Make USE_FULLWARN=1 the default for MSVC and fix harmless compiler warnings.
[sqlite.git] / src / vdbeaux.c
blob00a5ec91a94355af498f644ad87f874120d0eb34
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 assert( pParse->aLabel==0 );
37 assert( pParse->nLabel==0 );
38 assert( pParse->nOpAlloc==0 );
39 assert( pParse->szOpAlloc==0 );
40 return p;
44 ** Change the error string stored in Vdbe.zErrMsg
46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
47 va_list ap;
48 sqlite3DbFree(p->db, p->zErrMsg);
49 va_start(ap, zFormat);
50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
51 va_end(ap);
55 ** Remember the SQL string for a prepared statement.
57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
58 assert( isPrepareV2==1 || isPrepareV2==0 );
59 if( p==0 ) return;
60 if( !isPrepareV2 ) p->expmask = 0;
61 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
62 if( !isPrepareV2 ) return;
63 #endif
64 assert( p->zSql==0 );
65 p->zSql = sqlite3DbStrNDup(p->db, z, n);
66 p->isPrepareV2 = (u8)isPrepareV2;
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
75 assert( pA->db==pB->db );
76 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
88 pB->isPrepareV2 = pA->isPrepareV2;
89 pB->expmask = pA->expmask;
93 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
94 ** than its current size. nOp is guaranteed to be less than or equal
95 ** to 1024/sizeof(Op).
97 ** If an out-of-memory error occurs while resizing the array, return
98 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
99 ** unchanged (this is so that any opcodes already allocated can be
100 ** correctly deallocated along with the rest of the Vdbe).
102 static int growOpArray(Vdbe *v, int nOp){
103 VdbeOp *pNew;
104 Parse *p = v->pParse;
106 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
107 ** more frequent reallocs and hence provide more opportunities for
108 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
109 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
110 ** by the minimum* amount required until the size reaches 512. Normal
111 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
112 ** size of the op array or add 1KB of space, whichever is smaller. */
113 #ifdef SQLITE_TEST_REALLOC_STRESS
114 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
115 #else
116 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
117 UNUSED_PARAMETER(nOp);
118 #endif
120 /* Ensure that the size of a VDBE does not grow too large */
121 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
122 sqlite3OomFault(p->db);
123 return SQLITE_NOMEM;
126 assert( nOp<=(1024/sizeof(Op)) );
127 assert( nNew>=(p->nOpAlloc+nOp) );
128 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
129 if( pNew ){
130 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
131 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
132 v->aOp = pNew;
134 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
137 #ifdef SQLITE_DEBUG
138 /* This routine is just a convenient place to set a breakpoint that will
139 ** fire after each opcode is inserted and displayed using
140 ** "PRAGMA vdbe_addoptrace=on".
142 static void test_addop_breakpoint(void){
143 static int n = 0;
144 n++;
146 #endif
149 ** Add a new instruction to the list of instructions current in the
150 ** VDBE. Return the address of the new instruction.
152 ** Parameters:
154 ** p Pointer to the VDBE
156 ** op The opcode for this instruction
158 ** p1, p2, p3 Operands
160 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
161 ** the sqlite3VdbeChangeP4() function to change the value of the P4
162 ** operand.
164 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
165 assert( p->pParse->nOpAlloc<=p->nOp );
166 if( growOpArray(p, 1) ) return 1;
167 assert( p->pParse->nOpAlloc>p->nOp );
168 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
170 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
171 int i;
172 VdbeOp *pOp;
174 i = p->nOp;
175 assert( p->magic==VDBE_MAGIC_INIT );
176 assert( op>=0 && op<0xff );
177 if( p->pParse->nOpAlloc<=i ){
178 return growOp3(p, op, p1, p2, p3);
180 p->nOp++;
181 pOp = &p->aOp[i];
182 pOp->opcode = (u8)op;
183 pOp->p5 = 0;
184 pOp->p1 = p1;
185 pOp->p2 = p2;
186 pOp->p3 = p3;
187 pOp->p4.p = 0;
188 pOp->p4type = P4_NOTUSED;
189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
190 pOp->zComment = 0;
191 #endif
192 #ifdef SQLITE_DEBUG
193 if( p->db->flags & SQLITE_VdbeAddopTrace ){
194 int jj, kk;
195 Parse *pParse = p->pParse;
196 for(jj=kk=0; jj<pParse->nColCache; jj++){
197 struct yColCache *x = pParse->aColCache + jj;
198 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
199 kk++;
201 if( kk ) printf("\n");
202 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
203 test_addop_breakpoint();
205 #endif
206 #ifdef VDBE_PROFILE
207 pOp->cycles = 0;
208 pOp->cnt = 0;
209 #endif
210 #ifdef SQLITE_VDBE_COVERAGE
211 pOp->iSrcLine = 0;
212 #endif
213 return i;
215 int sqlite3VdbeAddOp0(Vdbe *p, int op){
216 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
219 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
222 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
225 /* Generate code for an unconditional jump to instruction iDest
227 int sqlite3VdbeGoto(Vdbe *p, int iDest){
228 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
231 /* Generate code to cause the string zStr to be loaded into
232 ** register iDest
234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
235 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
239 ** Generate code that initializes multiple registers to string or integer
240 ** constants. The registers begin with iDest and increase consecutively.
241 ** One register is initialized for each characgter in zTypes[]. For each
242 ** "s" character in zTypes[], the register is a string if the argument is
243 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
244 ** in zTypes[], the register is initialized to an integer.
246 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
247 va_list ap;
248 int i;
249 char c;
250 va_start(ap, zTypes);
251 for(i=0; (c = zTypes[i])!=0; i++){
252 if( c=='s' ){
253 const char *z = va_arg(ap, const char*);
254 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
255 }else{
256 assert( c=='i' );
257 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
260 va_end(ap);
264 ** Add an opcode that includes the p4 value as a pointer.
266 int sqlite3VdbeAddOp4(
267 Vdbe *p, /* Add the opcode to this VM */
268 int op, /* The new opcode */
269 int p1, /* The P1 operand */
270 int p2, /* The P2 operand */
271 int p3, /* The P3 operand */
272 const char *zP4, /* The P4 operand */
273 int p4type /* P4 operand type */
275 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
276 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
277 return addr;
281 ** Add an opcode that includes the p4 value with a P4_INT64 or
282 ** P4_REAL type.
284 int sqlite3VdbeAddOp4Dup8(
285 Vdbe *p, /* Add the opcode to this VM */
286 int op, /* The new opcode */
287 int p1, /* The P1 operand */
288 int p2, /* The P2 operand */
289 int p3, /* The P3 operand */
290 const u8 *zP4, /* The P4 operand */
291 int p4type /* P4 operand type */
293 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
294 if( p4copy ) memcpy(p4copy, zP4, 8);
295 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
299 ** Add an OP_ParseSchema opcode. This routine is broken out from
300 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
301 ** as having been used.
303 ** The zWhere string must have been obtained from sqlite3_malloc().
304 ** This routine will take ownership of the allocated memory.
306 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
307 int j;
308 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
309 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
313 ** Add an opcode that includes the p4 value as an integer.
315 int sqlite3VdbeAddOp4Int(
316 Vdbe *p, /* Add the opcode to this VM */
317 int op, /* The new opcode */
318 int p1, /* The P1 operand */
319 int p2, /* The P2 operand */
320 int p3, /* The P3 operand */
321 int p4 /* The P4 operand as an integer */
323 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
324 if( p->db->mallocFailed==0 ){
325 VdbeOp *pOp = &p->aOp[addr];
326 pOp->p4type = P4_INT32;
327 pOp->p4.i = p4;
329 return addr;
332 /* Insert the end of a co-routine
334 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
335 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
337 /* Clear the temporary register cache, thereby ensuring that each
338 ** co-routine has its own independent set of registers, because co-routines
339 ** might expect their registers to be preserved across an OP_Yield, and
340 ** that could cause problems if two or more co-routines are using the same
341 ** temporary register.
343 v->pParse->nTempReg = 0;
344 v->pParse->nRangeReg = 0;
348 ** Create a new symbolic label for an instruction that has yet to be
349 ** coded. The symbolic label is really just a negative number. The
350 ** label can be used as the P2 value of an operation. Later, when
351 ** the label is resolved to a specific address, the VDBE will scan
352 ** through its operation list and change all values of P2 which match
353 ** the label into the resolved address.
355 ** The VDBE knows that a P2 value is a label because labels are
356 ** always negative and P2 values are suppose to be non-negative.
357 ** Hence, a negative P2 value is a label that has yet to be resolved.
359 ** Zero is returned if a malloc() fails.
361 int sqlite3VdbeMakeLabel(Vdbe *v){
362 Parse *p = v->pParse;
363 int i = p->nLabel++;
364 assert( v->magic==VDBE_MAGIC_INIT );
365 if( (i & (i-1))==0 ){
366 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
367 (i*2+1)*sizeof(p->aLabel[0]));
369 if( p->aLabel ){
370 p->aLabel[i] = -1;
372 return ADDR(i);
376 ** Resolve label "x" to be the address of the next instruction to
377 ** be inserted. The parameter "x" must have been obtained from
378 ** a prior call to sqlite3VdbeMakeLabel().
380 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
381 Parse *p = v->pParse;
382 int j = ADDR(x);
383 assert( v->magic==VDBE_MAGIC_INIT );
384 assert( j<p->nLabel );
385 assert( j>=0 );
386 if( p->aLabel ){
387 p->aLabel[j] = v->nOp;
392 ** Mark the VDBE as one that can only be run one time.
394 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
395 p->runOnlyOnce = 1;
399 ** Mark the VDBE as one that can only be run multiple times.
401 void sqlite3VdbeReusable(Vdbe *p){
402 p->runOnlyOnce = 0;
405 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
408 ** The following type and function are used to iterate through all opcodes
409 ** in a Vdbe main program and each of the sub-programs (triggers) it may
410 ** invoke directly or indirectly. It should be used as follows:
412 ** Op *pOp;
413 ** VdbeOpIter sIter;
415 ** memset(&sIter, 0, sizeof(sIter));
416 ** sIter.v = v; // v is of type Vdbe*
417 ** while( (pOp = opIterNext(&sIter)) ){
418 ** // Do something with pOp
419 ** }
420 ** sqlite3DbFree(v->db, sIter.apSub);
423 typedef struct VdbeOpIter VdbeOpIter;
424 struct VdbeOpIter {
425 Vdbe *v; /* Vdbe to iterate through the opcodes of */
426 SubProgram **apSub; /* Array of subprograms */
427 int nSub; /* Number of entries in apSub */
428 int iAddr; /* Address of next instruction to return */
429 int iSub; /* 0 = main program, 1 = first sub-program etc. */
431 static Op *opIterNext(VdbeOpIter *p){
432 Vdbe *v = p->v;
433 Op *pRet = 0;
434 Op *aOp;
435 int nOp;
437 if( p->iSub<=p->nSub ){
439 if( p->iSub==0 ){
440 aOp = v->aOp;
441 nOp = v->nOp;
442 }else{
443 aOp = p->apSub[p->iSub-1]->aOp;
444 nOp = p->apSub[p->iSub-1]->nOp;
446 assert( p->iAddr<nOp );
448 pRet = &aOp[p->iAddr];
449 p->iAddr++;
450 if( p->iAddr==nOp ){
451 p->iSub++;
452 p->iAddr = 0;
455 if( pRet->p4type==P4_SUBPROGRAM ){
456 int nByte = (p->nSub+1)*sizeof(SubProgram*);
457 int j;
458 for(j=0; j<p->nSub; j++){
459 if( p->apSub[j]==pRet->p4.pProgram ) break;
461 if( j==p->nSub ){
462 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
463 if( !p->apSub ){
464 pRet = 0;
465 }else{
466 p->apSub[p->nSub++] = pRet->p4.pProgram;
472 return pRet;
476 ** Check if the program stored in the VM associated with pParse may
477 ** throw an ABORT exception (causing the statement, but not entire transaction
478 ** to be rolled back). This condition is true if the main program or any
479 ** sub-programs contains any of the following:
481 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
482 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
483 ** * OP_Destroy
484 ** * OP_VUpdate
485 ** * OP_VRename
486 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
487 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
489 ** Then check that the value of Parse.mayAbort is true if an
490 ** ABORT may be thrown, or false otherwise. Return true if it does
491 ** match, or false otherwise. This function is intended to be used as
492 ** part of an assert statement in the compiler. Similar to:
494 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
496 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
497 int hasAbort = 0;
498 int hasFkCounter = 0;
499 int hasCreateTable = 0;
500 int hasInitCoroutine = 0;
501 Op *pOp;
502 VdbeOpIter sIter;
503 memset(&sIter, 0, sizeof(sIter));
504 sIter.v = v;
506 while( (pOp = opIterNext(&sIter))!=0 ){
507 int opcode = pOp->opcode;
508 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
509 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
510 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
512 hasAbort = 1;
513 break;
515 if( opcode==OP_CreateTable ) hasCreateTable = 1;
516 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
517 #ifndef SQLITE_OMIT_FOREIGN_KEY
518 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
519 hasFkCounter = 1;
521 #endif
523 sqlite3DbFree(v->db, sIter.apSub);
525 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
526 ** If malloc failed, then the while() loop above may not have iterated
527 ** through all opcodes and hasAbort may be set incorrectly. Return
528 ** true for this case to prevent the assert() in the callers frame
529 ** from failing. */
530 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
531 || (hasCreateTable && hasInitCoroutine) );
533 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
536 ** This routine is called after all opcodes have been inserted. It loops
537 ** through all the opcodes and fixes up some details.
539 ** (1) For each jump instruction with a negative P2 value (a label)
540 ** resolve the P2 value to an actual address.
542 ** (2) Compute the maximum number of arguments used by any SQL function
543 ** and store that value in *pMaxFuncArgs.
545 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
546 ** indicate what the prepared statement actually does.
548 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
550 ** (5) Reclaim the memory allocated for storing labels.
552 ** This routine will only function correctly if the mkopcodeh.tcl generator
553 ** script numbers the opcodes correctly. Changes to this routine must be
554 ** coordinated with changes to mkopcodeh.tcl.
556 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
557 int nMaxArgs = *pMaxFuncArgs;
558 Op *pOp;
559 Parse *pParse = p->pParse;
560 int *aLabel = pParse->aLabel;
561 p->readOnly = 1;
562 p->bIsReader = 0;
563 pOp = &p->aOp[p->nOp-1];
564 while(1){
566 /* Only JUMP opcodes and the short list of special opcodes in the switch
567 ** below need to be considered. The mkopcodeh.tcl generator script groups
568 ** all these opcodes together near the front of the opcode list. Skip
569 ** any opcode that does not need processing by virtual of the fact that
570 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
572 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
573 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
574 ** cases from this switch! */
575 switch( pOp->opcode ){
576 case OP_Transaction: {
577 if( pOp->p2!=0 ) p->readOnly = 0;
578 /* fall thru */
580 case OP_AutoCommit:
581 case OP_Savepoint: {
582 p->bIsReader = 1;
583 break;
585 #ifndef SQLITE_OMIT_WAL
586 case OP_Checkpoint:
587 #endif
588 case OP_Vacuum:
589 case OP_JournalMode: {
590 p->readOnly = 0;
591 p->bIsReader = 1;
592 break;
594 #ifndef SQLITE_OMIT_VIRTUALTABLE
595 case OP_VUpdate: {
596 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
597 break;
599 case OP_VFilter: {
600 int n;
601 assert( (pOp - p->aOp) >= 3 );
602 assert( pOp[-1].opcode==OP_Integer );
603 n = pOp[-1].p1;
604 if( n>nMaxArgs ) nMaxArgs = n;
605 break;
607 #endif
608 case OP_Next:
609 case OP_NextIfOpen:
610 case OP_SorterNext: {
611 pOp->p4.xAdvance = sqlite3BtreeNext;
612 pOp->p4type = P4_ADVANCE;
613 break;
615 case OP_Prev:
616 case OP_PrevIfOpen: {
617 pOp->p4.xAdvance = sqlite3BtreePrevious;
618 pOp->p4type = P4_ADVANCE;
619 break;
622 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
623 assert( ADDR(pOp->p2)<pParse->nLabel );
624 pOp->p2 = aLabel[ADDR(pOp->p2)];
627 if( pOp==p->aOp ) break;
628 pOp--;
630 sqlite3DbFree(p->db, pParse->aLabel);
631 pParse->aLabel = 0;
632 pParse->nLabel = 0;
633 *pMaxFuncArgs = nMaxArgs;
634 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
638 ** Return the address of the next instruction to be inserted.
