divSize;
1883 if( unixFileLock(pFile, &lock)==(-1) ){
1884 tErrno = errno;
1885 rc = SQLITE_IOERR_UNLOCK;
1886 storeLastErrno(pFile, tErrno);
1887 goto end_unlock;
1889 lock.l_type = F_RDLCK;
1890 lock.l_whence = SEEK_SET;
1891 lock.l_start = SHARED_FIRST;
1892 lock.l_len = divSize;
1893 if( unixFileLock(pFile, &lock)==(-1) ){
1894 tErrno = errno;
1895 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1896 if( IS_LOCK_ERROR(rc) ){
1897 storeLastErrno(pFile, tErrno);
1899 goto end_unlock;
1901 lock.l_type = F_UNLCK;
1902 lock.l_whence = SEEK_SET;
1903 lock.l_start = SHARED_FIRST+divSize;
1904 lock.l_len = SHARED_SIZE-divSize;
1905 if( unixFileLock(pFile, &lock)==(-1) ){
1906 tErrno = errno;
1907 rc = SQLITE_IOERR_UNLOCK;
1908 storeLastErrno(pFile, tErrno);
1909 goto end_unlock;
1911 }else
1912 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1914 lock.l_type = F_RDLCK;
1915 lock.l_whence = SEEK_SET;
1916 lock.l_start = SHARED_FIRST;
1917 lock.l_len = SHARED_SIZE;
1918 if( unixFileLock(pFile, &lock) ){
1919 /* In theory, the call to unixFileLock() cannot fail because another
1920 ** process is holding an incompatible lock. If it does, this
1921 ** indicates that the other process is not following the locking
1922 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1923 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1924 ** an assert to fail). */
1925 rc = SQLITE_IOERR_RDLOCK;
1926 storeLastErrno(pFile, errno);
1927 goto end_unlock;
1931 lock.l_type = F_UNLCK;
1932 lock.l_whence = SEEK_SET;
1933 lock.l_start = PENDING_BYTE;
1934 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1935 if( unixFileLock(pFile, &lock)==0 ){
1936 pInode->eFileLock = SHARED_LOCK;
1937 }else{
1938 rc = SQLITE_IOERR_UNLOCK;
1939 storeLastErrno(pFile, errno);
1940 goto end_unlock;
1943 if( eFileLock==NO_LOCK ){
1944 /* Decrement the shared lock counter. Release the lock using an
1945 ** OS call only when all threads in this same process have released
1946 ** the lock.
1948 pInode->nShared--;
1949 if( pInode->nShared==0 ){
1950 lock.l_type = F_UNLCK;
1951 lock.l_whence = SEEK_SET;
1952 lock.l_start = lock.l_len = 0L;
1953 if( unixFileLock(pFile, &lock)==0 ){
1954 pInode->eFileLock = NO_LOCK;
1955 }else{
1956 rc = SQLITE_IOERR_UNLOCK;
1957 storeLastErrno(pFile, errno);
1958 pInode->eFileLock = NO_LOCK;
1959 pFile->eFileLock = NO_LOCK;
1963 /* Decrement the count of locks against this same file. When the
1964 ** count reaches zero, close any other file descriptors whose close
1965 ** was deferred because of outstanding locks.
1967 pInode->nLock--;
1968 assert( pInode->nLock>=0 );
1969 if( pInode->nLock==0 ){
1970 closePendingFds(pFile);
1974 end_unlock:
1975 unixLeaveMutex();
1976 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1977 return rc;
1981 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1982 ** must be either NO_LOCK or SHARED_LOCK.
1984 ** If the locking level of the file descriptor is already at or below
1985 ** the requested locking level, this routine is a no-op.
1987 static int unixUnlock(sqlite3_file *id, int eFileLock){
1988 #if SQLITE_MAX_MMAP_SIZE>0
1989 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
1990 #endif
1991 return posixUnlock(id, eFileLock, 0);
1994 #if SQLITE_MAX_MMAP_SIZE>0
1995 static int unixMapfile(unixFile *pFd, i64 nByte);
1996 static void unixUnmapfile(unixFile *pFd);
1997 #endif
2000 ** This function performs the parts of the "close file" operation
2001 ** common to all locking schemes. It closes the directory and file
2002 ** handles, if they are valid, and sets all fields of the unixFile
2003 ** structure to 0.
2005 ** It is *not* necessary to hold the mutex when this routine is called,
2006 ** even on VxWorks. A mutex will be acquired on VxWorks by the
2007 ** vxworksReleaseFileId() routine.
2009 static int closeUnixFile(sqlite3_file *id){
2010 unixFile *pFile = (unixFile*)id;
2011 #if SQLITE_MAX_MMAP_SIZE>0
2012 unixUnmapfile(pFile);
2013 #endif
2014 if( pFile->h>=0 ){
2015 robust_close(pFile, pFile->h, __LINE__);
2016 pFile->h = -1;
2018 #if OS_VXWORKS
2019 if( pFile->pId ){
2020 if( pFile->ctrlFlags & UNIXFILE_DELETE ){
2021 osUnlink(pFile->pId->zCanonicalName);
2023 vxworksReleaseFileId(pFile->pId);
2024 pFile->pId = 0;
2026 #endif
2027 #ifdef SQLITE_UNLINK_AFTER_CLOSE
2028 if( pFile->ctrlFlags & UNIXFILE_DELETE ){
2029 osUnlink(pFile->zPath);
2030 sqlite3_free(*(char**)&pFile->zPath);
2031 pFile->zPath = 0;
2033 #endif
2034 OSTRACE(("CLOSE %-3d\n", pFile->h));
2035 OpenCounter(-1);
2036 sqlite3_free(pFile->pPreallocatedUnused);
2037 memset(pFile, 0, sizeof(unixFile));
2038 return SQLITE_OK;
2042 ** Close a file.
2044 static int unixClose(sqlite3_file *id){
2045 int rc = SQLITE_OK;
2046 unixFile *pFile = (unixFile *)id;
2047 verifyDbFile(pFile);
2048 unixUnlock(id, NO_LOCK);
2049 unixEnterMutex();
2051 /* unixFile.pInode is always valid here. Otherwise, a different close
2052 ** routine (e.g. nolockClose()) would be called instead.
2054 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
2055 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
2056 /* If there are outstanding locks, do not actually close the file just
2057 ** yet because that would clear those locks. Instead, add the file
2058 ** descriptor to pInode->pUnused list. It will be automatically closed
2059 ** when the last lock is cleared.
2061 setPendingFd(pFile);
2063 releaseInodeInfo(pFile);
2064 rc = closeUnixFile(id);
2065 unixLeaveMutex();
2066 return rc;
2069 /************** End of the posix advisory lock implementation *****************
2070 ******************************************************************************/
2072 /******************************************************************************
2073 ****************************** No-op Locking **********************************
2075 ** Of the various locking implementations available, this is by far the
2076 ** simplest: locking is ignored. No attempt is made to lock the database
2077 ** file for reading or writing.
2079 ** This locking mode is appropriate for use on read-only databases
2080 ** (ex: databases that are burned into CD-ROM, for example.) It can
2081 ** also be used if the application employs some external mechanism to
2082 ** prevent simultaneous access of the same database by two or more
2083 ** database connections. But there is a serious risk of database
2084 ** corruption if this locking mode is used in situations where multiple
2085 ** database connections are accessing the same database file at the same
2086 ** time and one or more of those connections are writing.
2089 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
2090 UNUSED_PARAMETER(NotUsed);
2091 *pResOut = 0;
2092 return SQLITE_OK;
2094 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
2095 UNUSED_PARAMETER2(NotUsed, NotUsed2);
2096 return SQLITE_OK;
2098 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
2099 UNUSED_PARAMETER2(NotUsed, NotUsed2);
2100 return SQLITE_OK;
2104 ** Close the file.
2106 static int nolockClose(sqlite3_file *id) {
2107 return closeUnixFile(id);
2110 /******************* End of the no-op lock implementation *********************
2111 ******************************************************************************/
2113 /******************************************************************************
2114 ************************* Begin dot-file Locking ******************************
2116 ** The dotfile locking implementation uses the existence of separate lock
2117 ** files (really a directory) to control access to the database. This works
2118 ** on just about every filesystem imaginable. But there are serious downsides:
2120 ** (1) There is zero concurrency. A single reader blocks all other
2121 ** connections from reading or writing the database.
2123 ** (2) An application crash or power loss can leave stale lock files
2124 ** sitting around that need to be cleared manually.
2126 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
2127 ** other locking strategy is available.
2129 ** Dotfile locking works by creating a subdirectory in the same directory as
2130 ** the database and with the same name but with a ".lock" extension added.
2131 ** The existence of a lock directory implies an EXCLUSIVE lock. All other
2132 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
2136 ** The file suffix added to the data base filename in order to create the
2137 ** lock directory.
2139 #define DOTLOCK_SUFFIX ".lock"
2142 ** This routine checks if there is a RESERVED lock held on the specified
2143 ** file by this or any other process. If such a lock is held, set *pResOut
2144 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2145 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2147 ** In dotfile locking, either a lock exists or it does not. So in this
2148 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
2149 ** is held on the file and false if the file is unlocked.
2151 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
2152 int rc = SQLITE_OK;
2153 int reserved = 0;
2154 unixFile *pFile = (unixFile*)id;
2156 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2158 assert( pFile );
2159 reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
2160 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
2161 *pResOut = reserved;
2162 return rc;
2166 ** Lock the file with the lock specified by parameter eFileLock - one
2167 ** of the following:
2169 ** (1) SHARED_LOCK
2170 ** (2) RESERVED_LOCK
2171 ** (3) PENDING_LOCK
2172 ** (4) EXCLUSIVE_LOCK
2174 ** Sometimes when requesting one lock state, additional lock states
2175 ** are inserted in between. The locking might fail on one of the later
2176 ** transitions leaving the lock state different from what it started but
2177 ** still short of its goal. The following chart shows the allowed
2178 ** transitions and the inserted intermediate states:
2180 ** UNLOCKED -> SHARED
2181 ** SHARED -> RESERVED
2182 ** SHARED -> (PENDING) -> EXCLUSIVE
2183 ** RESERVED -> (PENDING) -> EXCLUSIVE
2184 ** PENDING -> EXCLUSIVE
2186 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2187 ** routine to lower a locking level.
2189 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
2190 ** But we track the other locking levels internally.
2192 static int dotlockLock(sqlite3_file *id, int eFileLock) {
2193 unixFile *pFile = (unixFile*)id;
2194 char *zLockFile = (char *)pFile->lockingContext;
2195 int rc = SQLITE_OK;
2198 /* If we have any lock, then the lock file already exists. All we have
2199 ** to do is adjust our internal record of the lock level.
2201 if( pFile->eFileLock > NO_LOCK ){
2202 pFile->eFileLock = eFileLock;
2203 /* Always update the timestamp on the old file */
2204 #ifdef HAVE_UTIME
2205 utime(zLockFile, NULL);
2206 #else
2207 utimes(zLockFile, NULL);
2208 #endif
2209 return SQLITE_OK;
2212 /* grab an exclusive lock */
2213 rc = osMkdir(zLockFile, 0777);
2214 if( rc<0 ){
2215 /* failed to open/create the lock directory */
2216 int tErrno = errno;
2217 if( EEXIST == tErrno ){
2218 rc = SQLITE_BUSY;
2219 } else {
2220 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2221 if( rc!=SQLITE_BUSY ){
2222 storeLastErrno(pFile, tErrno);
2225 return rc;
2228 /* got it, set the type and return ok */
2229 pFile->eFileLock = eFileLock;
2230 return rc;
2234 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2235 ** must be either NO_LOCK or SHARED_LOCK.
2237 ** If the locking level of the file descriptor is already at or below
2238 ** the requested locking level, this routine is a no-op.
2240 ** When the locking level reaches NO_LOCK, delete the lock file.
2242 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
2243 unixFile *pFile = (unixFile*)id;
2244 char *zLockFile = (char *)pFile->lockingContext;
2245 int rc;
2247 assert( pFile );
2248 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
2249 pFile->eFileLock, osGetpid(0)));
2250 assert( eFileLock<=SHARED_LOCK );
2252 /* no-op if possible */
2253 if( pFile->eFileLock==eFileLock ){
2254 return SQLITE_OK;
2257 /* To downgrade to shared, simply update our internal notion of the
2258 ** lock state. No need to mess with the file on disk.
2260 if( eFileLock==SHARED_LOCK ){
2261 pFile->eFileLock = SHARED_LOCK;
2262 return SQLITE_OK;
2265 /* To fully unlock the database, delete the lock file */
2266 assert( eFileLock==NO_LOCK );
2267 rc = osRmdir(zLockFile);
2268 if( rc<0 ){
2269 int tErrno = errno;
2270 if( tErrno==ENOENT ){
2271 rc = SQLITE_OK;
2272 }else{
2273 rc = SQLITE_IOERR_UNLOCK;
2274 storeLastErrno(pFile, tErrno);
2276 return rc;
2278 pFile->eFileLock = NO_LOCK;
2279 return SQLITE_OK;
2283 ** Close a file. Make sure the lock has been released before closing.
2285 static int dotlockClose(sqlite3_file *id) {
2286 unixFile *pFile = (unixFile*)id;
2287 assert( id!=0 );
2288 dotlockUnlock(id, NO_LOCK);
2289 sqlite3_free(pFile->lockingContext);
2290 return closeUnixFile(id);
2292 /****************** End of the dot-file lock implementation *******************
2293 ******************************************************************************/
2295 /******************************************************************************
2296 ************************** Begin flock Locking ********************************
2298 ** Use the flock() system call to do file locking.
2300 ** flock() locking is like dot-file locking in that the various
2301 ** fine-grain locking levels supported by SQLite are collapsed into
2302 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2303 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2304 ** still works when you do this, but concurrency is reduced since
2305 ** only a single process can be reading the database at a time.
2307 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
2309 #if SQLITE_ENABLE_LOCKING_STYLE
2312 ** Retry flock() calls that fail with EINTR
2314 #ifdef EINTR
2315 static int robust_flock(int fd, int op){
2316 int rc;
2317 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2318 return rc;
2320 #else
2321 # define robust_flock(a,b) flock(a,b)
2322 #endif
2326 ** This routine checks if there is a RESERVED lock held on the specified
2327 ** file by this or any other process. If such a lock is held, set *pResOut
2328 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2329 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2331 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2332 int rc = SQLITE_OK;
2333 int reserved = 0;
2334 unixFile *pFile = (unixFile*)id;
2336 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2338 assert( pFile );
2340 /* Check if a thread in this process holds such a lock */
2341 if( pFile->eFileLock>SHARED_LOCK ){
2342 reserved = 1;
2345 /* Otherwise see if some other process holds it. */
2346 if( !reserved ){
2347 /* attempt to get the lock */
2348 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2349 if( !lrc ){
2350 /* got the lock, unlock it */
2351 lrc = robust_flock(pFile->h, LOCK_UN);
2352 if ( lrc ) {
2353 int tErrno = errno;
2354 /* unlock failed with an error */
2355 lrc = SQLITE_IOERR_UNLOCK;
2356 storeLastErrno(pFile, tErrno);
2357 rc = lrc;
2359 } else {
2360 int tErrno = errno;
2361 reserved = 1;
2362 /* someone else might have it reserved */
2363 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2364 if( IS_LOCK_ERROR(lrc) ){
2365 storeLastErrno(pFile, tErrno);
2366 rc = lrc;
2370 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2372 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2373 if( (rc & 0xff) == SQLITE_IOERR ){
2374 rc = SQLITE_OK;
2375 reserved=1;
2377 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2378 *pResOut = reserved;
2379 return rc;
2383 ** Lock the file with the lock specified by parameter eFileLock - one
2384 ** of the following:
2386 ** (1) SHARED_LOCK
2387 ** (2) RESERVED_LOCK
2388 ** (3) PENDING_LOCK
2389 ** (4) EXCLUSIVE_LOCK
2391 ** Sometimes when requesting one lock state, additional lock states
2392 ** are inserted in between. The locking might fail on one of the later
2393 ** transitions leaving the lock state different from what it started but
2394 ** still short of its goal. The following chart shows the allowed
2395 ** transitions and the inserted intermediate states:
2397 ** UNLOCKED -> SHARED
2398 ** SHARED -> RESERVED
2399 ** SHARED -> (PENDING) -> EXCLUSIVE
2400 ** RESERVED -> (PENDING) -> EXCLUSIVE
2401 ** PENDING -> EXCLUSIVE
2403 ** flock() only really support EXCLUSIVE locks. We track intermediate
2404 ** lock states in the sqlite3_file structure, but all locks SHARED or
2405 ** above are really EXCLUSIVE locks and exclude all other processes from
2406 ** access the file.
2408 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2409 ** routine to lower a locking level.
2411 static int flockLock(sqlite3_file *id, int eFileLock) {
2412 int rc = SQLITE_OK;
2413 unixFile *pFile = (unixFile*)id;
2415 assert( pFile );
2417 /* if we already have a lock, it is exclusive.
2418 ** Just adjust level and punt on outta here. */
2419 if (pFile->eFileLock > NO_LOCK) {
2420 pFile->eFileLock = eFileLock;
2421 return SQLITE_OK;
2424 /* grab an exclusive lock */
2426 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2427 int tErrno = errno;
2428 /* didn't get, must be busy */
2429 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2430 if( IS_LOCK_ERROR(rc) ){
2431 storeLastErrno(pFile, tErrno);
2433 } else {
2434 /* got it, set the type and return ok */
2435 pFile->eFileLock = eFileLock;
2437 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2438 rc==SQLITE_OK ? "ok" : "failed"));
2439 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2440 if( (rc & 0xff) == SQLITE_IOERR ){
2441 rc = SQLITE_BUSY;
2443 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2444 return rc;
2449 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2450 ** must be either NO_LOCK or SHARED_LOCK.
2452 ** If the locking level of the file descriptor is already at or below
2453 ** the requested locking level, this routine is a no-op.
2455 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2456 unixFile *pFile = (unixFile*)id;
2458 assert( pFile );
2459 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2460 pFile->eFileLock, osGetpid(0)));
2461 assert( eFileLock<=SHARED_LOCK );
2463 /* no-op if possible */
2464 if( pFile->eFileLock==eFileLock ){
2465 return SQLITE_OK;
2468 /* shared can just be set because we always have an exclusive */
2469 if (eFileLock==SHARED_LOCK) {
2470 pFile->eFileLock = eFileLock;
2471 return SQLITE_OK;
2474 /* no, really, unlock. */
2475 if( robust_flock(pFile->h, LOCK_UN) ){
2476 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2477 return SQLITE_OK;
2478 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2479 return SQLITE_IOERR_UNLOCK;
2480 }else{
2481 pFile->eFileLock = NO_LOCK;
2482 return SQLITE_OK;
2487 ** Close a file.
2489 static int flockClose(sqlite3_file *id) {
2490 assert( id!=0 );
2491 flockUnlock(id, NO_LOCK);
2492 return closeUnixFile(id);
2495 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2497 /******************* End of the flock lock implementation *********************
2498 ******************************************************************************/
2500 /******************************************************************************
2501 ************************ Begin Named Semaphore Locking ************************
2503 ** Named semaphore locking is only supported on VxWorks.
2505 ** Semaphore locking is like dot-lock and flock in that it really only
2506 ** supports EXCLUSIVE locking. Only a single process can read or write
2507 ** the database file at a time. This reduces potential concurrency, but
2508 ** makes the lock implementation much easier.
2510 #if OS_VXWORKS
2513 ** This routine checks if there is a RESERVED lock held on the specified
2514 ** file by this or any other process. If such a lock is held, set *pResOut
2515 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2516 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2518 static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
2519 int rc = SQLITE_OK;
2520 int reserved = 0;
2521 unixFile *pFile = (unixFile*)id;
2523 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2525 assert( pFile );
2527 /* Check if a thread in this process holds such a lock */
2528 if( pFile->eFileLock>SHARED_LOCK ){
2529 reserved = 1;
2532 /* Otherwise see if some other process holds it. */
2533 if( !reserved ){
2534 sem_t *pSem = pFile->pInode->pSem;
2536 if( sem_trywait(pSem)==-1 ){
2537 int tErrno = errno;
2538 if( EAGAIN != tErrno ){
2539 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2540 storeLastErrno(pFile, tErrno);
2541 } else {
2542 /* someone else has the lock when we are in NO_LOCK */
2543 reserved = (pFile->eFileLock < SHARED_LOCK);
2545 }else{
2546 /* we could have it if we want it */
2547 sem_post(pSem);
2550 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2552 *pResOut = reserved;
2553 return rc;
2557 ** Lock the file with the lock specified by parameter eFileLock - one
2558 ** of the following:
2560 ** (1) SHARED_LOCK
2561 ** (2) RESERVED_LOCK
2562 ** (3) PENDING_LOCK
2563 ** (4) EXCLUSIVE_LOCK
2565 ** Sometimes when requesting one lock state, additional lock states
2566 ** are inserted in between. The locking might fail on one of the later
2567 ** transitions leaving the lock state different from what it started but
2568 ** still short of its goal. The following chart shows the allowed
2569 ** transitions and the inserted intermediate states:
2571 ** UNLOCKED -> SHARED
2572 ** SHARED -> RESERVED
2573 ** SHARED -> (PENDING) -> EXCLUSIVE
2574 ** RESERVED -> (PENDING) -> EXCLUSIVE
2575 ** PENDING -> EXCLUSIVE
2577 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2578 ** lock states in the sqlite3_file structure, but all locks SHARED or
2579 ** above are really EXCLUSIVE locks and exclude all other processes from
2580 ** access the file.
2582 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2583 ** routine to lower a locking level.
2585 static int semXLock(sqlite3_file *id, int eFileLock) {
2586 unixFile *pFile = (unixFile*)id;
2587 sem_t *pSem = pFile->pInode->pSem;
2588 int rc = SQLITE_OK;
2590 /* if we already have a lock, it is exclusive.
2591 ** Just adjust level and punt on outta here. */
2592 if (pFile->eFileLock > NO_LOCK) {
2593 pFile->eFileLock = eFileLock;
2594 rc = SQLITE_OK;
2595 goto sem_end_lock;
2598 /* lock semaphore now but bail out when already locked. */
2599 if( sem_trywait(pSem)==-1 ){
2600 rc = SQLITE_BUSY;
2601 goto sem_end_lock;
2604 /* got it, set the type and return ok */
2605 pFile->eFileLock = eFileLock;
2607 sem_end_lock:
2608 return rc;
2612 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2613 ** must be either NO_LOCK or SHARED_LOCK.
2615 ** If the locking level of the file descriptor is already at or below
2616 ** the requested locking level, this routine is a no-op.
2618 static int semXUnlock(sqlite3_file *id, int eFileLock) {
2619 unixFile *pFile = (unixFile*)id;
2620 sem_t *pSem = pFile->pInode->pSem;
2622 assert( pFile );
2623 assert( pSem );
2624 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2625 pFile->eFileLock, osGetpid(0)));
2626 assert( eFileLock<=SHARED_LOCK );
2628 /* no-op if possible */
2629 if( pFile->eFileLock==eFileLock ){
2630 return SQLITE_OK;
2633 /* shared can just be set because we always have an exclusive */
2634 if (eFileLock==SHARED_LOCK) {
2635 pFile->eFileLock = eFileLock;
2636 return SQLITE_OK;
2639 /* no, really unlock. */
2640 if ( sem_post(pSem)==-1 ) {
2641 int rc, tErrno = errno;
2642 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2643 if( IS_LOCK_ERROR(rc) ){
2644 storeLastErrno(pFile, tErrno);
2646 return rc;
2648 pFile->eFileLock = NO_LOCK;
2649 return SQLITE_OK;
2653 ** Close a file.