640 int sqlite3VdbeCurrentAddr(Vdbe *p){
641 assert( p->magic==VDBE_MAGIC_INIT );
642 return p->nOp;
646 ** Verify that at least N opcode slots are available in p without
647 ** having to malloc for more space (except when compiled using
648 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
649 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
650 ** fail due to a OOM fault and hence that the return value from
651 ** sqlite3VdbeAddOpList() will always be non-NULL.
653 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
654 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
655 assert( p->nOp + N <= p->pParse->nOpAlloc );
657 #endif
660 ** Verify that the VM passed as the only argument does not contain
661 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
662 ** by code in pragma.c to ensure that the implementation of certain
663 ** pragmas comports with the flags specified in the mkpragmatab.tcl
664 ** script.
666 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
667 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
668 int i;
669 for(i=0; i<p->nOp; i++){
670 assert( p->aOp[i].opcode!=OP_ResultRow );
673 #endif
676 ** This function returns a pointer to the array of opcodes associated with
677 ** the Vdbe passed as the first argument. It is the callers responsibility
678 ** to arrange for the returned array to be eventually freed using the
679 ** vdbeFreeOpArray() function.
681 ** Before returning, *pnOp is set to the number of entries in the returned
682 ** array. Also, *pnMaxArg is set to the larger of its current value and
683 ** the number of entries in the Vdbe.apArg[] array required to execute the
684 ** returned program.
686 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
687 VdbeOp *aOp = p->aOp;
688 assert( aOp && !p->db->mallocFailed );
690 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
691 assert( DbMaskAllZero(p->btreeMask) );
693 resolveP2Values(p, pnMaxArg);
694 *pnOp = p->nOp;
695 p->aOp = 0;
696 return aOp;
700 ** Add a whole list of operations to the operation stack. Return a
701 ** pointer to the first operation inserted.
703 ** Non-zero P2 arguments to jump instructions are automatically adjusted
704 ** so that the jump target is relative to the first operation inserted.
706 VdbeOp *sqlite3VdbeAddOpList(
707 Vdbe *p, /* Add opcodes to the prepared statement */
708 int nOp, /* Number of opcodes to add */
709 VdbeOpList const *aOp, /* The opcodes to be added */
710 int iLineno /* Source-file line number of first opcode */
712 int i;
713 VdbeOp *pOut, *pFirst;
714 assert( nOp>0 );
715 assert( p->magic==VDBE_MAGIC_INIT );
716 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
717 return 0;
719 pFirst = pOut = &p->aOp[p->nOp];
720 for(i=0; i<nOp; i++, aOp++, pOut++){
721 pOut->opcode = aOp->opcode;
722 pOut->p1 = aOp->p1;
723 pOut->p2 = aOp->p2;
724 assert( aOp->p2>=0 );
725 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
726 pOut->p2 += p->nOp;
728 pOut->p3 = aOp->p3;
729 pOut->p4type = P4_NOTUSED;
730 pOut->p4.p = 0;
731 pOut->p5 = 0;
732 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
733 pOut->zComment = 0;
734 #endif
735 #ifdef SQLITE_VDBE_COVERAGE
736 pOut->iSrcLine = iLineno+i;
737 #else
738 (void)iLineno;
739 #endif
740 #ifdef SQLITE_DEBUG
741 if( p->db->flags & SQLITE_VdbeAddopTrace ){
742 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
744 #endif
746 p->nOp += nOp;
747 return pFirst;
750 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
752 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
754 void sqlite3VdbeScanStatus(
755 Vdbe *p, /* VM to add scanstatus() to */
756 int addrExplain, /* Address of OP_Explain (or 0) */
757 int addrLoop, /* Address of loop counter */
758 int addrVisit, /* Address of rows visited counter */
759 LogEst nEst, /* Estimated number of output rows */
760 const char *zName /* Name of table or index being scanned */
762 int nByte = (p->nScan+1) * sizeof(ScanStatus);
763 ScanStatus *aNew;
764 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
765 if( aNew ){
766 ScanStatus *pNew = &aNew[p->nScan++];
767 pNew->addrExplain = addrExplain;
768 pNew->addrLoop = addrLoop;
769 pNew->addrVisit = addrVisit;
770 pNew->nEst = nEst;
771 pNew->zName = sqlite3DbStrDup(p->db, zName);
772 p->aScan = aNew;
775 #endif
779 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
780 ** for a specific instruction.
782 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
783 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
785 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
786 sqlite3VdbeGetOp(p,addr)->p1 = val;
788 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
789 sqlite3VdbeGetOp(p,addr)->p2 = val;
791 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
792 sqlite3VdbeGetOp(p,addr)->p3 = val;
794 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
795 assert( p->nOp>0 || p->db->mallocFailed );
796 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
800 ** Change the P2 operand of instruction addr so that it points to
801 ** the address of the next instruction to be coded.
803 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
804 sqlite3VdbeChangeP2(p, addr, p->nOp);
809 ** If the input FuncDef structure is ephemeral, then free it. If
810 ** the FuncDef is not ephermal, then do nothing.
812 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
813 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
814 sqlite3DbFreeNN(db, pDef);
818 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
821 ** Delete a P4 value if necessary.
823 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
824 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
825 sqlite3DbFreeNN(db, p);
827 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
828 freeEphemeralFunction(db, p->pFunc);
829 sqlite3DbFreeNN(db, p);
831 static void freeP4(sqlite3 *db, int p4type, void *p4){
832 assert( db );
833 switch( p4type ){
834 case P4_FUNCCTX: {
835 freeP4FuncCtx(db, (sqlite3_context*)p4);
836 break;
838 case P4_REAL:
839 case P4_INT64:
840 case P4_DYNAMIC:
841 case P4_INTARRAY: {
842 sqlite3DbFree(db, p4);
843 break;
845 case P4_KEYINFO: {
846 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
847 break;
849 #ifdef SQLITE_ENABLE_CURSOR_HINTS
850 case P4_EXPR: {
851 sqlite3ExprDelete(db, (Expr*)p4);
852 break;
854 #endif
855 case P4_FUNCDEF: {
856 freeEphemeralFunction(db, (FuncDef*)p4);
857 break;
859 case P4_MEM: {
860 if( db->pnBytesFreed==0 ){
861 sqlite3ValueFree((sqlite3_value*)p4);
862 }else{
863 freeP4Mem(db, (Mem*)p4);
865 break;
867 case P4_VTAB : {
868 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
869 break;
875 ** Free the space allocated for aOp and any p4 values allocated for the
876 ** opcodes contained within. If aOp is not NULL it is assumed to contain
877 ** nOp entries.
879 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
880 if( aOp ){
881 Op *pOp;
882 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
883 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
884 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
885 sqlite3DbFree(db, pOp->zComment);
886 #endif
888 sqlite3DbFreeNN(db, aOp);
893 ** Link the SubProgram object passed as the second argument into the linked
894 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
895 ** objects when the VM is no longer required.
897 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
898 p->pNext = pVdbe->pProgram;
899 pVdbe->pProgram = p;
903 ** Change the opcode at addr into OP_Noop
905 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
906 VdbeOp *pOp;
907 if( p->db->mallocFailed ) return 0;
908 assert( addr>=0 && addr<p->nOp );
909 pOp = &p->aOp[addr];
910 freeP4(p->db, pOp->p4type, pOp->p4.p);
911 pOp->p4type = P4_NOTUSED;
912 pOp->p4.z = 0;
913 pOp->opcode = OP_Noop;
914 return 1;
918 ** If the last opcode is "op" and it is not a jump destination,
919 ** then remove it. Return true if and only if an opcode was removed.
921 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
922 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
923 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
924 }else{
925 return 0;
930 ** Change the value of the P4 operand for a specific instruction.
931 ** This routine is useful when a large program is loaded from a
932 ** static array using sqlite3VdbeAddOpList but we want to make a
933 ** few minor changes to the program.
935 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
936 ** the string is made into memory obtained from sqlite3_malloc().
937 ** A value of n==0 means copy bytes of zP4 up to and including the
938 ** first null byte. If n>0 then copy n+1 bytes of zP4.
940 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
941 ** to a string or structure that is guaranteed to exist for the lifetime of
942 ** the Vdbe. In these cases we can just copy the pointer.
944 ** If addr<0 then change P4 on the most recently inserted instruction.
946 static void SQLITE_NOINLINE vdbeChangeP4Full(
947 Vdbe *p,
948 Op *pOp,
949 const char *zP4,
950 int n
952 if( pOp->p4type ){
953 freeP4(p->db, pOp->p4type, pOp->p4.p);
954 pOp->p4type = 0;
955 pOp->p4.p = 0;
957 if( n<0 ){
958 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
959 }else{
960 if( n==0 ) n = sqlite3Strlen30(zP4);
961 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
962 pOp->p4type = P4_DYNAMIC;
965 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
966 Op *pOp;
967 sqlite3 *db;
968 assert( p!=0 );
969 db = p->db;
970 assert( p->magic==VDBE_MAGIC_INIT );
971 assert( p->aOp!=0 || db->mallocFailed );
972 if( db->mallocFailed ){
973 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
974 return;
976 assert( p->nOp>0 );
977 assert( addr<p->nOp );
978 if( addr<0 ){
979 addr = p->nOp - 1;
981 pOp = &p->aOp[addr];
982 if( n>=0 || pOp->p4type ){
983 vdbeChangeP4Full(p, pOp, zP4, n);
984 return;
986 if( n==P4_INT32 ){
987 /* Note: this cast is safe, because the origin data point was an int
988 ** that was cast to a (const char *). */
989 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
990 pOp->p4type = P4_INT32;
991 }else if( zP4!=0 ){
992 assert( n<0 );
993 pOp->p4.p = (void*)zP4;
994 pOp->p4type = (signed char)n;
995 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1000 ** Change the P4 operand of the most recently coded instruction
1001 ** to the value defined by the arguments. This is a high-speed
1002 ** version of sqlite3VdbeChangeP4().
1004 ** The P4 operand must not have been previously defined. And the new
1005 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1006 ** those cases.
1008 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1009 VdbeOp *pOp;
1010 assert( n!=P4_INT32 && n!=P4_VTAB );
1011 assert( n<=0 );
1012 if( p->db->mallocFailed ){
1013 freeP4(p->db, n, pP4);
1014 }else{
1015 assert( pP4!=0 );
1016 assert( p->nOp>0 );
1017 pOp = &p->aOp[p->nOp-1];
1018 assert( pOp->p4type==P4_NOTUSED );
1019 pOp->p4type = n;
1020 pOp->p4.p = pP4;
1025 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1026 ** index given.
1028 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1029 Vdbe *v = pParse->pVdbe;
1030 KeyInfo *pKeyInfo;
1031 assert( v!=0 );
1032 assert( pIdx!=0 );
1033 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1034 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1037 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1039 ** Change the comment on the most recently coded instruction. Or
1040 ** insert a No-op and add the comment to that new instruction. This
1041 ** makes the code easier to read during debugging. None of this happens
1042 ** in a production build.
1044 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1045 assert( p->nOp>0 || p->aOp==0 );
1046 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1047 if( p->nOp ){
1048 assert( p->aOp );
1049 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1050 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1053 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1054 va_list ap;
1055 if( p ){
1056 va_start(ap, zFormat);
1057 vdbeVComment(p, zFormat, ap);
1058 va_end(ap);
1061 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1062 va_list ap;
1063 if( p ){
1064 sqlite3VdbeAddOp0(p, OP_Noop);
1065 va_start(ap, zFormat);
1066 vdbeVComment(p, zFormat, ap);
1067 va_end(ap);
1070 #endif /* NDEBUG */
1072 #ifdef SQLITE_VDBE_COVERAGE
1074 ** Set the value if the iSrcLine field for the previously coded instruction.
1076 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1077 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1079 #endif /* SQLITE_VDBE_COVERAGE */
1082 ** Return the opcode for a given address. If the address is -1, then
1083 ** return the most recently inserted opcode.
1085 ** If a memory allocation error has occurred prior to the calling of this
1086 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1087 ** is readable but not writable, though it is cast to a writable value.
1088 ** The return of a dummy opcode allows the call to continue functioning
1089 ** after an OOM fault without having to check to see if the return from
1090 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1091 ** dummy will never be written to. This is verified by code inspection and
1092 ** by running with Valgrind.
1094 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1095 /* C89 specifies that the constant "dummy" will be initialized to all
1096 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1097 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1098 assert( p->magic==VDBE_MAGIC_INIT );
1099 if( addr<0 ){
1100 addr = p->nOp - 1;
1102 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1103 if( p->db->mallocFailed ){
1104 return (VdbeOp*)&dummy;
1105 }else{
1106 return &p->aOp[addr];
1110 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1112 ** Return an integer value for one of the parameters to the opcode pOp
1113 ** determined by character c.
1115 static int translateP(char c, const Op *pOp){
1116 if( c=='1' ) return pOp->p1;
1117 if( c=='2' ) return pOp->p2;
1118 if( c=='3' ) return pOp->p3;
1119 if( c=='4' ) return pOp->p4.i;
1120 return pOp->p5;
1124 ** Compute a string for the "comment" field of a VDBE opcode listing.
1126 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1127 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1128 ** absence of other comments, this synopsis becomes the comment on the opcode.
1129 ** Some translation occurs:
1131 ** "PX" -> "r[X]"
1132 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1133 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1134 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1136 static int displayComment(
1137 const Op *pOp, /* The opcode to be commented */
1138 const char *zP4, /* Previously obtained value for P4 */
1139 char *zTemp, /* Write result here */
1140 int nTemp /* Space available in zTemp[] */
1142 const char *zOpName;
1143 const char *zSynopsis;
1144 int nOpName;
1145 int ii, jj;
1146 char zAlt[50];
1147 zOpName = sqlite3OpcodeName(pOp->opcode);
1148 nOpName = sqlite3Strlen30(zOpName);
1149 if( zOpName[nOpName+1] ){
1150 int seenCom = 0;
1151 char c;
1152 zSynopsis = zOpName += nOpName + 1;
1153 if( strncmp(zSynopsis,"IF ",3)==0 ){
1154 if( pOp->p5 & SQLITE_STOREP2 ){
1155 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1156 }else{
1157 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1159 zSynopsis = zAlt;
1161 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1162 if( c=='P' ){
1163 c = zSynopsis[++ii];
1164 if( c=='4' ){
1165 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1166 }else if( c=='X' ){
1167 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1168 seenCom = 1;
1169 }else{
1170 int v1 = translateP(c, pOp);
1171 int v2;
1172 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1173 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1174 ii += 3;
1175 jj += sqlite3Strlen30(zTemp+jj);
1176 v2 = translateP(zSynopsis[ii], pOp);
1177 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1178 ii += 2;
1179 v2++;
1181 if( v2>1 ){
1182 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1184 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1185 ii += 4;
1188 jj += sqlite3Strlen30(zTemp+jj);
1189 }else{
1190 zTemp[jj++] = c;
1193 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1194 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1195 jj += sqlite3Strlen30(zTemp+jj);
1197 if( jj<nTemp ) zTemp[jj] = 0;
1198 }else if( pOp->zComment ){
1199 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1200 jj = sqlite3Strlen30(zTemp);
1201 }else{
1202 zTemp[0] = 0;
1203 jj = 0;
1205 return jj;
1207 #endif /* SQLITE_DEBUG */
1209 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1211 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1212 ** that can be displayed in the P4 column of EXPLAIN output.
1214 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1215 const char *zOp = 0;
1216 switch( pExpr->op ){
1217 case TK_STRING:
1218 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1219 break;
1220 case TK_INTEGER:
1221 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1222 break;
1223 case TK_NULL:
1224 sqlite3XPrintf(p, "NULL");
1225 break;
1226 case TK_REGISTER: {
1227 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1228 break;
1230 case TK_COLUMN: {
1231 if( pExpr->iColumn<0 ){
1232 sqlite3XPrintf(p, "rowid");
1233 }else{
1234 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1236 break;
1238 case TK_LT: zOp = "LT"; break;
1239 case TK_LE: zOp = "LE"; break;
1240 case TK_GT: zOp = "GT"; break;
1241 case TK_GE: zOp = "GE"; break;
1242 case TK_NE: zOp = "NE"; break;
1243 case TK_EQ: zOp = "EQ"; break;
1244 case TK_IS: zOp = "IS"; break;
1245 case TK_ISNOT: zOp = "ISNOT"; break;
1246 case TK_AND: zOp = "AND"; break;
1247 case TK_OR: zOp = "OR"; break;
1248 case TK_PLUS: zOp = "ADD"; break;
1249 case TK_STAR: zOp = "MUL"; break;
1250 case TK_MINUS: zOp = "SUB"; break;
1251 case TK_REM: zOp = "REM"; break;
1252 case TK_BITAND: zOp = "BITAND"; break;
1253 case TK_BITOR: zOp = "BITOR"; break;
1254 case TK_SLASH: zOp = "DIV"; break;
1255 case TK_LSHIFT: zOp = "LSHIFT"; break;
1256 case TK_RSHIFT: zOp = "RSHIFT"; break;
1257 case TK_CONCAT: zOp = "CONCAT"; break;
1258 case TK_UMINUS: zOp = "MINUS"; break;
1259 case TK_UPLUS: zOp = "PLUS"; break;
1260 case TK_BITNOT: zOp = "BITNOT"; break;
1261 case TK_NOT: zOp = "NOT"; break;
1262 case TK_ISNULL: zOp = "ISNULL"; break;
1263 case TK_NOTNULL: zOp = "NOTNULL"; break;
1265 default:
1266 sqlite3XPrintf(p, "%s", "expr");
1267 break;
1270 if( zOp ){
1271 sqlite3XPrintf(p, "%s(", zOp);
1272 displayP4Expr(p, pExpr->pLeft);
1273 if( pExpr->pRight ){
1274 sqlite3StrAccumAppend(p, ",", 1);
1275 displayP4Expr(p, pExpr->pRight);
1277 sqlite3StrAccumAppend(p, ")", 1);
1280 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1283 #if VDBE_DISPLAY_P4
1285 ** Compute a string that describes the P4 parameter for an opcode.