2655 static int semXClose(sqlite3_file *id) {
2656 if( id ){
2657 unixFile *pFile = (unixFile*)id;
2658 semXUnlock(id, NO_LOCK);
2659 assert( pFile );
2660 unixEnterMutex();
2661 releaseInodeInfo(pFile);
2662 unixLeaveMutex();
2663 closeUnixFile(id);
2665 return SQLITE_OK;
2668 #endif /* OS_VXWORKS */
2670 ** Named semaphore locking is only available on VxWorks.
2672 *************** End of the named semaphore lock implementation ****************
2673 ******************************************************************************/
2676 /******************************************************************************
2677 *************************** Begin AFP Locking *********************************
2679 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2680 ** on Apple Macintosh computers - both OS9 and OSX.
2682 ** Third-party implementations of AFP are available. But this code here
2683 ** only works on OSX.
2686 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2688 ** The afpLockingContext structure contains all afp lock specific state
2690 typedef struct afpLockingContext afpLockingContext;
2691 struct afpLockingContext {
2692 int reserved;
2693 const char *dbPath; /* Name of the open file */
2696 struct ByteRangeLockPB2
2698 unsigned long long offset; /* offset to first byte to lock */
2699 unsigned long long length; /* nbr of bytes to lock */
2700 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2701 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2702 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2703 int fd; /* file desc to assoc this lock with */
2706 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2709 ** This is a utility for setting or clearing a bit-range lock on an
2710 ** AFP filesystem.
2712 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2714 static int afpSetLock(
2715 const char *path, /* Name of the file to be locked or unlocked */
2716 unixFile *pFile, /* Open file descriptor on path */
2717 unsigned long long offset, /* First byte to be locked */
2718 unsigned long long length, /* Number of bytes to lock */
2719 int setLockFlag /* True to set lock. False to clear lock */
2721 struct ByteRangeLockPB2 pb;
2722 int err;
2724 pb.unLockFlag = setLockFlag ? 0 : 1;
2725 pb.startEndFlag = 0;
2726 pb.offset = offset;
2727 pb.length = length;
2728 pb.fd = pFile->h;
2730 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2731 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2732 offset, length));
2733 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2734 if ( err==-1 ) {
2735 int rc;
2736 int tErrno = errno;
2737 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2738 path, tErrno, strerror(tErrno)));
2739 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2740 rc = SQLITE_BUSY;
2741 #else
2742 rc = sqliteErrorFromPosixError(tErrno,
2743 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2744 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2745 if( IS_LOCK_ERROR(rc) ){
2746 storeLastErrno(pFile, tErrno);
2748 return rc;
2749 } else {
2750 return SQLITE_OK;
2755 ** This routine checks if there is a RESERVED lock held on the specified
2756 ** file by this or any other process. If such a lock is held, set *pResOut
2757 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2758 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2760 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2761 int rc = SQLITE_OK;
2762 int reserved = 0;
2763 unixFile *pFile = (unixFile*)id;
2764 afpLockingContext *context;
2766 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2768 assert( pFile );
2769 context = (afpLockingContext *) pFile->lockingContext;
2770 if( context->reserved ){
2771 *pResOut = 1;
2772 return SQLITE_OK;
2774 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2776 /* Check if a thread in this process holds such a lock */
2777 if( pFile->pInode->eFileLock>SHARED_LOCK ){
2778 reserved = 1;
2781 /* Otherwise see if some other process holds it.
2783 if( !reserved ){
2784 /* lock the RESERVED byte */
2785 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2786 if( SQLITE_OK==lrc ){
2787 /* if we succeeded in taking the reserved lock, unlock it to restore
2788 ** the original state */
2789 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2790 } else {
2791 /* if we failed to get the lock then someone else must have it */
2792 reserved = 1;
2794 if( IS_LOCK_ERROR(lrc) ){
2795 rc=lrc;
2799 unixLeaveMutex();
2800 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2802 *pResOut = reserved;
2803 return rc;
2807 ** Lock the file with the lock specified by parameter eFileLock - one
2808 ** of the following:
2810 ** (1) SHARED_LOCK
2811 ** (2) RESERVED_LOCK
2812 ** (3) PENDING_LOCK
2813 ** (4) EXCLUSIVE_LOCK
2815 ** Sometimes when requesting one lock state, additional lock states
2816 ** are inserted in between. The locking might fail on one of the later
2817 ** transitions leaving the lock state different from what it started but
2818 ** still short of its goal. The following chart shows the allowed
2819 ** transitions and the inserted intermediate states:
2821 ** UNLOCKED -> SHARED
2822 ** SHARED -> RESERVED
2823 ** SHARED -> (PENDING) -> EXCLUSIVE
2824 ** RESERVED -> (PENDING) -> EXCLUSIVE
2825 ** PENDING -> EXCLUSIVE
2827 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2828 ** routine to lower a locking level.
2830 static int afpLock(sqlite3_file *id, int eFileLock){
2831 int rc = SQLITE_OK;
2832 unixFile *pFile = (unixFile*)id;
2833 unixInodeInfo *pInode = pFile->pInode;
2834 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2836 assert( pFile );
2837 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2838 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2839 azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
2841 /* If there is already a lock of this type or more restrictive on the
2842 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2843 ** unixEnterMutex() hasn't been called yet.
2845 if( pFile->eFileLock>=eFileLock ){
2846 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
2847 azFileLock(eFileLock)));
2848 return SQLITE_OK;
2851 /* Make sure the locking sequence is correct
2852 ** (1) We never move from unlocked to anything higher than shared lock.
2853 ** (2) SQLite never explicitly requests a pendig lock.
2854 ** (3) A shared lock is always held when a reserve lock is requested.
2856 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2857 assert( eFileLock!=PENDING_LOCK );
2858 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2860 /* This mutex is needed because pFile->pInode is shared across threads
2862 unixEnterMutex();
2863 pInode = pFile->pInode;
2865 /* If some thread using this PID has a lock via a different unixFile*
2866 ** handle that precludes the requested lock, return BUSY.
2868 if( (pFile->eFileLock!=pInode->eFileLock &&
2869 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2871 rc = SQLITE_BUSY;
2872 goto afp_end_lock;
2875 /* If a SHARED lock is requested, and some thread using this PID already
2876 ** has a SHARED or RESERVED lock, then increment reference counts and
2877 ** return SQLITE_OK.
2879 if( eFileLock==SHARED_LOCK &&
2880 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2881 assert( eFileLock==SHARED_LOCK );
2882 assert( pFile->eFileLock==0 );
2883 assert( pInode->nShared>0 );
2884 pFile->eFileLock = SHARED_LOCK;
2885 pInode->nShared++;
2886 pInode->nLock++;
2887 goto afp_end_lock;
2890 /* A PENDING lock is needed before acquiring a SHARED lock and before
2891 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2892 ** be released.
2894 if( eFileLock==SHARED_LOCK
2895 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2897 int failed;
2898 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2899 if (failed) {
2900 rc = failed;
2901 goto afp_end_lock;
2905 /* If control gets to this point, then actually go ahead and make
2906 ** operating system calls for the specified lock.
2908 if( eFileLock==SHARED_LOCK ){
2909 int lrc1, lrc2, lrc1Errno = 0;
2910 long lk, mask;
2912 assert( pInode->nShared==0 );
2913 assert( pInode->eFileLock==0 );
2915 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2916 /* Now get the read-lock SHARED_LOCK */
2917 /* note that the quality of the randomness doesn't matter that much */
2918 lk = random();
2919 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2920 lrc1 = afpSetLock(context->dbPath, pFile,
2921 SHARED_FIRST+pInode->sharedByte, 1, 1);
2922 if( IS_LOCK_ERROR(lrc1) ){
2923 lrc1Errno = pFile->lastErrno;
2925 /* Drop the temporary PENDING lock */
2926 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2928 if( IS_LOCK_ERROR(lrc1) ) {
2929 storeLastErrno(pFile, lrc1Errno);
2930 rc = lrc1;
2931 goto afp_end_lock;
2932 } else if( IS_LOCK_ERROR(lrc2) ){
2933 rc = lrc2;
2934 goto afp_end_lock;
2935 } else if( lrc1 != SQLITE_OK ) {
2936 rc = lrc1;
2937 } else {
2938 pFile->eFileLock = SHARED_LOCK;
2939 pInode->nLock++;
2940 pInode->nShared = 1;
2942 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2943 /* We are trying for an exclusive lock but another thread in this
2944 ** same process is still holding a shared lock. */
2945 rc = SQLITE_BUSY;
2946 }else{
2947 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2948 ** assumed that there is a SHARED or greater lock on the file
2949 ** already.
2951 int failed = 0;
2952 assert( 0!=pFile->eFileLock );
2953 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2954 /* Acquire a RESERVED lock */
2955 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2956 if( !failed ){
2957 context->reserved = 1;
2960 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2961 /* Acquire an EXCLUSIVE lock */
2963 /* Remove the shared lock before trying the range. we'll need to
2964 ** reestablish the shared lock if we can't get the afpUnlock
2966 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2967 pInode->sharedByte, 1, 0)) ){
2968 int failed2 = SQLITE_OK;
2969 /* now attemmpt to get the exclusive lock range */
2970 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2971 SHARED_SIZE, 1);
2972 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2973 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2974 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2975 ** a critical I/O error
2977 rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 :
2978 SQLITE_IOERR_LOCK;
2979 goto afp_end_lock;
2981 }else{
2982 rc = failed;
2985 if( failed ){
2986 rc = failed;
2990 if( rc==SQLITE_OK ){
2991 pFile->eFileLock = eFileLock;
2992 pInode->eFileLock = eFileLock;
2993 }else if( eFileLock==EXCLUSIVE_LOCK ){
2994 pFile->eFileLock = PENDING_LOCK;
2995 pInode->eFileLock = PENDING_LOCK;
2998 afp_end_lock:
2999 unixLeaveMutex();
3000 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
3001 rc==SQLITE_OK ? "ok" : "failed"));
3002 return rc;
3006 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
3007 ** must be either NO_LOCK or SHARED_LOCK.
3009 ** If the locking level of the file descriptor is already at or below
3010 ** the requested locking level, this routine is a no-op.
3012 static int afpUnlock(sqlite3_file *id, int eFileLock) {
3013 int rc = SQLITE_OK;
3014 unixFile *pFile = (unixFile*)id;
3015 unixInodeInfo *pInode;
3016 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
3017 int skipShared = 0;
3018 #ifdef SQLITE_TEST
3019 int h = pFile->h;
3020 #endif
3022 assert( pFile );
3023 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
3024 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
3025 osGetpid(0)));
3027 assert( eFileLock<=SHARED_LOCK );
3028 if( pFile->eFileLock<=eFileLock ){
3029 return SQLITE_OK;
3031 unixEnterMutex();
3032 pInode = pFile->pInode;
3033 assert( pInode->nShared!=0 );
3034 if( pFile->eFileLock>SHARED_LOCK ){
3035 assert( pInode->eFileLock==pFile->eFileLock );
3036 SimulateIOErrorBenign(1);
3037 SimulateIOError( h=(-1) )
3038 SimulateIOErrorBenign(0);
3040 #ifdef SQLITE_DEBUG
3041 /* When reducing a lock such that other processes can start
3042 ** reading the database file again, make sure that the
3043 ** transaction counter was updated if any part of the database
3044 ** file changed. If the transaction counter is not updated,
3045 ** other connections to the same file might not realize that
3046 ** the file has changed and hence might not know to flush their
3047 ** cache. The use of a stale cache can lead to database corruption.
3049 assert( pFile->inNormalWrite==0
3050 || pFile->dbUpdate==0
3051 || pFile->transCntrChng==1 );
3052 pFile->inNormalWrite = 0;
3053 #endif
3055 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
3056 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
3057 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
3058 /* only re-establish the shared lock if necessary */
3059 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
3060 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
3061 } else {
3062 skipShared = 1;
3065 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
3066 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
3068 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
3069 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
3070 if( !rc ){
3071 context->reserved = 0;
3074 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
3075 pInode->eFileLock = SHARED_LOCK;
3078 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
3080 /* Decrement the shared lock counter. Release the lock using an
3081 ** OS call only when all threads in this same process have released
3082 ** the lock.
3084 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
3085 pInode->nShared--;
3086 if( pInode->nShared==0 ){
3087 SimulateIOErrorBenign(1);
3088 SimulateIOError( h=(-1) )
3089 SimulateIOErrorBenign(0);
3090 if( !skipShared ){
3091 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
3093 if( !rc ){
3094 pInode->eFileLock = NO_LOCK;
3095 pFile->eFileLock = NO_LOCK;
3098 if( rc==SQLITE_OK ){
3099 pInode->nLock--;
3100 assert( pInode->nLock>=0 );
3101 if( pInode->nLock==0 ){
3102 closePendingFds(pFile);
3107 unixLeaveMutex();
3108 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
3109 return rc;
3113 ** Close a file & cleanup AFP specific locking context
3115 static int afpClose(sqlite3_file *id) {
3116 int rc = SQLITE_OK;
3117 unixFile *pFile = (unixFile*)id;
3118 assert( id!=0 );
3119 afpUnlock(id, NO_LOCK);
3120 unixEnterMutex();
3121 if( pFile->pInode && pFile->pInode->nLock ){
3122 /* If there are outstanding locks, do not actually close the file just
3123 ** yet because that would clear those locks. Instead, add the file
3124 ** descriptor to pInode->aPending. It will be automatically closed when
3125 ** the last lock is cleared.
3127 setPendingFd(pFile);
3129 releaseInodeInfo(pFile);
3130 sqlite3_free(pFile->lockingContext);
3131 rc = closeUnixFile(id);
3132 unixLeaveMutex();
3133 return rc;
3136 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3138 ** The code above is the AFP lock implementation. The code is specific
3139 ** to MacOSX and does not work on other unix platforms. No alternative
3140 ** is available. If you don't compile for a mac, then the "unix-afp"
3141 ** VFS is not available.
3143 ********************* End of the AFP lock implementation **********************
3144 ******************************************************************************/
3146 /******************************************************************************
3147 *************************** Begin NFS Locking ********************************/
3149 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3151 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
3152 ** must be either NO_LOCK or SHARED_LOCK.
3154 ** If the locking level of the file descriptor is already at or below
3155 ** the requested locking level, this routine is a no-op.
3157 static int nfsUnlock(sqlite3_file *id, int eFileLock){
3158 return posixUnlock(id, eFileLock, 1);
3161 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3163 ** The code above is the NFS lock implementation. The code is specific
3164 ** to MacOSX and does not work on other unix platforms. No alternative
3165 ** is available.
3167 ********************* End of the NFS lock implementation **********************
3168 ******************************************************************************/
3170 /******************************************************************************
3171 **************** Non-locking sqlite3_file methods *****************************
3173 ** The next division contains implementations for all methods of the
3174 ** sqlite3_file object other than the locking methods. The locking
3175 ** methods were defined in divisions above (one locking method per
3176 ** division). Those methods that are common to all locking modes
3177 ** are gather together into this division.
3181 ** Seek to the offset passed as the second argument, then read cnt
3182 ** bytes into pBuf. Return the number of bytes actually read.
3184 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
3185 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
3186 ** one system to another. Since SQLite does not define USE_PREAD
3187 ** in any form by default, we will not attempt to define _XOPEN_SOURCE.
3188 ** See tickets #2741 and #2681.
3190 ** To avoid stomping the errno value on a failed read the lastErrno value
3191 ** is set before returning.
3193 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
3194 int got;
3195 int prior = 0;
3196 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3197 i64 newOffset;
3198 #endif
3199 TIMER_START;
3200 assert( cnt==(cnt&0x1ffff) );
3201 assert( id->h>2 );
3203 #if defined(USE_PREAD)
3204 got = osPread(id->h, pBuf, cnt, offset);
3205 SimulateIOError( got = -1 );
3206 #elif defined(USE_PREAD64)
3207 got = osPread64(id->h, pBuf, cnt, offset);
3208 SimulateIOError( got = -1 );
3209 #else
3210 newOffset = lseek(id->h, offset, SEEK_SET);
3211 SimulateIOError( newOffset = -1 );
3212 if( newOffset<0 ){
3213 storeLastErrno((unixFile*)id, errno);
3214 return -1;
3216 got = osRead(id->h, pBuf, cnt);
3217 #endif
3218 if( got==cnt ) break;
3219 if( got<0 ){
3220 if( errno==EINTR ){ got = 1; continue; }
3221 prior = 0;
3222 storeLastErrno((unixFile*)id, errno);
3223 break;
3224 }else if( got>0 ){
3225 cnt -= got;
3226 offset += got;
3227 prior += got;
3228 pBuf = (void*)(got + (char*)pBuf);
3230 }while( got>0 );
3231 TIMER_END;
3232 OSTRACE(("READ %-3d %5d %7lld %llu\n",
3233 id->h, got+prior, offset-prior, TIMER_ELAPSED));
3234 return got+prior;
3238 ** Read data from a file into a buffer. Return SQLITE_OK if all
3239 ** bytes were read successfully and SQLITE_IOERR if anything goes
3240 ** wrong.
3242 static int unixRead(
3243 sqlite3_file *id,
3244 void *pBuf,
3245 int amt,
3246 sqlite3_int64 offset
3248 unixFile *pFile = (unixFile *)id;
3249 int got;
3250 assert( id );
3251 assert( offset>=0 );
3252 assert( amt>0 );
3254 /* If this is a database file (not a journal, master-journal or temp
3255 ** file), the bytes in the locking range should never be read or written. */
3256 #if 0
3257 assert( pFile->pPreallocatedUnused==0
3258 || offset>=PENDING_BYTE+512
3259 || offset+amt<=PENDING_BYTE
3261 #endif
3263 #if SQLITE_MAX_MMAP_SIZE>0
3264 /* Deal with as much of this read request as possible by transfering
3265 ** data from the memory mapping using memcpy(). */
3266 if( offset<pFile->mmapSize ){
3267 if( offset+amt <= pFile->mmapSize ){
3268 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
3269 return SQLITE_OK;
3270 }else{
3271 int nCopy = pFile->mmapSize - offset;
3272 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
3273 pBuf = &((u8 *)pBuf)[nCopy];
3274 amt -= nCopy;
3275 offset += nCopy;
3278 #endif
3280 got = seekAndRead(pFile, offset, pBuf, amt);
3281 if( got==amt ){
3282 return SQLITE_OK;
3283 }else if( got<0 ){
3284 /* lastErrno set by seekAndRead */
3285 return SQLITE_IOERR_READ;
3286 }else{
3287 storeLastErrno(pFile, 0); /* not a system error */
3288 /* Unread parts of the buffer must be zero-filled */
3289 memset(&((char*)pBuf)[got], 0, amt-got);
3290 return SQLITE_IOERR_SHORT_READ;
3295 ** Attempt to seek the file-descriptor passed as the first argument to
3296 ** absolute offset iOff, then attempt to write nBuf bytes of data from
3297 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
3298 ** return the actual number of bytes written (which may be less than
3299 ** nBuf).
3301 static int seekAndWriteFd(
3302 int fd, /* File descriptor to write to */
3303 i64 iOff, /* File offset to begin writing at */
3304 const void *pBuf, /* Copy data from this buffer to the file */
3305 int nBuf, /* Size of buffer pBuf in bytes */
3306 int *piErrno /* OUT: Error number if error occurs */
3308 int rc = 0; /* Value returned by system call */
3310 assert( nBuf==(nBuf&0x1ffff) );
3311 assert( fd>2 );
3312 assert( piErrno!=0 );
3313 nBuf &= 0x1ffff;
3314 TIMER_START;
3316 #if defined(USE_PREAD)
3317 do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
3318 #elif defined(USE_PREAD64)
3319 do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
3320 #else
3322 i64 iSeek = lseek(fd, iOff, SEEK_SET);
3323 SimulateIOError( iSeek = -1 );
3324 if( iSeek<0 ){
3325 rc = -1;
3326 break;
3328 rc = osWrite(fd, pBuf, nBuf);
3329 }while( rc<0 && errno==EINTR );
3330 #endif
3332 TIMER_END;
3333 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
3335 if( rc<0 ) *piErrno = errno;
3336 return rc;
3341 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3342 ** Return the number of bytes actually read. Update the offset.
3344 ** To avoid stomping the errno value on a failed write the lastErrno value
3345 ** is set before returning.
3347 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3348 return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
3353 ** Write data from a buffer into a file. Return SQLITE_OK on success
3354 ** or some other error code on failure.
3356 static int unixWrite(
3357 sqlite3_file *id,
3358 const void *pBuf,
3359 int amt,
3360 sqlite3_int64 offset
3362 unixFile *pFile = (unixFile*)id;
3363 int wrote = 0;
3364 assert( id );
3365 assert( amt>0 );
3367 /* If this is a database file (not a journal, master-journal or temp
3368 ** file), the bytes in the locking range should never be read or written. */
3369 #if 0
3370 assert( pFile->pPreallocatedUnused==0
3371 || offset>=PENDING_BYTE+512
3372 || offset+amt<=PENDING_BYTE
3374 #endif
3376 #ifdef SQLITE_DEBUG
3377 /* If we are doing a normal write to a database file (as opposed to
3378 ** doing a hot-journal rollback or a write to some file other than a
3379 ** normal database file) then record the fact that the database
3380 ** has changed. If the transaction counter is modified, record that
3381 ** fact too.
3383 if( pFile->inNormalWrite ){
3384 pFile->dbUpdate = 1; /* The database has been modified */
3385 if( offset<=24 && offset+amt>=27 ){
3386 int rc;
3387 char oldCntr[4];
3388 SimulateIOErrorBenign(1);
3389 rc = seekAndRead(pFile, 24, oldCntr, 4);
3390 SimulateIOErrorBenign(0);
3391 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3392 pFile->transCntrChng = 1; /* The transaction counter has changed */
3396 #endif
3398 #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
3399 /* Deal with as much of this write request as possible by transfering
3400 ** data from the memory mapping using memcpy(). */
3401 if( offset<pFile->mmapSize ){
3402 if( offset+amt <= pFile->mmapSize ){
3403 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
3404 return SQLITE_OK;
3405 }else{
3406 int nCopy = pFile->mmapSize - offset;
3407 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
3408 pBuf = &((u8 *)pBuf)[nCopy];
3409 amt -= nCopy;
3410 offset += nCopy;
3413 #endif
3415 while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
3416 amt -= wrote;
3417 offset += wrote;
3418 pBuf = &((char*)pBuf)[wrote];
3420 SimulateIOError(( wrote=(-1), amt=1 ));
3421 SimulateDiskfullError(( wrote=0, amt=1 ));
3423 if( amt>wrote ){
3424 if( wrote<0 && pFile->lastErrno!=ENOSPC ){
3425 /* lastErrno set by seekAndWrite */
3426 return SQLITE_IOERR_WRITE;
3427 }else{
3428 storeLastErrno(pFile, 0); /* not a system error */
3429 return SQLITE_FULL;
3433 return SQLITE_OK;
3436 #ifdef SQLITE_TEST
3438 ** Count the number of fullsyncs and normal syncs. This is used to test
3439 ** that syncs and fullsyncs are occurring at the right times.