1286 ** Use zTemp for any required temporary buffer space.
1288 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1289 char *zP4 = zTemp;
1290 StrAccum x;
1291 assert( nTemp>=20 );
1292 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1293 switch( pOp->p4type ){
1294 case P4_KEYINFO: {
1295 int j;
1296 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1297 assert( pKeyInfo->aSortOrder!=0 );
1298 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
1299 for(j=0; j<pKeyInfo->nField; j++){
1300 CollSeq *pColl = pKeyInfo->aColl[j];
1301 const char *zColl = pColl ? pColl->zName : "";
1302 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1303 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1305 sqlite3StrAccumAppend(&x, ")", 1);
1306 break;
1308 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1309 case P4_EXPR: {
1310 displayP4Expr(&x, pOp->p4.pExpr);
1311 break;
1313 #endif
1314 case P4_COLLSEQ: {
1315 CollSeq *pColl = pOp->p4.pColl;
1316 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1317 break;
1319 case P4_FUNCDEF: {
1320 FuncDef *pDef = pOp->p4.pFunc;
1321 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1322 break;
1324 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1325 case P4_FUNCCTX: {
1326 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1327 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1328 break;
1330 #endif
1331 case P4_INT64: {
1332 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1333 break;
1335 case P4_INT32: {
1336 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1337 break;
1339 case P4_REAL: {
1340 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1341 break;
1343 case P4_MEM: {
1344 Mem *pMem = pOp->p4.pMem;
1345 if( pMem->flags & MEM_Str ){
1346 zP4 = pMem->z;
1347 }else if( pMem->flags & MEM_Int ){
1348 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1349 }else if( pMem->flags & MEM_Real ){
1350 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1351 }else if( pMem->flags & MEM_Null ){
1352 zP4 = "NULL";
1353 }else{
1354 assert( pMem->flags & MEM_Blob );
1355 zP4 = "(blob)";
1357 break;
1359 #ifndef SQLITE_OMIT_VIRTUALTABLE
1360 case P4_VTAB: {
1361 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1362 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1363 break;
1365 #endif
1366 case P4_INTARRAY: {
1367 int i;
1368 int *ai = pOp->p4.ai;
1369 int n = ai[0]; /* The first element of an INTARRAY is always the
1370 ** count of the number of elements to follow */
1371 for(i=1; i<n; i++){
1372 sqlite3XPrintf(&x, ",%d", ai[i]);
1374 zTemp[0] = '[';
1375 sqlite3StrAccumAppend(&x, "]", 1);
1376 break;
1378 case P4_SUBPROGRAM: {
1379 sqlite3XPrintf(&x, "program");
1380 break;
1382 case P4_ADVANCE: {
1383 zTemp[0] = 0;
1384 break;
1386 case P4_TABLE: {
1387 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1388 break;
1390 default: {
1391 zP4 = pOp->p4.z;
1392 if( zP4==0 ){
1393 zP4 = zTemp;
1394 zTemp[0] = 0;
1398 sqlite3StrAccumFinish(&x);
1399 assert( zP4!=0 );
1400 return zP4;
1402 #endif /* VDBE_DISPLAY_P4 */
1405 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1407 ** The prepared statements need to know in advance the complete set of
1408 ** attached databases that will be use. A mask of these databases
1409 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1410 ** p->btreeMask of databases that will require a lock.
1412 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1413 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1414 assert( i<(int)sizeof(p->btreeMask)*8 );
1415 DbMaskSet(p->btreeMask, i);
1416 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1417 DbMaskSet(p->lockMask, i);
1421 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1423 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1424 ** this routine obtains the mutex associated with each BtShared structure
1425 ** that may be accessed by the VM passed as an argument. In doing so it also
1426 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1427 ** that the correct busy-handler callback is invoked if required.
1429 ** If SQLite is not threadsafe but does support shared-cache mode, then
1430 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1431 ** of all of BtShared structures accessible via the database handle
1432 ** associated with the VM.
1434 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1435 ** function is a no-op.
1437 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1438 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1439 ** corresponding to btrees that use shared cache. Then the runtime of
1440 ** this routine is N*N. But as N is rarely more than 1, this should not
1441 ** be a problem.
1443 void sqlite3VdbeEnter(Vdbe *p){
1444 int i;
1445 sqlite3 *db;
1446 Db *aDb;
1447 int nDb;
1448 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1449 db = p->db;
1450 aDb = db->aDb;
1451 nDb = db->nDb;
1452 for(i=0; i<nDb; i++){
1453 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1454 sqlite3BtreeEnter(aDb[i].pBt);
1458 #endif
1460 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1462 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1464 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1465 int i;
1466 sqlite3 *db;
1467 Db *aDb;
1468 int nDb;
1469 db = p->db;
1470 aDb = db->aDb;
1471 nDb = db->nDb;
1472 for(i=0; i<nDb; i++){
1473 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1474 sqlite3BtreeLeave(aDb[i].pBt);
1478 void sqlite3VdbeLeave(Vdbe *p){
1479 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1480 vdbeLeave(p);
1482 #endif
1484 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1486 ** Print a single opcode. This routine is used for debugging only.
1488 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1489 char *zP4;
1490 char zPtr[50];
1491 char zCom[100];
1492 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1493 if( pOut==0 ) pOut = stdout;
1494 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1495 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1496 displayComment(pOp, zP4, zCom, sizeof(zCom));
1497 #else
1498 zCom[0] = 0;
1499 #endif
1500 /* NB: The sqlite3OpcodeName() function is implemented by code created
1501 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1502 ** information from the vdbe.c source text */
1503 fprintf(pOut, zFormat1, pc,
1504 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1505 zCom
1507 fflush(pOut);
1509 #endif
1512 ** Initialize an array of N Mem element.
1514 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1515 while( (N--)>0 ){
1516 p->db = db;
1517 p->flags = flags;
1518 p->szMalloc = 0;
1519 #ifdef SQLITE_DEBUG
1520 p->pScopyFrom = 0;
1521 #endif
1522 p++;
1527 ** Release an array of N Mem elements
1529 static void releaseMemArray(Mem *p, int N){
1530 if( p && N ){
1531 Mem *pEnd = &p[N];
1532 sqlite3 *db = p->db;
1533 if( db->pnBytesFreed ){
1535 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1536 }while( (++p)<pEnd );
1537 return;
1540 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1541 assert( sqlite3VdbeCheckMemInvariants(p) );
1543 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1544 ** that takes advantage of the fact that the memory cell value is
1545 ** being set to NULL after releasing any dynamic resources.
1547 ** The justification for duplicating code is that according to
1548 ** callgrind, this causes a certain test case to hit the CPU 4.7
1549 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1550 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1551 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1552 ** with no indexes using a single prepared INSERT statement, bind()
1553 ** and reset(). Inserts are grouped into a transaction.
1555 testcase( p->flags & MEM_Agg );
1556 testcase( p->flags & MEM_Dyn );
1557 testcase( p->flags & MEM_Frame );
1558 testcase( p->flags & MEM_RowSet );
1559 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1560 sqlite3VdbeMemRelease(p);
1561 }else if( p->szMalloc ){
1562 sqlite3DbFreeNN(db, p->zMalloc);
1563 p->szMalloc = 0;
1566 p->flags = MEM_Undefined;
1567 }while( (++p)<pEnd );
1572 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1573 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1575 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1576 int i;
1577 Mem *aMem = VdbeFrameMem(p);
1578 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1579 for(i=0; i<p->nChildCsr; i++){
1580 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1582 releaseMemArray(aMem, p->nChildMem);
1583 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1584 sqlite3DbFree(p->v->db, p);
1587 #ifndef SQLITE_OMIT_EXPLAIN
1589 ** Give a listing of the program in the virtual machine.
1591 ** The interface is the same as sqlite3VdbeExec(). But instead of
1592 ** running the code, it invokes the callback once for each instruction.
1593 ** This feature is used to implement "EXPLAIN".
1595 ** When p->explain==1, each instruction is listed. When
1596 ** p->explain==2, only OP_Explain instructions are listed and these
1597 ** are shown in a different format. p->explain==2 is used to implement
1598 ** EXPLAIN QUERY PLAN.
1600 ** When p->explain==1, first the main program is listed, then each of
1601 ** the trigger subprograms are listed one by one.
1603 int sqlite3VdbeList(
1604 Vdbe *p /* The VDBE */
1606 int nRow; /* Stop when row count reaches this */
1607 int nSub = 0; /* Number of sub-vdbes seen so far */
1608 SubProgram **apSub = 0; /* Array of sub-vdbes */
1609 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1610 sqlite3 *db = p->db; /* The database connection */
1611 int i; /* Loop counter */
1612 int rc = SQLITE_OK; /* Return code */
1613 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1615 assert( p->explain );
1616 assert( p->magic==VDBE_MAGIC_RUN );
1617 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1619 /* Even though this opcode does not use dynamic strings for
1620 ** the result, result columns may become dynamic if the user calls
1621 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1623 releaseMemArray(pMem, 8);
1624 p->pResultSet = 0;
1626 if( p->rc==SQLITE_NOMEM_BKPT ){
1627 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1628 ** sqlite3_column_text16() failed. */
1629 sqlite3OomFault(db);
1630 return SQLITE_ERROR;
1633 /* When the number of output rows reaches nRow, that means the
1634 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1635 ** nRow is the sum of the number of rows in the main program, plus
1636 ** the sum of the number of rows in all trigger subprograms encountered
1637 ** so far. The nRow value will increase as new trigger subprograms are
1638 ** encountered, but p->pc will eventually catch up to nRow.
1640 nRow = p->nOp;
1641 if( p->explain==1 ){
1642 /* The first 8 memory cells are used for the result set. So we will
1643 ** commandeer the 9th cell to use as storage for an array of pointers
1644 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1645 ** cells. */
1646 assert( p->nMem>9 );
1647 pSub = &p->aMem[9];
1648 if( pSub->flags&MEM_Blob ){
1649 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1650 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1651 nSub = pSub->n/sizeof(Vdbe*);
1652 apSub = (SubProgram **)pSub->z;
1654 for(i=0; i<nSub; i++){
1655 nRow += apSub[i]->nOp;
1660 i = p->pc++;
1661 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1662 if( i>=nRow ){
1663 p->rc = SQLITE_OK;
1664 rc = SQLITE_DONE;
1665 }else if( db->u1.isInterrupted ){
1666 p->rc = SQLITE_INTERRUPT;
1667 rc = SQLITE_ERROR;
1668 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1669 }else{
1670 char *zP4;
1671 Op *pOp;
1672 if( i<p->nOp ){
1673 /* The output line number is small enough that we are still in the
1674 ** main program. */
1675 pOp = &p->aOp[i];
1676 }else{
1677 /* We are currently listing subprograms. Figure out which one and
1678 ** pick up the appropriate opcode. */
1679 int j;
1680 i -= p->nOp;
1681 for(j=0; i>=apSub[j]->nOp; j++){
1682 i -= apSub[j]->nOp;
1684 pOp = &apSub[j]->aOp[i];
1686 if( p->explain==1 ){
1687 pMem->flags = MEM_Int;
1688 pMem->u.i = i; /* Program counter */
1689 pMem++;
1691 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1692 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1693 assert( pMem->z!=0 );
1694 pMem->n = sqlite3Strlen30(pMem->z);
1695 pMem->enc = SQLITE_UTF8;
1696 pMem++;
1698 /* When an OP_Program opcode is encounter (the only opcode that has
1699 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1700 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1701 ** has not already been seen.
1703 if( pOp->p4type==P4_SUBPROGRAM ){
1704 int nByte = (nSub+1)*sizeof(SubProgram*);
1705 int j;
1706 for(j=0; j<nSub; j++){
1707 if( apSub[j]==pOp->p4.pProgram ) break;
1709 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1710 apSub = (SubProgram **)pSub->z;
1711 apSub[nSub++] = pOp->p4.pProgram;
1712 pSub->flags |= MEM_Blob;
1713 pSub->n = nSub*sizeof(SubProgram*);
1718 pMem->flags = MEM_Int;
1719 pMem->u.i = pOp->p1; /* P1 */
1720 pMem++;
1722 pMem->flags = MEM_Int;
1723 pMem->u.i = pOp->p2; /* P2 */
1724 pMem++;
1726 pMem->flags = MEM_Int;
1727 pMem->u.i = pOp->p3; /* P3 */
1728 pMem++;
1730 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1731 assert( p->db->mallocFailed );
1732 return SQLITE_ERROR;
1734 pMem->flags = MEM_Str|MEM_Term;
1735 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1736 if( zP4!=pMem->z ){
1737 pMem->n = 0;
1738 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1739 }else{
1740 assert( pMem->z!=0 );
1741 pMem->n = sqlite3Strlen30(pMem->z);
1742 pMem->enc = SQLITE_UTF8;
1744 pMem++;
1746 if( p->explain==1 ){
1747 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1748 assert( p->db->mallocFailed );
1749 return SQLITE_ERROR;
1751 pMem->flags = MEM_Str|MEM_Term;
1752 pMem->n = 2;
1753 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1754 pMem->enc = SQLITE_UTF8;
1755 pMem++;
1757 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1758 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1759 assert( p->db->mallocFailed );
1760 return SQLITE_ERROR;
1762 pMem->flags = MEM_Str|MEM_Term;
1763 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1764 pMem->enc = SQLITE_UTF8;
1765 #else
1766 pMem->flags = MEM_Null; /* Comment */
1767 #endif
1770 p->nResColumn = 8 - 4*(p->explain-1);
1771 p->pResultSet = &p->aMem[1];
1772 p->rc = SQLITE_OK;
1773 rc = SQLITE_ROW;
1775 return rc;
1777 #endif /* SQLITE_OMIT_EXPLAIN */
1779 #ifdef SQLITE_DEBUG
1781 ** Print the SQL that was used to generate a VDBE program.
1783 void sqlite3VdbePrintSql(Vdbe *p){
1784 const char *z = 0;
1785 if( p->zSql ){
1786 z = p->zSql;
1787 }else if( p->nOp>=1 ){
1788 const VdbeOp *pOp = &p->aOp[0];
1789 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1790 z = pOp->p4.z;
1791 while( sqlite3Isspace(*z) ) z++;
1794 if( z ) printf("SQL: [%s]\n", z);
1796 #endif
1798 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1800 ** Print an IOTRACE message showing SQL content.
1802 void sqlite3VdbeIOTraceSql(Vdbe *p){
1803 int nOp = p->nOp;
1804 VdbeOp *pOp;
1805 if( sqlite3IoTrace==0 ) return;
1806 if( nOp<1 ) return;
1807 pOp = &p->aOp[0];
1808 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1809 int i, j;
1810 char z[1000];
1811 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1812 for(i=0; sqlite3Isspace(z[i]); i++){}
1813 for(j=0; z[i]; i++){
1814 if( sqlite3Isspace(z[i]) ){
1815 if( z[i-1]!=' ' ){
1816 z[j++] = ' ';
1818 }else{
1819 z[j++] = z[i];
1822 z[j] = 0;
1823 sqlite3IoTrace("SQL %s\n", z);
1826 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1828 /* An instance of this object describes bulk memory available for use
1829 ** by subcomponents of a prepared statement. Space is allocated out
1830 ** of a ReusableSpace object by the allocSpace() routine below.
1832 struct ReusableSpace {
1833 u8 *pSpace; /* Available memory */
1834 int nFree; /* Bytes of available memory */
1835 int nNeeded; /* Total bytes that could not be allocated */
1838 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1839 ** from the ReusableSpace object. Return a pointer to the allocated
1840 ** memory on success. If insufficient memory is available in the
1841 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1842 ** value by the amount needed and return NULL.
1844 ** If pBuf is not initially NULL, that means that the memory has already
1845 ** been allocated by a prior call to this routine, so just return a copy
1846 ** of pBuf and leave ReusableSpace unchanged.
1848 ** This allocator is employed to repurpose unused slots at the end of the
1849 ** opcode array of prepared state for other memory needs of the prepared
1850 ** statement.
1852 static void *allocSpace(
1853 struct ReusableSpace *p, /* Bulk memory available for allocation */
1854 void *pBuf, /* Pointer to a prior allocation */
1855 int nByte /* Bytes of memory needed */
1857 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1858 if( pBuf==0 ){
1859 nByte = ROUND8(nByte);
1860 if( nByte <= p->nFree ){
1861 p->nFree -= nByte;
1862 pBuf = &p->pSpace[p->nFree];
1863 }else{
1864 p->nNeeded += nByte;
1867 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1868 return pBuf;
1872 ** Rewind the VDBE back to the beginning in preparation for
1873 ** running it.
1875 void sqlite3VdbeRewind(Vdbe *p){
1876 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1877 int i;
1878 #endif
1879 assert( p!=0 );
1880 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1882 /* There should be at least one opcode.
1884 assert( p->nOp>0 );
1886 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1887 p->magic = VDBE_MAGIC_RUN;
1889 #ifdef SQLITE_DEBUG
1890 for(i=0; i<p->nMem; i++){
1891 assert( p->aMem[i].db==p->db );
1893 #endif
1894 p->pc = -1;
1895 p->rc = SQLITE_OK;
1896 p->errorAction = OE_Abort;
1897 p->nChange = 0;
1898 p->cacheCtr = 1;
1899 p->minWriteFileFormat = 255;
1900 p->iStatement = 0;
1901 p->nFkConstraint = 0;
1902 #ifdef VDBE_PROFILE
1903 for(i=0; i<p->nOp; i++){
1904 p->aOp[i].cnt = 0;
1905 p->aOp[i].cycles = 0;
1907 #endif
1911 ** Prepare a virtual machine for execution for the first time after
1912 ** creating the virtual machine. This involves things such
1913 ** as allocating registers and initializing the program counter.
1914 ** After the VDBE has be prepped, it can be executed by one or more
1915 ** calls to sqlite3VdbeExec().
1917 ** This function may be called exactly once on each virtual machine.
1918 ** After this routine is called the VM has been "packaged" and is ready
1919 ** to run. After this routine is called, further calls to
1920 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1921 ** the Vdbe from the Parse object that helped generate it so that the
1922 ** the Vdbe becomes an independent entity and the Parse object can be
1923 ** destroyed.
1925 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1926 ** to its initial state after it has been run.
1928 void sqlite3VdbeMakeReady(
1929 Vdbe *p, /* The VDBE */
1930 Parse *pParse /* Parsing context */
1932 sqlite3 *db; /* The database connection */
1933 int nVar; /* Number of parameters */
1934 int nMem; /* Number of VM memory registers */
1935 int nCursor; /* Number of cursors required */
1936 int nArg; /* Number of arguments in subprograms */
1937 int n; /* Loop counter */
1938 struct ReusableSpace x; /* Reusable bulk memory */
1940 assert( p!=0 );
1941 assert( p->nOp>0 );
1942 assert( pParse!=0 );
1943 assert( p->magic==VDBE_MAGIC_INIT );
1944 assert( pParse==p->pParse );
1945 db = p->db;
1946 assert( db->mallocFailed==0 );
1947 nVar = pParse->nVar;
1948 nMem = pParse->nMem;
1949 nCursor = pParse->nTab;
1950 nArg = pParse->nMaxArg;
1952 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1953 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1954 ** space at the end of aMem[] for cursors 1 and greater.
1955 ** See also: allocateCursor().
1957 nMem += nCursor;
1958 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
1960 /* Figure out how much reusable memory is available at the end of the
1961 ** opcode array. This extra memory will be reallocated for other elements
1962 ** of the prepared statement.
1964 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1965 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1966 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1967 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1968 assert( x.nFree>=0 );
1969 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1971 resolveP2Values(p, &nArg);
1972 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1973 if( pParse->explain && nMem<10 ){
1974 nMem = 10;
1976 p->expired = 0;
1978 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1979 ** passes. On the first pass, we try to reuse unused memory at the
1980 ** end of the opcode array. If we are unable to satisfy all memory
1981 ** requirements by reusing the opcode array tail, then the second
1982 ** pass will fill in the remainder using a fresh memory allocation.
1984 ** This two-pass approach that reuses as much memory as possible from
1985 ** the leftover memory at the end of the opcode array. This can significantly
1986 ** reduce the amount of memory held by a prepared statement.
1988 do {
1989 x.nNeeded = 0;
1990 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1991 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1992 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1993 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1994 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1995 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
1996 #endif
1997 if( x.nNeeded==0 ) break;
1998 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
1999 x.nFree = x.nNeeded;
2000 }while( !db->mallocFailed );
2002 p->pVList = pParse->pVList;
2003 pParse->pVList = 0;
2004 p->explain = pParse->explain;
2005 if( db->mallocFailed ){
2006 p->nVar = 0;
2007 p->nCursor = 0;
2008 p->nMem = 0;
2009 }else{
2010 p->nCursor = nCursor;
2011 p->nVar = (ynVar)nVar;
2012 initMemArray(p->aVar, nVar, db, MEM_Null);
2013 p->nMem = nMem;
2014 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2015 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2016 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2017 memset(p->anExec, 0, p->nOp*sizeof(i64));
2018 #endif
2020 sqlite3VdbeRewind(p);
2024 ** Close a VDBE cursor and release all the resources that cursor
2025 ** happens to hold.
2027 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2028 if( pCx==0 ){
2029 return;
2031 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2032 switch( pCx->eCurType ){
2033 case CURTYPE_SORTER: {
2034 sqlite3VdbeSorterClose(p->db, pCx);
2035 break;
2037 case CURTYPE_BTREE: {
2038 if( pCx->pBtx ){
2039 sqlite3BtreeClose(pCx->pBtx);
2040 /* The pCx->pCursor will be close automatically, if it exists, by
2041 ** the call above. */
2042 }else{
2043 assert( pCx->uc.pCursor!=0 );
2044 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2046 break;
2048 #ifndef SQLITE_OMIT_VIRTUALTABLE
2049 case CURTYPE_VTAB: {
2050 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2051 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2052 assert( pVCur->pVtab->nRef>0 );
2053 pVCur->pVtab->nRef--;
2054 pModule->xClose(pVCur);
2055 break;
2057 #endif
2062 ** Close all cursors in the current frame.
2064 static void closeCursorsInFrame(Vdbe *p){
2065 if( p->apCsr ){
2066 int i;
2067 for(i=0; i<p->nCursor; i++){
2068 VdbeCursor *pC = p->apCsr[i];
2069 if( pC ){
2070 sqlite3VdbeFreeCursor(p, pC);
2071 p->apCsr[i] = 0;
2078 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2079 ** is used, for example, when a trigger sub-program is halted to restore
2080 ** control to the main program.
2082 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2083 Vdbe *v = pFrame->v;
2084 closeCursorsInFrame(v);
2085 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2086 v->anExec = pFrame->anExec;
2087 #endif
2088 v->aOp = pFrame->aOp;
2089 v->nOp = pFrame->nOp;
2090 v->aMem = pFrame->aMem;
2091 v->nMem = pFrame->nMem;
2092 v->apCsr = pFrame->apCsr;
2093 v->nCursor = pFrame->nCursor;
2094 v->db->lastRowid = pFrame->lastRowid;
2095 v->nChange = pFrame->nChange;
2096 v->db->nChange = pFrame->nDbChange;
2097 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2098 v->pAuxData = pFrame->pAuxData;
2099 pFrame->pAuxData = 0;
2100 return pFrame->pc;
2104 ** Close all cursors.
2106 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2107 ** cell array. This is necessary as the memory cell array may contain
2108 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2109 ** open cursors.
2111 static void closeAllCursors(Vdbe *p){
2112 if( p->pFrame ){
2113 VdbeFrame *pFrame;
2114 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2115 sqlite3VdbeFrameRestore(pFrame);
2116 p->pFrame = 0;
2117 p->nFrame = 0;
2119 assert( p->nFrame==0 );
2120 closeCursorsInFrame(p);
2121 if( p->aMem ){
2122 releaseMemArray(p->aMem, p->nMem);
2124 while( p->pDelFrame ){
2125 VdbeFrame *pDel = p->pDelFrame;
2126 p->pDelFrame = pDel->pParent;
2127 sqlite3VdbeFrameDelete(pDel);
2130 /* Delete any auxdata allocations made by the VM */
2131 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2132 assert( p->pAuxData==0 );
2136 ** Clean up the VM after a single run.
2138 static void Cleanup(Vdbe *p){
2139 sqlite3 *db = p->db;
2141 #ifdef SQLITE_DEBUG
2142 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2143 ** Vdbe.aMem[] arrays have already been cleaned up. */
2144 int i;
2145 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2146 if( p->aMem ){
2147 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2149 #endif
2151 sqlite3DbFree(db, p->zErrMsg);
2152 p->zErrMsg = 0;
2153 p->pResultSet = 0;
2157 ** Set the number of result columns that will be returned by this SQL
2158 ** statement. This is now set at compile time, rather than during
2159 ** execution of the vdbe program so that sqlite3_column_count() can
2160 ** be called on an SQL statement before sqlite3_step().
2162 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2163 Mem *pColName;
2164 int n;
2165 sqlite3 *db = p->db;
2167 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2168 sqlite3DbFree(db, p->aColName);
2169 n = nResColumn*COLNAME_N;
2170 p->nResColumn = (u16)nResColumn;
2171 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2172 if( p->aColName==0 ) return;
2173 initMemArray(p->aColName, n, p->db, MEM_Null);
2177 ** Set the name of the idx'th column to be returned by the SQL statement.
2178 ** zName must be a pointer to a nul terminated string.
2180 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2182 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2183 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2184 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2186 int sqlite3VdbeSetColName(
2187 Vdbe *p, /* Vdbe being configured */
2188 int idx, /* Index of column zName applies to */
2189 int var, /* One of the COLNAME_* constants */
2190 const char *zName, /* Pointer to buffer containing name */
2191 void (*xDel)(void*) /* Memory management strategy for zName */
2193 int rc;
2194 Mem *pColName;
2195 assert( idx<p->nResColumn );
2196 assert( var<COLNAME_N );
2197 if( p->db->mallocFailed ){
2198 assert( !zName || xDel!=SQLITE_DYNAMIC );
2199 return SQLITE_NOMEM_BKPT;
2201 assert( p->aColName!=0 );
2202 pColName = &(p->aColName[idx+var*p->nResColumn]);
2203 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2204 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2205 return rc;
2209 ** A read or write transaction may or may not be active on database handle
2210 ** db. If a transaction is active, commit it. If there is a
2211 ** write-transaction spanning more than one database file, this routine
2212 ** takes care of the master journal trickery.
2214 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2215 int i;
2216 int nTrans = 0; /* Number of databases with an active write-transaction
2217 ** that are candidates for a two-phase commit using a
2218 ** master-journal */
2219 int rc = SQLITE_OK;
2220 int needXcommit = 0;
2222 #ifdef SQLITE_OMIT_VIRTUALTABLE
2223 /* With this option, sqlite3VtabSync() is defined to be simply
2224 ** SQLITE_OK so p is not used.
2226 UNUSED_PARAMETER(p);
2227 #endif
2229 /* Before doing anything else, call the xSync() callback for any
2230 ** virtual module tables written in this transaction. This has to
2231 ** be done before determining whether a master journal file is
2232 ** required, as an xSync() callback may add an attached database
2233 ** to the transaction.
2235 rc = sqlite3VtabSync(db, p);
2237 /* This loop determines (a) if the commit hook should be invoked and
2238 ** (b) how many database files have open write transactions, not
2239 ** including the temp database. (b) is important because if more than
2240 ** one database file has an open write transaction, a master journal
2241 ** file is required for an atomic commit.
2243 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2244 Btree *pBt = db->aDb[i].pBt;
2245 if( sqlite3BtreeIsInTrans(pBt) ){
2246 /* Whether or not a database might need a master journal depends upon
2247 ** its journal mode (among other things). This matrix determines which
2248 ** journal modes use a master journal and which do not */
2249 static const u8 aMJNeeded[] = {
2250 /* DELETE */ 1,
2251 /* PERSIST */ 1,
2252 /* OFF */ 0,
2253 /* TRUNCATE */ 1,
2254 /* MEMORY */ 0,
2255 /* WAL */ 0
2257 Pager *pPager; /* Pager associated with pBt */
2258 needXcommit = 1;
2259 sqlite3BtreeEnter(pBt);
2260 pPager = sqlite3BtreePager(pBt);
2261 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2262 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2264 assert( i!=1 );
2265 nTrans++;
2267 rc = sqlite3PagerExclusiveLock(pPager);
2268 sqlite3BtreeLeave(pBt);
2271 if( rc!=SQLITE_OK ){
2272 return rc;
2275 /* If there are any write-transactions at all, invoke the commit hook */
2276 if( needXcommit && db->xCommitCallback ){
2277 rc = db->xCommitCallback(db->pCommitArg);
2278 if( rc ){
2279 return SQLITE_CONSTRAINT_COMMITHOOK;
2283 /* The simple case - no more than one database file (not counting the
2284 ** TEMP database) has a transaction active. There is no need for the
2285 ** master-journal.
2287 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2288 ** string, it means the main database is :memory: or a temp file. In
2289 ** that case we do not support atomic multi-file commits, so use the
2290 ** simple case then too.
2292 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2293 || nTrans<=1
2295 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2296 Btree *pBt = db->aDb[i].pBt;
2297 if( pBt ){
2298 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2302 /* Do the commit only if all databases successfully complete phase 1.
2303 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2304 ** IO error while deleting or truncating a journal file. It is unlikely,
2305 ** but could happen. In this case abandon processing and return the error.
2307 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2308 Btree *pBt = db->aDb[i].pBt;
2309 if( pBt ){
2310 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2313 if( rc==SQLITE_OK ){
2314 sqlite3VtabCommit(db);
2318 /* The complex case - There is a multi-file write-transaction active.
2319 ** This requires a master journal file to ensure the transaction is
2320 ** committed atomically.
2322 #ifndef SQLITE_OMIT_DISKIO
2323 else{
2324 sqlite3_vfs *pVfs = db->pVfs;
2325 char *zMaster = 0; /* File-name for the master journal */
2326 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2327 sqlite3_file *pMaster = 0;
2328 i64 offset = 0;
2329 int res;
2330 int retryCount = 0;
2331 int nMainFile;
2333 /* Select a master journal file name */
2334 nMainFile = sqlite3Strlen30(zMainFile);
2335 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2336 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2337 do {
2338 u32 iRandom;
2339 if( retryCount ){
2340 if( retryCount>100 ){
2341 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2342 sqlite3OsDelete(pVfs, zMaster, 0);
2343 break;
2344 }else if( retryCount==1 ){
2345 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2348 retryCount++;
2349 sqlite3_randomness(sizeof(iRandom), &iRandom);
2350 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2351 (iRandom>>8)&0xffffff, iRandom&0xff);
2352 /* The antipenultimate character of the master journal name must
2353 ** be "9" to avoid name collisions when using 8+3 filenames. */
2354 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2355 sqlite3FileSuffix3(zMainFile, zMaster);
2356 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2357 }while( rc==SQLITE_OK && res );
2358 if( rc==SQLITE_OK ){
2359 /* Open the master journal. */
2360 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2361 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2362 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2365 if( rc!=SQLITE_OK ){
2366 sqlite3DbFree(db, zMaster);
2367 return rc;
2370 /* Write the name of each database file in the transaction into the new
2371 ** master journal file. If an error occurs at this point close
2372 ** and delete the master journal file. All the individual journal files
2373 ** still have 'null' as the master journal pointer, so they will roll
2374 ** back independently if a failure occurs.
2376 for(i=0; i<db->nDb; i++){
2377 Btree *pBt = db->aDb[i].pBt;
2378 if( sqlite3BtreeIsInTrans(pBt) ){
2379 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2380 if( zFile==0 ){
2381 continue; /* Ignore TEMP and :memory: databases */
2383 assert( zFile[0]!=0 );
2384 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2385 offset += sqlite3Strlen30(zFile)+1;
2386 if( rc!=SQLITE_OK ){
2387 sqlite3OsCloseFree(pMaster);
2388 sqlite3OsDelete(pVfs, zMaster, 0);
2389 sqlite3DbFree(db, zMaster);
2390 return rc;
2395 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2396 ** flag is set this is not required.