3441 int sqlite3_sync_count = 0;
3442 int sqlite3_fullsync_count = 0;
3443 #endif
3446 ** We do not trust systems to provide a working fdatasync(). Some do.
3447 ** Others do no. To be safe, we will stick with the (slightly slower)
3448 ** fsync(). If you know that your system does support fdatasync() correctly,
3449 ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
3451 #if !defined(fdatasync) && !HAVE_FDATASYNC
3452 # define fdatasync fsync
3453 #endif
3456 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3457 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3458 ** only available on Mac OS X. But that could change.
3460 #ifdef F_FULLFSYNC
3461 # define HAVE_FULLFSYNC 1
3462 #else
3463 # define HAVE_FULLFSYNC 0
3464 #endif
3468 ** The fsync() system call does not work as advertised on many
3469 ** unix systems. The following procedure is an attempt to make
3470 ** it work better.
3472 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3473 ** for testing when we want to run through the test suite quickly.
3474 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3475 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3476 ** or power failure will likely corrupt the database file.
3478 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3479 ** The idea behind dataOnly is that it should only write the file content
3480 ** to disk, not the inode. We only set dataOnly if the file size is
3481 ** unchanged since the file size is part of the inode. However,
3482 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3483 ** file size has changed. The only real difference between fdatasync()
3484 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3485 ** inode if the mtime or owner or other inode attributes have changed.
3486 ** We only care about the file size, not the other file attributes, so
3487 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3488 ** So, we always use fdatasync() if it is available, regardless of
3489 ** the value of the dataOnly flag.
3491 static int full_fsync(int fd, int fullSync, int dataOnly){
3492 int rc;
3494 /* The following "ifdef/elif/else/" block has the same structure as
3495 ** the one below. It is replicated here solely to avoid cluttering
3496 ** up the real code with the UNUSED_PARAMETER() macros.
3498 #ifdef SQLITE_NO_SYNC
3499 UNUSED_PARAMETER(fd);
3500 UNUSED_PARAMETER(fullSync);
3501 UNUSED_PARAMETER(dataOnly);
3502 #elif HAVE_FULLFSYNC
3503 UNUSED_PARAMETER(dataOnly);
3504 #else
3505 UNUSED_PARAMETER(fullSync);
3506 UNUSED_PARAMETER(dataOnly);
3507 #endif
3509 /* Record the number of times that we do a normal fsync() and
3510 ** FULLSYNC. This is used during testing to verify that this procedure
3511 ** gets called with the correct arguments.
3513 #ifdef SQLITE_TEST
3514 if( fullSync ) sqlite3_fullsync_count++;
3515 sqlite3_sync_count++;
3516 #endif
3518 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3519 ** no-op. But go ahead and call fstat() to validate the file
3520 ** descriptor as we need a method to provoke a failure during
3521 ** coverate testing.
3523 #ifdef SQLITE_NO_SYNC
3525 struct stat buf;
3526 rc = osFstat(fd, &buf);
3528 #elif HAVE_FULLFSYNC
3529 if( fullSync ){
3530 rc = osFcntl(fd, F_FULLFSYNC, 0);
3531 }else{
3532 rc = 1;
3534 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3535 ** It shouldn't be possible for fullfsync to fail on the local
3536 ** file system (on OSX), so failure indicates that FULLFSYNC
3537 ** isn't supported for this file system. So, attempt an fsync
3538 ** and (for now) ignore the overhead of a superfluous fcntl call.
3539 ** It'd be better to detect fullfsync support once and avoid
3540 ** the fcntl call every time sync is called.
3542 if( rc ) rc = fsync(fd);
3544 #elif defined(__APPLE__)
3545 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3546 ** so currently we default to the macro that redefines fdatasync to fsync
3548 rc = fsync(fd);
3549 #else
3550 rc = fdatasync(fd);
3551 #if OS_VXWORKS
3552 if( rc==-1 && errno==ENOTSUP ){
3553 rc = fsync(fd);
3555 #endif /* OS_VXWORKS */
3556 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3558 if( OS_VXWORKS && rc!= -1 ){
3559 rc = 0;
3561 return rc;
3565 ** Open a file descriptor to the directory containing file zFilename.
3566 ** If successful, *pFd is set to the opened file descriptor and
3567 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3568 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3569 ** value.
3571 ** The directory file descriptor is used for only one thing - to
3572 ** fsync() a directory to make sure file creation and deletion events
3573 ** are flushed to disk. Such fsyncs are not needed on newer
3574 ** journaling filesystems, but are required on older filesystems.
3576 ** This routine can be overridden using the xSetSysCall interface.
3577 ** The ability to override this routine was added in support of the
3578 ** chromium sandbox. Opening a directory is a security risk (we are
3579 ** told) so making it overrideable allows the chromium sandbox to
3580 ** replace this routine with a harmless no-op. To make this routine
3581 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3582 ** *pFd set to a negative number.
3584 ** If SQLITE_OK is returned, the caller is responsible for closing
3585 ** the file descriptor *pFd using close().
3587 static int openDirectory(const char *zFilename, int *pFd){
3588 int ii;
3589 int fd = -1;
3590 char zDirname[MAX_PATHNAME+1];
3592 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3593 for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
3594 if( ii>0 ){
3595 zDirname[ii] = '\0';
3596 }else{
3597 if( zDirname[0]!='/' ) zDirname[0] = '.';
3598 zDirname[1] = 0;
3600 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3601 if( fd>=0 ){
3602 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3604 *pFd = fd;
3605 if( fd>=0 ) return SQLITE_OK;
3606 return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
3610 ** Make sure all writes to a particular file are committed to disk.
3612 ** If dataOnly==0 then both the file itself and its metadata (file
3613 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3614 ** file data is synced.
3616 ** Under Unix, also make sure that the directory entry for the file
3617 ** has been created by fsync-ing the directory that contains the file.
3618 ** If we do not do this and we encounter a power failure, the directory
3619 ** entry for the journal might not exist after we reboot. The next
3620 ** SQLite to access the file will not know that the journal exists (because
3621 ** the directory entry for the journal was never created) and the transaction
3622 ** will not roll back - possibly leading to database corruption.
3624 static int unixSync(sqlite3_file *id, int flags){
3625 int rc;
3626 unixFile *pFile = (unixFile*)id;
3628 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3629 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3631 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3632 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3633 || (flags&0x0F)==SQLITE_SYNC_FULL
3636 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3637 ** line is to test that doing so does not cause any problems.
3639 SimulateDiskfullError( return SQLITE_FULL );
3641 assert( pFile );
3642 OSTRACE(("SYNC %-3d\n", pFile->h));
3643 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3644 SimulateIOError( rc=1 );
3645 if( rc ){
3646 storeLastErrno(pFile, errno);
3647 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3650 /* Also fsync the directory containing the file if the DIRSYNC flag
3651 ** is set. This is a one-time occurrence. Many systems (examples: AIX)
3652 ** are unable to fsync a directory, so ignore errors on the fsync.
3654 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3655 int dirfd;
3656 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3657 HAVE_FULLFSYNC, isFullsync));
3658 rc = osOpenDirectory(pFile->zPath, &dirfd);
3659 if( rc==SQLITE_OK ){
3660 full_fsync(dirfd, 0, 0);
3661 robust_close(pFile, dirfd, __LINE__);
3662 }else{
3663 assert( rc==SQLITE_CANTOPEN );
3664 rc = SQLITE_OK;
3666 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3668 return rc;
3672 ** Truncate an open file to a specified size
3674 static int unixTruncate(sqlite3_file *id, i64 nByte){
3675 unixFile *pFile = (unixFile *)id;
3676 int rc;
3677 assert( pFile );
3678 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3680 /* If the user has configured a chunk-size for this file, truncate the
3681 ** file so that it consists of an integer number of chunks (i.e. the
3682 ** actual file size after the operation may be larger than the requested
3683 ** size).
3685 if( pFile->szChunk>0 ){
3686 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3689 rc = robust_ftruncate(pFile->h, nByte);
3690 if( rc ){
3691 storeLastErrno(pFile, errno);
3692 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3693 }else{
3694 #ifdef SQLITE_DEBUG
3695 /* If we are doing a normal write to a database file (as opposed to
3696 ** doing a hot-journal rollback or a write to some file other than a
3697 ** normal database file) and we truncate the file to zero length,
3698 ** that effectively updates the change counter. This might happen
3699 ** when restoring a database using the backup API from a zero-length
3700 ** source.
3702 if( pFile->inNormalWrite && nByte==0 ){
3703 pFile->transCntrChng = 1;
3705 #endif
3707 #if SQLITE_MAX_MMAP_SIZE>0
3708 /* If the file was just truncated to a size smaller than the currently
3709 ** mapped region, reduce the effective mapping size as well. SQLite will
3710 ** use read() and write() to access data beyond this point from now on.
3712 if( nByte<pFile->mmapSize ){
3713 pFile->mmapSize = nByte;
3715 #endif
3717 return SQLITE_OK;
3722 ** Determine the current size of a file in bytes
3724 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3725 int rc;
3726 struct stat buf;
3727 assert( id );
3728 rc = osFstat(((unixFile*)id)->h, &buf);
3729 SimulateIOError( rc=1 );
3730 if( rc!=0 ){
3731 storeLastErrno((unixFile*)id, errno);
3732 return SQLITE_IOERR_FSTAT;
3734 *pSize = buf.st_size;
3736 /* When opening a zero-size database, the findInodeInfo() procedure
3737 ** writes a single byte into that file in order to work around a bug
3738 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3739 ** layers, we need to report this file size as zero even though it is
3740 ** really 1. Ticket #3260.
3742 if( *pSize==1 ) *pSize = 0;
3745 return SQLITE_OK;
3748 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3750 ** Handler for proxy-locking file-control verbs. Defined below in the
3751 ** proxying locking division.
3753 static int proxyFileControl(sqlite3_file*,int,void*);
3754 #endif
3757 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3758 ** file-control operation. Enlarge the database to nBytes in size
3759 ** (rounded up to the next chunk-size). If the database is already
3760 ** nBytes or larger, this routine is a no-op.
3762 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3763 if( pFile->szChunk>0 ){
3764 i64 nSize; /* Required file size */
3765 struct stat buf; /* Used to hold return values of fstat() */
3767 if( osFstat(pFile->h, &buf) ){
3768 return SQLITE_IOERR_FSTAT;
3771 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3772 if( nSize>(i64)buf.st_size ){
3774 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3775 /* The code below is handling the return value of osFallocate()
3776 ** correctly. posix_fallocate() is defined to "returns zero on success,
3777 ** or an error number on failure". See the manpage for details. */
3778 int err;
3780 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3781 }while( err==EINTR );
3782 if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
3783 #else
3784 /* If the OS does not have posix_fallocate(), fake it. Write a
3785 ** single byte to the last byte in each block that falls entirely
3786 ** within the extended region. Then, if required, a single byte
3787 ** at offset (nSize-1), to set the size of the file correctly.
3788 ** This is a similar technique to that used by glibc on systems
3789 ** that do not have a real fallocate() call.
3791 int nBlk = buf.st_blksize; /* File-system block size */
3792 int nWrite = 0; /* Number of bytes written by seekAndWrite */
3793 i64 iWrite; /* Next offset to write to */
3795 iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
3796 assert( iWrite>=buf.st_size );
3797 assert( ((iWrite+1)%nBlk)==0 );
3798 for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
3799 if( iWrite>=nSize ) iWrite = nSize - 1;
3800 nWrite = seekAndWrite(pFile, iWrite, "", 1);
3801 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3803 #endif
3807 #if SQLITE_MAX_MMAP_SIZE>0
3808 if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
3809 int rc;
3810 if( pFile->szChunk<=0 ){
3811 if( robust_ftruncate(pFile->h, nByte) ){
3812 storeLastErrno(pFile, errno);
3813 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3817 rc = unixMapfile(pFile, nByte);
3818 return rc;
3820 #endif
3822 return SQLITE_OK;
3826 ** If *pArg is initially negative then this is a query. Set *pArg to
3827 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3829 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3831 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
3832 if( *pArg<0 ){
3833 *pArg = (pFile->ctrlFlags & mask)!=0;
3834 }else if( (*pArg)==0 ){
3835 pFile->ctrlFlags &= ~mask;
3836 }else{
3837 pFile->ctrlFlags |= mask;
3841 /* Forward declaration */
3842 static int unixGetTempname(int nBuf, char *zBuf);
3845 ** Information and control of an open file handle.
3847 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3848 unixFile *pFile = (unixFile*)id;
3849 switch( op ){
3850 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
3851 case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: {
3852 int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE);
3853 return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK;
3855 case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: {
3856 int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE);
3857 return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK;
3859 case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
3860 int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE);
3861 return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK;
3863 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
3865 case SQLITE_FCNTL_LOCKSTATE: {
3866 *(int*)pArg = pFile->eFileLock;
3867 return SQLITE_OK;
3869 case SQLITE_FCNTL_LAST_ERRNO: {
3870 *(int*)pArg = pFile->lastErrno;
3871 return SQLITE_OK;
3873 case SQLITE_FCNTL_CHUNK_SIZE: {
3874 pFile->szChunk = *(int *)pArg;
3875 return SQLITE_OK;
3877 case SQLITE_FCNTL_SIZE_HINT: {
3878 int rc;
3879 SimulateIOErrorBenign(1);
3880 rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3881 SimulateIOErrorBenign(0);
3882 return rc;
3884 case SQLITE_FCNTL_PERSIST_WAL: {
3885 unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
3886 return SQLITE_OK;
3888 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
3889 unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
3890 return SQLITE_OK;
3892 case SQLITE_FCNTL_VFSNAME: {
3893 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
3894 return SQLITE_OK;
3896 case SQLITE_FCNTL_TEMPFILENAME: {
3897 char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
3898 if( zTFile ){
3899 unixGetTempname(pFile->pVfs->mxPathname, zTFile);
3900 *(char**)pArg = zTFile;
3902 return SQLITE_OK;
3904 case SQLITE_FCNTL_HAS_MOVED: {
3905 *(int*)pArg = fileHasMoved(pFile);
3906 return SQLITE_OK;
3908 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3909 case SQLITE_FCNTL_LOCK_TIMEOUT: {
3910 pFile->iBusyTimeout = *(int*)pArg;
3911 return SQLITE_OK;
3913 #endif
3914 #if SQLITE_MAX_MMAP_SIZE>0
3915 case SQLITE_FCNTL_MMAP_SIZE: {
3916 i64 newLimit = *(i64*)pArg;
3917 int rc = SQLITE_OK;
3918 if( newLimit>sqlite3GlobalConfig.mxMmap ){
3919 newLimit = sqlite3GlobalConfig.mxMmap;
3922 /* The value of newLimit may be eventually cast to (size_t) and passed
3923 ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
3924 ** 64-bit type. */
3925 if( newLimit>0 && sizeof(size_t)<8 ){
3926 newLimit = (newLimit & 0x7FFFFFFF);
3929 *(i64*)pArg = pFile->mmapSizeMax;
3930 if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
3931 pFile->mmapSizeMax = newLimit;
3932 if( pFile->mmapSize>0 ){
3933 unixUnmapfile(pFile);
3934 rc = unixMapfile(pFile, -1);
3937 return rc;
3939 #endif
3940 #ifdef SQLITE_DEBUG
3941 /* The pager calls this method to signal that it has done
3942 ** a rollback and that the database is therefore unchanged and
3943 ** it hence it is OK for the transaction change counter to be
3944 ** unchanged.
3946 case SQLITE_FCNTL_DB_UNCHANGED: {
3947 ((unixFile*)id)->dbUpdate = 0;
3948 return SQLITE_OK;
3950 #endif
3951 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3952 case SQLITE_FCNTL_SET_LOCKPROXYFILE:
3953 case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
3954 return proxyFileControl(id,op,pArg);
3956 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3958 return SQLITE_NOTFOUND;
3962 ** If pFd->sectorSize is non-zero when this function is called, it is a
3963 ** no-op. Otherwise, the values of pFd->sectorSize and
3964 ** pFd->deviceCharacteristics are set according to the file-system
3965 ** characteristics.
3967 ** There are two versions of this function. One for QNX and one for all
3968 ** other systems.
3970 #ifndef __QNXNTO__
3971 static void setDeviceCharacteristics(unixFile *pFd){
3972 assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 );
3973 if( pFd->sectorSize==0 ){
3974 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
3975 int res;
3976 u32 f = 0;
3978 /* Check for support for F2FS atomic batch writes. */
3979 res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f);
3980 if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){
3981 pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC;
3983 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
3985 /* Set the POWERSAFE_OVERWRITE flag if requested. */
3986 if( pFd->ctrlFlags & UNIXFILE_PSOW ){
3987 pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
3990 pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
3993 #else
3994 #include <sys/dcmd_blk.h>
3995 #include <sys/statvfs.h>
3996 static void setDeviceCharacteristics(unixFile *pFile){
3997 if( pFile->sectorSize == 0 ){
3998 struct statvfs fsInfo;
4000 /* Set defaults for non-supported filesystems */
4001 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
4002 pFile->deviceCharacteristics = 0;
4003 if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
4004 return;
4007 if( !strcmp(fsInfo.f_basetype, "tmp") ) {
4008 pFile->sectorSize = fsInfo.f_bsize;
4009 pFile->deviceCharacteristics =
4010 SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */
4011 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
4012 ** the write succeeds */
4013 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
4014 ** so it is ordered */
4016 }else if( strstr(fsInfo.f_basetype, "etfs") ){
4017 pFile->sectorSize = fsInfo.f_bsize;
4018 pFile->deviceCharacteristics =
4019 /* etfs cluster size writes are atomic */
4020 (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
4021 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
4022 ** the write succeeds */
4023 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
4024 ** so it is ordered */
4026 }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
4027 pFile->sectorSize = fsInfo.f_bsize;
4028 pFile->deviceCharacteristics =
4029 SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */
4030 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
4031 ** the write succeeds */
4032 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
4033 ** so it is ordered */
4035 }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
4036 pFile->sectorSize = fsInfo.f_bsize;
4037 pFile->deviceCharacteristics =
4038 /* full bitset of atomics from max sector size and smaller */
4039 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
4040 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
4041 ** so it is ordered */
4043 }else if( strstr(fsInfo.f_basetype, "dos") ){
4044 pFile->sectorSize = fsInfo.f_bsize;
4045 pFile->deviceCharacteristics =
4046 /* full bitset of atomics from max sector size and smaller */
4047 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
4048 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
4049 ** so it is ordered */
4051 }else{
4052 pFile->deviceCharacteristics =
4053 SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */
4054 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
4055 ** the write succeeds */
4059 /* Last chance verification. If the sector size isn't a multiple of 512
4060 ** then it isn't valid.*/
4061 if( pFile->sectorSize % 512 != 0 ){
4062 pFile->deviceCharacteristics = 0;
4063 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
4066 #endif
4069 ** Return the sector size in bytes of the underlying block device for
4070 ** the specified file. This is almost always 512 bytes, but may be
4071 ** larger for some devices.
4073 ** SQLite code assumes this function cannot fail. It also assumes that
4074 ** if two files are created in the same file-system directory (i.e.
4075 ** a database and its journal file) that the sector size will be the
4076 ** same for both.
4078 static int unixSectorSize(sqlite3_file *id){
4079 unixFile *pFd = (unixFile*)id;
4080 setDeviceCharacteristics(pFd);
4081 return pFd->sectorSize;
4085 ** Return the device characteristics for the file.
4087 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
4088 ** However, that choice is controversial since technically the underlying
4089 ** file system does not always provide powersafe overwrites. (In other
4090 ** words, after a power-loss event, parts of the file that were never
4091 ** written might end up being altered.) However, non-PSOW behavior is very,
4092 ** very rare. And asserting PSOW makes a large reduction in the amount
4093 ** of required I/O for journaling, since a lot of padding is eliminated.
4094 ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
4095 ** available to turn it off and URI query parameter available to turn it off.
4097 static int unixDeviceCharacteristics(sqlite3_file *id){
4098 unixFile *pFd = (unixFile*)id;
4099 setDeviceCharacteristics(pFd);
4100 return pFd->deviceCharacteristics;
4103 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
4106 ** Return the system page size.
4108 ** This function should not be called directly by other code in this file.
4109 ** Instead, it should be called via macro osGetpagesize().
4111 static int unixGetpagesize(void){
4112 #if OS_VXWORKS
4113 return 1024;
4114 #elif defined(_BSD_SOURCE)
4115 return getpagesize();
4116 #else
4117 return (int)sysconf(_SC_PAGESIZE);
4118 #endif
4121 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
4123 #ifndef SQLITE_OMIT_WAL
4126 ** Object used to represent an shared memory buffer.
4128 ** When multiple threads all reference the same wal-index, each thread
4129 ** has its own unixShm object, but they all point to a single instance
4130 ** of this unixShmNode object. In other words, each wal-index is opened
4131 ** only once per process.
4133 ** Each unixShmNode object is connected to a single unixInodeInfo object.
4134 ** We could coalesce this object into unixInodeInfo, but that would mean
4135 ** every open file that does not use shared memory (in other words, most
4136 ** open files) would have to carry around this extra information. So
4137 ** the unixInodeInfo object contains a pointer to this unixShmNode object
4138 ** and the unixShmNode object is created only when needed.
4140 ** unixMutexHeld() must be true when creating or destroying
4141 ** this object or while reading or writing the following fields:
4143 ** nRef
4145 ** The following fields are read-only after the object is created:
4147 ** fid
4148 ** zFilename
4150 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
4151 ** unixMutexHeld() is true when reading or writing any other field
4152 ** in this structure.
4154 struct unixShmNode {
4155 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
4156 sqlite3_mutex *mutex; /* Mutex to access this object */
4157 char *zFilename; /* Name of the mmapped file */
4158 int h; /* Open file descriptor */
4159 int szRegion; /* Size of shared-memory regions */
4160 u16 nRegion; /* Size of array apRegion */
4161 u8 isReadonly; /* True if read-only */
4162 u8 isUnlocked; /* True if no DMS lock held */
4163 char **apRegion; /* Array of mapped shared-memory regions */
4164 int nRef; /* Number of unixShm objects pointing to this */
4165 unixShm *pFirst; /* All unixShm objects pointing to this */
4166 #ifdef SQLITE_DEBUG
4167 u8 exclMask; /* Mask of exclusive locks held */
4168 u8 sharedMask; /* Mask of shared locks held */
4169 u8 nextShmId; /* Next available unixShm.id value */
4170 #endif
4174 ** Structure used internally by this VFS to record the state of an
4175 ** open shared memory connection.
4177 ** The following fields are initialized when this object is created and
4178 ** are read-only thereafter:
4180 ** unixShm.pFile
4181 ** unixShm.id
4183 ** All other fields are read/write. The unixShm.pFile->mutex must be held
4184 ** while accessing any read/write fields.
4186 struct unixShm {
4187 unixShmNode *pShmNode; /* The underlying unixShmNode object */
4188 unixShm *pNext; /* Next unixShm with the same unixShmNode */
4189 u8 hasMutex; /* True if holding the unixShmNode mutex */
4190 u8 id; /* Id of this connection within its unixShmNode */
4191 u16 sharedMask; /* Mask of shared locks held */
4192 u16 exclMask; /* Mask of exclusive locks held */
4196 ** Constants used for locking
4198 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
4199 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
4202 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
4204 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
4205 ** otherwise.
4207 static int unixShmSystemLock(
4208 unixFile *pFile, /* Open connection to the WAL file */
4209 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
4210 int ofst, /* First byte of the locking range */
4211 int n /* Number of bytes to lock */
4213 unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
4214 struct flock f; /* The posix advisory locking structure */
4215 int rc = SQLITE_OK; /* Result code form fcntl() */
4217 /* Access to the unixShmNode object is serialized by the caller */
4218 pShmNode = pFile->pInode->pShmNode;
4219 assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->mutex) );
4221 /* Shared locks never span more than one byte */
4222 assert( n==1 || lockType!=F_RDLCK );
4224 /* Locks are within range */
4225 assert( n>=1 && n<=SQLITE_SHM_NLOCK );
4227 if( pShmNode->h>=0 ){
4228 /* Initialize the locking parameters */
4229 f.l_type = lockType;
4230 f.l_whence = SEEK_SET;
4231 f.l_start = ofst;
4232 f.l_len = n;
4233 rc = osSetPosixAdvisoryLock(pShmNode->h, &f, pFile);
4234 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
4237 /* Update the global lock state and do debug tracing */
4238 #ifdef SQLITE_DEBUG
4239 { u16 mask;
4240 OSTRACE(("SHM-LOCK "));
4241 mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
4242 if( rc==SQLITE_OK ){
4243 if( lockType==F_UNLCK ){
4244 OSTRACE(("unlock %d ok", ofst));
4245 pShmNode->exclMask &= ~mask;
4246 pShmNode->sharedMask &= ~mask;
4247 }else if( lockType==F_RDLCK ){
4248 OSTRACE(("read-lock %d ok", ofst));
4249 pShmNode->exclMask &= ~mask;
4250 pShmNode->sharedMask |= mask;
4251 }else{
4252 assert( lockType==F_WRLCK );
4253 OSTRACE(("write-lock %d ok", ofst));
4254 pShmNode->exclMask |= mask;
4255 pShmNode->sharedMask &= ~mask;
4257 }else{
4258 if( lockType==F_UNLCK ){
4259 OSTRACE(("unlock %d failed", ofst));
4260 }else if( lockType==F_RDLCK ){
4261 OSTRACE(("read-lock failed"));
4262 }else{
4263 assert( lockType==F_WRLCK );
4264 OSTRACE(("write-lock %d failed", ofst));
4267 OSTRACE((" - afterwards %03x,%03x\n",
4268 pShmNode->sharedMask, pShmNode->exclMask));
4270 #endif
4272 return rc;
4276 ** Return the minimum number of 32KB shm regions that should be mapped at
4277 ** a time, assuming that each mapping must be an integer multiple of the
4278 ** current system page-size.
4280 ** Usually, this is 1. The exception seems to be systems that are configured
4281 ** to use 64KB pages - in this case each mapping must cover at least two
4282 ** shm regions.
4284 static int unixShmRegionPerMap(void){
4285 int shmsz = 32*1024; /* SHM region size */
4286 int pgsz = osGetpagesize(); /* System page size */
4287 assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */
4288 if( pgsz<shmsz ) return 1;
4289 return pgsz/shmsz;
4293 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
4295 ** This is not a VFS shared-memory method; it is a utility function called
4296 ** by VFS shared-memory methods.
4298 static void unixShmPurge(unixFile *pFd){
4299 unixShmNode *p = pFd->pInode->pShmNode;
4300 assert( unixMutexHeld() );
4301 if( p && ALWAYS(p->nRef==0) ){
4302 int nShmPerMap = unixShmRegionPerMap();
4303 int i;
4304 assert( p->pInode==pFd->pInode );
4305 sqlite3_mutex_free(p->mutex);
4306 for(i=0; i<p->nRegion; i+=nShmPerMap){
4307 if( p->h>=0 ){
4308 osMunmap(p->apRegion[i], p->szRegion);
4309 }else{
4310 sqlite3_free(p->apRegion[i]);
4313 sqlite3_free(p->apRegion);
4314 if( p->h>=0 ){
4315 robust_close(pFd, p->h, __LINE__);
4316 p->h = -1;
4318 p->pInode->pShmNode = 0;
4319 sqlite3_free(p);
4324 ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
4325 ** take it now. Return SQLITE_OK if successful, or an SQLite error
4326 ** code otherwise.
4328 ** If the DMS cannot be locked because this is a readonly_shm=1
4329 ** connection and no other process already holds a lock, return
4330 ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
4332 static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){
4333 struct flock lock;
4334 int rc = SQLITE_OK;
4336 /* Use F_GETLK to determine the locks other processes are holding
4337 ** on the DMS byte. If it indicates that another process is holding
4338 ** a SHARED lock, then this process may also take a SHARED lock
4339 ** and proceed with opening the *-shm file.
4341 ** Or, if no other process is holding any lock, then this process
4342 ** is the first to open it. In this case take an EXCLUSIVE lock on the
4343 ** DMS byte and truncate the *-shm file to zero bytes in size. Then
4344 ** downgrade to a SHARED lock on the DMS byte.
4346 ** If another process is holding an EXCLUSIVE lock on the DMS byte,
4347 ** return SQLITE_BUSY to the caller (it will try again). An earlier
4348 ** version of this code attempted the SHARED lock at this point. But
4349 ** this introduced a subtle race condition: if the process holding
4350 ** EXCLUSIVE failed just before truncating the *-shm file, then this
4351 ** process might open and use the *-shm file without truncating it.
4352 ** And if the *-shm file has been corrupted by a power failure or
4353 ** system crash, the database itself may also become corrupt. */
4354 lock.l_whence = SEEK_SET;
4355 lock.l_start = UNIX_SHM_DMS;
4356 lock.l_len = 1;
4357 lock.l_type = F_WRLCK;
4358 if( osFcntl(pShmNode->h, F_GETLK, &lock)!=0 ) {
4359 rc = SQLITE_IOERR_LOCK;
4360 }else if( lock.l_type==F_UNLCK ){
4361 if( pShmNode->isReadonly ){
4362 pShmNode->isUnlocked = 1;
4363 rc = SQLITE_READONLY_CANTINIT;
4364 }else{
4365 rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
4366 if( rc==SQLITE_OK && robust_ftruncate(pShmNode->h, 0) ){
4367 rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
4370 }else if( lock.l_type==F_WRLCK ){
4371 rc = SQLITE_BUSY;
4374 if( rc==SQLITE_OK ){
4375 assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK );
4376 rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
4378 return rc;
4382 ** Open a shared-memory area associated with open database file pDbFd.
4383 ** This particular implementation uses mmapped files.
4385 ** The file used to implement shared-memory is in the same directory
4386 ** as the open database file and has the same name as the open database
4387 ** file with the "-shm" suffix added. For example, if the database file
4388 ** is "/home/user1/config.db" then the file that is created and mmapped
4389 ** for shared memory will be called "/home/user1/config.db-shm".
4391 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
4392 ** some other tmpfs mount. But if a file in a different directory
4393 ** from the database file is used, then differing access permissions
4394 ** or a chroot() might cause two different processes on the same
4395 ** database to end up using different files for shared memory -
4396 ** meaning that their memory would not really be shared - resulting
4397 ** in database corruption. Nevertheless, this tmpfs file usage
4398 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
4399 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
4400 ** option results in an incompatible build of SQLite; builds of SQLite
4401 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
4402 ** same database file at the same time, database corruption will likely
4403 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
4404 ** "unsupported" and may go away in a future SQLite release.
4406 ** When opening a new shared-memory file, if no other instances of that
4407 ** file are currently open, in this process or in other processes, then
4408 ** the file must be truncated to zero length or have its header cleared.
4410 ** If the original database file (pDbFd) is using the "unix-excl" VFS
4411 ** that means that an exclusive lock is held on the database file and
4412 ** that no other processes are able to read or write the database. In
4413 ** that case, we do not really need shared memory. No shared memory
4414 ** file is created. The shared memory will be simulated with heap memory.
4416 static int unixOpenSharedMemory(unixFile *pDbFd){
4417 struct unixShm *p = 0; /* The connection to be opened */
4418 struct unixShmNode *pShmNode; /* The underlying mmapped file */
4419 int rc = SQLITE_OK; /* Result code */
4420 unixInodeInfo *pInode; /* The inode of fd */
4421 char *zShm; /* Name of the file used for SHM */
4422 int nShmFilename; /* Size of the SHM filename in bytes */
4424 /* Allocate space for the new unixShm object. */
4425 p = sqlite3_malloc64( sizeof(*p) );
4426 if( p==0 ) return SQLITE_NOMEM_BKPT;
4427 memset(p, 0, sizeof(*p));
4428 assert( pDbFd->pShm==0 );
4430 /* Check to see if a unixShmNode object already exists. Reuse an existing
4431 ** one if present. Create a new one if necessary.
4433 unixEnterMutex();
4434 pInode = pDbFd->pInode;
4435 pShmNode = pInode->pShmNode;
4436 if( pShmNode==0 ){
4437 struct stat sStat; /* fstat() info for database file */
4438 #ifndef SQLITE_SHM_DIRECTORY
4439 const char *zBasePath = pDbFd->zPath;
4440 #endif
4442 /* Call fstat() to figure out the permissions on the database file. If
4443 ** a new *-shm file is created, an attempt will be made to create it
4444 ** with the same permissions.
4446 if( osFstat(pDbFd->h, &sStat) ){
4447 rc = SQLITE_IOERR_FSTAT;
4448 goto shm_open_err;
4451 #ifdef SQLITE_SHM_DIRECTORY
4452 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
4453 #else
4454 nShmFilename = 6 + (int)strlen(zBasePath);
4455 #endif
4456 pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
4457 if( pShmNode==0 ){
4458 rc = SQLITE_NOMEM_BKPT;
4459 goto shm_open_err;
4461 memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
4462 zShm = pShmNode->zFilename = (char*)&pShmNode[1];
4463 #ifdef SQLITE_SHM_DIRECTORY
4464 sqlite3_snprintf(nShmFilename, zShm,
4465 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
4466 (u32)sStat.st_ino, (u32)sStat.st_dev);
4467 #else
4468 sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
4469 sqlite3FileSuffix3(pDbFd->zPath, zShm);
4470 #endif
4471 pShmNode->h = -1;
4472 pDbFd->pInode->pShmNode = pShmNode;
4473 pShmNode->pInode = pDbFd->pInode;
4474 if( sqlite3GlobalConfig.bCoreMutex ){
4475 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
4476 if( pShmNode->mutex==0 ){
4477 rc = SQLITE_NOMEM_BKPT;
4478 goto shm_open_err;
4482 if( pInode->bProcessLock==0 ){
4483 if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
4484 pShmNode->h = robust_open(zShm, O_RDWR|O_CREAT, (sStat.st_mode&0777));
4486 if( pShmNode->h<0 ){
4487 pShmNode->h = robust_open(zShm, O_RDONLY, (sStat.st_mode&0777));
4488 if( pShmNode->h<0 ){
4489 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
4490 goto shm_open_err;
4492 pShmNode->isReadonly = 1;
4495 /* If this process is running as root, make sure that the SHM file
4496 ** is owned by the same user that owns the original database. Otherwise,
4497 ** the original owner will not be able to connect.
4499 robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
4501 rc = unixLockSharedMemory(pDbFd, pShmNode);
4502 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
4506 /* Make the new connection a child of the unixShmNode */
4507 p->pShmNode = pShmNode;
4508 #ifdef SQLITE_DEBUG
4509 p->id = pShmNode->nextShmId++;
4510 #endif
4511 pShmNode->nRef++;
4512 pDbFd->pShm = p;
4513 unixLeaveMutex();
4515 /* The reference count on pShmNode has already been incremented under
4516 ** the cover of the unixEnterMutex() mutex and the pointer from the
4517 ** new (struct unixShm) object to the pShmNode has been set. All that is
4518 ** left to do is to link the new object into the linked list starting
4519 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
4520 ** mutex.
4522 sqlite3_mutex_enter(pShmNode->mutex);
4523 p->pNext = pShmNode->pFirst;
4524 pShmNode->pFirst = p;
4525 sqlite3_mutex_leave(pShmNode->mutex);
4526 return rc;
4528 /* Jump here on any error */
4529 shm_open_err:
4530 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
4531 sqlite3_free(p);
4532 unixLeaveMutex();
4533 return rc;
4537 ** This function is called to obtain a pointer to region iRegion of the
4538 ** shared-memory associated with the database file fd. Shared-memory regions
4539 ** are numbered starting from zero. Each shared-memory region is szRegion
4540 ** bytes in size.
4542 ** If an error occurs, an error code is returned and *pp is set to NULL.
4544 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
4545 ** region has not been allocated (by any client, including one running in a
4546 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4547 ** bExtend is non-zero and the requested shared-memory region has not yet
4548 ** been allocated, it is allocated by this function.
4550 ** If the shared-memory region has already been allocated or is allocated by
4551 ** this call as described above, then it is mapped into this processes
4552 ** address space (if it is not already), *pp is set to point to the mapped
4553 ** memory and SQLITE_OK returned.
4555 static int unixShmMap(
4556 sqlite3_file *fd, /* Handle open on database file */
4557 int iRegion, /* Region to retrieve */
4558 int szRegion, /* Size of regions */
4559 int bExtend, /* True to extend file if necessary */
4560 void volatile **pp /* OUT: Mapped memory */
4562 unixFile *pDbFd = (unixFile*)fd;
4563 unixShm *p;
4564 unixShmNode *pShmNode;
4565 int rc = SQLITE_OK;
4566 int nShmPerMap = unixShmRegionPerMap();
4567 int nReqRegion;
4569 /* If the shared-memory file has not yet been opened, open it now. */
4570 if( pDbFd->pShm==0 ){
4571 rc = unixOpenSharedMemory(pDbFd);
4572 if( rc!=SQLITE_OK ) return rc;
4575 p = pDbFd->pShm;
4576 pShmNode = p->pShmNode;
4577 sqlite3_mutex_enter(pShmNode->mutex);
4578 if( pShmNode->isUnlocked ){
4579 rc = unixLockSharedMemory(pDbFd, pShmNode);
4580 if( rc!=SQLITE_OK ) goto shmpage_out;
4581 pShmNode->isUnlocked = 0;
4583 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
4584 assert( pShmNode->pInode==pDbFd->pInode );
4585 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4586 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4588 /* Minimum number of regions required to be mapped. */
4589 nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
4591 if( pShmNode->nRegion<nReqRegion ){
4592 char **apNew; /* New apRegion[] array */
4593 int nByte = nReqRegion*szRegion; /* Minimum required file size */
4594 struct stat sStat; /* Used by fstat() */
4596 pShmNode->szRegion = szRegion;
4598 if( pShmNode->h>=0 ){
4599 /* The requested region is not mapped into this processes address space.
4600 ** Check to see if it has been allocated (i.e. if the wal-index file is
4601 ** large enough to contain the requested region).
4603 if( osFstat(pShmNode->h, &sStat) ){
4604 rc = SQLITE_IOERR_SHMSIZE;
4605 goto shmpage_out;
4608 if( sStat.st_size<nByte ){
4609 /* The requested memory region does not exist. If bExtend is set to
4610 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4612 if( !bExtend ){
4613 goto shmpage_out;
4616 /* Alternatively, if bExtend is true, extend the file. Do this by
4617 ** writing a single byte to the end of each (OS) page being
4618 ** allocated or extended. Technically, we need only write to the
4619 ** last page in order to extend the file. But writing to all new
4620 ** pages forces the OS to allocate them immediately, which reduces
4621 ** the chances of SIGBUS while accessing the mapped region later on.
4623 else{
4624 static const int pgsz = 4096;
4625 int iPg;
4627 /* Write to the last byte of each newly allocated or extended page */
4628 assert( (nByte % pgsz)==0 );
4629 for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
4630 int x = 0;
4631 if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, &x)!=1 ){
4632 const char *zFile = pShmNode->zFilename;
4633 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
4634 goto shmpage_out;
4641 /* Map the requested memory region into this processes address space. */
4642 apNew = (char **)sqlite3_realloc(
4643 pShmNode->apRegion, nReqRegion*sizeof(char *)
4645 if( !apNew ){
4646 rc = SQLITE_IOERR_NOMEM_BKPT;
4647 goto shmpage_out;
4649 pShmNode->apRegion = apNew;
4650 while( pShmNode->nRegion<nReqRegion ){
4651 int nMap = szRegion*nShmPerMap;
4652 int i;
4653 void *pMem;
4654 if( pShmNode->h>=0 ){
4655 pMem = osMmap(0, nMap,
4656 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
4657 MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
4659 if( pMem==MAP_FAILED ){
4660 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
4661 goto shmpage_out;
4663 }else{
4664 pMem = sqlite3_malloc64(szRegion);
4665 if( pMem==0 ){
4666 rc = SQLITE_NOMEM_BKPT;
4667 goto shmpage_out;
4669 memset(pMem, 0, szRegion);
4672 for(i=0; i<nShmPerMap; i++){
4673 pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
4675 pShmNode->nRegion += nShmPerMap;
4679 shmpage_out:
4680 if( pShmNode->nRegion>iRegion ){
4681 *pp = pShmNode->apRegion[iRegion];
4682 }else{
4683 *pp = 0;
4685 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4686 sqlite3_mutex_leave(pShmNode->mutex);
4687 return rc;
4691 ** Change the lock state for a shared-memory segment.
4693 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4694 ** different here than in posix. In xShmLock(), one can go from unlocked
4695 ** to shared and back or from unlocked to exclusive and back. But one may
4696 ** not go from shared to exclusive or from exclusive to shared.
4698 static int unixShmLock(
4699 sqlite3_file *fd, /* Database file holding the shared memory */
4700 int ofst, /* First lock to acquire or release */
4701 int n, /* Number of locks to acquire or release */
4702 int flags /* What to do with the lock */
4704 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
4705 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
4706 unixShm *pX; /* For looping over all siblings */
4707 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
4708 int rc = SQLITE_OK; /* Result code */
4709 u16 mask; /* Mask of locks to take or release */
4711 assert( pShmNode==pDbFd->pInode->pShmNode );
4712 assert( pShmNode->pInode==pDbFd->pInode );
4713 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4714 assert( n>=1 );
4715 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4716 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4717 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4718 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4719 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4720 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4721 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4723 mask = (1<<(ofst+n)) - (1<<ofst);
4724 assert( n>1 || mask==(1<<ofst) );
4725 sqlite3_mutex_enter(pShmNode->mutex);
4726 if( flags & SQLITE_SHM_UNLOCK ){
4727 u16 allMask = 0; /* Mask of locks held by siblings */
4729 /* See if any siblings hold this same lock */
4730 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4731 if( pX==p ) continue;
4732 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4733 allMask |= pX->sharedMask;
4736 /* Unlock the system-level locks */
4737 if( (mask & allMask)==0 ){
4738 rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4739 }else{
4740 rc = SQLITE_OK;
4743 /* Undo the local locks */
4744 if( rc==SQLITE_OK ){
4745 p->exclMask &= ~mask;
4746 p->sharedMask &= ~mask;
4748 }else if( flags & SQLITE_SHM_SHARED ){
4749 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4751 /* Find out which shared locks are already held by sibling connections.
4752 ** If any sibling already holds an exclusive lock, go ahead and return
4753 ** SQLITE_BUSY.
4755 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4756 if( (pX->exclMask & mask)!=0 ){
4757 rc = SQLITE_BUSY;
4758 break;
4760 allShared |= pX->sharedMask;
4763 /* Get shared locks at the system level, if necessary */
4764 if( rc==SQLITE_OK ){
4765 if( (allShared & mask)==0 ){
4766 rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4767 }else{
4768 rc = SQLITE_OK;
4772 /* Get the local shared locks */
4773 if( rc==SQLITE_OK ){
4774 p->sharedMask |= mask;
4776 }else{
4777 /* Make sure no sibling connections hold locks that will block this
4778 ** lock. If any do, return SQLITE_BUSY right away.
4780 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4781 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4782 rc = SQLITE_BUSY;
4783 break;
4787 /* Get the exclusive locks at the system level. Then if successful
4788 ** also mark the local connection as being locked.
4790 if( rc==SQLITE_OK ){
4791 rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4792 if( rc==SQLITE_OK ){
4793 assert( (p->sharedMask & mask)==0 );
4794 p->exclMask |= mask;
4798 sqlite3_mutex_leave(pShmNode->mutex);
4799 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4800 p->id, osGetpid(0), p->sharedMask, p->exclMask));
4801 return rc;
4805 ** Implement a memory barrier or memory fence on shared memory.
4807 ** All loads and stores begun before the barrier must complete before
4808 ** any load or store begun after the barrier.
4810 static void unixShmBarrier(
4811 sqlite3_file *fd /* Database file holding the shared memory */
4813 UNUSED_PARAMETER(fd);
4814 sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
4815 unixEnterMutex(); /* Also mutex, for redundancy */
4816 unixLeaveMutex();
4820 ** Close a connection to shared-memory. Delete the underlying
4821 ** storage if deleteFlag is true.
4823 ** If there is no shared memory associated with the connection then this
4824 ** routine is a harmless no-op.
4826 static int unixShmUnmap(
4827 sqlite3_file *fd, /* The underlying database file */
4828 int deleteFlag /* Delete shared-memory if true */
4830 unixShm *p; /* The connection to be closed */
4831 unixShmNode *pShmNode; /* The underlying shared-memory file */
4832 unixShm **pp; /* For looping over sibling connections */
4833 unixFile *pDbFd; /* The underlying database file */
4835 pDbFd = (unixFile*)fd;
4836 p = pDbFd->pShm;
4837 if( p==0 ) return SQLITE_OK;
4838 pShmNode = p->pShmNode;
4840 assert( pShmNode==pDbFd->pInode->pShmNode );
4841 assert( pShmNode->pInode==pDbFd->pInode );
4843 /* Remove connection p from the set of connections associated
4844 ** with pShmNode */
4845 sqlite3_mutex_enter(pShmNode->mutex);
4846 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4847 *pp = p->pNext;
4849 /* Free the connection p */
4850 sqlite3_free(p);
4851 pDbFd->pShm = 0;
4852 sqlite3_mutex_leave(pShmNode->mutex);
4854 /* If pShmNode->nRef has reached 0, then close the underlying
4855 ** shared-memory file, too */
4856 unixEnterMutex();
4857 assert( pShmNode->nRef>0 );
4858 pShmNode->nRef--;
4859 if( pShmNode->nRef==0 ){
4860 if( deleteFlag && pShmNode->h>=0 ){
4861 osUnlink(pShmNode->zFilename);
4863 unixShmPurge(pDbFd);
4865 unixLeaveMutex();
4867 return SQLITE_OK;
4871 #else
4872 # define unixShmMap 0
4873 # define unixShmLock 0
4874 # define unixShmBarrier 0
4875 # define unixShmUnmap 0
4876 #endif /* #ifndef SQLITE_OMIT_WAL */
4878 #if SQLITE_MAX_MMAP_SIZE>0
4880 ** If it is currently memory mapped, unmap file pFd.