2398 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2399 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2401 sqlite3OsCloseFree(pMaster);
2402 sqlite3OsDelete(pVfs, zMaster, 0);
2403 sqlite3DbFree(db, zMaster);
2404 return rc;
2407 /* Sync all the db files involved in the transaction. The same call
2408 ** sets the master journal pointer in each individual journal. If
2409 ** an error occurs here, do not delete the master journal file.
2411 ** If the error occurs during the first call to
2412 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2413 ** master journal file will be orphaned. But we cannot delete it,
2414 ** in case the master journal file name was written into the journal
2415 ** file before the failure occurred.
2417 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2418 Btree *pBt = db->aDb[i].pBt;
2419 if( pBt ){
2420 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2423 sqlite3OsCloseFree(pMaster);
2424 assert( rc!=SQLITE_BUSY );
2425 if( rc!=SQLITE_OK ){
2426 sqlite3DbFree(db, zMaster);
2427 return rc;
2430 /* Delete the master journal file. This commits the transaction. After
2431 ** doing this the directory is synced again before any individual
2432 ** transaction files are deleted.
2434 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2435 sqlite3DbFree(db, zMaster);
2436 zMaster = 0;
2437 if( rc ){
2438 return rc;
2441 /* All files and directories have already been synced, so the following
2442 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2443 ** deleting or truncating journals. If something goes wrong while
2444 ** this is happening we don't really care. The integrity of the
2445 ** transaction is already guaranteed, but some stray 'cold' journals
2446 ** may be lying around. Returning an error code won't help matters.
2448 disable_simulated_io_errors();
2449 sqlite3BeginBenignMalloc();
2450 for(i=0; i<db->nDb; i++){
2451 Btree *pBt = db->aDb[i].pBt;
2452 if( pBt ){
2453 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2456 sqlite3EndBenignMalloc();
2457 enable_simulated_io_errors();
2459 sqlite3VtabCommit(db);
2461 #endif
2463 return rc;
2467 ** This routine checks that the sqlite3.nVdbeActive count variable
2468 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2469 ** currently active. An assertion fails if the two counts do not match.
2470 ** This is an internal self-check only - it is not an essential processing
2471 ** step.
2473 ** This is a no-op if NDEBUG is defined.
2475 #ifndef NDEBUG
2476 static void checkActiveVdbeCnt(sqlite3 *db){
2477 Vdbe *p;
2478 int cnt = 0;
2479 int nWrite = 0;
2480 int nRead = 0;
2481 p = db->pVdbe;
2482 while( p ){
2483 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2484 cnt++;
2485 if( p->readOnly==0 ) nWrite++;
2486 if( p->bIsReader ) nRead++;
2488 p = p->pNext;
2490 assert( cnt==db->nVdbeActive );
2491 assert( nWrite==db->nVdbeWrite );
2492 assert( nRead==db->nVdbeRead );
2494 #else
2495 #define checkActiveVdbeCnt(x)
2496 #endif
2499 ** If the Vdbe passed as the first argument opened a statement-transaction,
2500 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2501 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2502 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2503 ** statement transaction is committed.
2505 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2506 ** Otherwise SQLITE_OK.
2508 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2509 sqlite3 *const db = p->db;
2510 int rc = SQLITE_OK;
2511 int i;
2512 const int iSavepoint = p->iStatement-1;
2514 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2515 assert( db->nStatement>0 );
2516 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2518 for(i=0; i<db->nDb; i++){
2519 int rc2 = SQLITE_OK;
2520 Btree *pBt = db->aDb[i].pBt;
2521 if( pBt ){
2522 if( eOp==SAVEPOINT_ROLLBACK ){
2523 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2525 if( rc2==SQLITE_OK ){
2526 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2528 if( rc==SQLITE_OK ){
2529 rc = rc2;
2533 db->nStatement--;
2534 p->iStatement = 0;
2536 if( rc==SQLITE_OK ){
2537 if( eOp==SAVEPOINT_ROLLBACK ){
2538 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2540 if( rc==SQLITE_OK ){
2541 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2545 /* If the statement transaction is being rolled back, also restore the
2546 ** database handles deferred constraint counter to the value it had when
2547 ** the statement transaction was opened. */
2548 if( eOp==SAVEPOINT_ROLLBACK ){
2549 db->nDeferredCons = p->nStmtDefCons;
2550 db->nDeferredImmCons = p->nStmtDefImmCons;
2552 return rc;
2554 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2555 if( p->db->nStatement && p->iStatement ){
2556 return vdbeCloseStatement(p, eOp);
2558 return SQLITE_OK;
2563 ** This function is called when a transaction opened by the database
2564 ** handle associated with the VM passed as an argument is about to be
2565 ** committed. If there are outstanding deferred foreign key constraint
2566 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2568 ** If there are outstanding FK violations and this function returns
2569 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2570 ** and write an error message to it. Then return SQLITE_ERROR.
2572 #ifndef SQLITE_OMIT_FOREIGN_KEY
2573 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2574 sqlite3 *db = p->db;
2575 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2576 || (!deferred && p->nFkConstraint>0)
2578 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2579 p->errorAction = OE_Abort;
2580 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2581 return SQLITE_ERROR;
2583 return SQLITE_OK;
2585 #endif
2588 ** This routine is called the when a VDBE tries to halt. If the VDBE
2589 ** has made changes and is in autocommit mode, then commit those
2590 ** changes. If a rollback is needed, then do the rollback.
2592 ** This routine is the only way to move the state of a VM from
2593 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2594 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2596 ** Return an error code. If the commit could not complete because of
2597 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2598 ** means the close did not happen and needs to be repeated.
2600 int sqlite3VdbeHalt(Vdbe *p){
2601 int rc; /* Used to store transient return codes */
2602 sqlite3 *db = p->db;
2604 /* This function contains the logic that determines if a statement or
2605 ** transaction will be committed or rolled back as a result of the
2606 ** execution of this virtual machine.
2608 ** If any of the following errors occur:
2610 ** SQLITE_NOMEM
2611 ** SQLITE_IOERR
2612 ** SQLITE_FULL
2613 ** SQLITE_INTERRUPT
2615 ** Then the internal cache might have been left in an inconsistent
2616 ** state. We need to rollback the statement transaction, if there is
2617 ** one, or the complete transaction if there is no statement transaction.
2620 if( p->magic!=VDBE_MAGIC_RUN ){
2621 return SQLITE_OK;
2623 if( db->mallocFailed ){
2624 p->rc = SQLITE_NOMEM_BKPT;
2626 closeAllCursors(p);
2627 checkActiveVdbeCnt(db);
2629 /* No commit or rollback needed if the program never started or if the
2630 ** SQL statement does not read or write a database file. */
2631 if( p->pc>=0 && p->bIsReader ){
2632 int mrc; /* Primary error code from p->rc */
2633 int eStatementOp = 0;
2634 int isSpecialError; /* Set to true if a 'special' error */
2636 /* Lock all btrees used by the statement */
2637 sqlite3VdbeEnter(p);
2639 /* Check for one of the special errors */
2640 mrc = p->rc & 0xff;
2641 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2642 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2643 if( isSpecialError ){
2644 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2645 ** no rollback is necessary. Otherwise, at least a savepoint
2646 ** transaction must be rolled back to restore the database to a
2647 ** consistent state.
2649 ** Even if the statement is read-only, it is important to perform
2650 ** a statement or transaction rollback operation. If the error
2651 ** occurred while writing to the journal, sub-journal or database
2652 ** file as part of an effort to free up cache space (see function
2653 ** pagerStress() in pager.c), the rollback is required to restore
2654 ** the pager to a consistent state.
2656 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2657 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2658 eStatementOp = SAVEPOINT_ROLLBACK;
2659 }else{
2660 /* We are forced to roll back the active transaction. Before doing
2661 ** so, abort any other statements this handle currently has active.
2663 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2664 sqlite3CloseSavepoints(db);
2665 db->autoCommit = 1;
2666 p->nChange = 0;
2671 /* Check for immediate foreign key violations. */
2672 if( p->rc==SQLITE_OK ){
2673 sqlite3VdbeCheckFk(p, 0);
2676 /* If the auto-commit flag is set and this is the only active writer
2677 ** VM, then we do either a commit or rollback of the current transaction.
2679 ** Note: This block also runs if one of the special errors handled
2680 ** above has occurred.
2682 if( !sqlite3VtabInSync(db)
2683 && db->autoCommit
2684 && db->nVdbeWrite==(p->readOnly==0)
2686 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2687 rc = sqlite3VdbeCheckFk(p, 1);
2688 if( rc!=SQLITE_OK ){
2689 if( NEVER(p->readOnly) ){
2690 sqlite3VdbeLeave(p);
2691 return SQLITE_ERROR;
2693 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2694 }else{
2695 /* The auto-commit flag is true, the vdbe program was successful
2696 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2697 ** key constraints to hold up the transaction. This means a commit
2698 ** is required. */
2699 rc = vdbeCommit(db, p);
2701 if( rc==SQLITE_BUSY && p->readOnly ){
2702 sqlite3VdbeLeave(p);
2703 return SQLITE_BUSY;
2704 }else if( rc!=SQLITE_OK ){
2705 p->rc = rc;
2706 sqlite3RollbackAll(db, SQLITE_OK);
2707 p->nChange = 0;
2708 }else{
2709 db->nDeferredCons = 0;
2710 db->nDeferredImmCons = 0;
2711 db->flags &= ~SQLITE_DeferFKs;
2712 sqlite3CommitInternalChanges(db);
2714 }else{
2715 sqlite3RollbackAll(db, SQLITE_OK);
2716 p->nChange = 0;
2718 db->nStatement = 0;
2719 }else if( eStatementOp==0 ){
2720 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2721 eStatementOp = SAVEPOINT_RELEASE;
2722 }else if( p->errorAction==OE_Abort ){
2723 eStatementOp = SAVEPOINT_ROLLBACK;
2724 }else{
2725 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2726 sqlite3CloseSavepoints(db);
2727 db->autoCommit = 1;
2728 p->nChange = 0;
2732 /* If eStatementOp is non-zero, then a statement transaction needs to
2733 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2734 ** do so. If this operation returns an error, and the current statement
2735 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2736 ** current statement error code.
2738 if( eStatementOp ){
2739 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2740 if( rc ){
2741 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2742 p->rc = rc;
2743 sqlite3DbFree(db, p->zErrMsg);
2744 p->zErrMsg = 0;
2746 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2747 sqlite3CloseSavepoints(db);
2748 db->autoCommit = 1;
2749 p->nChange = 0;
2753 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2754 ** has been rolled back, update the database connection change-counter.
2756 if( p->changeCntOn ){
2757 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2758 sqlite3VdbeSetChanges(db, p->nChange);
2759 }else{
2760 sqlite3VdbeSetChanges(db, 0);
2762 p->nChange = 0;
2765 /* Release the locks */
2766 sqlite3VdbeLeave(p);
2769 /* We have successfully halted and closed the VM. Record this fact. */
2770 if( p->pc>=0 ){
2771 db->nVdbeActive--;
2772 if( !p->readOnly ) db->nVdbeWrite--;
2773 if( p->bIsReader ) db->nVdbeRead--;
2774 assert( db->nVdbeActive>=db->nVdbeRead );
2775 assert( db->nVdbeRead>=db->nVdbeWrite );
2776 assert( db->nVdbeWrite>=0 );
2778 p->magic = VDBE_MAGIC_HALT;
2779 checkActiveVdbeCnt(db);
2780 if( db->mallocFailed ){
2781 p->rc = SQLITE_NOMEM_BKPT;
2784 /* If the auto-commit flag is set to true, then any locks that were held
2785 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2786 ** to invoke any required unlock-notify callbacks.
2788 if( db->autoCommit ){
2789 sqlite3ConnectionUnlocked(db);
2792 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2793 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2798 ** Each VDBE holds the result of the most recent sqlite3_step() call
2799 ** in p->rc. This routine sets that result back to SQLITE_OK.
2801 void sqlite3VdbeResetStepResult(Vdbe *p){
2802 p->rc = SQLITE_OK;
2806 ** Copy the error code and error message belonging to the VDBE passed
2807 ** as the first argument to its database handle (so that they will be
2808 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2810 ** This function does not clear the VDBE error code or message, just
2811 ** copies them to the database handle.
2813 int sqlite3VdbeTransferError(Vdbe *p){
2814 sqlite3 *db = p->db;
2815 int rc = p->rc;
2816 if( p->zErrMsg ){
2817 db->bBenignMalloc++;
2818 sqlite3BeginBenignMalloc();
2819 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2820 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2821 sqlite3EndBenignMalloc();
2822 db->bBenignMalloc--;
2823 db->errCode = rc;
2824 }else{
2825 sqlite3Error(db, rc);
2827 return rc;
2830 #ifdef SQLITE_ENABLE_SQLLOG
2832 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2833 ** invoke it.
2835 static void vdbeInvokeSqllog(Vdbe *v){
2836 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2837 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2838 assert( v->db->init.busy==0 );
2839 if( zExpanded ){
2840 sqlite3GlobalConfig.xSqllog(
2841 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2843 sqlite3DbFree(v->db, zExpanded);
2847 #else
2848 # define vdbeInvokeSqllog(x)
2849 #endif
2852 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2853 ** Write any error messages into *pzErrMsg. Return the result code.
2855 ** After this routine is run, the VDBE should be ready to be executed
2856 ** again.
2858 ** To look at it another way, this routine resets the state of the
2859 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2860 ** VDBE_MAGIC_INIT.
2862 int sqlite3VdbeReset(Vdbe *p){
2863 sqlite3 *db;
2864 db = p->db;
2866 /* If the VM did not run to completion or if it encountered an
2867 ** error, then it might not have been halted properly. So halt
2868 ** it now.
2870 sqlite3VdbeHalt(p);
2872 /* If the VDBE has be run even partially, then transfer the error code
2873 ** and error message from the VDBE into the main database structure. But
2874 ** if the VDBE has just been set to run but has not actually executed any
2875 ** instructions yet, leave the main database error information unchanged.
2877 if( p->pc>=0 ){
2878 vdbeInvokeSqllog(p);
2879 sqlite3VdbeTransferError(p);
2880 sqlite3DbFree(db, p->zErrMsg);
2881 p->zErrMsg = 0;
2882 if( p->runOnlyOnce ) p->expired = 1;
2883 }else if( p->rc && p->expired ){
2884 /* The expired flag was set on the VDBE before the first call
2885 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2886 ** called), set the database error in this case as well.
2888 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2889 sqlite3DbFree(db, p->zErrMsg);
2890 p->zErrMsg = 0;
2893 /* Reclaim all memory used by the VDBE
2895 Cleanup(p);
2897 /* Save profiling information from this VDBE run.
2899 #ifdef VDBE_PROFILE
2901 FILE *out = fopen("vdbe_profile.out", "a");
2902 if( out ){
2903 int i;
2904 fprintf(out, "---- ");
2905 for(i=0; i<p->nOp; i++){
2906 fprintf(out, "%02x", p->aOp[i].opcode);
2908 fprintf(out, "\n");
2909 if( p->zSql ){
2910 char c, pc = 0;
2911 fprintf(out, "-- ");
2912 for(i=0; (c = p->zSql[i])!=0; i++){
2913 if( pc=='\n' ) fprintf(out, "-- ");
2914 putc(c, out);
2915 pc = c;
2917 if( pc!='\n' ) fprintf(out, "\n");
2919 for(i=0; i<p->nOp; i++){
2920 char zHdr[100];
2921 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2922 p->aOp[i].cnt,
2923 p->aOp[i].cycles,
2924 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2926 fprintf(out, "%s", zHdr);
2927 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2929 fclose(out);
2932 #endif
2933 p->magic = VDBE_MAGIC_RESET;
2934 return p->rc & db->errMask;
2938 ** Clean up and delete a VDBE after execution. Return an integer which is
2939 ** the result code. Write any error message text into *pzErrMsg.
2941 int sqlite3VdbeFinalize(Vdbe *p){
2942 int rc = SQLITE_OK;
2943 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2944 rc = sqlite3VdbeReset(p);
2945 assert( (rc & p->db->errMask)==rc );
2947 sqlite3VdbeDelete(p);
2948 return rc;
2952 ** If parameter iOp is less than zero, then invoke the destructor for
2953 ** all auxiliary data pointers currently cached by the VM passed as
2954 ** the first argument.
2956 ** Or, if iOp is greater than or equal to zero, then the destructor is
2957 ** only invoked for those auxiliary data pointers created by the user
2958 ** function invoked by the OP_Function opcode at instruction iOp of
2959 ** VM pVdbe, and only then if:
2961 ** * the associated function parameter is the 32nd or later (counting
2962 ** from left to right), or
2964 ** * the corresponding bit in argument mask is clear (where the first
2965 ** function parameter corresponds to bit 0 etc.).
2967 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2968 while( *pp ){
2969 AuxData *pAux = *pp;
2970 if( (iOp<0)
2971 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2973 testcase( pAux->iArg==31 );
2974 if( pAux->xDelete ){
2975 pAux->xDelete(pAux->pAux);
2977 *pp = pAux->pNext;
2978 sqlite3DbFree(db, pAux);
2979 }else{
2980 pp= &pAux->pNext;
2986 ** Free all memory associated with the Vdbe passed as the second argument,
2987 ** except for object itself, which is preserved.
2989 ** The difference between this function and sqlite3VdbeDelete() is that
2990 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2991 ** the database connection and frees the object itself.
2993 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2994 SubProgram *pSub, *pNext;
2995 assert( p->db==0 || p->db==db );
2996 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2997 for(pSub=p->pProgram; pSub; pSub=pNext){
2998 pNext = pSub->pNext;
2999 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3000 sqlite3DbFree(db, pSub);
3002 if( p->magic!=VDBE_MAGIC_INIT ){
3003 releaseMemArray(p->aVar, p->nVar);
3004 sqlite3DbFree(db, p->pVList);
3005 sqlite3DbFree(db, p->pFree);
3007 vdbeFreeOpArray(db, p->aOp, p->nOp);
3008 sqlite3DbFree(db, p->aColName);
3009 sqlite3DbFree(db, p->zSql);
3010 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3012 int i;
3013 for(i=0; i<p->nScan; i++){
3014 sqlite3DbFree(db, p->aScan[i].zName);
3016 sqlite3DbFree(db, p->aScan);
3018 #endif
3022 ** Delete an entire VDBE.
3024 void sqlite3VdbeDelete(Vdbe *p){
3025 sqlite3 *db;
3027 if( NEVER(p==0) ) return;
3028 db = p->db;
3029 assert( sqlite3_mutex_held(db->mutex) );
3030 sqlite3VdbeClearObject(db, p);
3031 if( p->pPrev ){
3032 p->pPrev->pNext = p->pNext;
3033 }else{
3034 assert( db->pVdbe==p );
3035 db->pVdbe = p->pNext;
3037 if( p->pNext ){
3038 p->pNext->pPrev = p->pPrev;
3040 p->magic = VDBE_MAGIC_DEAD;
3041 p->db = 0;
3042 sqlite3DbFreeNN(db, p);
3046 ** The cursor "p" has a pending seek operation that has not yet been
3047 ** carried out. Seek the cursor now. If an error occurs, return
3048 ** the appropriate error code.
3050 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3051 int res, rc;
3052 #ifdef SQLITE_TEST
3053 extern int sqlite3_search_count;
3054 #endif
3055 assert( p->deferredMoveto );
3056 assert( p->isTable );
3057 assert( p->eCurType==CURTYPE_BTREE );
3058 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3059 if( rc ) return rc;
3060 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3061 #ifdef SQLITE_TEST
3062 sqlite3_search_count++;
3063 #endif
3064 p->deferredMoveto = 0;
3065 p->cacheStatus = CACHE_STALE;
3066 return SQLITE_OK;
3070 ** Something has moved cursor "p" out of place. Maybe the row it was
3071 ** pointed to was deleted out from under it. Or maybe the btree was
3072 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3073 ** is supposed to be pointing. If the row was deleted out from under the
3074 ** cursor, set the cursor to point to a NULL row.
3076 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3077 int isDifferentRow, rc;
3078 assert( p->eCurType==CURTYPE_BTREE );
3079 assert( p->uc.pCursor!=0 );
3080 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3081 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3082 p->cacheStatus = CACHE_STALE;
3083 if( isDifferentRow ) p->nullRow = 1;
3084 return rc;
3088 ** Check to ensure that the cursor is valid. Restore the cursor
3089 ** if need be. Return any I/O error from the restore operation.
3091 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3092 assert( p->eCurType==CURTYPE_BTREE );
3093 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3094 return handleMovedCursor(p);
3096 return SQLITE_OK;
3100 ** Make sure the cursor p is ready to read or write the row to which it
3101 ** was last positioned. Return an error code if an OOM fault or I/O error
3102 ** prevents us from positioning the cursor to its correct position.
3104 ** If a MoveTo operation is pending on the given cursor, then do that
3105 ** MoveTo now. If no move is pending, check to see if the row has been
3106 ** deleted out from under the cursor and if it has, mark the row as
3107 ** a NULL row.
3109 ** If the cursor is already pointing to the correct row and that row has
3110 ** not been deleted out from under the cursor, then this routine is a no-op.
3112 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3113 VdbeCursor *p = *pp;
3114 if( p->eCurType==CURTYPE_BTREE ){
3115 if( p->deferredMoveto ){
3116 int iMap;
3117 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3118 *pp = p->pAltCursor;
3119 *piCol = iMap - 1;
3120 return SQLITE_OK;
3122 return handleDeferredMoveto(p);
3124 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3125 return handleMovedCursor(p);
3128 return SQLITE_OK;
3132 ** The following functions:
3134 ** sqlite3VdbeSerialType()
3135 ** sqlite3VdbeSerialTypeLen()
3136 ** sqlite3VdbeSerialLen()
3137 ** sqlite3VdbeSerialPut()
3138 ** sqlite3VdbeSerialGet()
3140 ** encapsulate the code that serializes values for storage in SQLite
3141 ** data and index records. Each serialized value consists of a
3142 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3143 ** integer, stored as a varint.
3145 ** In an SQLite index record, the serial type is stored directly before
3146 ** the blob of data that it corresponds to. In a table record, all serial
3147 ** types are stored at the start of the record, and the blobs of data at
3148 ** the end. Hence these functions allow the caller to handle the
3149 ** serial-type and data blob separately.
3151 ** The following table describes the various storage classes for data:
3153 ** serial type bytes of data type
3154 ** -------------- --------------- ---------------
3155 ** 0 0 NULL
3156 ** 1 1 signed integer
3157 ** 2 2 signed integer
3158 ** 3 3 signed integer
3159 ** 4 4 signed integer
3160 ** 5 6 signed integer
3161 ** 6 8 signed integer
3162 ** 7 8 IEEE float
3163 ** 8 0 Integer constant 0
3164 ** 9 0 Integer constant 1
3165 ** 10,11 reserved for expansion
3166 ** N>=12 and even (N-12)/2 BLOB
3167 ** N>=13 and odd (N-13)/2 text
3169 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3170 ** of SQLite will not understand those serial types.
3174 ** Return the serial-type for the value stored in pMem.
3176 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3177 int flags = pMem->flags;
3178 u32 n;
3180 assert( pLen!=0 );
3181 if( flags&MEM_Null ){
3182 *pLen = 0;
3183 return 0;
3185 if( flags&MEM_Int ){
3186 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3187 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3188 i64 i = pMem->u.i;
3189 u64 u;
3190 if( i<0 ){
3191 u = ~i;
3192 }else{
3193 u = i;
3195 if( u<=127 ){
3196 if( (i&1)==i && file_format>=4 ){
3197 *pLen = 0;
3198 return 8+(u32)u;
3199 }else{
3200 *pLen = 1;
3201 return 1;
3204 if( u<=32767 ){ *pLen = 2; return 2; }
3205 if( u<=8388607 ){ *pLen = 3; return 3; }
3206 if( u<=2147483647 ){ *pLen = 4; return 4; }
3207 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3208 *pLen = 8;
3209 return 6;
3211 if( flags&MEM_Real ){
3212 *pLen = 8;
3213 return 7;
3215 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3216 assert( pMem->n>=0 );
3217 n = (u32)pMem->n;
3218 if( flags & MEM_Zero ){
3219 n += pMem->u.nZero;
3221 *pLen = n;
3222 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3226 ** The sizes for serial types less than 128
3228 static const u8 sqlite3SmallTypeSizes[] = {
3229 /* 0 1 2 3 4 5 6 7 8 9 */
3230 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3231 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3232 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3233 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3234 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3235 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3236 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3237 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3238 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3239 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3240 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3241 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3242 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3246 ** Return the length of the data corresponding to the supplied serial-type.
3248 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3249 if( serial_type>=128 ){
3250 return (serial_type-12)/2;
3251 }else{
3252 assert( serial_type<12
3253 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3254 return sqlite3SmallTypeSizes[serial_type];
3257 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3258 assert( serial_type<128 );
3259 return sqlite3SmallTypeSizes[serial_type];
3263 ** If we are on an architecture with mixed-endian floating
3264 ** points (ex: ARM7) then swap the lower 4 bytes with the
3265 ** upper 4 bytes. Return the result.
3267 ** For most architectures, this is a no-op.
3269 ** (later): It is reported to me that the mixed-endian problem
3270 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3271 ** that early versions of GCC stored the two words of a 64-bit
3272 ** float in the wrong order. And that error has been propagated
3273 ** ever since. The blame is not necessarily with GCC, though.
3274 ** GCC might have just copying the problem from a prior compiler.
3275 ** I am also told that newer versions of GCC that follow a different
3276 ** ABI get the byte order right.
3278 ** Developers using SQLite on an ARM7 should compile and run their
3279 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3280 ** enabled, some asserts below will ensure that the byte order of
3281 ** floating point values is correct.
3283 ** (2007-08-30) Frank van Vugt has studied this problem closely
3284 ** and has send his findings to the SQLite developers. Frank
3285 ** writes that some Linux kernels offer floating point hardware
3286 ** emulation that uses only 32-bit mantissas instead of a full
3287 ** 48-bits as required by the IEEE standard. (This is the
3288 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3289 ** byte swapping becomes very complicated. To avoid problems,
3290 ** the necessary byte swapping is carried out using a 64-bit integer
3291 ** rather than a 64-bit float. Frank assures us that the code here
3292 ** works for him. We, the developers, have no way to independently
3293 ** verify this, but Frank seems to know what he is talking about
3294 ** so we trust him.
3296 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3297 static u64 floatSwap(u64 in){
3298 union {
3299 u64 r;
3300 u32 i[2];
3301 } u;
3302 u32 t;
3304 u.r = in;
3305 t = u.i[0];
3306 u.i[0] = u.i[1];
3307 u.i[1] = t;
3308 return u.r;
3310 # define swapMixedEndianFloat(X) X = floatSwap(X)
3311 #else
3312 # define swapMixedEndianFloat(X)
3313 #endif
3316 ** Write the serialized data blob for the value stored in pMem into
3317 ** buf. It is assumed that the caller has allocated sufficient space.
3318 ** Return the number of bytes written.
3320 ** nBuf is the amount of space left in buf[]. The caller is responsible
3321 ** for allocating enough space to buf[] to hold the entire field, exclusive
3322 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3324 ** Return the number of bytes actually written into buf[]. The number
3325 ** of bytes in the zero-filled tail is included in the return value only
3326 ** if those bytes were zeroed in buf[].
3328 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3329 u32 len;
3331 /* Integer and Real */
3332 if( serial_type<=7 && serial_type>0 ){
3333 u64 v;
3334 u32 i;
3335 if( serial_type==7 ){
3336 assert( sizeof(v)==sizeof(pMem->u.r) );
3337 memcpy(&v, &pMem->u.r, sizeof(v));
3338 swapMixedEndianFloat(v);
3339 }else{
3340 v = pMem->u.i;
3342 len = i = sqlite3SmallTypeSizes[serial_type];
3343 assert( i>0 );
3345 buf[--i] = (u8)(v&0xFF);
3346 v >>= 8;
3347 }while( i );
3348 return len;
3351 /* String or blob */
3352 if( serial_type>=12 ){
3353 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3354 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3355 len = pMem->n;
3356 if( len>0 ) memcpy(buf, pMem->z, len);
3357 return len;
3360 /* NULL or constants 0 or 1 */
3361 return 0;
3364 /* Input "x" is a sequence of unsigned characters that represent a
3365 ** big-endian integer. Return the equivalent native integer
3367 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3368 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3369 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3370 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3371 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3374 ** Deserialize the data blob pointed to by buf as serial type serial_type
3375 ** and store the result in pMem. Return the number of bytes read.
3377 ** This function is implemented as two separate routines for performance.
3378 ** The few cases that require local variables are broken out into a separate
3379 ** routine so that in most cases the overhead of moving the stack pointer
3380 ** is avoided.
3382 static u32 SQLITE_NOINLINE serialGet(
3383 const unsigned char *buf, /* Buffer to deserialize from */
3384 u32 serial_type, /* Serial type to deserialize */
3385 Mem *pMem /* Memory cell to write value into */
3387 u64 x = FOUR_BYTE_UINT(buf);
3388 u32 y = FOUR_BYTE_UINT(buf+4);
3389 x = (x<<32) + y;
3390 if( serial_type==6 ){
3391 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3392 ** twos-complement integer. */
3393 pMem->u.i = *(i64*)&x;
3394 pMem->flags = MEM_Int;
3395 testcase( pMem->u.i<0 );
3396 }else{
3397 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3398 ** floating point number. */
3399 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3400 /* Verify that integers and floating point values use the same
3401 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3402 ** defined that 64-bit floating point values really are mixed
3403 ** endian.
3405 static const u64 t1 = ((u64)0x3ff00000)<<32;
3406 static const double r1 = 1.0;
3407 u64 t2 = t1;
3408 swapMixedEndianFloat(t2);
3409 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3410 #endif
3411 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3412 swapMixedEndianFloat(x);
3413 memcpy(&pMem->u.r, &x, sizeof(x));
3414 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3416 return 8;
3418 u32 sqlite3VdbeSerialGet(
3419 const unsigned char *buf, /* Buffer to deserialize from */
3420 u32 serial_type, /* Serial type to deserialize */
3421 Mem *pMem /* Memory cell to write value into */
3423 switch( serial_type ){
3424 case 10: /* Reserved for future use */
3425 case 11: /* Reserved for future use */
3426 case 0: { /* Null */
3427 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3428 pMem->flags = MEM_Null;
3429 break;
3431 case 1: {
3432 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3433 ** integer. */
3434 pMem->u.i = ONE_BYTE_INT(buf);
3435 pMem->flags = MEM_Int;
3436 testcase( pMem->u.i<0 );
3437 return 1;
3439 case 2: { /* 2-byte signed integer */
3440 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3441 ** twos-complement integer. */
3442 pMem->u.i = TWO_BYTE_INT(buf);
3443 pMem->flags = MEM_Int;
3444 testcase( pMem->u.i<0 );
3445 return 2;
3447 case 3: { /* 3-byte signed integer */
3448 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3449 ** twos-complement integer. */
3450 pMem->u.i = THREE_BYTE_INT(buf);
3451 pMem->flags = MEM_Int;
3452 testcase( pMem->u.i<0 );
3453 return 3;
3455 case 4: { /* 4-byte signed integer */
3456 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3457 ** twos-complement integer. */
3458 pMem->u.i = FOUR_BYTE_INT(buf);
3459 #ifdef __HP_cc
3460 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3461 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3462 #endif
3463 pMem->flags = MEM_Int;
3464 testcase( pMem->u.i<0 );
3465 return 4;
3467 case 5: { /* 6-byte signed integer */
3468 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3469 ** twos-complement integer. */
3470 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3471 pMem->flags = MEM_Int;
3472 testcase( pMem->u.i<0 );
3473 return 6;
3475 case 6: /* 8-byte signed integer */
3476 case 7: { /* IEEE floating point */
3477 /* These use local variables, so do them in a separate routine
3478 ** to avoid having to move the frame pointer in the common case */
3479 return serialGet(buf,serial_type,pMem);
3481 case 8: /* Integer 0 */
3482 case 9: { /* Integer 1 */
3483 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3484 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3485 pMem->u.i = serial_type-8;
3486 pMem->flags = MEM_Int;
3487 return 0;
3489 default: {
3490 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3491 ** length.
3492 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3493 ** (N-13)/2 bytes in length. */
3494 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3495 pMem->z = (char *)buf;
3496 pMem->n = (serial_type-12)/2;
3497 pMem->flags = aFlag[serial_type&1];
3498 return pMem->n;
3501 return 0;
3504 ** This routine is used to allocate sufficient space for an UnpackedRecord
3505 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3506 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3508 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3509 ** the unaligned buffer passed via the second and third arguments (presumably
3510 ** stack space). If the former, then *ppFree is set to a pointer that should
3511 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3512 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3513 ** before returning.
3515 ** If an OOM error occurs, NULL is returned.