4882 static void unixUnmapfile(unixFile *pFd){
4883 assert( pFd->nFetchOut==0 );
4884 if( pFd->pMapRegion ){
4885 osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
4886 pFd->pMapRegion = 0;
4887 pFd->mmapSize = 0;
4888 pFd->mmapSizeActual = 0;
4893 ** Attempt to set the size of the memory mapping maintained by file
4894 ** descriptor pFd to nNew bytes. Any existing mapping is discarded.
4896 ** If successful, this function sets the following variables:
4898 ** unixFile.pMapRegion
4899 ** unixFile.mmapSize
4900 ** unixFile.mmapSizeActual
4902 ** If unsuccessful, an error message is logged via sqlite3_log() and
4903 ** the three variables above are zeroed. In this case SQLite should
4904 ** continue accessing the database using the xRead() and xWrite()
4905 ** methods.
4907 static void unixRemapfile(
4908 unixFile *pFd, /* File descriptor object */
4909 i64 nNew /* Required mapping size */
4911 const char *zErr = "mmap";
4912 int h = pFd->h; /* File descriptor open on db file */
4913 u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */
4914 i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */
4915 u8 *pNew = 0; /* Location of new mapping */
4916 int flags = PROT_READ; /* Flags to pass to mmap() */
4918 assert( pFd->nFetchOut==0 );
4919 assert( nNew>pFd->mmapSize );
4920 assert( nNew<=pFd->mmapSizeMax );
4921 assert( nNew>0 );
4922 assert( pFd->mmapSizeActual>=pFd->mmapSize );
4923 assert( MAP_FAILED!=0 );
4925 #ifdef SQLITE_MMAP_READWRITE
4926 if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
4927 #endif
4929 if( pOrig ){
4930 #if HAVE_MREMAP
4931 i64 nReuse = pFd->mmapSize;
4932 #else
4933 const int szSyspage = osGetpagesize();
4934 i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
4935 #endif
4936 u8 *pReq = &pOrig[nReuse];
4938 /* Unmap any pages of the existing mapping that cannot be reused. */
4939 if( nReuse!=nOrig ){
4940 osMunmap(pReq, nOrig-nReuse);
4943 #if HAVE_MREMAP
4944 pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
4945 zErr = "mremap";
4946 #else
4947 pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
4948 if( pNew!=MAP_FAILED ){
4949 if( pNew!=pReq ){
4950 osMunmap(pNew, nNew - nReuse);
4951 pNew = 0;
4952 }else{
4953 pNew = pOrig;
4956 #endif
4958 /* The attempt to extend the existing mapping failed. Free it. */
4959 if( pNew==MAP_FAILED || pNew==0 ){
4960 osMunmap(pOrig, nReuse);
4964 /* If pNew is still NULL, try to create an entirely new mapping. */
4965 if( pNew==0 ){
4966 pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
4969 if( pNew==MAP_FAILED ){
4970 pNew = 0;
4971 nNew = 0;
4972 unixLogError(SQLITE_OK, zErr, pFd->zPath);
4974 /* If the mmap() above failed, assume that all subsequent mmap() calls
4975 ** will probably fail too. Fall back to using xRead/xWrite exclusively
4976 ** in this case. */
4977 pFd->mmapSizeMax = 0;
4979 pFd->pMapRegion = (void *)pNew;
4980 pFd->mmapSize = pFd->mmapSizeActual = nNew;
4984 ** Memory map or remap the file opened by file-descriptor pFd (if the file
4985 ** is already mapped, the existing mapping is replaced by the new). Or, if
4986 ** there already exists a mapping for this file, and there are still
4987 ** outstanding xFetch() references to it, this function is a no-op.
4989 ** If parameter nByte is non-negative, then it is the requested size of
4990 ** the mapping to create. Otherwise, if nByte is less than zero, then the
4991 ** requested size is the size of the file on disk. The actual size of the
4992 ** created mapping is either the requested size or the value configured
4993 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
4995 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
4996 ** recreated as a result of outstanding references) or an SQLite error
4997 ** code otherwise.
4999 static int unixMapfile(unixFile *pFd, i64 nMap){
5000 assert( nMap>=0 || pFd->nFetchOut==0 );
5001 assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
5002 if( pFd->nFetchOut>0 ) return SQLITE_OK;
5004 if( nMap<0 ){
5005 struct stat statbuf; /* Low-level file information */
5006 if( osFstat(pFd->h, &statbuf) ){
5007 return SQLITE_IOERR_FSTAT;
5009 nMap = statbuf.st_size;
5011 if( nMap>pFd->mmapSizeMax ){
5012 nMap = pFd->mmapSizeMax;
5015 assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
5016 if( nMap!=pFd->mmapSize ){
5017 unixRemapfile(pFd, nMap);
5020 return SQLITE_OK;
5022 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
5025 ** If possible, return a pointer to a mapping of file fd starting at offset
5026 ** iOff. The mapping must be valid for at least nAmt bytes.
5028 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
5029 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
5030 ** Finally, if an error does occur, return an SQLite error code. The final
5031 ** value of *pp is undefined in this case.
5033 ** If this function does return a pointer, the caller must eventually
5034 ** release the reference by calling unixUnfetch().
5036 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
5037 #if SQLITE_MAX_MMAP_SIZE>0
5038 unixFile *pFd = (unixFile *)fd; /* The underlying database file */
5039 #endif
5040 *pp = 0;
5042 #if SQLITE_MAX_MMAP_SIZE>0
5043 if( pFd->mmapSizeMax>0 ){
5044 if( pFd->pMapRegion==0 ){
5045 int rc = unixMapfile(pFd, -1);
5046 if( rc!=SQLITE_OK ) return rc;
5048 if( pFd->mmapSize >= iOff+nAmt ){
5049 *pp = &((u8 *)pFd->pMapRegion)[iOff];
5050 pFd->nFetchOut++;
5053 #endif
5054 return SQLITE_OK;
5058 ** If the third argument is non-NULL, then this function releases a
5059 ** reference obtained by an earlier call to unixFetch(). The second
5060 ** argument passed to this function must be the same as the corresponding
5061 ** argument that was passed to the unixFetch() invocation.
5063 ** Or, if the third argument is NULL, then this function is being called
5064 ** to inform the VFS layer that, according to POSIX, any existing mapping
5065 ** may now be invalid and should be unmapped.
5067 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
5068 #if SQLITE_MAX_MMAP_SIZE>0
5069 unixFile *pFd = (unixFile *)fd; /* The underlying database file */
5070 UNUSED_PARAMETER(iOff);
5072 /* If p==0 (unmap the entire file) then there must be no outstanding
5073 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
5074 ** then there must be at least one outstanding. */
5075 assert( (p==0)==(pFd->nFetchOut==0) );
5077 /* If p!=0, it must match the iOff value. */
5078 assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
5080 if( p ){
5081 pFd->nFetchOut--;
5082 }else{
5083 unixUnmapfile(pFd);
5086 assert( pFd->nFetchOut>=0 );
5087 #else
5088 UNUSED_PARAMETER(fd);
5089 UNUSED_PARAMETER(p);
5090 UNUSED_PARAMETER(iOff);
5091 #endif
5092 return SQLITE_OK;
5096 ** Here ends the implementation of all sqlite3_file methods.
5098 ********************** End sqlite3_file Methods *******************************
5099 ******************************************************************************/
5102 ** This division contains definitions of sqlite3_io_methods objects that
5103 ** implement various file locking strategies. It also contains definitions
5104 ** of "finder" functions. A finder-function is used to locate the appropriate
5105 ** sqlite3_io_methods object for a particular database file. The pAppData
5106 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
5107 ** the correct finder-function for that VFS.
5109 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
5110 ** object. The only interesting finder-function is autolockIoFinder, which
5111 ** looks at the filesystem type and tries to guess the best locking
5112 ** strategy from that.
5114 ** For finder-function F, two objects are created:
5116 ** (1) The real finder-function named "FImpt()".
5118 ** (2) A constant pointer to this function named just "F".
5121 ** A pointer to the F pointer is used as the pAppData value for VFS
5122 ** objects. We have to do this instead of letting pAppData point
5123 ** directly at the finder-function since C90 rules prevent a void*
5124 ** from be cast into a function pointer.
5127 ** Each instance of this macro generates two objects:
5129 ** * A constant sqlite3_io_methods object call METHOD that has locking
5130 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
5132 ** * An I/O method finder function called FINDER that returns a pointer
5133 ** to the METHOD object in the previous bullet.
5135 #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \
5136 static const sqlite3_io_methods METHOD = { \
5137 VERSION, /* iVersion */ \
5138 CLOSE, /* xClose */ \
5139 unixRead, /* xRead */ \
5140 unixWrite, /* xWrite */ \
5141 unixTruncate, /* xTruncate */ \
5142 unixSync, /* xSync */ \
5143 unixFileSize, /* xFileSize */ \
5144 LOCK, /* xLock */ \
5145 UNLOCK, /* xUnlock */ \
5146 CKLOCK, /* xCheckReservedLock */ \
5147 unixFileControl, /* xFileControl */ \
5148 unixSectorSize, /* xSectorSize */ \
5149 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
5150 SHMMAP, /* xShmMap */ \
5151 unixShmLock, /* xShmLock */ \
5152 unixShmBarrier, /* xShmBarrier */ \
5153 unixShmUnmap, /* xShmUnmap */ \
5154 unixFetch, /* xFetch */ \
5155 unixUnfetch, /* xUnfetch */ \
5156 }; \
5157 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
5158 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
5159 return &METHOD; \
5161 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
5162 = FINDER##Impl;
5165 ** Here are all of the sqlite3_io_methods objects for each of the
5166 ** locking strategies. Functions that return pointers to these methods
5167 ** are also created.
5169 IOMETHODS(
5170 posixIoFinder, /* Finder function name */
5171 posixIoMethods, /* sqlite3_io_methods object name */
5172 3, /* shared memory and mmap are enabled */
5173 unixClose, /* xClose method */
5174 unixLock, /* xLock method */
5175 unixUnlock, /* xUnlock method */
5176 unixCheckReservedLock, /* xCheckReservedLock method */
5177 unixShmMap /* xShmMap method */
5179 IOMETHODS(
5180 nolockIoFinder, /* Finder function name */
5181 nolockIoMethods, /* sqlite3_io_methods object name */
5182 3, /* shared memory is disabled */
5183 nolockClose, /* xClose method */
5184 nolockLock, /* xLock method */
5185 nolockUnlock, /* xUnlock method */
5186 nolockCheckReservedLock, /* xCheckReservedLock method */
5187 0 /* xShmMap method */
5189 IOMETHODS(
5190 dotlockIoFinder, /* Finder function name */
5191 dotlockIoMethods, /* sqlite3_io_methods object name */
5192 1, /* shared memory is disabled */
5193 dotlockClose, /* xClose method */
5194 dotlockLock, /* xLock method */
5195 dotlockUnlock, /* xUnlock method */
5196 dotlockCheckReservedLock, /* xCheckReservedLock method */
5197 0 /* xShmMap method */
5200 #if SQLITE_ENABLE_LOCKING_STYLE
5201 IOMETHODS(
5202 flockIoFinder, /* Finder function name */
5203 flockIoMethods, /* sqlite3_io_methods object name */
5204 1, /* shared memory is disabled */
5205 flockClose, /* xClose method */
5206 flockLock, /* xLock method */
5207 flockUnlock, /* xUnlock method */
5208 flockCheckReservedLock, /* xCheckReservedLock method */
5209 0 /* xShmMap method */
5211 #endif
5213 #if OS_VXWORKS
5214 IOMETHODS(
5215 semIoFinder, /* Finder function name */
5216 semIoMethods, /* sqlite3_io_methods object name */
5217 1, /* shared memory is disabled */
5218 semXClose, /* xClose method */
5219 semXLock, /* xLock method */
5220 semXUnlock, /* xUnlock method */
5221 semXCheckReservedLock, /* xCheckReservedLock method */
5222 0 /* xShmMap method */
5224 #endif
5226 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5227 IOMETHODS(
5228 afpIoFinder, /* Finder function name */
5229 afpIoMethods, /* sqlite3_io_methods object name */
5230 1, /* shared memory is disabled */
5231 afpClose, /* xClose method */
5232 afpLock, /* xLock method */
5233 afpUnlock, /* xUnlock method */
5234 afpCheckReservedLock, /* xCheckReservedLock method */
5235 0 /* xShmMap method */
5237 #endif
5240 ** The proxy locking method is a "super-method" in the sense that it
5241 ** opens secondary file descriptors for the conch and lock files and
5242 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
5243 ** secondary files. For this reason, the division that implements
5244 ** proxy locking is located much further down in the file. But we need
5245 ** to go ahead and define the sqlite3_io_methods and finder function
5246 ** for proxy locking here. So we forward declare the I/O methods.
5248 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5249 static int proxyClose(sqlite3_file*);
5250 static int proxyLock(sqlite3_file*, int);
5251 static int proxyUnlock(sqlite3_file*, int);
5252 static int proxyCheckReservedLock(sqlite3_file*, int*);
5253 IOMETHODS(
5254 proxyIoFinder, /* Finder function name */
5255 proxyIoMethods, /* sqlite3_io_methods object name */
5256 1, /* shared memory is disabled */
5257 proxyClose, /* xClose method */
5258 proxyLock, /* xLock method */
5259 proxyUnlock, /* xUnlock method */
5260 proxyCheckReservedLock, /* xCheckReservedLock method */
5261 0 /* xShmMap method */
5263 #endif
5265 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
5266 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5267 IOMETHODS(
5268 nfsIoFinder, /* Finder function name */
5269 nfsIoMethods, /* sqlite3_io_methods object name */
5270 1, /* shared memory is disabled */
5271 unixClose, /* xClose method */
5272 unixLock, /* xLock method */
5273 nfsUnlock, /* xUnlock method */
5274 unixCheckReservedLock, /* xCheckReservedLock method */
5275 0 /* xShmMap method */
5277 #endif
5279 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5281 ** This "finder" function attempts to determine the best locking strategy
5282 ** for the database file "filePath". It then returns the sqlite3_io_methods
5283 ** object that implements that strategy.
5285 ** This is for MacOSX only.
5287 static const sqlite3_io_methods *autolockIoFinderImpl(
5288 const char *filePath, /* name of the database file */
5289 unixFile *pNew /* open file object for the database file */
5291 static const struct Mapping {
5292 const char *zFilesystem; /* Filesystem type name */
5293 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
5294 } aMap[] = {
5295 { "hfs", &posixIoMethods },
5296 { "ufs", &posixIoMethods },
5297 { "afpfs", &afpIoMethods },
5298 { "smbfs", &afpIoMethods },
5299 { "webdav", &nolockIoMethods },
5300 { 0, 0 }
5302 int i;
5303 struct statfs fsInfo;
5304 struct flock lockInfo;
5306 if( !filePath ){
5307 /* If filePath==NULL that means we are dealing with a transient file
5308 ** that does not need to be locked. */
5309 return &nolockIoMethods;
5311 if( statfs(filePath, &fsInfo) != -1 ){
5312 if( fsInfo.f_flags & MNT_RDONLY ){
5313 return &nolockIoMethods;
5315 for(i=0; aMap[i].zFilesystem; i++){
5316 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
5317 return aMap[i].pMethods;
5322 /* Default case. Handles, amongst others, "nfs".
5323 ** Test byte-range lock using fcntl(). If the call succeeds,
5324 ** assume that the file-system supports POSIX style locks.
5326 lockInfo.l_len = 1;
5327 lockInfo.l_start = 0;
5328 lockInfo.l_whence = SEEK_SET;
5329 lockInfo.l_type = F_RDLCK;
5330 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5331 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
5332 return &nfsIoMethods;
5333 } else {
5334 return &posixIoMethods;
5336 }else{
5337 return &dotlockIoMethods;
5340 static const sqlite3_io_methods
5341 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
5343 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
5345 #if OS_VXWORKS
5347 ** This "finder" function for VxWorks checks to see if posix advisory
5348 ** locking works. If it does, then that is what is used. If it does not
5349 ** work, then fallback to named semaphore locking.
5351 static const sqlite3_io_methods *vxworksIoFinderImpl(
5352 const char *filePath, /* name of the database file */
5353 unixFile *pNew /* the open file object */
5355 struct flock lockInfo;
5357 if( !filePath ){
5358 /* If filePath==NULL that means we are dealing with a transient file
5359 ** that does not need to be locked. */
5360 return &nolockIoMethods;
5363 /* Test if fcntl() is supported and use POSIX style locks.
5364 ** Otherwise fall back to the named semaphore method.
5366 lockInfo.l_len = 1;
5367 lockInfo.l_start = 0;
5368 lockInfo.l_whence = SEEK_SET;
5369 lockInfo.l_type = F_RDLCK;
5370 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5371 return &posixIoMethods;
5372 }else{
5373 return &semIoMethods;
5376 static const sqlite3_io_methods
5377 *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
5379 #endif /* OS_VXWORKS */
5382 ** An abstract type for a pointer to an IO method finder function:
5384 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
5387 /****************************************************************************
5388 **************************** sqlite3_vfs methods ****************************
5390 ** This division contains the implementation of methods on the
5391 ** sqlite3_vfs object.
5395 ** Initialize the contents of the unixFile structure pointed to by pId.
5397 static int fillInUnixFile(
5398 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5399 int h, /* Open file descriptor of file being opened */
5400 sqlite3_file *pId, /* Write to the unixFile structure here */
5401 const char *zFilename, /* Name of the file being opened */
5402 int ctrlFlags /* Zero or more UNIXFILE_* values */
5404 const sqlite3_io_methods *pLockingStyle;
5405 unixFile *pNew = (unixFile *)pId;
5406 int rc = SQLITE_OK;
5408 assert( pNew->pInode==NULL );
5410 /* No locking occurs in temporary files */
5411 assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
5413 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
5414 pNew->h = h;
5415 pNew->pVfs = pVfs;
5416 pNew->zPath = zFilename;
5417 pNew->ctrlFlags = (u8)ctrlFlags;
5418 #if SQLITE_MAX_MMAP_SIZE>0
5419 pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
5420 #endif
5421 if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
5422 "psow", SQLITE_POWERSAFE_OVERWRITE) ){
5423 pNew->ctrlFlags |= UNIXFILE_PSOW;
5425 if( strcmp(pVfs->zName,"unix-excl")==0 ){
5426 pNew->ctrlFlags |= UNIXFILE_EXCL;
5429 #if OS_VXWORKS
5430 pNew->pId = vxworksFindFileId(zFilename);
5431 if( pNew->pId==0 ){
5432 ctrlFlags |= UNIXFILE_NOLOCK;
5433 rc = SQLITE_NOMEM_BKPT;
5435 #endif
5437 if( ctrlFlags & UNIXFILE_NOLOCK ){
5438 pLockingStyle = &nolockIoMethods;
5439 }else{
5440 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
5441 #if SQLITE_ENABLE_LOCKING_STYLE
5442 /* Cache zFilename in the locking context (AFP and dotlock override) for
5443 ** proxyLock activation is possible (remote proxy is based on db name)
5444 ** zFilename remains valid until file is closed, to support */
5445 pNew->lockingContext = (void*)zFilename;
5446 #endif
5449 if( pLockingStyle == &posixIoMethods
5450 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5451 || pLockingStyle == &nfsIoMethods
5452 #endif
5454 unixEnterMutex();
5455 rc = findInodeInfo(pNew, &pNew->pInode);
5456 if( rc!=SQLITE_OK ){
5457 /* If an error occurred in findInodeInfo(), close the file descriptor
5458 ** immediately, before releasing the mutex. findInodeInfo() may fail
5459 ** in two scenarios:
5461 ** (a) A call to fstat() failed.
5462 ** (b) A malloc failed.
5464 ** Scenario (b) may only occur if the process is holding no other
5465 ** file descriptors open on the same file. If there were other file
5466 ** descriptors on this file, then no malloc would be required by
5467 ** findInodeInfo(). If this is the case, it is quite safe to close
5468 ** handle h - as it is guaranteed that no posix locks will be released
5469 ** by doing so.
5471 ** If scenario (a) caused the error then things are not so safe. The
5472 ** implicit assumption here is that if fstat() fails, things are in
5473 ** such bad shape that dropping a lock or two doesn't matter much.
5475 robust_close(pNew, h, __LINE__);
5476 h = -1;
5478 unixLeaveMutex();
5481 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5482 else if( pLockingStyle == &afpIoMethods ){
5483 /* AFP locking uses the file path so it needs to be included in
5484 ** the afpLockingContext.
5486 afpLockingContext *pCtx;
5487 pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
5488 if( pCtx==0 ){
5489 rc = SQLITE_NOMEM_BKPT;
5490 }else{
5491 /* NB: zFilename exists and remains valid until the file is closed
5492 ** according to requirement F11141. So we do not need to make a
5493 ** copy of the filename. */
5494 pCtx->dbPath = zFilename;
5495 pCtx->reserved = 0;
5496 srandomdev();
5497 unixEnterMutex();
5498 rc = findInodeInfo(pNew, &pNew->pInode);
5499 if( rc!=SQLITE_OK ){
5500 sqlite3_free(pNew->lockingContext);
5501 robust_close(pNew, h, __LINE__);
5502 h = -1;
5504 unixLeaveMutex();
5507 #endif
5509 else if( pLockingStyle == &dotlockIoMethods ){
5510 /* Dotfile locking uses the file path so it needs to be included in
5511 ** the dotlockLockingContext
5513 char *zLockFile;
5514 int nFilename;
5515 assert( zFilename!=0 );
5516 nFilename = (int)strlen(zFilename) + 6;
5517 zLockFile = (char *)sqlite3_malloc64(nFilename);
5518 if( zLockFile==0 ){
5519 rc = SQLITE_NOMEM_BKPT;
5520 }else{
5521 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
5523 pNew->lockingContext = zLockFile;
5526 #if OS_VXWORKS
5527 else if( pLockingStyle == &semIoMethods ){
5528 /* Named semaphore locking uses the file path so it needs to be
5529 ** included in the semLockingContext
5531 unixEnterMutex();
5532 rc = findInodeInfo(pNew, &pNew->pInode);
5533 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
5534 char *zSemName = pNew->pInode->aSemName;
5535 int n;
5536 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
5537 pNew->pId->zCanonicalName);
5538 for( n=1; zSemName[n]; n++ )
5539 if( zSemName[n]=='/' ) zSemName[n] = '_';
5540 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
5541 if( pNew->pInode->pSem == SEM_FAILED ){
5542 rc = SQLITE_NOMEM_BKPT;
5543 pNew->pInode->aSemName[0] = '\0';
5546 unixLeaveMutex();
5548 #endif
5550 storeLastErrno(pNew, 0);
5551 #if OS_VXWORKS
5552 if( rc!=SQLITE_OK ){
5553 if( h>=0 ) robust_close(pNew, h, __LINE__);
5554 h = -1;
5555 osUnlink(zFilename);
5556 pNew->ctrlFlags |= UNIXFILE_DELETE;
5558 #endif
5559 if( rc!=SQLITE_OK ){
5560 if( h>=0 ) robust_close(pNew, h, __LINE__);
5561 }else{
5562 pNew->pMethod = pLockingStyle;
5563 OpenCounter(+1);
5564 verifyDbFile(pNew);
5566 return rc;
5570 ** Return the name of a directory in which to put temporary files.
5571 ** If no suitable temporary file directory can be found, return NULL.
5573 static const char *unixTempFileDir(void){
5574 static const char *azDirs[] = {
5577 "/var/tmp",
5578 "/usr/tmp",
5579 "/tmp",
5582 unsigned int i = 0;
5583 struct stat buf;
5584 const char *zDir = sqlite3_temp_directory;
5586 if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
5587 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
5588 while(1){
5589 if( zDir!=0
5590 && osStat(zDir, &buf)==0
5591 && S_ISDIR(buf.st_mode)
5592 && osAccess(zDir, 03)==0
5594 return zDir;
5596 if( i>=sizeof(azDirs)/sizeof(azDirs[0]) ) break;
5597 zDir = azDirs[i++];
5599 return 0;
5603 ** Create a temporary file name in zBuf. zBuf must be allocated
5604 ** by the calling process and must be big enough to hold at least
5605 ** pVfs->mxPathname bytes.
5607 static int unixGetTempname(int nBuf, char *zBuf){
5608 const char *zDir;
5609 int iLimit = 0;
5611 /* It's odd to simulate an io-error here, but really this is just
5612 ** using the io-error infrastructure to test that SQLite handles this
5613 ** function failing.
5615 zBuf[0] = 0;
5616 SimulateIOError( return SQLITE_IOERR );
5618 zDir = unixTempFileDir();
5619 if( zDir==0 ) return SQLITE_IOERR_GETTEMPPATH;
5621 u64 r;
5622 sqlite3_randomness(sizeof(r), &r);
5623 assert( nBuf>2 );
5624 zBuf[nBuf-2] = 0;
5625 sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
5626 zDir, r, 0);
5627 if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR;
5628 }while( osAccess(zBuf,0)==0 );
5629 return SQLITE_OK;
5632 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5634 ** Routine to transform a unixFile into a proxy-locking unixFile.
5635 ** Implementation in the proxy-lock division, but used by unixOpen()
5636 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
5638 static int proxyTransformUnixFile(unixFile*, const char*);
5639 #endif
5642 ** Search for an unused file descriptor that was opened on the database
5643 ** file (not a journal or master-journal file) identified by pathname
5644 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
5645 ** argument to this function.
5647 ** Such a file descriptor may exist if a database connection was closed
5648 ** but the associated file descriptor could not be closed because some
5649 ** other file descriptor open on the same file is holding a file-lock.
5650 ** Refer to comments in the unixClose() function and the lengthy comment
5651 ** describing "Posix Advisory Locking" at the start of this file for
5652 ** further details. Also, ticket #4018.
5654 ** If a suitable file descriptor is found, then it is returned. If no
5655 ** such file descriptor is located, -1 is returned.
5657 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
5658 UnixUnusedFd *pUnused = 0;
5660 /* Do not search for an unused file descriptor on vxworks. Not because
5661 ** vxworks would not benefit from the change (it might, we're not sure),
5662 ** but because no way to test it is currently available. It is better
5663 ** not to risk breaking vxworks support for the sake of such an obscure
5664 ** feature. */
5665 #if !OS_VXWORKS
5666 struct stat sStat; /* Results of stat() call */
5668 unixEnterMutex();
5670 /* A stat() call may fail for various reasons. If this happens, it is
5671 ** almost certain that an open() call on the same path will also fail.
5672 ** For this reason, if an error occurs in the stat() call here, it is
5673 ** ignored and -1 is returned. The caller will try to open a new file
5674 ** descriptor on the same path, fail, and return an error to SQLite.
5676 ** Even if a subsequent open() call does succeed, the consequences of
5677 ** not searching for a reusable file descriptor are not dire. */
5678 if( nUnusedFd>0 && 0==osStat(zPath, &sStat) ){
5679 unixInodeInfo *pInode;
5681 pInode = inodeList;
5682 while( pInode && (pInode->fileId.dev!=sStat.st_dev
5683 || pInode->fileId.ino!=(u64)sStat.st_ino) ){
5684 pInode = pInode->pNext;
5686 if( pInode ){
5687 UnixUnusedFd **pp;
5688 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
5689 pUnused = *pp;
5690 if( pUnused ){
5691 nUnusedFd--;
5692 *pp = pUnused->pNext;
5696 unixLeaveMutex();
5697 #endif /* if !OS_VXWORKS */
5698 return pUnused;
5702 ** Find the mode, uid and gid of file zFile.
5704 static int getFileMode(
5705 const char *zFile, /* File name */
5706 mode_t *pMode, /* OUT: Permissions of zFile */
5707 uid_t *pUid, /* OUT: uid of zFile. */
5708 gid_t *pGid /* OUT: gid of zFile. */
5710 struct stat sStat; /* Output of stat() on database file */
5711 int rc = SQLITE_OK;
5712 if( 0==osStat(zFile, &sStat) ){
5713 *pMode = sStat.st_mode & 0777;
5714 *pUid = sStat.st_uid;
5715 *pGid = sStat.st_gid;
5716 }else{
5717 rc = SQLITE_IOERR_FSTAT;
5719 return rc;
5723 ** This function is called by unixOpen() to determine the unix permissions
5724 ** to create new files with. If no error occurs, then SQLITE_OK is returned
5725 ** and a value suitable for passing as the third argument to open(2) is
5726 ** written to *pMode. If an IO error occurs, an SQLite error code is
5727 ** returned and the value of *pMode is not modified.
5729 ** In most cases, this routine sets *pMode to 0, which will become
5730 ** an indication to robust_open() to create the file using
5731 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
5732 ** But if the file being opened is a WAL or regular journal file, then
5733 ** this function queries the file-system for the permissions on the
5734 ** corresponding database file and sets *pMode to this value. Whenever
5735 ** possible, WAL and journal files are created using the same permissions
5736 ** as the associated database file.
5738 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
5739 ** original filename is unavailable. But 8_3_NAMES is only used for
5740 ** FAT filesystems and permissions do not matter there, so just use
5741 ** the default permissions.
5743 static int findCreateFileMode(
5744 const char *zPath, /* Path of file (possibly) being created */
5745 int flags, /* Flags passed as 4th argument to xOpen() */
5746 mode_t *pMode, /* OUT: Permissions to open file with */
5747 uid_t *pUid, /* OUT: uid to set on the file */
5748 gid_t *pGid /* OUT: gid to set on the file */
5750 int rc = SQLITE_OK; /* Return Code */
5751 *pMode = 0;
5752 *pUid = 0;
5753 *pGid = 0;
5754 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
5755 char zDb[MAX_PATHNAME+1]; /* Database file path */
5756 int nDb; /* Number of valid bytes in zDb */
5758 /* zPath is a path to a WAL or journal file. The following block derives
5759 ** the path to the associated database file from zPath. This block handles
5760 ** the following naming conventions:
5762 ** "<path to db>-journal"
5763 ** "<path to db>-wal"
5764 ** "<path to db>-journalNN"
5765 ** "<path to db>-walNN"
5767 ** where NN is a decimal number. The NN naming schemes are
5768 ** used by the test_multiplex.c module.
5770 nDb = sqlite3Strlen30(zPath) - 1;
5771 while( zPath[nDb]!='-' ){
5772 /* In normal operation, the journal file name will always contain
5773 ** a '-' character. However in 8+3 filename mode, or if a corrupt
5774 ** rollback journal specifies a master journal with a goofy name, then
5775 ** the '-' might be missing. */
5776 if( nDb==0 || zPath[nDb]=='.' ) return SQLITE_OK;
5777 nDb--;
5779 memcpy(zDb, zPath, nDb);
5780 zDb[nDb] = '\0';
5782 rc = getFileMode(zDb, pMode, pUid, pGid);
5783 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
5784 *pMode = 0600;
5785 }else if( flags & SQLITE_OPEN_URI ){
5786 /* If this is a main database file and the file was opened using a URI
5787 ** filename, check for the "modeof" parameter. If present, interpret
5788 ** its value as a filename and try to copy the mode, uid and gid from
5789 ** that file. */
5790 const char *z = sqlite3_uri_parameter(zPath, "modeof");
5791 if( z ){
5792 rc = getFileMode(z, pMode, pUid, pGid);
5795 return rc;
5799 ** Open the file zPath.
5801 ** Previously, the SQLite OS layer used three functions in place of this
5802 ** one:
5804 ** sqlite3OsOpenReadWrite();
5805 ** sqlite3OsOpenReadOnly();
5806 ** sqlite3OsOpenExclusive();
5808 ** These calls correspond to the following combinations of flags:
5810 ** ReadWrite() -> (READWRITE | CREATE)
5811 ** ReadOnly() -> (READONLY)
5812 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
5814 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
5815 ** true, the file was configured to be automatically deleted when the
5816 ** file handle closed. To achieve the same effect using this new
5817 ** interface, add the DELETEONCLOSE flag to those specified above for
5818 ** OpenExclusive().
5820 static int unixOpen(
5821 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
5822 const char *zPath, /* Pathname of file to be opened */
5823 sqlite3_file *pFile, /* The file descriptor to be filled in */
5824 int flags, /* Input flags to control the opening */
5825 int *pOutFlags /* Output flags returned to SQLite core */
5827 unixFile *p = (unixFile *)pFile;
5828 int fd = -1; /* File descriptor returned by open() */
5829 int openFlags = 0; /* Flags to pass to open() */
5830 int eType = flags&0xFFFFFF00; /* Type of file to open */
5831 int noLock; /* True to omit locking primitives */
5832 int rc = SQLITE_OK; /* Function Return Code */
5833 int ctrlFlags = 0; /* UNIXFILE_* flags */
5835 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
5836 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
5837 int isCreate = (flags & SQLITE_OPEN_CREATE);
5838 int isReadonly = (flags & SQLITE_OPEN_READONLY);
5839 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
5840 #if SQLITE_ENABLE_LOCKING_STYLE
5841 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
5842 #endif
5843 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5844 struct statfs fsInfo;
5845 #endif
5847 /* If creating a master or main-file journal, this function will open
5848 ** a file-descriptor on the directory too. The first time unixSync()
5849 ** is called the directory file descriptor will be fsync()ed and close()d.
5851 int isNewJrnl = (isCreate && (
5852 eType==SQLITE_OPEN_MASTER_JOURNAL
5853 || eType==SQLITE_OPEN_MAIN_JOURNAL
5854 || eType==SQLITE_OPEN_WAL
5857 /* If argument zPath is a NULL pointer, this function is required to open
5858 ** a temporary file. Use this buffer to store the file name in.
5860 char zTmpname[MAX_PATHNAME+2];
5861 const char *zName = zPath;
5863 /* Check the following statements are true:
5865 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
5866 ** (b) if CREATE is set, then READWRITE must also be set, and
5867 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
5868 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
5870 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
5871 assert(isCreate==0 || isReadWrite);
5872 assert(isExclusive==0 || isCreate);
5873 assert(isDelete==0 || isCreate);
5875 /* The main DB, main journal, WAL file and master journal are never
5876 ** automatically deleted. Nor are they ever temporary files. */
5877 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5878 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5879 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5880 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5882 /* Assert that the upper layer has set one of the "file-type" flags. */
5883 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
5884 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5885 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
5886 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5889 /* Detect a pid change and reset the PRNG. There is a race condition
5890 ** here such that two or more threads all trying to open databases at
5891 ** the same instant might all reset the PRNG. But multiple resets
5892 ** are harmless.
5894 if( randomnessPid!=osGetpid(0) ){
5895 randomnessPid = osGetpid(0);
5896 sqlite3_randomness(0,0);
5898 memset(p, 0, sizeof(unixFile));
5900 if( eType==SQLITE_OPEN_MAIN_DB ){
5901 UnixUnusedFd *pUnused;
5902 pUnused = findReusableFd(zName, flags);
5903 if( pUnused ){
5904 fd = pUnused->fd;
5905 }else{
5906 pUnused = sqlite3_malloc64(sizeof(*pUnused));
5907 if( !pUnused ){
5908 return SQLITE_NOMEM_BKPT;
5911 p->pPreallocatedUnused = pUnused;
5913 /* Database filenames are double-zero terminated if they are not
5914 ** URIs with parameters. Hence, they can always be passed into
5915 ** sqlite3_uri_parameter(). */
5916 assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
5918 }else if( !zName ){
5919 /* If zName is NULL, the upper layer is requesting a temp file. */
5920 assert(isDelete && !isNewJrnl);
5921 rc = unixGetTempname(pVfs->mxPathname, zTmpname);
5922 if( rc!=SQLITE_OK ){
5923 return rc;
5925 zName = zTmpname;
5927 /* Generated temporary filenames are always double-zero terminated
5928 ** for use by sqlite3_uri_parameter(). */
5929 assert( zName[strlen(zName)+1]==0 );
5932 /* Determine the value of the flags parameter passed to POSIX function
5933 ** open(). These must be calculated even if open() is not called, as
5934 ** they may be stored as part of the file handle and used by the
5935 ** 'conch file' locking functions later on. */
5936 if( isReadonly ) openFlags |= O_RDONLY;
5937 if( isReadWrite ) openFlags |= O_RDWR;
5938 if( isCreate ) openFlags |= O_CREAT;
5939 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5940 openFlags |= (O_LARGEFILE|O_BINARY);
5942 if( fd<0 ){
5943 mode_t openMode; /* Permissions to create file with */
5944 uid_t uid; /* Userid for the file */
5945 gid_t gid; /* Groupid for the file */
5946 rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
5947 if( rc!=SQLITE_OK ){
5948 assert( !p->pPreallocatedUnused );
5949 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5950 return rc;
5952 fd = robust_open(zName, openFlags, openMode);
5953 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
5954 assert( !isExclusive || (openFlags & O_CREAT)!=0 );
5955 if( fd<0 ){
5956 if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){
5957 /* If unable to create a journal because the directory is not
5958 ** writable, change the error code to indicate that. */
5959 rc = SQLITE_READONLY_DIRECTORY;
5960 }else if( errno!=EISDIR && isReadWrite ){
5961 /* Failed to open the file for read/write access. Try read-only. */
5962 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5963 openFlags &= ~(O_RDWR|O_CREAT);
5964 flags |= SQLITE_OPEN_READONLY;
5965 openFlags |= O_RDONLY;
5966 isReadonly = 1;
5967 fd = robust_open(zName, openFlags, openMode);
5970 if( fd<0 ){
5971 int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5972 if( rc==SQLITE_OK ) rc = rc2;
5973 goto open_finished;
5976 /* If this process is running as root and if creating a new rollback
5977 ** journal or WAL file, set the ownership of the journal or WAL to be
5978 ** the same as the original database.
5980 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
5981 robustFchown(fd, uid, gid);
5984 assert( fd>=0 );
5985 if( pOutFlags ){
5986 *pOutFlags = flags;
5989 if( p->pPreallocatedUnused ){
5990 p->pPreallocatedUnused->fd = fd;
5991 p->pPreallocatedUnused->flags = flags;
5994 if( isDelete ){
5995 #if OS_VXWORKS
5996 zPath = zName;
5997 #elif defined(SQLITE_UNLINK_AFTER_CLOSE)
5998 zPath = sqlite3_mprintf("%s", zName);
5999 if( zPath==0 ){
6000 robust_close(p, fd, __LINE__);
6001 return SQLITE_NOMEM_BKPT;
6003 #else
6004 osUnlink(zName);
6005 #endif
6007 #if SQLITE_ENABLE_LOCKING_STYLE
6008 else{
6009 p->openFlags = openFlags;
6011 #endif
6013 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
6014 if( fstatfs(fd, &fsInfo) == -1 ){
6015 storeLastErrno(p, errno);
6016 robust_close(p, fd, __LINE__);
6017 return SQLITE_IOERR_ACCESS;
6019 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
6020 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
6022 if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
6023 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
6025 #endif
6027 /* Set up appropriate ctrlFlags */
6028 if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
6029 if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
6030 noLock = eType!=SQLITE_OPEN_MAIN_DB;
6031 if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
6032 if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC;
6033 if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
6035 #if SQLITE_ENABLE_LOCKING_STYLE
6036 #if SQLITE_PREFER_PROXY_LOCKING
6037 isAutoProxy = 1;
6038 #endif
6039 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
6040 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
6041 int useProxy = 0;
6043 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
6044 ** never use proxy, NULL means use proxy for non-local files only. */
6045 if( envforce!=NULL ){
6046 useProxy = atoi(envforce)>0;
6047 }else{
6048 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
6050 if( useProxy ){
6051 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
6052 if( rc==SQLITE_OK ){
6053 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
6054 if( rc!=SQLITE_OK ){
6055 /* Use unixClose to clean up the resources added in fillInUnixFile
6056 ** and clear all the structure's references. Specifically,
6057 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
6059 unixClose(pFile);
6060 return rc;
6063 goto open_finished;
6066 #endif
6068 assert( zPath==0 || zPath[0]=='/'
6069 || eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL
6071 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
6073 open_finished:
6074 if( rc!=SQLITE_OK ){
6075 sqlite3_free(p->pPreallocatedUnused);
6077 return rc;
6082 ** Delete the file at zPath. If the dirSync argument is true, fsync()
6083 ** the directory after deleting the file.
6085 static int unixDelete(
6086 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
6087 const char *zPath, /* Name of file to be deleted */
6088 int dirSync /* If true, fsync() directory after deleting file */
6090 int rc = SQLITE_OK;
6091 UNUSED_PARAMETER(NotUsed);
6092 SimulateIOError(return SQLITE_IOERR_DELETE);
6093 if( osUnlink(zPath)==(-1) ){
6094 if( errno==ENOENT
6095 #if OS_VXWORKS
6096 || osAccess(zPath,0)!=0
6097 #endif
6099 rc = SQLITE_IOERR_DELETE_NOENT;
6100 }else{
6101 rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
6103 return rc;
6105 #ifndef SQLITE_DISABLE_DIRSYNC
6106 if( (dirSync & 1)!=0 ){
6107 int fd;
6108 rc = osOpenDirectory(zPath, &fd);
6109 if( rc==SQLITE_OK ){
6110 if( full_fsync(fd,0,0) ){
6111 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
6113 robust_close(0, fd, __LINE__);
6114 }else{
6115 assert( rc==SQLITE_CANTOPEN );
6116 rc = SQLITE_OK;
6119 #endif
6120 return rc;
6124 ** Test the existence of or access permissions of file zPath. The
6125 ** test performed depends on the value of flags:
6127 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
6128 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
6129 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
6131 ** Otherwise return 0.
6133 static int unixAccess(
6134 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
6135 const char *zPath, /* Path of the file to examine */
6136 int flags, /* What do we want to learn about the zPath file? */
6137 int *pResOut /* Write result boolean here */
6139 UNUSED_PARAMETER(NotUsed);
6140 SimulateIOError( return SQLITE_IOERR_ACCESS; );
6141 assert( pResOut!=0 );
6143 /* The spec says there are three possible values for flags. But only
6144 ** two of them are actually used */
6145 assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
6147 if( flags==SQLITE_ACCESS_EXISTS ){
6148 struct stat buf;
6149 *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0);
6150 }else{
6151 *pResOut = osAccess(zPath, W_OK|R_OK)==0;
6153 return SQLITE_OK;
6159 static int mkFullPathname(
6160 const char *zPath, /* Input path */
6161 char *zOut, /* Output buffer */
6162 int nOut /* Allocated size of buffer zOut */
6164 int nPath = sqlite3Strlen30(zPath);
6165 int iOff = 0;
6166 if( zPath[0]!='/' ){
6167 if( osGetcwd(zOut, nOut-2)==0 ){
6168 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
6170 iOff = sqlite3Strlen30(zOut);
6171 zOut[iOff++] = '/';
6173 if( (iOff+nPath+1)>nOut ){
6174 /* SQLite assumes that xFullPathname() nul-terminates the output buffer
6175 ** even if it returns an error. */
6176 zOut[iOff] = '\0';
6177 return SQLITE_CANTOPEN_BKPT;
6179 sqlite3_snprintf(nOut-iOff, &zOut[iOff], "%s", zPath);
6180 return SQLITE_OK;
6184 ** Turn a relative pathname into a full pathname. The relative path
6185 ** is stored as a nul-terminated string in the buffer pointed to by
6186 ** zPath.
6188 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
6189 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
6190 ** this buffer before returning.
6192 static int unixFullPathname(
6193 sqlite3_vfs *pVfs, /* Pointer to vfs object */
6194 const char *zPath, /* Possibly relative input path */
6195 int nOut, /* Size of output buffer in bytes */
6196 char *zOut /* Output buffer */
6198 #if !defined(HAVE_READLINK) || !defined(HAVE_LSTAT)
6199 return mkFullPathname(zPath, zOut, nOut);
6200 #else
6201 int rc = SQLITE_OK;
6202 int nByte;
6203 int nLink = 1; /* Number of symbolic links followed so far */
6204 const char *zIn = zPath; /* Input path for each iteration of loop */
6205 char *zDel = 0;
6207 assert( pVfs->mxPathname==MAX_PATHNAME );
6208 UNUSED_PARAMETER(pVfs);
6210 /* It's odd to simulate an io-error here, but really this is just
6211 ** using the io-error infrastructure to test that SQLite handles this
6212 ** function failing. This function could fail if, for example, the
6213 ** current working directory has been unlinked.
6215 SimulateIOError( return SQLITE_ERROR );
6217 do {
6219 /* Call stat() on path zIn. Set bLink to true if the path is a symbolic
6220 ** link, or false otherwise. */
6221 int bLink = 0;
6222 struct stat buf;
6223 if( osLstat(zIn, &buf)!=0 ){
6224 if( errno!=ENOENT ){
6225 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
6227 }else{
6228 bLink = S_ISLNK(buf.st_mode);
6231 if( bLink ){
6232 if( zDel==0 ){
6233 zDel = sqlite3_malloc(nOut);
6234 if( zDel==0 ) rc = SQLITE_NOMEM_BKPT;
6235 }else if( ++nLink>SQLITE_MAX_SYMLINKS ){
6236 rc = SQLITE_CANTOPEN_BKPT;
6239 if( rc==SQLITE_OK ){
6240 nByte = osReadlink(zIn, zDel, nOut-1);
6241 if( nByte<0 ){
6242 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
6243 }else{
6244 if( zDel[0]!='/' ){
6245 int n;
6246 for(n = sqlite3Strlen30(zIn); n>0 && zIn[n-1]!='/'; n--);
6247 if( nByte+n+1>nOut ){
6248 rc = SQLITE_CANTOPEN_BKPT;
6249 }else{
6250 memmove(&zDel[n], zDel, nByte+1);
6251 memcpy(zDel, zIn, n);
6252 nByte += n;
6255 zDel[nByte] = '\0';
6259 zIn = zDel;
6262 assert( rc!=SQLITE_OK || zIn!=zOut || zIn[0]=='/' );
6263 if( rc==SQLITE_OK && zIn!=zOut ){
6264 rc = mkFullPathname(zIn, zOut, nOut);
6266 if( bLink==0 ) break;
6267 zIn = zOut;
6268 }while( rc==SQLITE_OK );
6270 sqlite3_free(zDel);
6271 return rc;
6272 #endif /* HAVE_READLINK && HAVE_LSTAT */
6276 #ifndef SQLITE_OMIT_LOAD_EXTENSION
6278 ** Interfaces for opening a shared library, finding entry points
6279 ** within the shared library, and closing the shared library.
6281 #include <dlfcn.h>
6282 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
6283 UNUSED_PARAMETER(NotUsed);
6284 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
6288 ** SQLite calls this function immediately after a call to unixDlSym() or
6289 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
6290 ** message is available, it is written to zBufOut. If no error message
6291 ** is available, zBufOut is left unmodified and SQLite uses a default
6292 ** error message.
6294 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
6295 const char *zErr;
6296 UNUSED_PARAMETER(NotUsed);
6297 unixEnterMutex();
6298 zErr = dlerror();
6299 if( zErr ){
6300 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
6302 unixLeaveMutex();
6304 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
6306 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
6307 ** cast into a pointer to a function. And yet the library dlsym() routine
6308 ** returns a void* which is really a pointer to a function. So how do we
6309 ** use dlsym() with -pedantic-errors?
6311 ** Variable x below is defined to be a pointer to a function taking
6312 ** parameters void* and const char* and returning a pointer to a function.
6313 ** We initialize x by assigning it a pointer to the dlsym() function.
6314 ** (That assignment requires a cast.) Then we call the function that
6315 ** x points to.
6317 ** This work-around is unlikely to work correctly on any system where
6318 ** you really cannot cast a function pointer into void*. But then, on the
6319 ** other hand, dlsym() will not work on such a system either, so we have
6320 ** not really lost anything.
6322 void (*(*x)(void*,const char*))(void);
6323 UNUSED_PARAMETER(NotUsed);
6324 x = (void(*(*)(void*,const char*))(void))dlsym;
6325 return (*x)(p, zSym);
6327 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
6328 UNUSED_PARAMETER(NotUsed);
6329 dlclose(pHandle);
6331 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
6332 #define unixDlOpen 0
6333 #define unixDlError 0
6334 #define unixDlSym 0
6335 #define unixDlClose 0
6336 #endif
6339 ** Write nBuf bytes of random data to the supplied buffer zBuf.
6341 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
6342 UNUSED_PARAMETER(NotUsed);
6343 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
6345 /* We have to initialize zBuf to prevent valgrind from reporting
6346 ** errors. The reports issued by valgrind are incorrect - we would
6347 ** prefer that the randomness be increased by making use of the
6348 ** uninitialized space in zBuf - but valgrind errors tend to worry
6349 ** some users. Rather than argue, it seems easier just to initialize
6350 ** the whole array and silence valgrind, even if that means less randomness
6351 ** in the random seed.
6353 ** When testing, initializing zBuf[] to zero is all we do. That means
6354 ** that we always use the same random number sequence. This makes the
6355 ** tests repeatable.
6357 memset(zBuf, 0, nBuf);
6358 randomnessPid = osGetpid(0);
6359 #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
6361 int fd, got;
6362 fd = robust_open("/dev/urandom", O_RDONLY, 0);
6363 if( fd<0 ){
6364 time_t t;
6365 time(&t);
6366 memcpy(zBuf, &t, sizeof(t));
6367 memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
6368 assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
6369 nBuf = sizeof(t) + sizeof(randomnessPid);
6370 }else{
6371 do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
6372 robust_close(0, fd, __LINE__);
6375 #endif
6376 return nBuf;
6381 ** Sleep for a little while. Return the amount of time slept.
6382 ** The argument is the number of microseconds we want to sleep.
6383 ** The return value is the number of microseconds of sleep actually
6384 ** requested from the underlying operating system, a number which
6385 ** might be greater than or equal to the argument, but not less
6386 ** than the argument.
6388 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
6389 #if OS_VXWORKS
6390 struct timespec sp;
6392 sp.tv_sec = microseconds / 1000000;
6393 sp.tv_nsec = (microseconds % 1000000) * 1000;
6394 nanosleep(&sp, NULL);
6395 UNUSED_PARAMETER(NotUsed);
6396 return microseconds;
6397 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
6398 usleep(microseconds);
6399 UNUSED_PARAMETER(NotUsed);
6400 return microseconds;
6401 #else
6402 int seconds = (microseconds+999999)/1000000;
6403 sleep(seconds);
6404 UNUSED_PARAMETER(NotUsed);
6405 return seconds*1000000;
6406 #endif
6410 ** The following variable, if set to a non-zero value, is interpreted as
6411 ** the number of seconds since 1970 and is used to set the result of
6412 ** sqlite3OsCurrentTime() during testing.
6414 #ifdef SQLITE_TEST
6415 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
6416 #endif
6419 ** Find the current time (in Universal Coordinated Time). Write into *piNow
6420 ** the current time and date as a Julian Day number times 86_400_000. In
6421 ** other words, write into *piNow the number of milliseconds since the Julian
6422 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
6423 ** proleptic Gregorian calendar.
6425 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
6426 ** cannot be found.
6428 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
6429 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
6430 int rc = SQLITE_OK;
6431 #if defined(NO_GETTOD)
6432 time_t t;
6433 time(&t);
6434 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
6435 #elif OS_VXWORKS
6436 struct timespec sNow;
6437 clock_gettime(CLOCK_REALTIME, &sNow);
6438 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
6439 #else
6440 struct timeval sNow;
6441 (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */
6442 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
6443 #endif
6445 #ifdef SQLITE_TEST
6446 if( sqlite3_current_time ){
6447 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
6449 #endif
6450 UNUSED_PARAMETER(NotUsed);
6451 return rc;
6454 #ifndef SQLITE_OMIT_DEPRECATED
6456 ** Find the current time (in Universal Coordinated Time). Write the
6457 ** current time and date as a Julian Day number into *prNow and
6458 ** return 0. Return 1 if the time and date cannot be found.
6460 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
6461 sqlite3_int64 i = 0;
6462 int rc;
6463 UNUSED_PARAMETER(NotUsed);
6464 rc = unixCurrentTimeInt64(0, &i);
6465 *prNow = i/86400000.0;
6466 return rc;
6468 #else
6469 # define unixCurrentTime 0
6470 #endif
6473 ** The xGetLastError() method is designed to return a better
6474 ** low-level error message when operating-system problems come up
6475 ** during SQLite operation. Only the integer return code is currently
6476 ** used.
6478 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
6479 UNUSED_PARAMETER(NotUsed);
6480 UNUSED_PARAMETER(NotUsed2);
6481 UNUSED_PARAMETER(NotUsed3);
6482 return errno;
6487 ************************ End of sqlite3_vfs methods ***************************
6488 ******************************************************************************/
6490 /******************************************************************************
6491 ************************** Begin Proxy Locking ********************************
6493 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
6494 ** other locking methods on secondary lock files. Proxy locking is a
6495 ** meta-layer over top of the primitive locking implemented above. For
6496 ** this reason, the division that implements of proxy locking is deferred
6497 ** until late in the file (here) after all of the other I/O methods have
6498 ** been defined - so that the primitive locking methods are available
6499 ** as services to help with the implementation of proxy locking.
6501 ****
6503 ** The default locking schemes in SQLite use byte-range locks on the
6504 ** database file to coordinate safe, concurrent access by multiple readers
6505 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
6506 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
6507 ** as POSIX read & write locks over fixed set of locations (via fsctl),
6508 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
6509 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
6510 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
6511 ** address in the shared range is taken for a SHARED lock, the entire
6512 ** shared range is taken for an EXCLUSIVE lock):
6514 ** PENDING_BYTE 0x40000000
6515 ** RESERVED_BYTE 0x40000001
6516 ** SHARED_RANGE 0x40000002 -> 0x40000200
6518 ** This works well on the local file system, but shows a nearly 100x
6519 ** slowdown in read performance on AFP because the AFP client disables
6520 ** the read cache when byte-range locks are present. Enabling the read
6521 ** cache exposes a cache coherency problem that is present on all OS X
6522 ** supported network file systems. NFS and AFP both observe the
6523 ** close-to-open semantics for ensuring cache coherency
6524 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
6525 ** address the requirements for concurrent database access by multiple
6526 ** readers and writers
6527 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
6529 ** To address the performance and cache coherency issues, proxy file locking
6530 ** changes the way database access is controlled by limiting access to a
6531 ** single host at a time and moving file locks off of the database file
6532 ** and onto a proxy file on the local file system.
6535 ** Using proxy locks
6536 ** -----------------
6538 ** C APIs
6540 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
6541 ** <proxy_path> | ":auto:");
6542 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
6543 ** &<proxy_path>);
6546 ** SQL pragmas
6548 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
6549 ** PRAGMA [database.]lock_proxy_file
6551 ** Specifying ":auto:" means that if there is a conch file with a matching
6552 ** host ID in it, the proxy path in the conch file will be used, otherwise
6553 ** a proxy path based on the user's temp dir
6554 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
6555 ** actual proxy file name is generated from the name and path of the
6556 ** database file. For example:
6558 ** For database path "/Users/me/foo.db"
6559 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
6561 ** Once a lock proxy is configured for a database connection, it can not
6562 ** be removed, however it may be switched to a different proxy path via
6563 ** the above APIs (assuming the conch file is not being held by another
6564 ** connection or process).
6567 ** How proxy locking works
6568 ** -----------------------
6570 ** Proxy file locking relies primarily on two new supporting files:
6572 ** * conch file to limit access to the database file to a single host
6573 ** at a time
6575 ** * proxy file to act as a proxy for the advisory locks normally
6576 ** taken on the database
6578 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
6579 ** by taking an sqlite-style shared lock on the conch file, reading the
6580 ** contents and comparing the host's unique host ID (see below) and lock
6581 ** proxy path against the values stored in the conch. The conch file is
6582 ** stored in the same directory as the database file and the file name
6583 ** is patterned after the database file name as ".<databasename>-conch".
6584 ** If the conch file does not exist, or its contents do not match the
6585 ** host ID and/or proxy path, then the lock is escalated to an exclusive
6586 ** lock and the conch file contents is updated with the host ID and proxy
6587 ** path and the lock is downgraded to a shared lock again. If the conch
6588 ** is held by another process (with a shared lock), the exclusive lock
6589 ** will fail and SQLITE_BUSY is returned.
6591 ** The proxy file - a single-byte file used for all advisory file locks
6592 ** normally taken on the database file. This allows for safe sharing
6593 ** of the database file for multiple readers and writers on the same
6594 ** host (the conch ensures that they all use the same local lock file).
6596 ** Requesting the lock proxy does not immediately take the conch, it is
6597 ** only taken when the first request to lock database file is made.
6598 ** This matches the semantics of the traditional locking behavior, where
6599 ** opening a connection to a database file does not take a lock on it.
6600 ** The shared lock and an open file descriptor are maintained until
6601 ** the connection to the database is closed.
6603 ** The proxy file and the lock file are never deleted so they only need
6604 ** to be created the first time they are used.
6606 ** Configuration options
6607 ** ---------------------
6609 ** SQLITE_PREFER_PROXY_LOCKING
6611 ** Database files accessed on non-local file systems are
6612 ** automatically configured for proxy locking, lock files are
6613 ** named automatically using the same logic as
6614 ** PRAGMA lock_proxy_file=":auto:"
6616 ** SQLITE_PROXY_DEBUG
6618 ** Enables the logging of error messages during host id file
6619 ** retrieval and creation
6621 ** LOCKPROXYDIR
6623 ** Overrides the default directory used for lock proxy files that
6624 ** are named automatically via the ":auto:" setting
6626 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
6628 ** Permissions to use when creating a directory for storing the
6629 ** lock proxy files, only used when LOCKPROXYDIR is not set.
6632 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
6633 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
6634 ** force proxy locking to be used for every database file opened, and 0
6635 ** will force automatic proxy locking to be disabled for all database
6636 ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
6637 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
6641 ** Proxy locking is only available on MacOSX
6643 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
6646 ** The proxyLockingContext has the path and file structures for the remote
6647 ** and local proxy files in it
6649 typedef struct proxyLockingContext proxyLockingContext;
6650 struct proxyLockingContext {
6651 unixFile *conchFile; /* Open conch file */
6652 char *conchFilePath; /* Name of the conch file */
6653 unixFile *lockProxy; /* Open proxy lock file */
6654 char *lockProxyPath; /* Name of the proxy lock file */
6655 char *dbPath; /* Name of the open file */
6656 int conchHeld; /* 1 if the conch is held, -1 if lockless */
6657 int nFails; /* Number of conch taking failures */
6658 void *oldLockingContext; /* Original lockingcontext to restore on close */
6659 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
6663 ** The proxy lock file path for the database at dbPath is written into lPath,
6664 ** which must point to valid, writable memory large enough for a maxLen length
6665 ** file path.
6667 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
6668 int len;
6669 int dbLen;
6670 int i;
6672 #ifdef LOCKPROXYDIR
6673 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
6674 #else
6675 # ifdef _CS_DARWIN_USER_TEMP_DIR
6677 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
6678 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
6679 lPath, errno, osGetpid(0)));
6680 return SQLITE_IOERR_LOCK;
6682 len = strlcat(lPath, "sqliteplocks", maxLen);
6684 # else
6685 len = strlcpy(lPath, "/tmp/", maxLen);
6686 # endif
6687 #endif
6689 if( lPath[len-1]!='/' ){
6690 len = strlcat(lPath, "/", maxLen);
6693 /* transform the db path to a unique cache name */
6694 dbLen = (int)strlen(dbPath);
6695 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
6696 char c = dbPath[i];
6697 lPath[i+len] = (c=='/')?'_':c;
6699 lPath[i+len]='\0';
6700 strlcat(lPath, ":auto:", maxLen);
6701 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
6702 return SQLITE_OK;
6706 ** Creates the lock file and any missing directories in lockPath
6708 static int proxyCreateLockPath(const char *lockPath){
6709 int i, len;
6710 char buf[MAXPATHLEN];
6711 int start = 0;
6713 assert(lockPath!=NULL);
6714 /* try to create all the intermediate directories */
6715 len = (int)strlen(lockPath);
6716 buf[0] = lockPath[0];
6717 for( i=1; i<len; i++ ){
6718 if( lockPath[i] == '/' && (i - start > 0) ){
6719 /* only mkdir if leaf dir != "." or "/" or ".." */
6720 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
6721 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
6722 buf[i]='\0';
6723 if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
6724 int err=errno;
6725 if( err!=EEXIST ) {
6726 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
6727 "'%s' proxy lock path=%s pid=%d\n",
6728 buf, strerror(err), lockPath, osGetpid(0)));
6729 return err;
6733 start=i+1;
6735 buf[i] = lockPath[i];
6737 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
6738 return 0;
6742 ** Create a new VFS file descriptor (stored in memory obtained from
6743 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
6745 ** The caller is responsible not only for closing the file descriptor
6746 ** but also for freeing the memory associated with the file descriptor.
6748 static int proxyCreateUnixFile(
6749 const char *path, /* path for the new unixFile */
6750 unixFile **ppFile, /* unixFile created and returned by ref */
6751 int islockfile /* if non zero missing dirs will be created */
6753 int fd = -1;
6754 unixFile *pNew;
6755 int rc = SQLITE_OK;
6756 int openFlags = O_RDWR | O_CREAT;
6757 sqlite3_vfs dummyVfs;
6758 int terrno = 0;
6759 UnixUnusedFd *pUnused = NULL;
6761 /* 1. first try to open/create the file
6762 ** 2. if that fails, and this is a lock file (not-conch), try creating
6763 ** the parent directories and then try again.
6764 ** 3. if that fails, try to open the file read-only
6765 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
6767 pUnused = findReusableFd(path, openFlags);
6768 if( pUnused ){
6769 fd = pUnused->fd;
6770 }else{
6771 pUnused = sqlite3_malloc64(sizeof(*pUnused));
6772 if( !pUnused ){
6773 return SQLITE_NOMEM_BKPT;
6776 if( fd<0 ){
6777 fd = robust_open(path, openFlags, 0);
6778 terrno = errno;
6779 if( fd<0 && errno==ENOENT && islockfile ){
6780 if( proxyCreateLockPath(path) == SQLITE_OK ){
6781 fd = robust_open(path, openFlags, 0);
6785 if( fd<0 ){
6786 openFlags = O_RDONLY;
6787 fd = robust_open(path, openFlags, 0);
6788 terrno = errno;
6790 if( fd<0 ){
6791 if( islockfile ){
6792 return SQLITE_BUSY;
6794 switch (terrno) {
6795 case EACCES:
6796 return SQLITE_PERM;
6797 case EIO:
6798 return SQLITE_IOERR_LOCK; /* even though it is the conch */
6799 default:
6800 return SQLITE_CANTOPEN_BKPT;
6804 pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
6805 if( pNew==NULL ){
6806 rc = SQLITE_NOMEM_BKPT;
6807 goto end_create_proxy;
6809 memset(pNew, 0, sizeof(unixFile));
6810 pNew->openFlags = openFlags;
6811 memset(&dummyVfs, 0, sizeof(dummyVfs));
6812 dummyVfs.pAppData = (void*)&autolockIoFinder;
6813 dummyVfs.zName = "dummy";
6814 pUnused->fd = fd;
6815 pUnused->flags = openFlags;
6816 pNew->pPreallocatedUnused = pUnused;
6818 rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
6819 if( rc==SQLITE_OK ){
6820 *ppFile = pNew;
6821 return SQLITE_OK;
6823 end_create_proxy:
6824 robust_close(pNew, fd, __LINE__);
6825 sqlite3_free(pNew);
6826 sqlite3_free(pUnused);
6827 return rc;
6830 #ifdef SQLITE_TEST
6831 /* simulate multiple hosts by creating unique hostid file paths */
6832 int sqlite3_hostid_num = 0;
6833 #endif
6835 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
6837 #ifdef HAVE_GETHOSTUUID
6838 /* Not always defined in the headers as it ought to be */
6839 extern int gethostuuid(uuid_t id, const struct timespec *wait);
6840 #endif
6842 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
6843 ** bytes of writable memory.
6845 static int proxyGetHostID(unsigned char *pHostID, int *pError){
6846 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
6847 memset(pHostID, 0, PROXY_HOSTIDLEN);
6848 #ifdef HAVE_GETHOSTUUID
6850 struct timespec timeout = {1, 0}; /* 1 sec timeout */
6851 if( gethostuuid(pHostID, &timeout) ){
6852 int err = errno;
6853 if( pError ){
6854 *pError = err;
6856 return SQLITE_IOERR;
6859 #else
6860 UNUSED_PARAMETER(pError);
6861 #endif
6862 #ifdef SQLITE_TEST
6863 /* simulate multiple hosts by creating unique hostid file paths */
6864 if( sqlite3_hostid_num != 0){
6865 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
6867 #endif
6869 return SQLITE_OK;
6872 /* The conch file contains the header, host id and lock file path
6874 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
6875 #define PROXY_HEADERLEN 1 /* conch file header length */
6876 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
6877 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
6880 ** Takes an open conch file, copies the contents to a new path and then moves
6881 ** it back. The newly created file's file descriptor is assigned to the
6882 ** conch file structure and finally the original conch file descriptor is
6883 ** closed. Returns zero if successful.
6885 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
6886 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6887 unixFile *conchFile = pCtx->conchFile;
6888 char tPath[MAXPATHLEN];
6889 char buf[PROXY_MAXCONCHLEN];
6890 char *cPath = pCtx->conchFilePath;
6891 size_t readLen = 0;
6892 size_t pathLen = 0;
6893 char errmsg[64] = "";
6894 int fd = -1;
6895 int rc = -1;
6896 UNUSED_PARAMETER(myHostID);
6898 /* create a new path by replace the trailing '-conch' with '-break' */
6899 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
6900 if( pathLen>MAXPATHLEN || pathLen<6 ||
6901 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
6902 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
6903 goto end_breaklock;
6905 /* read the conch content */
6906 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
6907 if( readLen<PROXY_PATHINDEX ){
6908 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
6909 goto end_breaklock;
6911 /* write it out to the temporary break file */
6912 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0);
6913 if( fd<0 ){
6914 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
6915 goto end_breaklock;
6917 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
6918 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
6919 goto end_breaklock;
6921 if( rename(tPath, cPath) ){
6922 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
6923 goto end_breaklock;
6925 rc = 0;
6926 fprintf(stderr, "broke stale lock on %s\n", cPath);
6927 robust_close(pFile, conchFile->h, __LINE__);
6928 conchFile->h = fd;
6929 conchFile->openFlags = O_RDWR | O_CREAT;
6931 end_breaklock:
6932 if( rc ){
6933 if( fd>=0 ){
6934 osUnlink(tPath);
6935 robust_close(pFile, fd, __LINE__);
6937 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
6939 return rc;
6942 /* Take the requested lock on the conch file and break a stale lock if the
6943 ** host id matches.
6945 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
6946 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6947 unixFile *conchFile = pCtx->conchFile;
6948 int rc = SQLITE_OK;
6949 int nTries = 0;
6950 struct timespec conchModTime;
6952 memset(&conchModTime, 0, sizeof(conchModTime));
6953 do {
6954 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6955 nTries ++;
6956 if( rc==SQLITE_BUSY ){
6957 /* If the lock failed (busy):
6958 * 1st try: get the mod time of the conch, wait 0.5s and try again.
6959 * 2nd try: fail if the mod time changed or host id is different, wait
6960 * 10 sec and try again
6961 * 3rd try: break the lock unless the mod time has changed.
6963 struct stat buf;
6964 if( osFstat(conchFile->h, &buf) ){
6965 storeLastErrno(pFile, errno);
6966 return SQLITE_IOERR_LOCK;
6969 if( nTries==1 ){
6970 conchModTime = buf.st_mtimespec;
6971 usleep(500000); /* wait 0.5 sec and try the lock again*/
6972 continue;
6975 assert( nTries>1 );
6976 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
6977 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
6978 return SQLITE_BUSY;
6981 if( nTries==2 ){
6982 char tBuf[PROXY_MAXCONCHLEN];
6983 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
6984 if( len<0 ){
6985 storeLastErrno(pFile, errno);
6986 return SQLITE_IOERR_LOCK;
6988 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
6989 /* don't break the lock if the host id doesn't match */
6990 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
6991 return SQLITE_BUSY;
6993 }else{
6994 /* don't break the lock on short read or a version mismatch */
6995 return SQLITE_BUSY;
6997 usleep(10000000); /* wait 10 sec and try the lock again */
6998 continue;
7001 assert( nTries==3 );
7002 if( 0==proxyBreakConchLock(pFile, myHostID) ){
7003 rc = SQLITE_OK;
7004 if( lockType==EXCLUSIVE_LOCK ){
7005 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
7007 if( !rc ){
7008 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
7012 } while( rc==SQLITE_BUSY && nTries<3 );
7014 return rc;
7017 /* Takes the conch by taking a shared lock and read the contents conch, if
7018 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
7019 ** lockPath means that the lockPath in the conch file will be used if the
7020 ** host IDs match, or a new lock path will be generated automatically
7021 ** and written to the conch file.
7023 static int proxyTakeConch(unixFile *pFile){
7024 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7026 if( pCtx->conchHeld!=0 ){
7027 return SQLITE_OK;
7028 }else{
7029 unixFile *conchFile = pCtx->conchFile;
7030 uuid_t myHostID;
7031 int pError = 0;
7032 char readBuf[PROXY_MAXCONCHLEN];
7033 char lockPath[MAXPATHLEN];
7034 char *tempLockPath = NULL;
7035 int rc = SQLITE_OK;
7036 int createConch = 0;
7037 int hostIdMatch = 0;
7038 int readLen = 0;
7039 int tryOldLockPath = 0;
7040 int forceNewLockPath = 0;
7042 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
7043 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
7044 osGetpid(0)));
7046 rc = proxyGetHostID(myHostID, &pError);
7047 if( (rc&0xff)==SQLITE_IOERR ){
7048 storeLastErrno(pFile, pError);
7049 goto end_takeconch;
7051 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
7052 if( rc!=SQLITE_OK ){
7053 goto end_takeconch;
7055 /* read the existing conch file */
7056 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
7057 if( readLen<0 ){
7058 /* I/O error: lastErrno set by seekAndRead */
7059 storeLastErrno(pFile, conchFile->lastErrno);
7060 rc = SQLITE_IOERR_READ;
7061 goto end_takeconch;
7062 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
7063 readBuf[0]!=(char)PROXY_CONCHVERSION ){
7064 /* a short read or version format mismatch means we need to create a new
7065 ** conch file.
7067 createConch = 1;
7069 /* if the host id matches and the lock path already exists in the conch
7070 ** we'll try to use the path there, if we can't open that path, we'll
7071 ** retry with a new auto-generated path
7073 do { /* in case we need to try again for an :auto: named lock file */
7075 if( !createConch && !forceNewLockPath ){
7076 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
7077 PROXY_HOSTIDLEN);
7078 /* if the conch has data compare the contents */
7079 if( !pCtx->lockProxyPath ){
7080 /* for auto-named local lock file, just check the host ID and we'll
7081 ** use the local lock file path that's already in there
7083 if( hostIdMatch ){
7084 size_t pathLen = (readLen - PROXY_PATHINDEX);
7086 if( pathLen>=MAXPATHLEN ){
7087 pathLen=MAXPATHLEN-1;
7089 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
7090 lockPath[pathLen] = 0;
7091 tempLockPath = lockPath;
7092 tryOldLockPath = 1;
7093 /* create a copy of the lock path if the conch is taken */
7094 goto end_takeconch;
7096 }else if( hostIdMatch
7097 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
7098 readLen-PROXY_PATHINDEX)
7100 /* conch host and lock path match */
7101 goto end_takeconch;
7105 /* if the conch isn't writable and doesn't match, we can't take it */
7106 if( (conchFile->openFlags&O_RDWR) == 0 ){
7107 rc = SQLITE_BUSY;
7108 goto end_takeconch;
7111 /* either the conch didn't match or we need to create a new one */
7112 if( !pCtx->lockProxyPath ){
7113 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
7114 tempLockPath = lockPath;
7115 /* create a copy of the lock path _only_ if the conch is taken */
7118 /* update conch with host and path (this will fail if other process
7119 ** has a shared lock already), if the host id matches, use the big
7120 ** stick.
7122 futimes(conchFile->h, NULL);
7123 if( hostIdMatch && !createConch ){
7124 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
7125 /* We are trying for an exclusive lock but another thread in this
7126 ** same process is still holding a shared lock. */
7127 rc = SQLITE_BUSY;
7128 } else {
7129 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
7131 }else{
7132 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
7134 if( rc==SQLITE_OK ){
7135 char writeBuffer[PROXY_MAXCONCHLEN];
7136 int writeSize = 0;
7138 writeBuffer[0] = (char)PROXY_CONCHVERSION;
7139 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
7140 if( pCtx->lockProxyPath!=NULL ){
7141 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
7142 MAXPATHLEN);
7143 }else{
7144 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
7146 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
7147 robust_ftruncate(conchFile->h, writeSize);
7148 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
7149 full_fsync(conchFile->h,0,0);
7150 /* If we created a new conch file (not just updated the contents of a
7151 ** valid conch file), try to match the permissions of the database
7153 if( rc==SQLITE_OK && createConch ){
7154 struct stat buf;
7155 int err = osFstat(pFile->h, &buf);
7156 if( err==0 ){
7157 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
7158 S_IROTH|S_IWOTH);
7159 /* try to match the database file R/W permissions, ignore failure */
7160 #ifndef SQLITE_PROXY_DEBUG
7161 osFchmod(conchFile->h, cmode);
7162 #else
7164 rc = osFchmod(conchFile->h, cmode);
7165 }while( rc==(-1) && errno==EINTR );
7166 if( rc!=0 ){
7167 int code = errno;
7168 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
7169 cmode, code, strerror(code));
7170 } else {
7171 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
7173 }else{
7174 int code = errno;
7175 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
7176 err, code, strerror(code));
7177 #endif
7181 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
7183 end_takeconch:
7184 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
7185 if( rc==SQLITE_OK && pFile->openFlags ){
7186 int fd;
7187 if( pFile->h>=0 ){
7188 robust_close(pFile, pFile->h, __LINE__);
7190 pFile->h = -1;
7191 fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
7192 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
7193 if( fd>=0 ){
7194 pFile->h = fd;
7195 }else{
7196 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
7197 during locking */
7200 if( rc==SQLITE_OK && !pCtx->lockProxy ){
7201 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
7202 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
7203 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
7204 /* we couldn't create the proxy lock file with the old lock file path
7205 ** so try again via auto-naming
7207 forceNewLockPath = 1;
7208 tryOldLockPath = 0;
7209 continue; /* go back to the do {} while start point, try again */
7212 if( rc==SQLITE_OK ){
7213 /* Need to make a copy of path if we extracted the value
7214 ** from the conch file or the path was allocated on the stack
7216 if( tempLockPath ){
7217 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
7218 if( !pCtx->lockProxyPath ){
7219 rc = SQLITE_NOMEM_BKPT;
7223 if( rc==SQLITE_OK ){
7224 pCtx->conchHeld = 1;
7226 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
7227 afpLockingContext *afpCtx;
7228 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
7229 afpCtx->dbPath = pCtx->lockProxyPath;
7231 } else {
7232 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7234 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
7235 rc==SQLITE_OK?"ok":"failed"));
7236 return rc;
7237 } while (1); /* in case we need to retry the :auto: lock file -
7238 ** we should never get here except via the 'continue' call. */
7243 ** If pFile holds a lock on a conch file, then release that lock.
7245 static int proxyReleaseConch(unixFile *pFile){
7246 int rc = SQLITE_OK; /* Subroutine return code */
7247 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
7248 unixFile *conchFile; /* Name of the conch file */
7250 pCtx = (proxyLockingContext *)pFile->lockingContext;
7251 conchFile = pCtx->conchFile;
7252 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
7253 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
7254 osGetpid(0)));
7255 if( pCtx->conchHeld>0 ){
7256 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7258 pCtx->conchHeld = 0;
7259 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
7260 (rc==SQLITE_OK ? "ok" : "failed")));
7261 return rc;
7265 ** Given the name of a database file, compute the name of its conch file.
7266 ** Store the conch filename in memory obtained from sqlite3_malloc64().
7267 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
7268 ** or SQLITE_NOMEM if unable to obtain memory.
7270 ** The caller is responsible for ensuring that the allocated memory
7271 ** space is eventually freed.
7273 ** *pConchPath is set to NULL if a memory allocation error occurs.
7275 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
7276 int i; /* Loop counter */
7277 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
7278 char *conchPath; /* buffer in which to construct conch name */
7280 /* Allocate space for the conch filename and initialize the name to
7281 ** the name of the original database file. */
7282 *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
7283 if( conchPath==0 ){
7284 return SQLITE_NOMEM_BKPT;
7286 memcpy(conchPath, dbPath, len+1);
7288 /* now insert a "." before the last / character */
7289 for( i=(len-1); i>=0; i-- ){
7290 if( conchPath[i]=='/' ){
7291 i++;
7292 break;
7295 conchPath[i]='.';
7296 while ( i<len ){
7297 conchPath[i+1]=dbPath[i];
7298 i++;
7301 /* append the "-conch" suffix to the file */
7302 memcpy(&conchPath[i+1], "-conch", 7);
7303 assert( (int)strlen(conchPath) == len+7 );
7305 return SQLITE_OK;
7309 /* Takes a fully configured proxy locking-style unix file and switches
7310 ** the local lock file path
7312 static int switchLockProxyPath(unixFile *pFile, const char *path) {
7313 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7314 char *oldPath = pCtx->lockProxyPath;
7315 int rc = SQLITE_OK;
7317 if( pFile->eFileLock!=NO_LOCK ){
7318 return SQLITE_BUSY;
7321 /* nothing to do if the path is NULL, :auto: or matches the existing path */
7322 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
7323 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
7324 return SQLITE_OK;
7325 }else{
7326 unixFile *lockProxy = pCtx->lockProxy;
7327 pCtx->lockProxy=NULL;
7328 pCtx->conchHeld = 0;
7329 if( lockProxy!=NULL ){
7330 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
7331 if( rc ) return rc;
7332 sqlite3_free(lockProxy);
7334 sqlite3_free(oldPath);
7335 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
7338 return rc;
7342 ** pFile is a file that has been opened by a prior xOpen call. dbPath
7343 ** is a string buffer at least MAXPATHLEN+1 characters in size.
7345 ** This routine find the filename associated with pFile and writes it
7346 ** int dbPath.
7348 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
7349 #if defined(__APPLE__)
7350 if( pFile->pMethod == &afpIoMethods ){
7351 /* afp style keeps a reference to the db path in the filePath field
7352 ** of the struct */
7353 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7354 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
7355 MAXPATHLEN);
7356 } else
7357 #endif
7358 if( pFile->pMethod == &dotlockIoMethods ){
7359 /* dot lock style uses the locking context to store the dot lock
7360 ** file path */
7361 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
7362 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
7363 }else{
7364 /* all other styles use the locking context to store the db file path */
7365 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7366 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
7368 return SQLITE_OK;
7372 ** Takes an already filled in unix file and alters it so all file locking
7373 ** will be performed on the local proxy lock file. The following fields
7374 ** are preserved in the locking context so that they can be restored and
7375 ** the unix structure properly cleaned up at close time:
7376 ** ->lockingContext
7377 ** ->pMethod
7379 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
7380 proxyLockingContext *pCtx;
7381 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
7382 char *lockPath=NULL;
7383 int rc = SQLITE_OK;
7385 if( pFile->eFileLock!=NO_LOCK ){
7386 return SQLITE_BUSY;
7388 proxyGetDbPathForUnixFile(pFile, dbPath);
7389 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
7390 lockPath=NULL;
7391 }else{
7392 lockPath=(char *)path;
7395 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
7396 (lockPath ? lockPath : ":auto:"), osGetpid(0)));
7398 pCtx = sqlite3_malloc64( sizeof(*pCtx) );
7399 if( pCtx==0 ){
7400 return SQLITE_NOMEM_BKPT;
7402 memset(pCtx, 0, sizeof(*pCtx));
7404 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
7405 if( rc==SQLITE_OK ){
7406 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
7407 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
7408 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
7409 ** (c) the file system is read-only, then enable no-locking access.
7410 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
7411 ** that openFlags will have only one of O_RDONLY or O_RDWR.
7413 struct statfs fsInfo;
7414 struct stat conchInfo;
7415 int goLockless = 0;
7417 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
7418 int err = errno;
7419 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
7420 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
7423 if( goLockless ){
7424 pCtx->conchHeld = -1; /* read only FS/ lockless */
7425 rc = SQLITE_OK;
7429 if( rc==SQLITE_OK && lockPath ){
7430 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
7433 if( rc==SQLITE_OK ){
7434 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
7435 if( pCtx->dbPath==NULL ){
7436 rc = SQLITE_NOMEM_BKPT;
7439 if( rc==SQLITE_OK ){
7440 /* all memory is allocated, proxys are created and assigned,
7441 ** switch the locking context and pMethod then return.
7443 pCtx->oldLockingContext = pFile->lockingContext;
7444 pFile->lockingContext = pCtx;
7445 pCtx->pOldMethod = pFile->pMethod;
7446 pFile->pMethod = &proxyIoMethods;
7447 }else{
7448 if( pCtx->conchFile ){
7449 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
7450 sqlite3_free(pCtx->conchFile);
7452 sqlite3DbFree(0, pCtx->lockProxyPath);
7453 sqlite3_free(pCtx->conchFilePath);
7454 sqlite3_free(pCtx);
7456 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
7457 (rc==SQLITE_OK ? "ok" : "failed")));
7458 return rc;
7463 ** This routine handles sqlite3_file_control() calls that are specific
7464 ** to proxy locking.
7466 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
7467 switch( op ){
7468 case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
7469 unixFile *pFile = (unixFile*)id;
7470 if( pFile->pMethod == &proxyIoMethods ){
7471 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7472 proxyTakeConch(pFile);
7473 if( pCtx->lockProxyPath ){
7474 *(const char **)pArg = pCtx->lockProxyPath;
7475 }else{
7476 *(const char **)pArg = ":auto: (not held)";
7478 } else {
7479 *(const char **)pArg = NULL;
7481 return SQLITE_OK;
7483 case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
7484 unixFile *pFile = (unixFile*)id;
7485 int rc = SQLITE_OK;
7486 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
7487 if( pArg==NULL || (const char *)pArg==0 ){
7488 if( isProxyStyle ){
7489 /* turn off proxy locking - not supported. If support is added for
7490 ** switching proxy locking mode off then it will need to fail if
7491 ** the journal mode is WAL mode.
7493 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
7494 }else{
7495 /* turn off proxy locking - already off - NOOP */
7496 rc = SQLITE_OK;
7498 }else{
7499 const char *proxyPath = (const char *)pArg;
7500 if( isProxyStyle ){
7501 proxyLockingContext *pCtx =
7502 (proxyLockingContext*)pFile->lockingContext;
7503 if( !strcmp(pArg, ":auto:")
7504 || (pCtx->lockProxyPath &&
7505 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
7507 rc = SQLITE_OK;
7508 }else{
7509 rc = switchLockProxyPath(pFile, proxyPath);
7511 }else{
7512 /* turn on proxy file locking */
7513 rc = proxyTransformUnixFile(pFile, proxyPath);
7516 return rc;
7518 default: {
7519 assert( 0 ); /* The call assures that only valid opcodes are sent */
7522 /*NOTREACHED*/
7523 return SQLITE_ERROR;
7527 ** Within this division (the proxying locking implementation) the procedures
7528 ** above this point are all utilities. The lock-related methods of the
7529 ** proxy-locking sqlite3_io_method object follow.
7534 ** This routine checks if there is a RESERVED lock held on the specified
7535 ** file by this or any other process. If such a lock is held, set *pResOut
7536 ** to a non-zero value otherwise *pResOut is set to zero. The return value
7537 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
7539 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
7540 unixFile *pFile = (unixFile*)id;
7541 int rc = proxyTakeConch(pFile);
7542 if( rc==SQLITE_OK ){
7543 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7544 if( pCtx->conchHeld>0 ){
7545 unixFile *proxy = pCtx->lockProxy;
7546 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
7547 }else{ /* conchHeld < 0 is lockless */
7548 pResOut=0;
7551 return rc;
7555 ** Lock the file with the lock specified by parameter eFileLock - one
7556 ** of the following:
7558 ** (1) SHARED_LOCK
7559 ** (2) RESERVED_LOCK
7560 ** (3) PENDING_LOCK
7561 ** (4) EXCLUSIVE_LOCK
7563 ** Sometimes when requesting one lock state, additional lock states
7564 ** are inserted in between. The locking might fail on one of the later
7565 ** transitions leaving the lock state different from what it started but
7566 ** still short of its goal. The following chart shows the allowed
7567 ** transitions and the inserted intermediate states:
7569 ** UNLOCKED -> SHARED
7570 ** SHARED -> RESERVED
7571 ** SHARED -> (PENDING) -> EXCLUSIVE
7572 ** RESERVED -> (PENDING) -> EXCLUSIVE
7573 ** PENDING -> EXCLUSIVE
7575 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
7576 ** routine to lower a locking level.
7578 static int proxyLock(sqlite3_file *id, int eFileLock) {
7579 unixFile *pFile = (unixFile*)id;
7580 int rc = proxyTakeConch(pFile);
7581 if( rc==SQLITE_OK ){
7582 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7583 if( pCtx->conchHeld>0 ){
7584 unixFile *proxy = pCtx->lockProxy;
7585 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
7586 pFile->eFileLock = proxy->eFileLock;
7587 }else{
7588 /* conchHeld < 0 is lockless */
7591 return rc;
7596 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
7597 ** must be either NO_LOCK or SHARED_LOCK.
7599 ** If the locking level of the file descriptor is already at or below
7600 ** the requested locking level, this routine is a no-op.
7602 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
7603 unixFile *pFile = (unixFile*)id;
7604 int rc = proxyTakeConch(pFile);
7605 if( rc==SQLITE_OK ){
7606 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7607 if( pCtx->conchHeld>0 ){
7608 unixFile *proxy = pCtx->lockProxy;
7609 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
7610 pFile->eFileLock = proxy->eFileLock;
7611 }else{
7612 /* conchHeld < 0 is lockless */
7615 return rc;
7619 ** Close a file that uses proxy locks.
7621 static int proxyClose(sqlite3_file *id) {
7622 if( ALWAYS(id) ){
7623 unixFile *pFile = (unixFile*)id;
7624 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7625 unixFile *lockProxy = pCtx->lockProxy;
7626 unixFile *conchFile = pCtx->conchFile;
7627 int rc = SQLITE_OK;
7629 if( lockProxy ){
7630 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
7631 if( rc ) return rc;
7632 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
7633 if( rc ) return rc;
7634 sqlite3_free(lockProxy);
7635 pCtx->lockProxy = 0;
7637 if( conchFile ){
7638 if( pCtx->conchHeld ){
7639 rc = proxyReleaseConch(pFile);
7640 if( rc ) return rc;
7642 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
7643 if( rc ) return rc;
7644 sqlite3_free(conchFile);
7646 sqlite3DbFree(0, pCtx->lockProxyPath);
7647 sqlite3_free(pCtx->conchFilePath);
7648 sqlite3DbFree(0, pCtx->dbPath);
7649 /* restore the original locking context and pMethod then close it */
7650 pFile->lockingContext = pCtx->oldLockingContext;
7651 pFile->pMethod = pCtx->pOldMethod;
7652 sqlite3_free(pCtx);
7653 return pFile->pMethod->xClose(id);
7655 return SQLITE_OK;
7660 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
7662 ** The proxy locking style is intended for use with AFP filesystems.
7663 ** And since AFP is only supported on MacOSX, the proxy locking is also
7664 ** restricted to MacOSX.
7667 ******************* End of the proxy lock implementation **********************
7668 ******************************************************************************/
7671 ** Initialize the operating system interface.
7673 ** This routine registers all VFS implementations for unix-like operating
7674 ** systems. This routine, and the sqlite3_os_end() routine that follows,
7675 ** should be the only routines in this file that are visible from other
7676 ** files.
7678 ** This routine is called once during SQLite initialization and by a
7679 ** single thread. The memory allocation and mutex subsystems have not
7680 ** necessarily been initialized when this routine is called, and so they
7681 ** should not be used.
7683 int sqlite3_os_init(void){
7685 ** The following macro defines an initializer for an sqlite3_vfs object.
7686 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
7687 ** to the "finder" function. (pAppData is a pointer to a pointer because
7688 ** silly C90 rules prohibit a void* from being cast to a function pointer
7689 ** and so we have to go through the intermediate pointer to avoid problems
7690 ** when compiling with -pedantic-errors on GCC.)
7692 ** The FINDER parameter to this macro is the name of the pointer to the
7693 ** finder-function. The finder-function returns a pointer to the
7694 ** sqlite_io_methods object that implements the desired locking
7695 ** behaviors. See the division above that contains the IOMETHODS
7696 ** macro for addition information on finder-functions.
7698 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
7699 ** object. But the "autolockIoFinder" available on MacOSX does a little
7700 ** more than that; it looks at the filesystem type that hosts the
7701 ** database file and tries to choose an locking method appropriate for
7702 ** that filesystem time.
7704 #define UNIXVFS(VFSNAME, FINDER) { \
7705 3, /* iVersion */ \
7706 sizeof(unixFile), /* szOsFile */ \
7707 MAX_PATHNAME, /* mxPathname */ \
7708 0, /* pNext */ \
7709 VFSNAME, /* zName */ \
7710 (void*)&FINDER, /* pAppData */ \
7711 unixOpen, /* xOpen */ \
7712 unixDelete, /* xDelete */ \
7713 unixAccess, /* xAccess */ \
7714 unixFullPathname, /* xFullPathname */ \
7715 unixDlOpen, /* xDlOpen */ \
7716 unixDlError, /* xDlError */ \
7717 unixDlSym, /* xDlSym */ \
7718 unixDlClose, /* xDlClose */ \
7719 unixRandomness, /* xRandomness */ \
7720 unixSleep, /* xSleep */ \
7721 unixCurrentTime, /* xCurrentTime */ \
7722 unixGetLastError, /* xGetLastError */ \
7723 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
7724 unixSetSystemCall, /* xSetSystemCall */ \
7725 unixGetSystemCall, /* xGetSystemCall */ \
7726 unixNextSystemCall, /* xNextSystemCall */ \
7730 ** All default VFSes for unix are contained in the following array.
7732 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
7733 ** by the SQLite core when the VFS is registered. So the following
7734 ** array cannot be const.
7736 static sqlite3_vfs aVfs[] = {
7737 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
7738 UNIXVFS("unix", autolockIoFinder ),
7739 #elif OS_VXWORKS
7740 UNIXVFS("unix", vxworksIoFinder ),
7741 #else
7742 UNIXVFS("unix", posixIoFinder ),
7743 #endif
7744 UNIXVFS("unix-none", nolockIoFinder ),
7745 UNIXVFS("unix-dotfile", dotlockIoFinder ),
7746 UNIXVFS("unix-excl", posixIoFinder ),
7747 #if OS_VXWORKS
7748 UNIXVFS("unix-namedsem", semIoFinder ),
7749 #endif
7750 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
7751 UNIXVFS("unix-posix", posixIoFinder ),
7752 #endif
7753 #if SQLITE_ENABLE_LOCKING_STYLE
7754 UNIXVFS("unix-flock", flockIoFinder ),
7755 #endif
7756 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
7757 UNIXVFS("unix-afp", afpIoFinder ),
7758 UNIXVFS("unix-nfs", nfsIoFinder ),
7759 UNIXVFS("unix-proxy", proxyIoFinder ),
7760 #endif
7762 unsigned int i; /* Loop counter */
7764 /* Double-check that the aSyscall[] array has been constructed
7765 ** correctly. See ticket [bb3a86e890c8e96ab] */
7766 assert( ArraySize(aSyscall)==29 );
7768 /* Register all VFSes defined in the aVfs[] array */
7769 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
7770 sqlite3_vfs_register(&aVfs[i], i==0);
7772 unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
7773 return SQLITE_OK;
7777 ** Shutdown the operating system interface.
7779 ** Some operating systems might need to do some cleanup in this routine,
7780 ** to release dynamically allocated objects. But not on unix.
7781 ** This routine is a no-op for unix.
7783 int sqlite3_os_end(void){
7784 unixBigLock = 0;
7785 return SQLITE_OK;
7788 #endif /* SQLITE_OS_UNIX */