3517 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3518 KeyInfo *pKeyInfo /* Description of the record */
3520 UnpackedRecord *p; /* Unpacked record to return */
3521 int nByte; /* Number of bytes required for *p */
3522 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3523 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3524 if( !p ) return 0;
3525 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3526 assert( pKeyInfo->aSortOrder!=0 );
3527 p->pKeyInfo = pKeyInfo;
3528 p->nField = pKeyInfo->nField + 1;
3529 return p;
3533 ** Given the nKey-byte encoding of a record in pKey[], populate the
3534 ** UnpackedRecord structure indicated by the fourth argument with the
3535 ** contents of the decoded record.
3537 void sqlite3VdbeRecordUnpack(
3538 KeyInfo *pKeyInfo, /* Information about the record format */
3539 int nKey, /* Size of the binary record */
3540 const void *pKey, /* The binary record */
3541 UnpackedRecord *p /* Populate this structure before returning. */
3543 const unsigned char *aKey = (const unsigned char *)pKey;
3544 int d;
3545 u32 idx; /* Offset in aKey[] to read from */
3546 u16 u; /* Unsigned loop counter */
3547 u32 szHdr;
3548 Mem *pMem = p->aMem;
3550 p->default_rc = 0;
3551 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3552 idx = getVarint32(aKey, szHdr);
3553 d = szHdr;
3554 u = 0;
3555 while( idx<szHdr && d<=nKey ){
3556 u32 serial_type;
3558 idx += getVarint32(&aKey[idx], serial_type);
3559 pMem->enc = pKeyInfo->enc;
3560 pMem->db = pKeyInfo->db;
3561 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3562 pMem->szMalloc = 0;
3563 pMem->z = 0;
3564 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3565 pMem++;
3566 if( (++u)>=p->nField ) break;
3568 assert( u<=pKeyInfo->nField + 1 );
3569 p->nField = u;
3572 #ifdef SQLITE_DEBUG
3574 ** This function compares two index or table record keys in the same way
3575 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3576 ** this function deserializes and compares values using the
3577 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3578 ** in assert() statements to ensure that the optimized code in
3579 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3581 ** Return true if the result of comparison is equivalent to desiredResult.
3582 ** Return false if there is a disagreement.
3584 static int vdbeRecordCompareDebug(
3585 int nKey1, const void *pKey1, /* Left key */
3586 const UnpackedRecord *pPKey2, /* Right key */
3587 int desiredResult /* Correct answer */
3589 u32 d1; /* Offset into aKey[] of next data element */
3590 u32 idx1; /* Offset into aKey[] of next header element */
3591 u32 szHdr1; /* Number of bytes in header */
3592 int i = 0;
3593 int rc = 0;
3594 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3595 KeyInfo *pKeyInfo;
3596 Mem mem1;
3598 pKeyInfo = pPKey2->pKeyInfo;
3599 if( pKeyInfo->db==0 ) return 1;
3600 mem1.enc = pKeyInfo->enc;
3601 mem1.db = pKeyInfo->db;
3602 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3603 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3605 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3606 ** We could initialize it, as shown here, to silence those complaints.
3607 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3608 ** the unnecessary initialization has a measurable negative performance
3609 ** impact, since this routine is a very high runner. And so, we choose
3610 ** to ignore the compiler warnings and leave this variable uninitialized.
3612 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3614 idx1 = getVarint32(aKey1, szHdr1);
3615 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3616 d1 = szHdr1;
3617 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3618 assert( pKeyInfo->aSortOrder!=0 );
3619 assert( pKeyInfo->nField>0 );
3620 assert( idx1<=szHdr1 || CORRUPT_DB );
3622 u32 serial_type1;
3624 /* Read the serial types for the next element in each key. */
3625 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3627 /* Verify that there is enough key space remaining to avoid
3628 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3629 ** always be greater than or equal to the amount of required key space.
3630 ** Use that approximation to avoid the more expensive call to
3631 ** sqlite3VdbeSerialTypeLen() in the common case.
3633 if( d1+serial_type1+2>(u32)nKey1
3634 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3636 break;
3639 /* Extract the values to be compared.
3641 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3643 /* Do the comparison
3645 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3646 if( rc!=0 ){
3647 assert( mem1.szMalloc==0 ); /* See comment below */
3648 if( pKeyInfo->aSortOrder[i] ){
3649 rc = -rc; /* Invert the result for DESC sort order. */
3651 goto debugCompareEnd;
3653 i++;
3654 }while( idx1<szHdr1 && i<pPKey2->nField );
3656 /* No memory allocation is ever used on mem1. Prove this using
3657 ** the following assert(). If the assert() fails, it indicates a
3658 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3660 assert( mem1.szMalloc==0 );
3662 /* rc==0 here means that one of the keys ran out of fields and
3663 ** all the fields up to that point were equal. Return the default_rc
3664 ** value. */
3665 rc = pPKey2->default_rc;
3667 debugCompareEnd:
3668 if( desiredResult==0 && rc==0 ) return 1;
3669 if( desiredResult<0 && rc<0 ) return 1;
3670 if( desiredResult>0 && rc>0 ) return 1;
3671 if( CORRUPT_DB ) return 1;
3672 if( pKeyInfo->db->mallocFailed ) return 1;
3673 return 0;
3675 #endif
3677 #ifdef SQLITE_DEBUG
3679 ** Count the number of fields (a.k.a. columns) in the record given by
3680 ** pKey,nKey. The verify that this count is less than or equal to the
3681 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3683 ** If this constraint is not satisfied, it means that the high-speed
3684 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3685 ** not work correctly. If this assert() ever fires, it probably means
3686 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3687 ** incorrectly.
3689 static void vdbeAssertFieldCountWithinLimits(
3690 int nKey, const void *pKey, /* The record to verify */
3691 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3693 int nField = 0;
3694 u32 szHdr;
3695 u32 idx;
3696 u32 notUsed;
3697 const unsigned char *aKey = (const unsigned char*)pKey;
3699 if( CORRUPT_DB ) return;
3700 idx = getVarint32(aKey, szHdr);
3701 assert( nKey>=0 );
3702 assert( szHdr<=(u32)nKey );
3703 while( idx<szHdr ){
3704 idx += getVarint32(aKey+idx, notUsed);
3705 nField++;
3707 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3709 #else
3710 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3711 #endif
3714 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3715 ** using the collation sequence pColl. As usual, return a negative , zero
3716 ** or positive value if *pMem1 is less than, equal to or greater than
3717 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3719 static int vdbeCompareMemString(
3720 const Mem *pMem1,
3721 const Mem *pMem2,
3722 const CollSeq *pColl,
3723 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3725 if( pMem1->enc==pColl->enc ){
3726 /* The strings are already in the correct encoding. Call the
3727 ** comparison function directly */
3728 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3729 }else{
3730 int rc;
3731 const void *v1, *v2;
3732 int n1, n2;
3733 Mem c1;
3734 Mem c2;
3735 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3736 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3737 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3738 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3739 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3740 n1 = v1==0 ? 0 : c1.n;
3741 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3742 n2 = v2==0 ? 0 : c2.n;
3743 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3744 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3745 sqlite3VdbeMemRelease(&c1);
3746 sqlite3VdbeMemRelease(&c2);
3747 return rc;
3752 ** The input pBlob is guaranteed to be a Blob that is not marked
3753 ** with MEM_Zero. Return true if it could be a zero-blob.
3755 static int isAllZero(const char *z, int n){
3756 int i;
3757 for(i=0; i<n; i++){
3758 if( z[i] ) return 0;
3760 return 1;
3764 ** Compare two blobs. Return negative, zero, or positive if the first
3765 ** is less than, equal to, or greater than the second, respectively.
3766 ** If one blob is a prefix of the other, then the shorter is the lessor.
3768 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3769 int c;
3770 int n1 = pB1->n;
3771 int n2 = pB2->n;
3773 /* It is possible to have a Blob value that has some non-zero content
3774 ** followed by zero content. But that only comes up for Blobs formed
3775 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3776 ** sqlite3MemCompare(). */
3777 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3778 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3780 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3781 if( pB1->flags & pB2->flags & MEM_Zero ){
3782 return pB1->u.nZero - pB2->u.nZero;
3783 }else if( pB1->flags & MEM_Zero ){
3784 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3785 return pB1->u.nZero - n2;
3786 }else{
3787 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3788 return n1 - pB2->u.nZero;
3791 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3792 if( c ) return c;
3793 return n1 - n2;
3797 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3798 ** number. Return negative, zero, or positive if the first (i64) is less than,
3799 ** equal to, or greater than the second (double).
3801 static int sqlite3IntFloatCompare(i64 i, double r){
3802 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3803 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3804 if( x<r ) return -1;
3805 if( x>r ) return +1;
3806 return 0;
3807 }else{
3808 i64 y;
3809 double s;
3810 if( r<-9223372036854775808.0 ) return +1;
3811 if( r>9223372036854775807.0 ) return -1;
3812 y = (i64)r;
3813 if( i<y ) return -1;
3814 if( i>y ){
3815 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3816 return +1;
3818 s = (double)i;
3819 if( s<r ) return -1;
3820 if( s>r ) return +1;
3821 return 0;
3826 ** Compare the values contained by the two memory cells, returning
3827 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3828 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3829 ** and reals) sorted numerically, followed by text ordered by the collating
3830 ** sequence pColl and finally blob's ordered by memcmp().
3832 ** Two NULL values are considered equal by this function.
3834 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3835 int f1, f2;
3836 int combined_flags;
3838 f1 = pMem1->flags;
3839 f2 = pMem2->flags;
3840 combined_flags = f1|f2;
3841 assert( (combined_flags & MEM_RowSet)==0 );
3843 /* If one value is NULL, it is less than the other. If both values
3844 ** are NULL, return 0.
3846 if( combined_flags&MEM_Null ){
3847 return (f2&MEM_Null) - (f1&MEM_Null);
3850 /* At least one of the two values is a number
3852 if( combined_flags&(MEM_Int|MEM_Real) ){
3853 if( (f1 & f2 & MEM_Int)!=0 ){
3854 if( pMem1->u.i < pMem2->u.i ) return -1;
3855 if( pMem1->u.i > pMem2->u.i ) return +1;
3856 return 0;
3858 if( (f1 & f2 & MEM_Real)!=0 ){
3859 if( pMem1->u.r < pMem2->u.r ) return -1;
3860 if( pMem1->u.r > pMem2->u.r ) return +1;
3861 return 0;
3863 if( (f1&MEM_Int)!=0 ){
3864 if( (f2&MEM_Real)!=0 ){
3865 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3866 }else{
3867 return -1;
3870 if( (f1&MEM_Real)!=0 ){
3871 if( (f2&MEM_Int)!=0 ){
3872 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3873 }else{
3874 return -1;
3877 return +1;
3880 /* If one value is a string and the other is a blob, the string is less.
3881 ** If both are strings, compare using the collating functions.
3883 if( combined_flags&MEM_Str ){
3884 if( (f1 & MEM_Str)==0 ){
3885 return 1;
3887 if( (f2 & MEM_Str)==0 ){
3888 return -1;
3891 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3892 assert( pMem1->enc==SQLITE_UTF8 ||
3893 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3895 /* The collation sequence must be defined at this point, even if
3896 ** the user deletes the collation sequence after the vdbe program is
3897 ** compiled (this was not always the case).
3899 assert( !pColl || pColl->xCmp );
3901 if( pColl ){
3902 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3904 /* If a NULL pointer was passed as the collate function, fall through
3905 ** to the blob case and use memcmp(). */
3908 /* Both values must be blobs. Compare using memcmp(). */
3909 return sqlite3BlobCompare(pMem1, pMem2);
3914 ** The first argument passed to this function is a serial-type that
3915 ** corresponds to an integer - all values between 1 and 9 inclusive
3916 ** except 7. The second points to a buffer containing an integer value
3917 ** serialized according to serial_type. This function deserializes
3918 ** and returns the value.
3920 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3921 u32 y;
3922 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3923 switch( serial_type ){
3924 case 0:
3925 case 1:
3926 testcase( aKey[0]&0x80 );
3927 return ONE_BYTE_INT(aKey);
3928 case 2:
3929 testcase( aKey[0]&0x80 );
3930 return TWO_BYTE_INT(aKey);
3931 case 3:
3932 testcase( aKey[0]&0x80 );
3933 return THREE_BYTE_INT(aKey);
3934 case 4: {
3935 testcase( aKey[0]&0x80 );
3936 y = FOUR_BYTE_UINT(aKey);
3937 return (i64)*(int*)&y;
3939 case 5: {
3940 testcase( aKey[0]&0x80 );
3941 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3943 case 6: {
3944 u64 x = FOUR_BYTE_UINT(aKey);
3945 testcase( aKey[0]&0x80 );
3946 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3947 return (i64)*(i64*)&x;
3951 return (serial_type - 8);
3955 ** This function compares the two table rows or index records
3956 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3957 ** or positive integer if key1 is less than, equal to or
3958 ** greater than key2. The {nKey1, pKey1} key must be a blob
3959 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3960 ** key must be a parsed key such as obtained from
3961 ** sqlite3VdbeParseRecord.
3963 ** If argument bSkip is non-zero, it is assumed that the caller has already
3964 ** determined that the first fields of the keys are equal.
3966 ** Key1 and Key2 do not have to contain the same number of fields. If all
3967 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3968 ** returned.
3970 ** If database corruption is discovered, set pPKey2->errCode to
3971 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3972 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3973 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3975 int sqlite3VdbeRecordCompareWithSkip(
3976 int nKey1, const void *pKey1, /* Left key */
3977 UnpackedRecord *pPKey2, /* Right key */
3978 int bSkip /* If true, skip the first field */
3980 u32 d1; /* Offset into aKey[] of next data element */
3981 int i; /* Index of next field to compare */
3982 u32 szHdr1; /* Size of record header in bytes */
3983 u32 idx1; /* Offset of first type in header */
3984 int rc = 0; /* Return value */
3985 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3986 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3987 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3988 Mem mem1;
3990 /* If bSkip is true, then the caller has already determined that the first
3991 ** two elements in the keys are equal. Fix the various stack variables so
3992 ** that this routine begins comparing at the second field. */
3993 if( bSkip ){
3994 u32 s1;
3995 idx1 = 1 + getVarint32(&aKey1[1], s1);
3996 szHdr1 = aKey1[0];
3997 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3998 i = 1;
3999 pRhs++;
4000 }else{
4001 idx1 = getVarint32(aKey1, szHdr1);
4002 d1 = szHdr1;
4003 if( d1>(unsigned)nKey1 ){
4004 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4005 return 0; /* Corruption */
4007 i = 0;
4010 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4011 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
4012 || CORRUPT_DB );
4013 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4014 assert( pPKey2->pKeyInfo->nField>0 );
4015 assert( idx1<=szHdr1 || CORRUPT_DB );
4017 u32 serial_type;
4019 /* RHS is an integer */
4020 if( pRhs->flags & MEM_Int ){
4021 serial_type = aKey1[idx1];
4022 testcase( serial_type==12 );
4023 if( serial_type>=10 ){
4024 rc = +1;
4025 }else if( serial_type==0 ){
4026 rc = -1;
4027 }else if( serial_type==7 ){
4028 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4029 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4030 }else{
4031 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4032 i64 rhs = pRhs->u.i;
4033 if( lhs<rhs ){
4034 rc = -1;
4035 }else if( lhs>rhs ){
4036 rc = +1;
4041 /* RHS is real */
4042 else if( pRhs->flags & MEM_Real ){
4043 serial_type = aKey1[idx1];
4044 if( serial_type>=10 ){
4045 /* Serial types 12 or greater are strings and blobs (greater than
4046 ** numbers). Types 10 and 11 are currently "reserved for future
4047 ** use", so it doesn't really matter what the results of comparing
4048 ** them to numberic values are. */
4049 rc = +1;
4050 }else if( serial_type==0 ){
4051 rc = -1;
4052 }else{
4053 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4054 if( serial_type==7 ){
4055 if( mem1.u.r<pRhs->u.r ){
4056 rc = -1;
4057 }else if( mem1.u.r>pRhs->u.r ){
4058 rc = +1;
4060 }else{
4061 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4066 /* RHS is a string */
4067 else if( pRhs->flags & MEM_Str ){
4068 getVarint32(&aKey1[idx1], serial_type);
4069 testcase( serial_type==12 );
4070 if( serial_type<12 ){
4071 rc = -1;
4072 }else if( !(serial_type & 0x01) ){
4073 rc = +1;
4074 }else{
4075 mem1.n = (serial_type - 12) / 2;
4076 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4077 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4078 if( (d1+mem1.n) > (unsigned)nKey1 ){
4079 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4080 return 0; /* Corruption */
4081 }else if( pKeyInfo->aColl[i] ){
4082 mem1.enc = pKeyInfo->enc;
4083 mem1.db = pKeyInfo->db;
4084 mem1.flags = MEM_Str;
4085 mem1.z = (char*)&aKey1[d1];
4086 rc = vdbeCompareMemString(
4087 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4089 }else{
4090 int nCmp = MIN(mem1.n, pRhs->n);
4091 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4092 if( rc==0 ) rc = mem1.n - pRhs->n;
4097 /* RHS is a blob */
4098 else if( pRhs->flags & MEM_Blob ){
4099 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4100 getVarint32(&aKey1[idx1], serial_type);
4101 testcase( serial_type==12 );
4102 if( serial_type<12 || (serial_type & 0x01) ){
4103 rc = -1;
4104 }else{
4105 int nStr = (serial_type - 12) / 2;
4106 testcase( (d1+nStr)==(unsigned)nKey1 );
4107 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4108 if( (d1+nStr) > (unsigned)nKey1 ){
4109 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4110 return 0; /* Corruption */
4111 }else if( pRhs->flags & MEM_Zero ){
4112 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4113 rc = 1;
4114 }else{
4115 rc = nStr - pRhs->u.nZero;
4117 }else{
4118 int nCmp = MIN(nStr, pRhs->n);
4119 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4120 if( rc==0 ) rc = nStr - pRhs->n;
4125 /* RHS is null */
4126 else{
4127 serial_type = aKey1[idx1];
4128 rc = (serial_type!=0);
4131 if( rc!=0 ){
4132 if( pKeyInfo->aSortOrder[i] ){
4133 rc = -rc;
4135 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4136 assert( mem1.szMalloc==0 ); /* See comment below */
4137 return rc;
4140 i++;
4141 pRhs++;
4142 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4143 idx1 += sqlite3VarintLen(serial_type);
4144 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4146 /* No memory allocation is ever used on mem1. Prove this using
4147 ** the following assert(). If the assert() fails, it indicates a
4148 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4149 assert( mem1.szMalloc==0 );
4151 /* rc==0 here means that one or both of the keys ran out of fields and
4152 ** all the fields up to that point were equal. Return the default_rc
4153 ** value. */
4154 assert( CORRUPT_DB
4155 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4156 || pKeyInfo->db->mallocFailed
4158 pPKey2->eqSeen = 1;
4159 return pPKey2->default_rc;
4161 int sqlite3VdbeRecordCompare(
4162 int nKey1, const void *pKey1, /* Left key */
4163 UnpackedRecord *pPKey2 /* Right key */
4165 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4170 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4171 ** that (a) the first field of pPKey2 is an integer, and (b) the
4172 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4173 ** byte (i.e. is less than 128).
4175 ** To avoid concerns about buffer overreads, this routine is only used
4176 ** on schemas where the maximum valid header size is 63 bytes or less.
4178 static int vdbeRecordCompareInt(
4179 int nKey1, const void *pKey1, /* Left key */
4180 UnpackedRecord *pPKey2 /* Right key */
4182 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4183 int serial_type = ((const u8*)pKey1)[1];
4184 int res;
4185 u32 y;
4186 u64 x;
4187 i64 v;
4188 i64 lhs;
4190 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4191 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4192 switch( serial_type ){
4193 case 1: { /* 1-byte signed integer */
4194 lhs = ONE_BYTE_INT(aKey);
4195 testcase( lhs<0 );
4196 break;
4198 case 2: { /* 2-byte signed integer */
4199 lhs = TWO_BYTE_INT(aKey);
4200 testcase( lhs<0 );
4201 break;
4203 case 3: { /* 3-byte signed integer */
4204 lhs = THREE_BYTE_INT(aKey);
4205 testcase( lhs<0 );
4206 break;
4208 case 4: { /* 4-byte signed integer */
4209 y = FOUR_BYTE_UINT(aKey);
4210 lhs = (i64)*(int*)&y;
4211 testcase( lhs<0 );
4212 break;
4214 case 5: { /* 6-byte signed integer */
4215 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4216 testcase( lhs<0 );
4217 break;
4219 case 6: { /* 8-byte signed integer */
4220 x = FOUR_BYTE_UINT(aKey);
4221 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4222 lhs = *(i64*)&x;
4223 testcase( lhs<0 );
4224 break;
4226 case 8:
4227 lhs = 0;
4228 break;
4229 case 9:
4230 lhs = 1;
4231 break;
4233 /* This case could be removed without changing the results of running
4234 ** this code. Including it causes gcc to generate a faster switch
4235 ** statement (since the range of switch targets now starts at zero and
4236 ** is contiguous) but does not cause any duplicate code to be generated
4237 ** (as gcc is clever enough to combine the two like cases). Other
4238 ** compilers might be similar. */
4239 case 0: case 7:
4240 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4242 default:
4243 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4246 v = pPKey2->aMem[0].u.i;
4247 if( v>lhs ){
4248 res = pPKey2->r1;
4249 }else if( v<lhs ){
4250 res = pPKey2->r2;
4251 }else if( pPKey2->nField>1 ){
4252 /* The first fields of the two keys are equal. Compare the trailing
4253 ** fields. */
4254 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4255 }else{
4256 /* The first fields of the two keys are equal and there are no trailing
4257 ** fields. Return pPKey2->default_rc in this case. */
4258 res = pPKey2->default_rc;
4259 pPKey2->eqSeen = 1;
4262 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4263 return res;
4267 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4268 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4269 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4270 ** at the start of (pKey1/nKey1) fits in a single byte.
4272 static int vdbeRecordCompareString(
4273 int nKey1, const void *pKey1, /* Left key */
4274 UnpackedRecord *pPKey2 /* Right key */
4276 const u8 *aKey1 = (const u8*)pKey1;
4277 int serial_type;
4278 int res;
4280 assert( pPKey2->aMem[0].flags & MEM_Str );
4281 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4282 getVarint32(&aKey1[1], serial_type);
4283 if( serial_type<12 ){
4284 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4285 }else if( !(serial_type & 0x01) ){
4286 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4287 }else{
4288 int nCmp;
4289 int nStr;
4290 int szHdr = aKey1[0];
4292 nStr = (serial_type-12) / 2;
4293 if( (szHdr + nStr) > nKey1 ){
4294 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4295 return 0; /* Corruption */
4297 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4298 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4300 if( res==0 ){
4301 res = nStr - pPKey2->aMem[0].n;
4302 if( res==0 ){
4303 if( pPKey2->nField>1 ){
4304 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4305 }else{
4306 res = pPKey2->default_rc;
4307 pPKey2->eqSeen = 1;
4309 }else if( res>0 ){
4310 res = pPKey2->r2;
4311 }else{
4312 res = pPKey2->r1;
4314 }else if( res>0 ){
4315 res = pPKey2->r2;
4316 }else{
4317 res = pPKey2->r1;
4321 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4322 || CORRUPT_DB
4323 || pPKey2->pKeyInfo->db->mallocFailed
4325 return res;
4329 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4330 ** suitable for comparing serialized records to the unpacked record passed
4331 ** as the only argument.
4333 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4334 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4335 ** that the size-of-header varint that occurs at the start of each record
4336 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4337 ** also assumes that it is safe to overread a buffer by at least the
4338 ** maximum possible legal header size plus 8 bytes. Because there is
4339 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4340 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4341 ** limit the size of the header to 64 bytes in cases where the first field
4342 ** is an integer.
4344 ** The easiest way to enforce this limit is to consider only records with
4345 ** 13 fields or less. If the first field is an integer, the maximum legal
4346 ** header size is (12*5 + 1 + 1) bytes. */
4347 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4348 int flags = p->aMem[0].flags;
4349 if( p->pKeyInfo->aSortOrder[0] ){
4350 p->r1 = 1;
4351 p->r2 = -1;
4352 }else{
4353 p->r1 = -1;
4354 p->r2 = 1;
4356 if( (flags & MEM_Int) ){
4357 return vdbeRecordCompareInt;
4359 testcase( flags & MEM_Real );
4360 testcase( flags & MEM_Null );
4361 testcase( flags & MEM_Blob );
4362 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4363 assert( flags & MEM_Str );
4364 return vdbeRecordCompareString;
4368 return sqlite3VdbeRecordCompare;
4372 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4373 ** Read the rowid (the last field in the record) and store it in *rowid.
4374 ** Return SQLITE_OK if everything works, or an error code otherwise.
4376 ** pCur might be pointing to text obtained from a corrupt database file.
4377 ** So the content cannot be trusted. Do appropriate checks on the content.
4379 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4380 i64 nCellKey = 0;
4381 int rc;
4382 u32 szHdr; /* Size of the header */
4383 u32 typeRowid; /* Serial type of the rowid */
4384 u32 lenRowid; /* Size of the rowid */
4385 Mem m, v;
4387 /* Get the size of the index entry. Only indices entries of less
4388 ** than 2GiB are support - anything large must be database corruption.
4389 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4390 ** this code can safely assume that nCellKey is 32-bits
4392 assert( sqlite3BtreeCursorIsValid(pCur) );
4393 nCellKey = sqlite3BtreePayloadSize(pCur);
4394 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4396 /* Read in the complete content of the index entry */
4397 sqlite3VdbeMemInit(&m, db, 0);
4398 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4399 if( rc ){
4400 return rc;
4403 /* The index entry must begin with a header size */
4404 (void)getVarint32((u8*)m.z, szHdr);
4405 testcase( szHdr==3 );
4406 testcase( szHdr==m.n );
4407 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4408 goto idx_rowid_corruption;
4411 /* The last field of the index should be an integer - the ROWID.
4412 ** Verify that the last entry really is an integer. */
4413 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4414 testcase( typeRowid==1 );
4415 testcase( typeRowid==2 );
4416 testcase( typeRowid==3 );
4417 testcase( typeRowid==4 );
4418 testcase( typeRowid==5 );
4419 testcase( typeRowid==6 );
4420 testcase( typeRowid==8 );
4421 testcase( typeRowid==9 );
4422 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4423 goto idx_rowid_corruption;
4425 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4426 testcase( (u32)m.n==szHdr+lenRowid );
4427 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4428 goto idx_rowid_corruption;
4431 /* Fetch the integer off the end of the index record */
4432 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4433 *rowid = v.u.i;
4434 sqlite3VdbeMemRelease(&m);
4435 return SQLITE_OK;
4437 /* Jump here if database corruption is detected after m has been
4438 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4439 idx_rowid_corruption:
4440 testcase( m.szMalloc!=0 );
4441 sqlite3VdbeMemRelease(&m);
4442 return SQLITE_CORRUPT_BKPT;
4446 ** Compare the key of the index entry that cursor pC is pointing to against
4447 ** the key string in pUnpacked. Write into *pRes a number
4448 ** that is negative, zero, or positive if pC is less than, equal to,
4449 ** or greater than pUnpacked. Return SQLITE_OK on success.
4451 ** pUnpacked is either created without a rowid or is truncated so that it
4452 ** omits the rowid at the end. The rowid at the end of the index entry
4453 ** is ignored as well. Hence, this routine only compares the prefixes
4454 ** of the keys prior to the final rowid, not the entire key.
4456 int sqlite3VdbeIdxKeyCompare(
4457 sqlite3 *db, /* Database connection */
4458 VdbeCursor *pC, /* The cursor to compare against */
4459 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4460 int *res /* Write the comparison result here */
4462 i64 nCellKey = 0;
4463 int rc;
4464 BtCursor *pCur;
4465 Mem m;
4467 assert( pC->eCurType==CURTYPE_BTREE );
4468 pCur = pC->uc.pCursor;
4469 assert( sqlite3BtreeCursorIsValid(pCur) );
4470 nCellKey = sqlite3BtreePayloadSize(pCur);
4471 /* nCellKey will always be between 0 and 0xffffffff because of the way
4472 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4473 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4474 *res = 0;
4475 return SQLITE_CORRUPT_BKPT;
4477 sqlite3VdbeMemInit(&m, db, 0);
4478 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4479 if( rc ){
4480 return rc;
4482 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4483 sqlite3VdbeMemRelease(&m);
4484 return SQLITE_OK;
4488 ** This routine sets the value to be returned by subsequent calls to
4489 ** sqlite3_changes() on the database handle 'db'.
4491 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4492 assert( sqlite3_mutex_held(db->mutex) );
4493 db->nChange = nChange;
4494 db->nTotalChange += nChange;
4498 ** Set a flag in the vdbe to update the change counter when it is finalised
4499 ** or reset.
4501 void sqlite3VdbeCountChanges(Vdbe *v){
4502 v->changeCntOn = 1;
4506 ** Mark every prepared statement associated with a database connection
4507 ** as expired.
4509 ** An expired statement means that recompilation of the statement is
4510 ** recommend. Statements expire when things happen that make their
4511 ** programs obsolete. Removing user-defined functions or collating
4512 ** sequences, or changing an authorization function are the types of
4513 ** things that make prepared statements obsolete.
4515 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4516 Vdbe *p;
4517 for(p = db->pVdbe; p; p=p->pNext){
4518 p->expired = 1;
4523 ** Return the database associated with the Vdbe.
4525 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4526 return v->db;
4530 ** Return a pointer to an sqlite3_value structure containing the value bound
4531 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4532 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4533 ** constants) to the value before returning it.
4535 ** The returned value must be freed by the caller using sqlite3ValueFree().
4537 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4538 assert( iVar>0 );
4539 if( v ){
4540 Mem *pMem = &v->aVar[iVar-1];
4541 if( 0==(pMem->flags & MEM_Null) ){
4542 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4543 if( pRet ){
4544 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4545 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4547 return pRet;
4550 return 0;
4554 ** Configure SQL variable iVar so that binding a new value to it signals
4555 ** to sqlite3_reoptimize() that re-preparing the statement may result
4556 ** in a better query plan.
4558 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4559 assert( iVar>0 );
4560 if( iVar>=32 ){
4561 v->expmask |= 0x80000000;
4562 }else{
4563 v->expmask |= ((u32)1 << (iVar-1));
4567 #ifndef SQLITE_OMIT_VIRTUALTABLE
4569 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4570 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4571 ** in memory obtained from sqlite3DbMalloc).
4573 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4574 if( pVtab->zErrMsg ){
4575 sqlite3 *db = p->db;
4576 sqlite3DbFree(db, p->zErrMsg);
4577 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4578 sqlite3_free(pVtab->zErrMsg);
4579 pVtab->zErrMsg = 0;
4582 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4584 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4587 ** If the second argument is not NULL, release any allocations associated
4588 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4589 ** structure itself, using sqlite3DbFree().
4591 ** This function is used to free UnpackedRecord structures allocated by
4592 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4594 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4595 if( p ){
4596 int i;
4597 for(i=0; i<nField; i++){
4598 Mem *pMem = &p->aMem[i];
4599 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4601 sqlite3DbFreeNN(db, p);
4604 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4606 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4608 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4609 ** then cursor passed as the second argument should point to the row about
4610 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4611 ** the required value will be read from the row the cursor points to.
4613 void sqlite3VdbePreUpdateHook(
4614 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4615 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4616 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4617 const char *zDb, /* Database name */
4618 Table *pTab, /* Modified table */
4619 i64 iKey1, /* Initial key value */
4620 int iReg /* Register for new.* record */
4622 sqlite3 *db = v->db;
4623 i64 iKey2;
4624 PreUpdate preupdate;
4625 const char *zTbl = pTab->zName;
4626 static const u8 fakeSortOrder = 0;
4628 assert( db->pPreUpdate==0 );
4629 memset(&preupdate, 0, sizeof(PreUpdate));
4630 if( HasRowid(pTab)==0 ){
4631 iKey1 = iKey2 = 0;
4632 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4633 }else{
4634 if( op==SQLITE_UPDATE ){
4635 iKey2 = v->aMem[iReg].u.i;
4636 }else{
4637 iKey2 = iKey1;
4641 assert( pCsr->nField==pTab->nCol
4642 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4645 preupdate.v = v;
4646 preupdate.pCsr = pCsr;
4647 preupdate.op = op;
4648 preupdate.iNewReg = iReg;
4649 preupdate.keyinfo.db = db;
4650 preupdate.keyinfo.enc = ENC(db);
4651 preupdate.keyinfo.nField = pTab->nCol;
4652 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4653 preupdate.iKey1 = iKey1;
4654 preupdate.iKey2 = iKey2;
4655 preupdate.pTab = pTab;
4657 db->pPreUpdate = &preupdate;
4658 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4659 db->pPreUpdate = 0;
4660 sqlite3DbFree(db, preupdate.aRecord);
4661 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
4662 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
4663 if( preupdate.aNew ){
4664 int i;
4665 for(i=0; i<pCsr->nField; i++){
4666 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4668 sqlite3DbFreeNN(db, preupdate.aNew);
4671 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */