Make USE_FULLWARN=1 the default for MSVC and fix harmless compiler warnings.
[sqlite.git] / src / build.c
blobe04406d8571e3063b8884d276fd9baf7e3ef50f0
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366 return pMod->pEpoTab;
369 #endif
370 if( (flags & LOCATE_NOERR)==0 ){
371 if( zDbase ){
372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376 pParse->checkSchema = 1;
380 return p;
384 ** Locate the table identified by *p.
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 u32 flags,
395 struct SrcList_item *p
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{
403 zDb = p->zDatabase;
405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
434 return p;
438 ** Reclaim the memory used by an index
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
480 freeIndex(db, pIndex);
482 db->flags |= SQLITE_InternChanges;
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zDbSName = 0;
500 continue;
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
505 j++;
507 db->nDb = j;
508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510 sqlite3DbFree(db, db->aDb);
511 db->aDb = db->aDbStatic;
516 ** Reset the schema for the database at index iDb. Also reset the
517 ** TEMP schema.
519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520 Db *pDb;
521 assert( iDb<db->nDb );
523 /* Case 1: Reset the single schema identified by iDb */
524 pDb = &db->aDb[iDb];
525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526 assert( pDb->pSchema!=0 );
527 sqlite3SchemaClear(pDb->pSchema);
529 /* If any database other than TEMP is reset, then also reset TEMP
530 ** since TEMP might be holding triggers that reference tables in the
531 ** other database.
533 if( iDb!=1 ){
534 pDb = &db->aDb[1];
535 assert( pDb->pSchema!=0 );
536 sqlite3SchemaClear(pDb->pSchema);
538 return;
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546 int i;
547 sqlite3BtreeEnterAll(db);
548 for(i=0; i<db->nDb; i++){
549 Db *pDb = &db->aDb[i];
550 if( pDb->pSchema ){
551 sqlite3SchemaClear(pDb->pSchema);
554 db->flags &= ~SQLITE_InternChanges;
555 sqlite3VtabUnlockList(db);
556 sqlite3BtreeLeaveAll(db);
557 sqlite3CollapseDatabaseArray(db);
561 ** This routine is called when a commit occurs.
563 void sqlite3CommitInternalChanges(sqlite3 *db){
564 db->flags &= ~SQLITE_InternChanges;
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572 int i;
573 Column *pCol;
574 assert( pTable!=0 );
575 if( (pCol = pTable->aCol)!=0 ){
576 for(i=0; i<pTable->nCol; i++, pCol++){
577 sqlite3DbFree(db, pCol->zName);
578 sqlite3ExprDelete(db, pCol->pDflt);
579 sqlite3DbFree(db, pCol->zColl);
581 sqlite3DbFree(db, pTable->aCol);
586 ** Remove the memory data structures associated with the given
587 ** Table. No changes are made to disk by this routine.
589 ** This routine just deletes the data structure. It does not unlink
590 ** the table data structure from the hash table. But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
594 ** The db parameter is optional. It is needed if the Table object
595 ** contains lookaside memory. (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.) Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601 Index *pIndex, *pNext;
602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
604 /* Record the number of outstanding lookaside allocations in schema Tables
605 ** prior to doing any free() operations. Since schema Tables do not use
606 ** lookaside, this number should not change. */
607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608 db->lookaside.nOut : 0 );
610 /* Delete all indices associated with this table. */
611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612 pNext = pIndex->pNext;
613 assert( pIndex->pSchema==pTable->pSchema
614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616 char *zName = pIndex->zName;
617 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618 &pIndex->pSchema->idxHash, zName, 0
620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621 assert( pOld==pIndex || pOld==0 );
623 freeIndex(db, pIndex);
626 /* Delete any foreign keys attached to this table. */
627 sqlite3FkDelete(db, pTable);
629 /* Delete the Table structure itself.
631 sqlite3DeleteColumnNames(db, pTable);
632 sqlite3DbFree(db, pTable->zName);
633 sqlite3DbFree(db, pTable->zColAff);
634 sqlite3SelectDelete(db, pTable->pSelect);
635 sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637 sqlite3VtabClear(db, pTable);
638 #endif
639 sqlite3DbFree(db, pTable);
641 /* Verify that no lookaside memory was used by schema tables */
642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645 /* Do not delete the table until the reference count reaches zero. */
646 if( !pTable ) return;
647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648 deleteTable(db, pTable);
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657 Table *p;
658 Db *pDb;
660 assert( db!=0 );
661 assert( iDb>=0 && iDb<db->nDb );
662 assert( zTabName );
663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
665 pDb = &db->aDb[iDb];
666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667 sqlite3DeleteTable(db, p);
668 db->flags |= SQLITE_InternChanges;
672 ** Given a token, return a string that consists of the text of that
673 ** token. Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent. The returned string
682 ** is \000 terminated and is persistent.
684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685 char *zName;
686 if( pName ){
687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688 sqlite3Dequote(zName);
689 }else{
690 zName = 0;
692 return zName;
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700 Vdbe *v = sqlite3GetVdbe(p);
701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703 if( p->nTab==0 ){
704 p->nTab = 1;
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715 int i = -1; /* Database number */
716 if( zName ){
717 Db *pDb;
718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720 /* "main" is always an acceptable alias for the primary database
721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
725 return i;
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735 int i; /* Database number */
736 char *zName; /* Name we are searching for */
737 zName = sqlite3NameFromToken(db, pName);
738 i = sqlite3FindDbName(db, zName);
739 sqlite3DbFree(db, zName);
740 return i;
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
746 ** CREATE TABLE xxx.yyy (...);
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
751 ** CREATE TABLE yyy(...);
753 ** Then pName1 is set to "yyy" and pName2 is "".
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name. The index of the
757 ** database "xxx" is returned.
759 int sqlite3TwoPartName(
760 Parse *pParse, /* Parsing and code generating context */
761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
763 Token **pUnqual /* Write the unqualified object name here */
765 int iDb; /* Database holding the object */
766 sqlite3 *db = pParse->db;
768 assert( pName2!=0 );
769 if( pName2->n>0 ){
770 if( db->init.busy ) {
771 sqlite3ErrorMsg(pParse, "corrupt database");
772 return -1;
774 *pUnqual = pName2;
775 iDb = sqlite3FindDb(db, pName1);
776 if( iDb<0 ){
777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778 return -1;
780 }else{
781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
782 iDb = db->init.iDb;
783 *pUnqual = pName1;
785 return iDb;
789 ** This routine is used to check if the UTF-8 string zName is a legal
790 ** unqualified name for a new schema object (table, index, view or
791 ** trigger). All names are legal except those that begin with the string
792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
793 ** is reserved for internal use.
795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
796 if( !pParse->db->init.busy && pParse->nested==0
797 && (pParse->db->flags & SQLITE_WriteSchema)==0
798 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
799 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
800 return SQLITE_ERROR;
802 return SQLITE_OK;
806 ** Return the PRIMARY KEY index of a table
808 Index *sqlite3PrimaryKeyIndex(Table *pTab){
809 Index *p;
810 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
811 return p;
815 ** Return the column of index pIdx that corresponds to table
816 ** column iCol. Return -1 if not found.
818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
819 int i;
820 for(i=0; i<pIdx->nColumn; i++){
821 if( iCol==pIdx->aiColumn[i] ) return i;
823 return -1;
827 ** Begin constructing a new table representation in memory. This is
828 ** the first of several action routines that get called in response
829 ** to a CREATE TABLE statement. In particular, this routine is called
830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
831 ** flag is true if the table should be stored in the auxiliary database
832 ** file instead of in the main database file. This is normally the case
833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
834 ** CREATE and TABLE.
836 ** The new table record is initialized and put in pParse->pNewTable.
837 ** As more of the CREATE TABLE statement is parsed, additional action
838 ** routines will be called to add more information to this record.
839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
840 ** is called to complete the construction of the new table record.
842 void sqlite3StartTable(
843 Parse *pParse, /* Parser context */
844 Token *pName1, /* First part of the name of the table or view */
845 Token *pName2, /* Second part of the name of the table or view */
846 int isTemp, /* True if this is a TEMP table */
847 int isView, /* True if this is a VIEW */
848 int isVirtual, /* True if this is a VIRTUAL table */
849 int noErr /* Do nothing if table already exists */
851 Table *pTable;
852 char *zName = 0; /* The name of the new table */
853 sqlite3 *db = pParse->db;
854 Vdbe *v;
855 int iDb; /* Database number to create the table in */
856 Token *pName; /* Unqualified name of the table to create */
858 if( db->init.busy && db->init.newTnum==1 ){
859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
860 iDb = db->init.iDb;
861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
862 pName = pName1;
863 }else{
864 /* The common case */
865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
866 if( iDb<0 ) return;
867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
868 /* If creating a temp table, the name may not be qualified. Unless
869 ** the database name is "temp" anyway. */
870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
871 return;
873 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
874 zName = sqlite3NameFromToken(db, pName);
876 pParse->sNameToken = *pName;
877 if( zName==0 ) return;
878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
879 goto begin_table_error;
881 if( db->init.iDb==1 ) isTemp = 1;
882 #ifndef SQLITE_OMIT_AUTHORIZATION
883 assert( isTemp==0 || isTemp==1 );
884 assert( isView==0 || isView==1 );
886 static const u8 aCode[] = {
887 SQLITE_CREATE_TABLE,
888 SQLITE_CREATE_TEMP_TABLE,
889 SQLITE_CREATE_VIEW,
890 SQLITE_CREATE_TEMP_VIEW
892 char *zDb = db->aDb[iDb].zDbSName;
893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
894 goto begin_table_error;
896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
897 zName, 0, zDb) ){
898 goto begin_table_error;
901 #endif
903 /* Make sure the new table name does not collide with an existing
904 ** index or table name in the same database. Issue an error message if
905 ** it does. The exception is if the statement being parsed was passed
906 ** to an sqlite3_declare_vtab() call. In that case only the column names
907 ** and types will be used, so there is no need to test for namespace
908 ** collisions.
910 if( !IN_DECLARE_VTAB ){
911 char *zDb = db->aDb[iDb].zDbSName;
912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
913 goto begin_table_error;
915 pTable = sqlite3FindTable(db, zName, zDb);
916 if( pTable ){
917 if( !noErr ){
918 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
919 }else{
920 assert( !db->init.busy || CORRUPT_DB );
921 sqlite3CodeVerifySchema(pParse, iDb);
923 goto begin_table_error;
925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
927 goto begin_table_error;
931 pTable = sqlite3DbMallocZero(db, sizeof(Table));
932 if( pTable==0 ){
933 assert( db->mallocFailed );
934 pParse->rc = SQLITE_NOMEM_BKPT;
935 pParse->nErr++;
936 goto begin_table_error;
938 pTable->zName = zName;
939 pTable->iPKey = -1;
940 pTable->pSchema = db->aDb[iDb].pSchema;
941 pTable->nTabRef = 1;
942 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
943 assert( pParse->pNewTable==0 );
944 pParse->pNewTable = pTable;
946 /* If this is the magic sqlite_sequence table used by autoincrement,
947 ** then record a pointer to this table in the main database structure
948 ** so that INSERT can find the table easily.
950 #ifndef SQLITE_OMIT_AUTOINCREMENT
951 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
952 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
953 pTable->pSchema->pSeqTab = pTable;
955 #endif
957 /* Begin generating the code that will insert the table record into
958 ** the SQLITE_MASTER table. Note in particular that we must go ahead
959 ** and allocate the record number for the table entry now. Before any
960 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
961 ** indices to be created and the table record must come before the
962 ** indices. Hence, the record number for the table must be allocated
963 ** now.
965 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
966 int addr1;
967 int fileFormat;
968 int reg1, reg2, reg3;
969 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
970 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
971 sqlite3BeginWriteOperation(pParse, 1, iDb);
973 #ifndef SQLITE_OMIT_VIRTUALTABLE
974 if( isVirtual ){
975 sqlite3VdbeAddOp0(v, OP_VBegin);
977 #endif
979 /* If the file format and encoding in the database have not been set,
980 ** set them now.
982 reg1 = pParse->regRowid = ++pParse->nMem;
983 reg2 = pParse->regRoot = ++pParse->nMem;
984 reg3 = ++pParse->nMem;
985 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
986 sqlite3VdbeUsesBtree(v, iDb);
987 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
988 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
989 1 : SQLITE_MAX_FILE_FORMAT;
990 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
991 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
992 sqlite3VdbeJumpHere(v, addr1);
994 /* This just creates a place-holder record in the sqlite_master table.
995 ** The record created does not contain anything yet. It will be replaced
996 ** by the real entry in code generated at sqlite3EndTable().
998 ** The rowid for the new entry is left in register pParse->regRowid.
999 ** The root page number of the new table is left in reg pParse->regRoot.
1000 ** The rowid and root page number values are needed by the code that
1001 ** sqlite3EndTable will generate.
1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1004 if( isView || isVirtual ){
1005 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1006 }else
1007 #endif
1009 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1011 sqlite3OpenMasterTable(pParse, iDb);
1012 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1013 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1014 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1015 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1016 sqlite3VdbeAddOp0(v, OP_Close);
1019 /* Normal (non-error) return. */
1020 return;
1022 /* If an error occurs, we jump here */
1023 begin_table_error:
1024 sqlite3DbFree(db, zName);
1025 return;
1028 /* Set properties of a table column based on the (magical)
1029 ** name of the column.
1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1033 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1034 pCol->colFlags |= COLFLAG_HIDDEN;
1035 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1036 pTab->tabFlags |= TF_OOOHidden;
1039 #endif
1043 ** Add a new column to the table currently being constructed.
1045 ** The parser calls this routine once for each column declaration
1046 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1047 ** first to get things going. Then this routine is called for each
1048 ** column.
1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1051 Table *p;
1052 int i;
1053 char *z;
1054 char *zType;
1055 Column *pCol;
1056 sqlite3 *db = pParse->db;
1057 if( (p = pParse->pNewTable)==0 ) return;
1058 #if SQLITE_MAX_COLUMN
1059 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1060 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1061 return;
1063 #endif
1064 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1065 if( z==0 ) return;
1066 memcpy(z, pName->z, pName->n);
1067 z[pName->n] = 0;
1068 sqlite3Dequote(z);
1069 for(i=0; i<p->nCol; i++){
1070 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1071 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1072 sqlite3DbFree(db, z);
1073 return;
1076 if( (p->nCol & 0x7)==0 ){
1077 Column *aNew;
1078 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1079 if( aNew==0 ){
1080 sqlite3DbFree(db, z);
1081 return;
1083 p->aCol = aNew;
1085 pCol = &p->aCol[p->nCol];
1086 memset(pCol, 0, sizeof(p->aCol[0]));
1087 pCol->zName = z;
1088 sqlite3ColumnPropertiesFromName(p, pCol);
1090 if( pType->n==0 ){
1091 /* If there is no type specified, columns have the default affinity
1092 ** 'BLOB'. */
1093 pCol->affinity = SQLITE_AFF_BLOB;
1094 pCol->szEst = 1;
1095 }else{
1096 zType = z + sqlite3Strlen30(z) + 1;
1097 memcpy(zType, pType->z, pType->n);
1098 zType[pType->n] = 0;
1099 sqlite3Dequote(zType);
1100 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1101 pCol->colFlags |= COLFLAG_HASTYPE;
1103 p->nCol++;
1104 pParse->constraintName.n = 0;
1108 ** This routine is called by the parser while in the middle of
1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1110 ** been seen on a column. This routine sets the notNull flag on
1111 ** the column currently under construction.
1113 void sqlite3AddNotNull(Parse *pParse, int onError){
1114 Table *p;
1115 p = pParse->pNewTable;
1116 if( p==0 || NEVER(p->nCol<1) ) return;
1117 p->aCol[p->nCol-1].notNull = (u8)onError;
1118 p->tabFlags |= TF_HasNotNull;
1122 ** Scan the column type name zType (length nType) and return the
1123 ** associated affinity type.
1125 ** This routine does a case-independent search of zType for the
1126 ** substrings in the following table. If one of the substrings is
1127 ** found, the corresponding affinity is returned. If zType contains
1128 ** more than one of the substrings, entries toward the top of
1129 ** the table take priority. For example, if zType is 'BLOBINT',
1130 ** SQLITE_AFF_INTEGER is returned.
1132 ** Substring | Affinity
1133 ** --------------------------------
1134 ** 'INT' | SQLITE_AFF_INTEGER
1135 ** 'CHAR' | SQLITE_AFF_TEXT
1136 ** 'CLOB' | SQLITE_AFF_TEXT
1137 ** 'TEXT' | SQLITE_AFF_TEXT
1138 ** 'BLOB' | SQLITE_AFF_BLOB
1139 ** 'REAL' | SQLITE_AFF_REAL
1140 ** 'FLOA' | SQLITE_AFF_REAL
1141 ** 'DOUB' | SQLITE_AFF_REAL
1143 ** If none of the substrings in the above table are found,
1144 ** SQLITE_AFF_NUMERIC is returned.
1146 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1147 u32 h = 0;
1148 char aff = SQLITE_AFF_NUMERIC;
1149 const char *zChar = 0;
1151 assert( zIn!=0 );
1152 while( zIn[0] ){
1153 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1154 zIn++;
1155 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1156 aff = SQLITE_AFF_TEXT;
1157 zChar = zIn;
1158 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1159 aff = SQLITE_AFF_TEXT;
1160 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1161 aff = SQLITE_AFF_TEXT;
1162 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1163 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1164 aff = SQLITE_AFF_BLOB;
1165 if( zIn[0]=='(' ) zChar = zIn;
1166 #ifndef SQLITE_OMIT_FLOATING_POINT
1167 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1168 && aff==SQLITE_AFF_NUMERIC ){
1169 aff = SQLITE_AFF_REAL;
1170 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1171 && aff==SQLITE_AFF_NUMERIC ){
1172 aff = SQLITE_AFF_REAL;
1173 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1174 && aff==SQLITE_AFF_NUMERIC ){
1175 aff = SQLITE_AFF_REAL;
1176 #endif
1177 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1178 aff = SQLITE_AFF_INTEGER;
1179 break;
1183 /* If pszEst is not NULL, store an estimate of the field size. The
1184 ** estimate is scaled so that the size of an integer is 1. */
1185 if( pszEst ){
1186 *pszEst = 1; /* default size is approx 4 bytes */
1187 if( aff<SQLITE_AFF_NUMERIC ){
1188 if( zChar ){
1189 while( zChar[0] ){
1190 if( sqlite3Isdigit(zChar[0]) ){
1191 int v = 0;
1192 sqlite3GetInt32(zChar, &v);
1193 v = v/4 + 1;
1194 if( v>255 ) v = 255;
1195 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1196 break;
1198 zChar++;
1200 }else{
1201 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1205 return aff;
1209 ** The expression is the default value for the most recently added column
1210 ** of the table currently under construction.
1212 ** Default value expressions must be constant. Raise an exception if this
1213 ** is not the case.
1215 ** This routine is called by the parser while in the middle of
1216 ** parsing a CREATE TABLE statement.
1218 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1219 Table *p;
1220 Column *pCol;
1221 sqlite3 *db = pParse->db;
1222 p = pParse->pNewTable;
1223 if( p!=0 ){
1224 pCol = &(p->aCol[p->nCol-1]);
1225 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1226 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1227 pCol->zName);
1228 }else{
1229 /* A copy of pExpr is used instead of the original, as pExpr contains
1230 ** tokens that point to volatile memory. The 'span' of the expression
1231 ** is required by pragma table_info.
1233 Expr x;
1234 sqlite3ExprDelete(db, pCol->pDflt);
1235 memset(&x, 0, sizeof(x));
1236 x.op = TK_SPAN;
1237 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1238 (int)(pSpan->zEnd - pSpan->zStart));
1239 x.pLeft = pSpan->pExpr;
1240 x.flags = EP_Skip;
1241 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1242 sqlite3DbFree(db, x.u.zToken);
1245 sqlite3ExprDelete(db, pSpan->pExpr);
1249 ** Backwards Compatibility Hack:
1251 ** Historical versions of SQLite accepted strings as column names in
1252 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1254 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1255 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1257 ** This is goofy. But to preserve backwards compatibility we continue to
1258 ** accept it. This routine does the necessary conversion. It converts
1259 ** the expression given in its argument from a TK_STRING into a TK_ID
1260 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1261 ** If the epxression is anything other than TK_STRING, the expression is
1262 ** unchanged.
1264 static void sqlite3StringToId(Expr *p){
1265 if( p->op==TK_STRING ){
1266 p->op = TK_ID;
1267 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1268 p->pLeft->op = TK_ID;
1273 ** Designate the PRIMARY KEY for the table. pList is a list of names
1274 ** of columns that form the primary key. If pList is NULL, then the
1275 ** most recently added column of the table is the primary key.
1277 ** A table can have at most one primary key. If the table already has
1278 ** a primary key (and this is the second primary key) then create an
1279 ** error.
1281 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1282 ** then we will try to use that column as the rowid. Set the Table.iPKey
1283 ** field of the table under construction to be the index of the
1284 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1285 ** no INTEGER PRIMARY KEY.
1287 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1288 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1290 void sqlite3AddPrimaryKey(
1291 Parse *pParse, /* Parsing context */
1292 ExprList *pList, /* List of field names to be indexed */
1293 int onError, /* What to do with a uniqueness conflict */
1294 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1295 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1297 Table *pTab = pParse->pNewTable;
1298 Column *pCol = 0;
1299 int iCol = -1, i;
1300 int nTerm;
1301 if( pTab==0 ) goto primary_key_exit;
1302 if( pTab->tabFlags & TF_HasPrimaryKey ){
1303 sqlite3ErrorMsg(pParse,
1304 "table \"%s\" has more than one primary key", pTab->zName);
1305 goto primary_key_exit;
1307 pTab->tabFlags |= TF_HasPrimaryKey;
1308 if( pList==0 ){
1309 iCol = pTab->nCol - 1;
1310 pCol = &pTab->aCol[iCol];
1311 pCol->colFlags |= COLFLAG_PRIMKEY;
1312 nTerm = 1;
1313 }else{
1314 nTerm = pList->nExpr;
1315 for(i=0; i<nTerm; i++){
1316 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1317 assert( pCExpr!=0 );
1318 sqlite3StringToId(pCExpr);
1319 if( pCExpr->op==TK_ID ){
1320 const char *zCName = pCExpr->u.zToken;
1321 for(iCol=0; iCol<pTab->nCol; iCol++){
1322 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1323 pCol = &pTab->aCol[iCol];
1324 pCol->colFlags |= COLFLAG_PRIMKEY;
1325 break;
1331 if( nTerm==1
1332 && pCol
1333 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1334 && sortOrder!=SQLITE_SO_DESC
1336 pTab->iPKey = iCol;
1337 pTab->keyConf = (u8)onError;
1338 assert( autoInc==0 || autoInc==1 );
1339 pTab->tabFlags |= autoInc*TF_Autoincrement;
1340 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1341 }else if( autoInc ){
1342 #ifndef SQLITE_OMIT_AUTOINCREMENT
1343 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1344 "INTEGER PRIMARY KEY");
1345 #endif
1346 }else{
1347 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1348 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1349 pList = 0;
1352 primary_key_exit:
1353 sqlite3ExprListDelete(pParse->db, pList);
1354 return;
1358 ** Add a new CHECK constraint to the table currently under construction.
1360 void sqlite3AddCheckConstraint(
1361 Parse *pParse, /* Parsing context */
1362 Expr *pCheckExpr /* The check expression */
1364 #ifndef SQLITE_OMIT_CHECK
1365 Table *pTab = pParse->pNewTable;
1366 sqlite3 *db = pParse->db;
1367 if( pTab && !IN_DECLARE_VTAB
1368 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1370 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1371 if( pParse->constraintName.n ){
1372 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1374 }else
1375 #endif
1377 sqlite3ExprDelete(pParse->db, pCheckExpr);
1382 ** Set the collation function of the most recently parsed table column
1383 ** to the CollSeq given.
1385 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1386 Table *p;
1387 int i;
1388 char *zColl; /* Dequoted name of collation sequence */
1389 sqlite3 *db;
1391 if( (p = pParse->pNewTable)==0 ) return;
1392 i = p->nCol-1;
1393 db = pParse->db;
1394 zColl = sqlite3NameFromToken(db, pToken);
1395 if( !zColl ) return;
1397 if( sqlite3LocateCollSeq(pParse, zColl) ){
1398 Index *pIdx;
1399 sqlite3DbFree(db, p->aCol[i].zColl);
1400 p->aCol[i].zColl = zColl;
1402 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1403 ** then an index may have been created on this column before the
1404 ** collation type was added. Correct this if it is the case.
1406 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1407 assert( pIdx->nKeyCol==1 );
1408 if( pIdx->aiColumn[0]==i ){
1409 pIdx->azColl[0] = p->aCol[i].zColl;
1412 }else{
1413 sqlite3DbFree(db, zColl);
1418 ** This function returns the collation sequence for database native text
1419 ** encoding identified by the string zName, length nName.
1421 ** If the requested collation sequence is not available, or not available
1422 ** in the database native encoding, the collation factory is invoked to
1423 ** request it. If the collation factory does not supply such a sequence,
1424 ** and the sequence is available in another text encoding, then that is
1425 ** returned instead.
1427 ** If no versions of the requested collations sequence are available, or
1428 ** another error occurs, NULL is returned and an error message written into
1429 ** pParse.
1431 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1432 ** invokes the collation factory if the named collation cannot be found
1433 ** and generates an error message.
1435 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1437 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1438 sqlite3 *db = pParse->db;
1439 u8 enc = ENC(db);
1440 u8 initbusy = db->init.busy;
1441 CollSeq *pColl;
1443 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1444 if( !initbusy && (!pColl || !pColl->xCmp) ){
1445 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1448 return pColl;
1453 ** Generate code that will increment the schema cookie.
1455 ** The schema cookie is used to determine when the schema for the
1456 ** database changes. After each schema change, the cookie value
1457 ** changes. When a process first reads the schema it records the
1458 ** cookie. Thereafter, whenever it goes to access the database,
1459 ** it checks the cookie to make sure the schema has not changed
1460 ** since it was last read.
1462 ** This plan is not completely bullet-proof. It is possible for
1463 ** the schema to change multiple times and for the cookie to be
1464 ** set back to prior value. But schema changes are infrequent
1465 ** and the probability of hitting the same cookie value is only
1466 ** 1 chance in 2^32. So we're safe enough.
1468 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1469 ** the schema-version whenever the schema changes.
1471 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1472 sqlite3 *db = pParse->db;
1473 Vdbe *v = pParse->pVdbe;
1474 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1475 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1476 db->aDb[iDb].pSchema->schema_cookie+1);
1480 ** Measure the number of characters needed to output the given
1481 ** identifier. The number returned includes any quotes used
1482 ** but does not include the null terminator.
1484 ** The estimate is conservative. It might be larger that what is
1485 ** really needed.
1487 static int identLength(const char *z){
1488 int n;
1489 for(n=0; *z; n++, z++){
1490 if( *z=='"' ){ n++; }
1492 return n + 2;
1496 ** The first parameter is a pointer to an output buffer. The second
1497 ** parameter is a pointer to an integer that contains the offset at
1498 ** which to write into the output buffer. This function copies the
1499 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1500 ** to the specified offset in the buffer and updates *pIdx to refer
1501 ** to the first byte after the last byte written before returning.
1503 ** If the string zSignedIdent consists entirely of alpha-numeric
1504 ** characters, does not begin with a digit and is not an SQL keyword,
1505 ** then it is copied to the output buffer exactly as it is. Otherwise,
1506 ** it is quoted using double-quotes.
1508 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1509 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1510 int i, j, needQuote;
1511 i = *pIdx;
1513 for(j=0; zIdent[j]; j++){
1514 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1516 needQuote = sqlite3Isdigit(zIdent[0])
1517 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1518 || zIdent[j]!=0
1519 || j==0;
1521 if( needQuote ) z[i++] = '"';
1522 for(j=0; zIdent[j]; j++){
1523 z[i++] = zIdent[j];
1524 if( zIdent[j]=='"' ) z[i++] = '"';
1526 if( needQuote ) z[i++] = '"';
1527 z[i] = 0;
1528 *pIdx = i;
1532 ** Generate a CREATE TABLE statement appropriate for the given
1533 ** table. Memory to hold the text of the statement is obtained
1534 ** from sqliteMalloc() and must be freed by the calling function.
1536 static char *createTableStmt(sqlite3 *db, Table *p){
1537 int i, k, n;
1538 char *zStmt;
1539 char *zSep, *zSep2, *zEnd;
1540 Column *pCol;
1541 n = 0;
1542 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1543 n += identLength(pCol->zName) + 5;
1545 n += identLength(p->zName);
1546 if( n<50 ){
1547 zSep = "";
1548 zSep2 = ",";
1549 zEnd = ")";
1550 }else{
1551 zSep = "\n ";
1552 zSep2 = ",\n ";
1553 zEnd = "\n)";
1555 n += 35 + 6*p->nCol;
1556 zStmt = sqlite3DbMallocRaw(0, n);
1557 if( zStmt==0 ){
1558 sqlite3OomFault(db);
1559 return 0;
1561 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1562 k = sqlite3Strlen30(zStmt);
1563 identPut(zStmt, &k, p->zName);
1564 zStmt[k++] = '(';
1565 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1566 static const char * const azType[] = {
1567 /* SQLITE_AFF_BLOB */ "",
1568 /* SQLITE_AFF_TEXT */ " TEXT",
1569 /* SQLITE_AFF_NUMERIC */ " NUM",
1570 /* SQLITE_AFF_INTEGER */ " INT",
1571 /* SQLITE_AFF_REAL */ " REAL"
1573 int len;
1574 const char *zType;
1576 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1577 k += sqlite3Strlen30(&zStmt[k]);
1578 zSep = zSep2;
1579 identPut(zStmt, &k, pCol->zName);
1580 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1581 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1582 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1583 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1584 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1585 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1586 testcase( pCol->affinity==SQLITE_AFF_REAL );
1588 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1589 len = sqlite3Strlen30(zType);
1590 assert( pCol->affinity==SQLITE_AFF_BLOB
1591 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1592 memcpy(&zStmt[k], zType, len);
1593 k += len;
1594 assert( k<=n );
1596 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1597 return zStmt;
1601 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1602 ** on success and SQLITE_NOMEM on an OOM error.
1604 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1605 char *zExtra;
1606 int nByte;
1607 if( pIdx->nColumn>=N ) return SQLITE_OK;
1608 assert( pIdx->isResized==0 );
1609 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1610 zExtra = sqlite3DbMallocZero(db, nByte);
1611 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1612 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1613 pIdx->azColl = (const char**)zExtra;
1614 zExtra += sizeof(char*)*N;
1615 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1616 pIdx->aiColumn = (i16*)zExtra;
1617 zExtra += sizeof(i16)*N;
1618 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1619 pIdx->aSortOrder = (u8*)zExtra;
1620 pIdx->nColumn = N;
1621 pIdx->isResized = 1;
1622 return SQLITE_OK;
1626 ** Estimate the total row width for a table.
1628 static void estimateTableWidth(Table *pTab){
1629 unsigned wTable = 0;
1630 const Column *pTabCol;
1631 int i;
1632 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1633 wTable += pTabCol->szEst;
1635 if( pTab->iPKey<0 ) wTable++;
1636 pTab->szTabRow = sqlite3LogEst(wTable*4);
1640 ** Estimate the average size of a row for an index.
1642 static void estimateIndexWidth(Index *pIdx){
1643 unsigned wIndex = 0;
1644 int i;
1645 const Column *aCol = pIdx->pTable->aCol;
1646 for(i=0; i<pIdx->nColumn; i++){
1647 i16 x = pIdx->aiColumn[i];
1648 assert( x<pIdx->pTable->nCol );
1649 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1651 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1654 /* Return true if value x is found any of the first nCol entries of aiCol[]
1656 static int hasColumn(const i16 *aiCol, int nCol, int x){
1657 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1658 return 0;
1662 ** This routine runs at the end of parsing a CREATE TABLE statement that
1663 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1664 ** internal schema data structures and the generated VDBE code so that they
1665 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1666 ** Changes include:
1668 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1669 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is
1670 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1671 ** data storage is a covering index btree.
1672 ** (3) Bypass the creation of the sqlite_master table entry
1673 ** for the PRIMARY KEY as the primary key index is now
1674 ** identified by the sqlite_master table entry of the table itself.
1675 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1676 ** schema to the rootpage from the main table.
1677 ** (5) Add all table columns to the PRIMARY KEY Index object
1678 ** so that the PRIMARY KEY is a covering index. The surplus
1679 ** columns are part of KeyInfo.nXField and are not used for
1680 ** sorting or lookup or uniqueness checks.
1681 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1682 ** indices with the PRIMARY KEY columns.
1684 ** For virtual tables, only (1) is performed.
1686 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1687 Index *pIdx;
1688 Index *pPk;
1689 int nPk;
1690 int i, j;
1691 sqlite3 *db = pParse->db;
1692 Vdbe *v = pParse->pVdbe;
1694 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1696 if( !db->init.imposterTable ){
1697 for(i=0; i<pTab->nCol; i++){
1698 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1699 pTab->aCol[i].notNull = OE_Abort;
1704 /* The remaining transformations only apply to b-tree tables, not to
1705 ** virtual tables */
1706 if( IN_DECLARE_VTAB ) return;
1708 /* Convert the OP_CreateTable opcode that would normally create the
1709 ** root-page for the table into an OP_CreateIndex opcode. The index
1710 ** created will become the PRIMARY KEY index.
1712 if( pParse->addrCrTab ){
1713 assert( v );
1714 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1717 /* Locate the PRIMARY KEY index. Or, if this table was originally
1718 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1720 if( pTab->iPKey>=0 ){
1721 ExprList *pList;
1722 Token ipkToken;
1723 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1724 pList = sqlite3ExprListAppend(pParse, 0,
1725 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1726 if( pList==0 ) return;
1727 pList->a[0].sortOrder = pParse->iPkSortOrder;
1728 assert( pParse->pNewTable==pTab );
1729 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1730 SQLITE_IDXTYPE_PRIMARYKEY);
1731 if( db->mallocFailed ) return;
1732 pPk = sqlite3PrimaryKeyIndex(pTab);
1733 pTab->iPKey = -1;
1734 }else{
1735 pPk = sqlite3PrimaryKeyIndex(pTab);
1737 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1738 ** table entry. This is only required if currently generating VDBE
1739 ** code for a CREATE TABLE (not when parsing one as part of reading
1740 ** a database schema). */
1741 if( v ){
1742 assert( db->init.busy==0 );
1743 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1747 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1748 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1749 ** code assumes the PRIMARY KEY contains no repeated columns.
1751 for(i=j=1; i<pPk->nKeyCol; i++){
1752 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1753 pPk->nColumn--;
1754 }else{
1755 pPk->aiColumn[j++] = pPk->aiColumn[i];
1758 pPk->nKeyCol = j;
1760 assert( pPk!=0 );
1761 pPk->isCovering = 1;
1762 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1763 nPk = pPk->nKeyCol;
1765 /* The root page of the PRIMARY KEY is the table root page */
1766 pPk->tnum = pTab->tnum;
1768 /* Update the in-memory representation of all UNIQUE indices by converting
1769 ** the final rowid column into one or more columns of the PRIMARY KEY.
1771 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1772 int n;
1773 if( IsPrimaryKeyIndex(pIdx) ) continue;
1774 for(i=n=0; i<nPk; i++){
1775 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1777 if( n==0 ){
1778 /* This index is a superset of the primary key */
1779 pIdx->nColumn = pIdx->nKeyCol;
1780 continue;
1782 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1783 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1784 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1785 pIdx->aiColumn[j] = pPk->aiColumn[i];
1786 pIdx->azColl[j] = pPk->azColl[i];
1787 j++;
1790 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1791 assert( pIdx->nColumn>=j );
1794 /* Add all table columns to the PRIMARY KEY index
1796 if( nPk<pTab->nCol ){
1797 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1798 for(i=0, j=nPk; i<pTab->nCol; i++){
1799 if( !hasColumn(pPk->aiColumn, j, i) ){
1800 assert( j<pPk->nColumn );
1801 pPk->aiColumn[j] = i;
1802 pPk->azColl[j] = sqlite3StrBINARY;
1803 j++;
1806 assert( pPk->nColumn==j );
1807 assert( pTab->nCol==j );
1808 }else{
1809 pPk->nColumn = pTab->nCol;
1814 ** This routine is called to report the final ")" that terminates
1815 ** a CREATE TABLE statement.
1817 ** The table structure that other action routines have been building
1818 ** is added to the internal hash tables, assuming no errors have
1819 ** occurred.
1821 ** An entry for the table is made in the master table on disk, unless
1822 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1823 ** it means we are reading the sqlite_master table because we just
1824 ** connected to the database or because the sqlite_master table has
1825 ** recently changed, so the entry for this table already exists in
1826 ** the sqlite_master table. We do not want to create it again.
1828 ** If the pSelect argument is not NULL, it means that this routine
1829 ** was called to create a table generated from a
1830 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1831 ** the new table will match the result set of the SELECT.
1833 void sqlite3EndTable(
1834 Parse *pParse, /* Parse context */
1835 Token *pCons, /* The ',' token after the last column defn. */
1836 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1837 u8 tabOpts, /* Extra table options. Usually 0. */
1838 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1840 Table *p; /* The new table */
1841 sqlite3 *db = pParse->db; /* The database connection */
1842 int iDb; /* Database in which the table lives */
1843 Index *pIdx; /* An implied index of the table */
1845 if( pEnd==0 && pSelect==0 ){
1846 return;
1848 assert( !db->mallocFailed );
1849 p = pParse->pNewTable;
1850 if( p==0 ) return;
1852 assert( !db->init.busy || !pSelect );
1854 /* If the db->init.busy is 1 it means we are reading the SQL off the
1855 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1856 ** So do not write to the disk again. Extract the root page number
1857 ** for the table from the db->init.newTnum field. (The page number
1858 ** should have been put there by the sqliteOpenCb routine.)
1860 ** If the root page number is 1, that means this is the sqlite_master
1861 ** table itself. So mark it read-only.
1863 if( db->init.busy ){
1864 p->tnum = db->init.newTnum;
1865 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1868 /* Special processing for WITHOUT ROWID Tables */
1869 if( tabOpts & TF_WithoutRowid ){
1870 if( (p->tabFlags & TF_Autoincrement) ){
1871 sqlite3ErrorMsg(pParse,
1872 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1873 return;
1875 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1876 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1877 }else{
1878 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1879 convertToWithoutRowidTable(pParse, p);
1883 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1885 #ifndef SQLITE_OMIT_CHECK
1886 /* Resolve names in all CHECK constraint expressions.
1888 if( p->pCheck ){
1889 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1891 #endif /* !defined(SQLITE_OMIT_CHECK) */
1893 /* Estimate the average row size for the table and for all implied indices */
1894 estimateTableWidth(p);
1895 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1896 estimateIndexWidth(pIdx);
1899 /* If not initializing, then create a record for the new table
1900 ** in the SQLITE_MASTER table of the database.
1902 ** If this is a TEMPORARY table, write the entry into the auxiliary
1903 ** file instead of into the main database file.
1905 if( !db->init.busy ){
1906 int n;
1907 Vdbe *v;
1908 char *zType; /* "view" or "table" */
1909 char *zType2; /* "VIEW" or "TABLE" */
1910 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1912 v = sqlite3GetVdbe(pParse);
1913 if( NEVER(v==0) ) return;
1915 sqlite3VdbeAddOp1(v, OP_Close, 0);
1918 ** Initialize zType for the new view or table.
1920 if( p->pSelect==0 ){
1921 /* A regular table */
1922 zType = "table";
1923 zType2 = "TABLE";
1924 #ifndef SQLITE_OMIT_VIEW
1925 }else{
1926 /* A view */
1927 zType = "view";
1928 zType2 = "VIEW";
1929 #endif
1932 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1933 ** statement to populate the new table. The root-page number for the
1934 ** new table is in register pParse->regRoot.
1936 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1937 ** suitable state to query for the column names and types to be used
1938 ** by the new table.
1940 ** A shared-cache write-lock is not required to write to the new table,
1941 ** as a schema-lock must have already been obtained to create it. Since
1942 ** a schema-lock excludes all other database users, the write-lock would
1943 ** be redundant.
1945 if( pSelect ){
1946 SelectDest dest; /* Where the SELECT should store results */
1947 int regYield; /* Register holding co-routine entry-point */
1948 int addrTop; /* Top of the co-routine */
1949 int regRec; /* A record to be insert into the new table */
1950 int regRowid; /* Rowid of the next row to insert */
1951 int addrInsLoop; /* Top of the loop for inserting rows */
1952 Table *pSelTab; /* A table that describes the SELECT results */
1954 regYield = ++pParse->nMem;
1955 regRec = ++pParse->nMem;
1956 regRowid = ++pParse->nMem;
1957 assert(pParse->nTab==1);
1958 sqlite3MayAbort(pParse);
1959 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1960 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1961 pParse->nTab = 2;
1962 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1963 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1964 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1965 sqlite3Select(pParse, pSelect, &dest);
1966 sqlite3VdbeEndCoroutine(v, regYield);
1967 sqlite3VdbeJumpHere(v, addrTop - 1);
1968 if( pParse->nErr ) return;
1969 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1970 if( pSelTab==0 ) return;
1971 assert( p->aCol==0 );
1972 p->nCol = pSelTab->nCol;
1973 p->aCol = pSelTab->aCol;
1974 pSelTab->nCol = 0;
1975 pSelTab->aCol = 0;
1976 sqlite3DeleteTable(db, pSelTab);
1977 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1978 VdbeCoverage(v);
1979 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1980 sqlite3TableAffinity(v, p, 0);
1981 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1982 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1983 sqlite3VdbeGoto(v, addrInsLoop);
1984 sqlite3VdbeJumpHere(v, addrInsLoop);
1985 sqlite3VdbeAddOp1(v, OP_Close, 1);
1988 /* Compute the complete text of the CREATE statement */
1989 if( pSelect ){
1990 zStmt = createTableStmt(db, p);
1991 }else{
1992 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1993 n = (int)(pEnd2->z - pParse->sNameToken.z);
1994 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1995 zStmt = sqlite3MPrintf(db,
1996 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2000 /* A slot for the record has already been allocated in the
2001 ** SQLITE_MASTER table. We just need to update that slot with all
2002 ** the information we've collected.
2004 sqlite3NestedParse(pParse,
2005 "UPDATE %Q.%s "
2006 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2007 "WHERE rowid=#%d",
2008 db->aDb[iDb].zDbSName, MASTER_NAME,
2009 zType,
2010 p->zName,
2011 p->zName,
2012 pParse->regRoot,
2013 zStmt,
2014 pParse->regRowid
2016 sqlite3DbFree(db, zStmt);
2017 sqlite3ChangeCookie(pParse, iDb);
2019 #ifndef SQLITE_OMIT_AUTOINCREMENT
2020 /* Check to see if we need to create an sqlite_sequence table for
2021 ** keeping track of autoincrement keys.
2023 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2024 Db *pDb = &db->aDb[iDb];
2025 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2026 if( pDb->pSchema->pSeqTab==0 ){
2027 sqlite3NestedParse(pParse,
2028 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2029 pDb->zDbSName
2033 #endif
2035 /* Reparse everything to update our internal data structures */
2036 sqlite3VdbeAddParseSchemaOp(v, iDb,
2037 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2041 /* Add the table to the in-memory representation of the database.
2043 if( db->init.busy ){
2044 Table *pOld;
2045 Schema *pSchema = p->pSchema;
2046 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2047 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2048 if( pOld ){
2049 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2050 sqlite3OomFault(db);
2051 return;
2053 pParse->pNewTable = 0;
2054 db->flags |= SQLITE_InternChanges;
2056 #ifndef SQLITE_OMIT_ALTERTABLE
2057 if( !p->pSelect ){
2058 const char *zName = (const char *)pParse->sNameToken.z;
2059 int nName;
2060 assert( !pSelect && pCons && pEnd );
2061 if( pCons->z==0 ){
2062 pCons = pEnd;
2064 nName = (int)((const char *)pCons->z - zName);
2065 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2067 #endif
2071 #ifndef SQLITE_OMIT_VIEW
2073 ** The parser calls this routine in order to create a new VIEW
2075 void sqlite3CreateView(
2076 Parse *pParse, /* The parsing context */
2077 Token *pBegin, /* The CREATE token that begins the statement */
2078 Token *pName1, /* The token that holds the name of the view */
2079 Token *pName2, /* The token that holds the name of the view */
2080 ExprList *pCNames, /* Optional list of view column names */
2081 Select *pSelect, /* A SELECT statement that will become the new view */
2082 int isTemp, /* TRUE for a TEMPORARY view */
2083 int noErr /* Suppress error messages if VIEW already exists */
2085 Table *p;
2086 int n;
2087 const char *z;
2088 Token sEnd;
2089 DbFixer sFix;
2090 Token *pName = 0;
2091 int iDb;
2092 sqlite3 *db = pParse->db;
2094 if( pParse->nVar>0 ){
2095 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2096 goto create_view_fail;
2098 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2099 p = pParse->pNewTable;
2100 if( p==0 || pParse->nErr ) goto create_view_fail;
2101 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2102 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2103 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2104 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2106 /* Make a copy of the entire SELECT statement that defines the view.
2107 ** This will force all the Expr.token.z values to be dynamically
2108 ** allocated rather than point to the input string - which means that
2109 ** they will persist after the current sqlite3_exec() call returns.
2111 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2112 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2113 if( db->mallocFailed ) goto create_view_fail;
2115 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2116 ** the end.
2118 sEnd = pParse->sLastToken;
2119 assert( sEnd.z[0]!=0 );
2120 if( sEnd.z[0]!=';' ){
2121 sEnd.z += sEnd.n;
2123 sEnd.n = 0;
2124 n = (int)(sEnd.z - pBegin->z);
2125 assert( n>0 );
2126 z = pBegin->z;
2127 while( sqlite3Isspace(z[n-1]) ){ n--; }
2128 sEnd.z = &z[n-1];
2129 sEnd.n = 1;
2131 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2132 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2134 create_view_fail:
2135 sqlite3SelectDelete(db, pSelect);
2136 sqlite3ExprListDelete(db, pCNames);
2137 return;
2139 #endif /* SQLITE_OMIT_VIEW */
2141 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2143 ** The Table structure pTable is really a VIEW. Fill in the names of
2144 ** the columns of the view in the pTable structure. Return the number
2145 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2147 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2148 Table *pSelTab; /* A fake table from which we get the result set */
2149 Select *pSel; /* Copy of the SELECT that implements the view */
2150 int nErr = 0; /* Number of errors encountered */
2151 int n; /* Temporarily holds the number of cursors assigned */
2152 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2153 #ifndef SQLITE_OMIT_AUTHORIZATION
2154 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2155 #endif
2157 assert( pTable );
2159 #ifndef SQLITE_OMIT_VIRTUALTABLE
2160 if( sqlite3VtabCallConnect(pParse, pTable) ){
2161 return SQLITE_ERROR;
2163 if( IsVirtual(pTable) ) return 0;
2164 #endif
2166 #ifndef SQLITE_OMIT_VIEW
2167 /* A positive nCol means the columns names for this view are
2168 ** already known.
2170 if( pTable->nCol>0 ) return 0;
2172 /* A negative nCol is a special marker meaning that we are currently
2173 ** trying to compute the column names. If we enter this routine with
2174 ** a negative nCol, it means two or more views form a loop, like this:
2176 ** CREATE VIEW one AS SELECT * FROM two;
2177 ** CREATE VIEW two AS SELECT * FROM one;
2179 ** Actually, the error above is now caught prior to reaching this point.
2180 ** But the following test is still important as it does come up
2181 ** in the following:
2183 ** CREATE TABLE main.ex1(a);
2184 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2185 ** SELECT * FROM temp.ex1;
2187 if( pTable->nCol<0 ){
2188 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2189 return 1;
2191 assert( pTable->nCol>=0 );
2193 /* If we get this far, it means we need to compute the table names.
2194 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2195 ** "*" elements in the results set of the view and will assign cursors
2196 ** to the elements of the FROM clause. But we do not want these changes
2197 ** to be permanent. So the computation is done on a copy of the SELECT
2198 ** statement that defines the view.
2200 assert( pTable->pSelect );
2201 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2202 if( pSel ){
2203 n = pParse->nTab;
2204 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2205 pTable->nCol = -1;
2206 db->lookaside.bDisable++;
2207 #ifndef SQLITE_OMIT_AUTHORIZATION
2208 xAuth = db->xAuth;
2209 db->xAuth = 0;
2210 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2211 db->xAuth = xAuth;
2212 #else
2213 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2214 #endif
2215 pParse->nTab = n;
2216 if( pTable->pCheck ){
2217 /* CREATE VIEW name(arglist) AS ...
2218 ** The names of the columns in the table are taken from
2219 ** arglist which is stored in pTable->pCheck. The pCheck field
2220 ** normally holds CHECK constraints on an ordinary table, but for
2221 ** a VIEW it holds the list of column names.
2223 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2224 &pTable->nCol, &pTable->aCol);
2225 if( db->mallocFailed==0
2226 && pParse->nErr==0
2227 && pTable->nCol==pSel->pEList->nExpr
2229 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2231 }else if( pSelTab ){
2232 /* CREATE VIEW name AS... without an argument list. Construct
2233 ** the column names from the SELECT statement that defines the view.
2235 assert( pTable->aCol==0 );
2236 pTable->nCol = pSelTab->nCol;
2237 pTable->aCol = pSelTab->aCol;
2238 pSelTab->nCol = 0;
2239 pSelTab->aCol = 0;
2240 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2241 }else{
2242 pTable->nCol = 0;
2243 nErr++;
2245 sqlite3DeleteTable(db, pSelTab);
2246 sqlite3SelectDelete(db, pSel);
2247 db->lookaside.bDisable--;
2248 } else {
2249 nErr++;
2251 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2252 #endif /* SQLITE_OMIT_VIEW */
2253 return nErr;
2255 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2257 #ifndef SQLITE_OMIT_VIEW
2259 ** Clear the column names from every VIEW in database idx.
2261 static void sqliteViewResetAll(sqlite3 *db, int idx){
2262 HashElem *i;
2263 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2264 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2265 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2266 Table *pTab = sqliteHashData(i);
2267 if( pTab->pSelect ){
2268 sqlite3DeleteColumnNames(db, pTab);
2269 pTab->aCol = 0;
2270 pTab->nCol = 0;
2273 DbClearProperty(db, idx, DB_UnresetViews);
2275 #else
2276 # define sqliteViewResetAll(A,B)
2277 #endif /* SQLITE_OMIT_VIEW */
2280 ** This function is called by the VDBE to adjust the internal schema
2281 ** used by SQLite when the btree layer moves a table root page. The
2282 ** root-page of a table or index in database iDb has changed from iFrom
2283 ** to iTo.
2285 ** Ticket #1728: The symbol table might still contain information
2286 ** on tables and/or indices that are the process of being deleted.
2287 ** If you are unlucky, one of those deleted indices or tables might
2288 ** have the same rootpage number as the real table or index that is
2289 ** being moved. So we cannot stop searching after the first match
2290 ** because the first match might be for one of the deleted indices
2291 ** or tables and not the table/index that is actually being moved.
2292 ** We must continue looping until all tables and indices with
2293 ** rootpage==iFrom have been converted to have a rootpage of iTo
2294 ** in order to be certain that we got the right one.
2296 #ifndef SQLITE_OMIT_AUTOVACUUM
2297 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2298 HashElem *pElem;
2299 Hash *pHash;
2300 Db *pDb;
2302 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2303 pDb = &db->aDb[iDb];
2304 pHash = &pDb->pSchema->tblHash;
2305 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2306 Table *pTab = sqliteHashData(pElem);
2307 if( pTab->tnum==iFrom ){
2308 pTab->tnum = iTo;
2311 pHash = &pDb->pSchema->idxHash;
2312 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2313 Index *pIdx = sqliteHashData(pElem);
2314 if( pIdx->tnum==iFrom ){
2315 pIdx->tnum = iTo;
2319 #endif
2322 ** Write code to erase the table with root-page iTable from database iDb.
2323 ** Also write code to modify the sqlite_master table and internal schema
2324 ** if a root-page of another table is moved by the btree-layer whilst
2325 ** erasing iTable (this can happen with an auto-vacuum database).
2327 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2328 Vdbe *v = sqlite3GetVdbe(pParse);
2329 int r1 = sqlite3GetTempReg(pParse);
2330 assert( iTable>1 );
2331 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2332 sqlite3MayAbort(pParse);
2333 #ifndef SQLITE_OMIT_AUTOVACUUM
2334 /* OP_Destroy stores an in integer r1. If this integer
2335 ** is non-zero, then it is the root page number of a table moved to
2336 ** location iTable. The following code modifies the sqlite_master table to
2337 ** reflect this.
2339 ** The "#NNN" in the SQL is a special constant that means whatever value
2340 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2341 ** token for additional information.
2343 sqlite3NestedParse(pParse,
2344 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2345 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2346 #endif
2347 sqlite3ReleaseTempReg(pParse, r1);
2351 ** Write VDBE code to erase table pTab and all associated indices on disk.
2352 ** Code to update the sqlite_master tables and internal schema definitions
2353 ** in case a root-page belonging to another table is moved by the btree layer
2354 ** is also added (this can happen with an auto-vacuum database).
2356 static void destroyTable(Parse *pParse, Table *pTab){
2357 #ifdef SQLITE_OMIT_AUTOVACUUM
2358 Index *pIdx;
2359 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2360 destroyRootPage(pParse, pTab->tnum, iDb);
2361 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2362 destroyRootPage(pParse, pIdx->tnum, iDb);
2364 #else
2365 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2366 ** is not defined), then it is important to call OP_Destroy on the
2367 ** table and index root-pages in order, starting with the numerically
2368 ** largest root-page number. This guarantees that none of the root-pages
2369 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2370 ** following were coded:
2372 ** OP_Destroy 4 0
2373 ** ...
2374 ** OP_Destroy 5 0
2376 ** and root page 5 happened to be the largest root-page number in the
2377 ** database, then root page 5 would be moved to page 4 by the
2378 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2379 ** a free-list page.
2381 int iTab = pTab->tnum;
2382 int iDestroyed = 0;
2384 while( 1 ){
2385 Index *pIdx;
2386 int iLargest = 0;
2388 if( iDestroyed==0 || iTab<iDestroyed ){
2389 iLargest = iTab;
2391 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2392 int iIdx = pIdx->tnum;
2393 assert( pIdx->pSchema==pTab->pSchema );
2394 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2395 iLargest = iIdx;
2398 if( iLargest==0 ){
2399 return;
2400 }else{
2401 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2402 assert( iDb>=0 && iDb<pParse->db->nDb );
2403 destroyRootPage(pParse, iLargest, iDb);
2404 iDestroyed = iLargest;
2407 #endif
2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2412 ** after a DROP INDEX or DROP TABLE command.
2414 static void sqlite3ClearStatTables(
2415 Parse *pParse, /* The parsing context */
2416 int iDb, /* The database number */
2417 const char *zType, /* "idx" or "tbl" */
2418 const char *zName /* Name of index or table */
2420 int i;
2421 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2422 for(i=1; i<=4; i++){
2423 char zTab[24];
2424 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2425 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2426 sqlite3NestedParse(pParse,
2427 "DELETE FROM %Q.%s WHERE %s=%Q",
2428 zDbName, zTab, zType, zName
2435 ** Generate code to drop a table.
2437 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2438 Vdbe *v;
2439 sqlite3 *db = pParse->db;
2440 Trigger *pTrigger;
2441 Db *pDb = &db->aDb[iDb];
2443 v = sqlite3GetVdbe(pParse);
2444 assert( v!=0 );
2445 sqlite3BeginWriteOperation(pParse, 1, iDb);
2447 #ifndef SQLITE_OMIT_VIRTUALTABLE
2448 if( IsVirtual(pTab) ){
2449 sqlite3VdbeAddOp0(v, OP_VBegin);
2451 #endif
2453 /* Drop all triggers associated with the table being dropped. Code
2454 ** is generated to remove entries from sqlite_master and/or
2455 ** sqlite_temp_master if required.
2457 pTrigger = sqlite3TriggerList(pParse, pTab);
2458 while( pTrigger ){
2459 assert( pTrigger->pSchema==pTab->pSchema ||
2460 pTrigger->pSchema==db->aDb[1].pSchema );
2461 sqlite3DropTriggerPtr(pParse, pTrigger);
2462 pTrigger = pTrigger->pNext;
2465 #ifndef SQLITE_OMIT_AUTOINCREMENT
2466 /* Remove any entries of the sqlite_sequence table associated with
2467 ** the table being dropped. This is done before the table is dropped
2468 ** at the btree level, in case the sqlite_sequence table needs to
2469 ** move as a result of the drop (can happen in auto-vacuum mode).
2471 if( pTab->tabFlags & TF_Autoincrement ){
2472 sqlite3NestedParse(pParse,
2473 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2474 pDb->zDbSName, pTab->zName
2477 #endif
2479 /* Drop all SQLITE_MASTER table and index entries that refer to the
2480 ** table. The program name loops through the master table and deletes
2481 ** every row that refers to a table of the same name as the one being
2482 ** dropped. Triggers are handled separately because a trigger can be
2483 ** created in the temp database that refers to a table in another
2484 ** database.
2486 sqlite3NestedParse(pParse,
2487 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2488 pDb->zDbSName, MASTER_NAME, pTab->zName);
2489 if( !isView && !IsVirtual(pTab) ){
2490 destroyTable(pParse, pTab);
2493 /* Remove the table entry from SQLite's internal schema and modify
2494 ** the schema cookie.
2496 if( IsVirtual(pTab) ){
2497 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2499 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2500 sqlite3ChangeCookie(pParse, iDb);
2501 sqliteViewResetAll(db, iDb);
2505 ** This routine is called to do the work of a DROP TABLE statement.
2506 ** pName is the name of the table to be dropped.
2508 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2509 Table *pTab;
2510 Vdbe *v;
2511 sqlite3 *db = pParse->db;
2512 int iDb;
2514 if( db->mallocFailed ){
2515 goto exit_drop_table;
2517 assert( pParse->nErr==0 );
2518 assert( pName->nSrc==1 );
2519 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2520 if( noErr ) db->suppressErr++;
2521 assert( isView==0 || isView==LOCATE_VIEW );
2522 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2523 if( noErr ) db->suppressErr--;
2525 if( pTab==0 ){
2526 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2527 goto exit_drop_table;
2529 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2530 assert( iDb>=0 && iDb<db->nDb );
2532 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2533 ** it is initialized.
2535 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2536 goto exit_drop_table;
2538 #ifndef SQLITE_OMIT_AUTHORIZATION
2540 int code;
2541 const char *zTab = SCHEMA_TABLE(iDb);
2542 const char *zDb = db->aDb[iDb].zDbSName;
2543 const char *zArg2 = 0;
2544 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2545 goto exit_drop_table;
2547 if( isView ){
2548 if( !OMIT_TEMPDB && iDb==1 ){
2549 code = SQLITE_DROP_TEMP_VIEW;
2550 }else{
2551 code = SQLITE_DROP_VIEW;
2553 #ifndef SQLITE_OMIT_VIRTUALTABLE
2554 }else if( IsVirtual(pTab) ){
2555 code = SQLITE_DROP_VTABLE;
2556 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2557 #endif
2558 }else{
2559 if( !OMIT_TEMPDB && iDb==1 ){
2560 code = SQLITE_DROP_TEMP_TABLE;
2561 }else{
2562 code = SQLITE_DROP_TABLE;
2565 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2566 goto exit_drop_table;
2568 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2569 goto exit_drop_table;
2572 #endif
2573 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2574 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2575 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2576 goto exit_drop_table;
2579 #ifndef SQLITE_OMIT_VIEW
2580 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2581 ** on a table.
2583 if( isView && pTab->pSelect==0 ){
2584 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2585 goto exit_drop_table;
2587 if( !isView && pTab->pSelect ){
2588 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2589 goto exit_drop_table;
2591 #endif
2593 /* Generate code to remove the table from the master table
2594 ** on disk.
2596 v = sqlite3GetVdbe(pParse);
2597 if( v ){
2598 sqlite3BeginWriteOperation(pParse, 1, iDb);
2599 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2600 sqlite3FkDropTable(pParse, pName, pTab);
2601 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2604 exit_drop_table:
2605 sqlite3SrcListDelete(db, pName);
2609 ** This routine is called to create a new foreign key on the table
2610 ** currently under construction. pFromCol determines which columns
2611 ** in the current table point to the foreign key. If pFromCol==0 then
2612 ** connect the key to the last column inserted. pTo is the name of
2613 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2614 ** of tables in the parent pTo table. flags contains all
2615 ** information about the conflict resolution algorithms specified
2616 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2618 ** An FKey structure is created and added to the table currently
2619 ** under construction in the pParse->pNewTable field.
2621 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2622 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2624 void sqlite3CreateForeignKey(
2625 Parse *pParse, /* Parsing context */
2626 ExprList *pFromCol, /* Columns in this table that point to other table */
2627 Token *pTo, /* Name of the other table */
2628 ExprList *pToCol, /* Columns in the other table */
2629 int flags /* Conflict resolution algorithms. */
2631 sqlite3 *db = pParse->db;
2632 #ifndef SQLITE_OMIT_FOREIGN_KEY
2633 FKey *pFKey = 0;
2634 FKey *pNextTo;
2635 Table *p = pParse->pNewTable;
2636 int nByte;
2637 int i;
2638 int nCol;
2639 char *z;
2641 assert( pTo!=0 );
2642 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2643 if( pFromCol==0 ){
2644 int iCol = p->nCol-1;
2645 if( NEVER(iCol<0) ) goto fk_end;
2646 if( pToCol && pToCol->nExpr!=1 ){
2647 sqlite3ErrorMsg(pParse, "foreign key on %s"
2648 " should reference only one column of table %T",
2649 p->aCol[iCol].zName, pTo);
2650 goto fk_end;
2652 nCol = 1;
2653 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2654 sqlite3ErrorMsg(pParse,
2655 "number of columns in foreign key does not match the number of "
2656 "columns in the referenced table");
2657 goto fk_end;
2658 }else{
2659 nCol = pFromCol->nExpr;
2661 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2662 if( pToCol ){
2663 for(i=0; i<pToCol->nExpr; i++){
2664 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2667 pFKey = sqlite3DbMallocZero(db, nByte );
2668 if( pFKey==0 ){
2669 goto fk_end;
2671 pFKey->pFrom = p;
2672 pFKey->pNextFrom = p->pFKey;
2673 z = (char*)&pFKey->aCol[nCol];
2674 pFKey->zTo = z;
2675 memcpy(z, pTo->z, pTo->n);
2676 z[pTo->n] = 0;
2677 sqlite3Dequote(z);
2678 z += pTo->n+1;
2679 pFKey->nCol = nCol;
2680 if( pFromCol==0 ){
2681 pFKey->aCol[0].iFrom = p->nCol-1;
2682 }else{
2683 for(i=0; i<nCol; i++){
2684 int j;
2685 for(j=0; j<p->nCol; j++){
2686 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2687 pFKey->aCol[i].iFrom = j;
2688 break;
2691 if( j>=p->nCol ){
2692 sqlite3ErrorMsg(pParse,
2693 "unknown column \"%s\" in foreign key definition",
2694 pFromCol->a[i].zName);
2695 goto fk_end;
2699 if( pToCol ){
2700 for(i=0; i<nCol; i++){
2701 int n = sqlite3Strlen30(pToCol->a[i].zName);
2702 pFKey->aCol[i].zCol = z;
2703 memcpy(z, pToCol->a[i].zName, n);
2704 z[n] = 0;
2705 z += n+1;
2708 pFKey->isDeferred = 0;
2709 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2710 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2712 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2713 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2714 pFKey->zTo, (void *)pFKey
2716 if( pNextTo==pFKey ){
2717 sqlite3OomFault(db);
2718 goto fk_end;
2720 if( pNextTo ){
2721 assert( pNextTo->pPrevTo==0 );
2722 pFKey->pNextTo = pNextTo;
2723 pNextTo->pPrevTo = pFKey;
2726 /* Link the foreign key to the table as the last step.
2728 p->pFKey = pFKey;
2729 pFKey = 0;
2731 fk_end:
2732 sqlite3DbFree(db, pFKey);
2733 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2734 sqlite3ExprListDelete(db, pFromCol);
2735 sqlite3ExprListDelete(db, pToCol);
2739 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2740 ** clause is seen as part of a foreign key definition. The isDeferred
2741 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2742 ** The behavior of the most recently created foreign key is adjusted
2743 ** accordingly.
2745 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2746 #ifndef SQLITE_OMIT_FOREIGN_KEY
2747 Table *pTab;
2748 FKey *pFKey;
2749 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2750 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2751 pFKey->isDeferred = (u8)isDeferred;
2752 #endif
2756 ** Generate code that will erase and refill index *pIdx. This is
2757 ** used to initialize a newly created index or to recompute the
2758 ** content of an index in response to a REINDEX command.
2760 ** if memRootPage is not negative, it means that the index is newly
2761 ** created. The register specified by memRootPage contains the
2762 ** root page number of the index. If memRootPage is negative, then
2763 ** the index already exists and must be cleared before being refilled and
2764 ** the root page number of the index is taken from pIndex->tnum.
2766 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2767 Table *pTab = pIndex->pTable; /* The table that is indexed */
2768 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2769 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2770 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2771 int addr1; /* Address of top of loop */
2772 int addr2; /* Address to jump to for next iteration */
2773 int tnum; /* Root page of index */
2774 int iPartIdxLabel; /* Jump to this label to skip a row */
2775 Vdbe *v; /* Generate code into this virtual machine */
2776 KeyInfo *pKey; /* KeyInfo for index */
2777 int regRecord; /* Register holding assembled index record */
2778 sqlite3 *db = pParse->db; /* The database connection */
2779 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2781 #ifndef SQLITE_OMIT_AUTHORIZATION
2782 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2783 db->aDb[iDb].zDbSName ) ){
2784 return;
2786 #endif
2788 /* Require a write-lock on the table to perform this operation */
2789 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2791 v = sqlite3GetVdbe(pParse);
2792 if( v==0 ) return;
2793 if( memRootPage>=0 ){
2794 tnum = memRootPage;
2795 }else{
2796 tnum = pIndex->tnum;
2798 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2799 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2801 /* Open the sorter cursor if we are to use one. */
2802 iSorter = pParse->nTab++;
2803 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2804 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2806 /* Open the table. Loop through all rows of the table, inserting index
2807 ** records into the sorter. */
2808 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2809 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2810 regRecord = sqlite3GetTempReg(pParse);
2812 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2813 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2814 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2815 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2816 sqlite3VdbeJumpHere(v, addr1);
2817 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2818 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2819 (char *)pKey, P4_KEYINFO);
2820 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2822 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2823 if( IsUniqueIndex(pIndex) ){
2824 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2825 sqlite3VdbeGoto(v, j2);
2826 addr2 = sqlite3VdbeCurrentAddr(v);
2827 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2828 pIndex->nKeyCol); VdbeCoverage(v);
2829 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2830 }else{
2831 addr2 = sqlite3VdbeCurrentAddr(v);
2833 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2834 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2835 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2836 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2837 sqlite3ReleaseTempReg(pParse, regRecord);
2838 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2839 sqlite3VdbeJumpHere(v, addr1);
2841 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2842 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2843 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2847 ** Allocate heap space to hold an Index object with nCol columns.
2849 ** Increase the allocation size to provide an extra nExtra bytes
2850 ** of 8-byte aligned space after the Index object and return a
2851 ** pointer to this extra space in *ppExtra.
2853 Index *sqlite3AllocateIndexObject(
2854 sqlite3 *db, /* Database connection */
2855 i16 nCol, /* Total number of columns in the index */
2856 int nExtra, /* Number of bytes of extra space to alloc */
2857 char **ppExtra /* Pointer to the "extra" space */
2859 Index *p; /* Allocated index object */
2860 int nByte; /* Bytes of space for Index object + arrays */
2862 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2863 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2864 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2865 sizeof(i16)*nCol + /* Index.aiColumn */
2866 sizeof(u8)*nCol); /* Index.aSortOrder */
2867 p = sqlite3DbMallocZero(db, nByte + nExtra);
2868 if( p ){
2869 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2870 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2871 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2872 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2873 p->aSortOrder = (u8*)pExtra;
2874 p->nColumn = nCol;
2875 p->nKeyCol = nCol - 1;
2876 *ppExtra = ((char*)p) + nByte;
2878 return p;
2882 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2883 ** and pTblList is the name of the table that is to be indexed. Both will
2884 ** be NULL for a primary key or an index that is created to satisfy a
2885 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2886 ** as the table to be indexed. pParse->pNewTable is a table that is
2887 ** currently being constructed by a CREATE TABLE statement.
2889 ** pList is a list of columns to be indexed. pList will be NULL if this
2890 ** is a primary key or unique-constraint on the most recent column added
2891 ** to the table currently under construction.
2893 void sqlite3CreateIndex(
2894 Parse *pParse, /* All information about this parse */
2895 Token *pName1, /* First part of index name. May be NULL */
2896 Token *pName2, /* Second part of index name. May be NULL */
2897 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2898 ExprList *pList, /* A list of columns to be indexed */
2899 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2900 Token *pStart, /* The CREATE token that begins this statement */
2901 Expr *pPIWhere, /* WHERE clause for partial indices */
2902 int sortOrder, /* Sort order of primary key when pList==NULL */
2903 int ifNotExist, /* Omit error if index already exists */
2904 u8 idxType /* The index type */
2906 Table *pTab = 0; /* Table to be indexed */
2907 Index *pIndex = 0; /* The index to be created */
2908 char *zName = 0; /* Name of the index */
2909 int nName; /* Number of characters in zName */
2910 int i, j;
2911 DbFixer sFix; /* For assigning database names to pTable */
2912 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2913 sqlite3 *db = pParse->db;
2914 Db *pDb; /* The specific table containing the indexed database */
2915 int iDb; /* Index of the database that is being written */
2916 Token *pName = 0; /* Unqualified name of the index to create */
2917 struct ExprList_item *pListItem; /* For looping over pList */
2918 int nExtra = 0; /* Space allocated for zExtra[] */
2919 int nExtraCol; /* Number of extra columns needed */
2920 char *zExtra = 0; /* Extra space after the Index object */
2921 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2923 if( db->mallocFailed || pParse->nErr>0 ){
2924 goto exit_create_index;
2926 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2927 goto exit_create_index;
2929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2930 goto exit_create_index;
2934 ** Find the table that is to be indexed. Return early if not found.
2936 if( pTblName!=0 ){
2938 /* Use the two-part index name to determine the database
2939 ** to search for the table. 'Fix' the table name to this db
2940 ** before looking up the table.
2942 assert( pName1 && pName2 );
2943 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2944 if( iDb<0 ) goto exit_create_index;
2945 assert( pName && pName->z );
2947 #ifndef SQLITE_OMIT_TEMPDB
2948 /* If the index name was unqualified, check if the table
2949 ** is a temp table. If so, set the database to 1. Do not do this
2950 ** if initialising a database schema.
2952 if( !db->init.busy ){
2953 pTab = sqlite3SrcListLookup(pParse, pTblName);
2954 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2955 iDb = 1;
2958 #endif
2960 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2961 if( sqlite3FixSrcList(&sFix, pTblName) ){
2962 /* Because the parser constructs pTblName from a single identifier,
2963 ** sqlite3FixSrcList can never fail. */
2964 assert(0);
2966 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2967 assert( db->mallocFailed==0 || pTab==0 );
2968 if( pTab==0 ) goto exit_create_index;
2969 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2970 sqlite3ErrorMsg(pParse,
2971 "cannot create a TEMP index on non-TEMP table \"%s\"",
2972 pTab->zName);
2973 goto exit_create_index;
2975 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2976 }else{
2977 assert( pName==0 );
2978 assert( pStart==0 );
2979 pTab = pParse->pNewTable;
2980 if( !pTab ) goto exit_create_index;
2981 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2983 pDb = &db->aDb[iDb];
2985 assert( pTab!=0 );
2986 assert( pParse->nErr==0 );
2987 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2988 && db->init.busy==0
2989 #if SQLITE_USER_AUTHENTICATION
2990 && sqlite3UserAuthTable(pTab->zName)==0
2991 #endif
2992 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2993 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2994 goto exit_create_index;
2996 #ifndef SQLITE_OMIT_VIEW
2997 if( pTab->pSelect ){
2998 sqlite3ErrorMsg(pParse, "views may not be indexed");
2999 goto exit_create_index;
3001 #endif
3002 #ifndef SQLITE_OMIT_VIRTUALTABLE
3003 if( IsVirtual(pTab) ){
3004 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3005 goto exit_create_index;
3007 #endif
3010 ** Find the name of the index. Make sure there is not already another
3011 ** index or table with the same name.
3013 ** Exception: If we are reading the names of permanent indices from the
3014 ** sqlite_master table (because some other process changed the schema) and
3015 ** one of the index names collides with the name of a temporary table or
3016 ** index, then we will continue to process this index.
3018 ** If pName==0 it means that we are
3019 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3020 ** own name.
3022 if( pName ){
3023 zName = sqlite3NameFromToken(db, pName);
3024 if( zName==0 ) goto exit_create_index;
3025 assert( pName->z!=0 );
3026 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3027 goto exit_create_index;
3029 if( !db->init.busy ){
3030 if( sqlite3FindTable(db, zName, 0)!=0 ){
3031 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3032 goto exit_create_index;
3035 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3036 if( !ifNotExist ){
3037 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3038 }else{
3039 assert( !db->init.busy );
3040 sqlite3CodeVerifySchema(pParse, iDb);
3042 goto exit_create_index;
3044 }else{
3045 int n;
3046 Index *pLoop;
3047 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3048 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3049 if( zName==0 ){
3050 goto exit_create_index;
3053 /* Automatic index names generated from within sqlite3_declare_vtab()
3054 ** must have names that are distinct from normal automatic index names.
3055 ** The following statement converts "sqlite3_autoindex..." into
3056 ** "sqlite3_butoindex..." in order to make the names distinct.
3057 ** The "vtab_err.test" test demonstrates the need of this statement. */
3058 if( IN_DECLARE_VTAB ) zName[7]++;
3061 /* Check for authorization to create an index.
3063 #ifndef SQLITE_OMIT_AUTHORIZATION
3065 const char *zDb = pDb->zDbSName;
3066 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3067 goto exit_create_index;
3069 i = SQLITE_CREATE_INDEX;
3070 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3071 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3072 goto exit_create_index;
3075 #endif
3077 /* If pList==0, it means this routine was called to make a primary
3078 ** key out of the last column added to the table under construction.
3079 ** So create a fake list to simulate this.
3081 if( pList==0 ){
3082 Token prevCol;
3083 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3084 pList = sqlite3ExprListAppend(pParse, 0,
3085 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3086 if( pList==0 ) goto exit_create_index;
3087 assert( pList->nExpr==1 );
3088 sqlite3ExprListSetSortOrder(pList, sortOrder);
3089 }else{
3090 sqlite3ExprListCheckLength(pParse, pList, "index");
3093 /* Figure out how many bytes of space are required to store explicitly
3094 ** specified collation sequence names.
3096 for(i=0; i<pList->nExpr; i++){
3097 Expr *pExpr = pList->a[i].pExpr;
3098 assert( pExpr!=0 );
3099 if( pExpr->op==TK_COLLATE ){
3100 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3105 ** Allocate the index structure.
3107 nName = sqlite3Strlen30(zName);
3108 nExtraCol = pPk ? pPk->nKeyCol : 1;
3109 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3110 nName + nExtra + 1, &zExtra);
3111 if( db->mallocFailed ){
3112 goto exit_create_index;
3114 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3115 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3116 pIndex->zName = zExtra;
3117 zExtra += nName + 1;
3118 memcpy(pIndex->zName, zName, nName+1);
3119 pIndex->pTable = pTab;
3120 pIndex->onError = (u8)onError;
3121 pIndex->uniqNotNull = onError!=OE_None;
3122 pIndex->idxType = idxType;
3123 pIndex->pSchema = db->aDb[iDb].pSchema;
3124 pIndex->nKeyCol = pList->nExpr;
3125 if( pPIWhere ){
3126 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3127 pIndex->pPartIdxWhere = pPIWhere;
3128 pPIWhere = 0;
3130 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3132 /* Check to see if we should honor DESC requests on index columns
3134 if( pDb->pSchema->file_format>=4 ){
3135 sortOrderMask = -1; /* Honor DESC */
3136 }else{
3137 sortOrderMask = 0; /* Ignore DESC */
3140 /* Analyze the list of expressions that form the terms of the index and
3141 ** report any errors. In the common case where the expression is exactly
3142 ** a table column, store that column in aiColumn[]. For general expressions,
3143 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3145 ** TODO: Issue a warning if two or more columns of the index are identical.
3146 ** TODO: Issue a warning if the table primary key is used as part of the
3147 ** index key.
3149 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3150 Expr *pCExpr; /* The i-th index expression */
3151 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3152 const char *zColl; /* Collation sequence name */
3154 sqlite3StringToId(pListItem->pExpr);
3155 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3156 if( pParse->nErr ) goto exit_create_index;
3157 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3158 if( pCExpr->op!=TK_COLUMN ){
3159 if( pTab==pParse->pNewTable ){
3160 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3161 "UNIQUE constraints");
3162 goto exit_create_index;
3164 if( pIndex->aColExpr==0 ){
3165 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3166 pIndex->aColExpr = pCopy;
3167 if( !db->mallocFailed ){
3168 assert( pCopy!=0 );
3169 pListItem = &pCopy->a[i];
3172 j = XN_EXPR;
3173 pIndex->aiColumn[i] = XN_EXPR;
3174 pIndex->uniqNotNull = 0;
3175 }else{
3176 j = pCExpr->iColumn;
3177 assert( j<=0x7fff );
3178 if( j<0 ){
3179 j = pTab->iPKey;
3180 }else if( pTab->aCol[j].notNull==0 ){
3181 pIndex->uniqNotNull = 0;
3183 pIndex->aiColumn[i] = (i16)j;
3185 zColl = 0;
3186 if( pListItem->pExpr->op==TK_COLLATE ){
3187 int nColl;
3188 zColl = pListItem->pExpr->u.zToken;
3189 nColl = sqlite3Strlen30(zColl) + 1;
3190 assert( nExtra>=nColl );
3191 memcpy(zExtra, zColl, nColl);
3192 zColl = zExtra;
3193 zExtra += nColl;
3194 nExtra -= nColl;
3195 }else if( j>=0 ){
3196 zColl = pTab->aCol[j].zColl;
3198 if( !zColl ) zColl = sqlite3StrBINARY;
3199 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3200 goto exit_create_index;
3202 pIndex->azColl[i] = zColl;
3203 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3204 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3207 /* Append the table key to the end of the index. For WITHOUT ROWID
3208 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3209 ** normal tables (when pPk==0) this will be the rowid.
3211 if( pPk ){
3212 for(j=0; j<pPk->nKeyCol; j++){
3213 int x = pPk->aiColumn[j];
3214 assert( x>=0 );
3215 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3216 pIndex->nColumn--;
3217 }else{
3218 pIndex->aiColumn[i] = x;
3219 pIndex->azColl[i] = pPk->azColl[j];
3220 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3221 i++;
3224 assert( i==pIndex->nColumn );
3225 }else{
3226 pIndex->aiColumn[i] = XN_ROWID;
3227 pIndex->azColl[i] = sqlite3StrBINARY;
3229 sqlite3DefaultRowEst(pIndex);
3230 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3232 /* If this index contains every column of its table, then mark
3233 ** it as a covering index */
3234 assert( HasRowid(pTab)
3235 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3236 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3237 pIndex->isCovering = 1;
3238 for(j=0; j<pTab->nCol; j++){
3239 if( j==pTab->iPKey ) continue;
3240 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3241 pIndex->isCovering = 0;
3242 break;
3246 if( pTab==pParse->pNewTable ){
3247 /* This routine has been called to create an automatic index as a
3248 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3249 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3250 ** i.e. one of:
3252 ** CREATE TABLE t(x PRIMARY KEY, y);
3253 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3255 ** Either way, check to see if the table already has such an index. If
3256 ** so, don't bother creating this one. This only applies to
3257 ** automatically created indices. Users can do as they wish with
3258 ** explicit indices.
3260 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3261 ** (and thus suppressing the second one) even if they have different
3262 ** sort orders.
3264 ** If there are different collating sequences or if the columns of
3265 ** the constraint occur in different orders, then the constraints are
3266 ** considered distinct and both result in separate indices.
3268 Index *pIdx;
3269 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3270 int k;
3271 assert( IsUniqueIndex(pIdx) );
3272 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3273 assert( IsUniqueIndex(pIndex) );
3275 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3276 for(k=0; k<pIdx->nKeyCol; k++){
3277 const char *z1;
3278 const char *z2;
3279 assert( pIdx->aiColumn[k]>=0 );
3280 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3281 z1 = pIdx->azColl[k];
3282 z2 = pIndex->azColl[k];
3283 if( sqlite3StrICmp(z1, z2) ) break;
3285 if( k==pIdx->nKeyCol ){
3286 if( pIdx->onError!=pIndex->onError ){
3287 /* This constraint creates the same index as a previous
3288 ** constraint specified somewhere in the CREATE TABLE statement.
3289 ** However the ON CONFLICT clauses are different. If both this
3290 ** constraint and the previous equivalent constraint have explicit
3291 ** ON CONFLICT clauses this is an error. Otherwise, use the
3292 ** explicitly specified behavior for the index.
3294 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3295 sqlite3ErrorMsg(pParse,
3296 "conflicting ON CONFLICT clauses specified", 0);
3298 if( pIdx->onError==OE_Default ){
3299 pIdx->onError = pIndex->onError;
3302 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3303 goto exit_create_index;
3308 /* Link the new Index structure to its table and to the other
3309 ** in-memory database structures.
3311 assert( pParse->nErr==0 );
3312 if( db->init.busy ){
3313 Index *p;
3314 assert( !IN_DECLARE_VTAB );
3315 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3316 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3317 pIndex->zName, pIndex);
3318 if( p ){
3319 assert( p==pIndex ); /* Malloc must have failed */
3320 sqlite3OomFault(db);
3321 goto exit_create_index;
3323 db->flags |= SQLITE_InternChanges;
3324 if( pTblName!=0 ){
3325 pIndex->tnum = db->init.newTnum;
3329 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3330 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3331 ** emit code to allocate the index rootpage on disk and make an entry for
3332 ** the index in the sqlite_master table and populate the index with
3333 ** content. But, do not do this if we are simply reading the sqlite_master
3334 ** table to parse the schema, or if this index is the PRIMARY KEY index
3335 ** of a WITHOUT ROWID table.
3337 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3338 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3339 ** has just been created, it contains no data and the index initialization
3340 ** step can be skipped.
3342 else if( HasRowid(pTab) || pTblName!=0 ){
3343 Vdbe *v;
3344 char *zStmt;
3345 int iMem = ++pParse->nMem;
3347 v = sqlite3GetVdbe(pParse);
3348 if( v==0 ) goto exit_create_index;
3350 sqlite3BeginWriteOperation(pParse, 1, iDb);
3352 /* Create the rootpage for the index using CreateIndex. But before
3353 ** doing so, code a Noop instruction and store its address in
3354 ** Index.tnum. This is required in case this index is actually a
3355 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3356 ** that case the convertToWithoutRowidTable() routine will replace
3357 ** the Noop with a Goto to jump over the VDBE code generated below. */
3358 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3359 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3361 /* Gather the complete text of the CREATE INDEX statement into
3362 ** the zStmt variable
3364 if( pStart ){
3365 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3366 if( pName->z[n-1]==';' ) n--;
3367 /* A named index with an explicit CREATE INDEX statement */
3368 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3369 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3370 }else{
3371 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3372 /* zStmt = sqlite3MPrintf(""); */
3373 zStmt = 0;
3376 /* Add an entry in sqlite_master for this index
3378 sqlite3NestedParse(pParse,
3379 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3380 db->aDb[iDb].zDbSName, MASTER_NAME,
3381 pIndex->zName,
3382 pTab->zName,
3383 iMem,
3384 zStmt
3386 sqlite3DbFree(db, zStmt);
3388 /* Fill the index with data and reparse the schema. Code an OP_Expire
3389 ** to invalidate all pre-compiled statements.
3391 if( pTblName ){
3392 sqlite3RefillIndex(pParse, pIndex, iMem);
3393 sqlite3ChangeCookie(pParse, iDb);
3394 sqlite3VdbeAddParseSchemaOp(v, iDb,
3395 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3396 sqlite3VdbeAddOp0(v, OP_Expire);
3399 sqlite3VdbeJumpHere(v, pIndex->tnum);
3402 /* When adding an index to the list of indices for a table, make
3403 ** sure all indices labeled OE_Replace come after all those labeled
3404 ** OE_Ignore. This is necessary for the correct constraint check
3405 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3406 ** UPDATE and INSERT statements.
3408 if( db->init.busy || pTblName==0 ){
3409 if( onError!=OE_Replace || pTab->pIndex==0
3410 || pTab->pIndex->onError==OE_Replace){
3411 pIndex->pNext = pTab->pIndex;
3412 pTab->pIndex = pIndex;
3413 }else{
3414 Index *pOther = pTab->pIndex;
3415 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3416 pOther = pOther->pNext;
3418 pIndex->pNext = pOther->pNext;
3419 pOther->pNext = pIndex;
3421 pIndex = 0;
3424 /* Clean up before exiting */
3425 exit_create_index:
3426 if( pIndex ) freeIndex(db, pIndex);
3427 sqlite3ExprDelete(db, pPIWhere);
3428 sqlite3ExprListDelete(db, pList);
3429 sqlite3SrcListDelete(db, pTblName);
3430 sqlite3DbFree(db, zName);
3434 ** Fill the Index.aiRowEst[] array with default information - information
3435 ** to be used when we have not run the ANALYZE command.
3437 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3438 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3439 ** number of rows in the table that match any particular value of the
3440 ** first column of the index. aiRowEst[2] is an estimate of the number
3441 ** of rows that match any particular combination of the first 2 columns
3442 ** of the index. And so forth. It must always be the case that
3444 ** aiRowEst[N]<=aiRowEst[N-1]
3445 ** aiRowEst[N]>=1
3447 ** Apart from that, we have little to go on besides intuition as to
3448 ** how aiRowEst[] should be initialized. The numbers generated here
3449 ** are based on typical values found in actual indices.
3451 void sqlite3DefaultRowEst(Index *pIdx){
3452 /* 10, 9, 8, 7, 6 */
3453 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3454 LogEst *a = pIdx->aiRowLogEst;
3455 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3456 int i;
3458 /* Indexes with default row estimates should not have stat1 data */
3459 assert( !pIdx->hasStat1 );
3461 /* Set the first entry (number of rows in the index) to the estimated
3462 ** number of rows in the table, or half the number of rows in the table
3463 ** for a partial index. But do not let the estimate drop below 10. */
3464 a[0] = pIdx->pTable->nRowLogEst;
3465 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3466 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3468 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3469 ** 6 and each subsequent value (if any) is 5. */
3470 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3471 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3472 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3475 assert( 0==sqlite3LogEst(1) );
3476 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3480 ** This routine will drop an existing named index. This routine
3481 ** implements the DROP INDEX statement.
3483 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3484 Index *pIndex;
3485 Vdbe *v;
3486 sqlite3 *db = pParse->db;
3487 int iDb;
3489 assert( pParse->nErr==0 ); /* Never called with prior errors */
3490 if( db->mallocFailed ){
3491 goto exit_drop_index;
3493 assert( pName->nSrc==1 );
3494 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3495 goto exit_drop_index;
3497 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3498 if( pIndex==0 ){
3499 if( !ifExists ){
3500 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3501 }else{
3502 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3504 pParse->checkSchema = 1;
3505 goto exit_drop_index;
3507 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3508 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3509 "or PRIMARY KEY constraint cannot be dropped", 0);
3510 goto exit_drop_index;
3512 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3513 #ifndef SQLITE_OMIT_AUTHORIZATION
3515 int code = SQLITE_DROP_INDEX;
3516 Table *pTab = pIndex->pTable;
3517 const char *zDb = db->aDb[iDb].zDbSName;
3518 const char *zTab = SCHEMA_TABLE(iDb);
3519 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3520 goto exit_drop_index;
3522 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3523 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3524 goto exit_drop_index;
3527 #endif
3529 /* Generate code to remove the index and from the master table */
3530 v = sqlite3GetVdbe(pParse);
3531 if( v ){
3532 sqlite3BeginWriteOperation(pParse, 1, iDb);
3533 sqlite3NestedParse(pParse,
3534 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3535 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3537 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3538 sqlite3ChangeCookie(pParse, iDb);
3539 destroyRootPage(pParse, pIndex->tnum, iDb);
3540 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3543 exit_drop_index:
3544 sqlite3SrcListDelete(db, pName);
3548 ** pArray is a pointer to an array of objects. Each object in the
3549 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3550 ** to extend the array so that there is space for a new object at the end.
3552 ** When this function is called, *pnEntry contains the current size of
3553 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3554 ** in total).
3556 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3557 ** space allocated for the new object is zeroed, *pnEntry updated to
3558 ** reflect the new size of the array and a pointer to the new allocation
3559 ** returned. *pIdx is set to the index of the new array entry in this case.
3561 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3562 ** unchanged and a copy of pArray returned.
3564 void *sqlite3ArrayAllocate(
3565 sqlite3 *db, /* Connection to notify of malloc failures */
3566 void *pArray, /* Array of objects. Might be reallocated */
3567 int szEntry, /* Size of each object in the array */
3568 int *pnEntry, /* Number of objects currently in use */
3569 int *pIdx /* Write the index of a new slot here */
3571 char *z;
3572 int n = *pnEntry;
3573 if( (n & (n-1))==0 ){
3574 int sz = (n==0) ? 1 : 2*n;
3575 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3576 if( pNew==0 ){
3577 *pIdx = -1;
3578 return pArray;
3580 pArray = pNew;
3582 z = (char*)pArray;
3583 memset(&z[n * szEntry], 0, szEntry);
3584 *pIdx = n;
3585 ++*pnEntry;
3586 return pArray;
3590 ** Append a new element to the given IdList. Create a new IdList if
3591 ** need be.
3593 ** A new IdList is returned, or NULL if malloc() fails.
3595 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3596 int i;
3597 if( pList==0 ){
3598 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3599 if( pList==0 ) return 0;
3601 pList->a = sqlite3ArrayAllocate(
3603 pList->a,
3604 sizeof(pList->a[0]),
3605 &pList->nId,
3608 if( i<0 ){
3609 sqlite3IdListDelete(db, pList);
3610 return 0;
3612 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3613 return pList;
3617 ** Delete an IdList.
3619 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3620 int i;
3621 if( pList==0 ) return;
3622 for(i=0; i<pList->nId; i++){
3623 sqlite3DbFree(db, pList->a[i].zName);
3625 sqlite3DbFree(db, pList->a);
3626 sqlite3DbFreeNN(db, pList);
3630 ** Return the index in pList of the identifier named zId. Return -1
3631 ** if not found.
3633 int sqlite3IdListIndex(IdList *pList, const char *zName){
3634 int i;
3635 if( pList==0 ) return -1;
3636 for(i=0; i<pList->nId; i++){
3637 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3639 return -1;
3643 ** Expand the space allocated for the given SrcList object by
3644 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3645 ** New slots are zeroed.
3647 ** For example, suppose a SrcList initially contains two entries: A,B.
3648 ** To append 3 new entries onto the end, do this:
3650 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3652 ** After the call above it would contain: A, B, nil, nil, nil.
3653 ** If the iStart argument had been 1 instead of 2, then the result
3654 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3655 ** the iStart value would be 0. The result then would
3656 ** be: nil, nil, nil, A, B.
3658 ** If a memory allocation fails the SrcList is unchanged. The
3659 ** db->mallocFailed flag will be set to true.
3661 SrcList *sqlite3SrcListEnlarge(
3662 sqlite3 *db, /* Database connection to notify of OOM errors */
3663 SrcList *pSrc, /* The SrcList to be enlarged */
3664 int nExtra, /* Number of new slots to add to pSrc->a[] */
3665 int iStart /* Index in pSrc->a[] of first new slot */
3667 int i;
3669 /* Sanity checking on calling parameters */
3670 assert( iStart>=0 );
3671 assert( nExtra>=1 );
3672 assert( pSrc!=0 );
3673 assert( iStart<=pSrc->nSrc );
3675 /* Allocate additional space if needed */
3676 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3677 SrcList *pNew;
3678 int nAlloc = pSrc->nSrc*2+nExtra;
3679 int nGot;
3680 pNew = sqlite3DbRealloc(db, pSrc,
3681 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3682 if( pNew==0 ){
3683 assert( db->mallocFailed );
3684 return pSrc;
3686 pSrc = pNew;
3687 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3688 pSrc->nAlloc = nGot;
3691 /* Move existing slots that come after the newly inserted slots
3692 ** out of the way */
3693 for(i=pSrc->nSrc-1; i>=iStart; i--){
3694 pSrc->a[i+nExtra] = pSrc->a[i];
3696 pSrc->nSrc += nExtra;
3698 /* Zero the newly allocated slots */
3699 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3700 for(i=iStart; i<iStart+nExtra; i++){
3701 pSrc->a[i].iCursor = -1;
3704 /* Return a pointer to the enlarged SrcList */
3705 return pSrc;
3710 ** Append a new table name to the given SrcList. Create a new SrcList if
3711 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3713 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3714 ** SrcList might be the same as the SrcList that was input or it might be
3715 ** a new one. If an OOM error does occurs, then the prior value of pList
3716 ** that is input to this routine is automatically freed.
3718 ** If pDatabase is not null, it means that the table has an optional
3719 ** database name prefix. Like this: "database.table". The pDatabase
3720 ** points to the table name and the pTable points to the database name.
3721 ** The SrcList.a[].zName field is filled with the table name which might
3722 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3723 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3724 ** or with NULL if no database is specified.
3726 ** In other words, if call like this:
3728 ** sqlite3SrcListAppend(D,A,B,0);
3730 ** Then B is a table name and the database name is unspecified. If called
3731 ** like this:
3733 ** sqlite3SrcListAppend(D,A,B,C);
3735 ** Then C is the table name and B is the database name. If C is defined
3736 ** then so is B. In other words, we never have a case where:
3738 ** sqlite3SrcListAppend(D,A,0,C);
3740 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3741 ** before being added to the SrcList.
3743 SrcList *sqlite3SrcListAppend(
3744 sqlite3 *db, /* Connection to notify of malloc failures */
3745 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3746 Token *pTable, /* Table to append */
3747 Token *pDatabase /* Database of the table */
3749 struct SrcList_item *pItem;
3750 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3751 assert( db!=0 );
3752 if( pList==0 ){
3753 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3754 if( pList==0 ) return 0;
3755 pList->nAlloc = 1;
3756 pList->nSrc = 1;
3757 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3758 pList->a[0].iCursor = -1;
3759 }else{
3760 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3762 if( db->mallocFailed ){
3763 sqlite3SrcListDelete(db, pList);
3764 return 0;
3766 pItem = &pList->a[pList->nSrc-1];
3767 if( pDatabase && pDatabase->z==0 ){
3768 pDatabase = 0;
3770 if( pDatabase ){
3771 Token *pTemp = pDatabase;
3772 pDatabase = pTable;
3773 pTable = pTemp;
3775 pItem->zName = sqlite3NameFromToken(db, pTable);
3776 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3777 return pList;
3781 ** Assign VdbeCursor index numbers to all tables in a SrcList
3783 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3784 int i;
3785 struct SrcList_item *pItem;
3786 assert(pList || pParse->db->mallocFailed );
3787 if( pList ){
3788 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3789 if( pItem->iCursor>=0 ) break;
3790 pItem->iCursor = pParse->nTab++;
3791 if( pItem->pSelect ){
3792 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3799 ** Delete an entire SrcList including all its substructure.
3801 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3802 int i;
3803 struct SrcList_item *pItem;
3804 if( pList==0 ) return;
3805 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3806 sqlite3DbFree(db, pItem->zDatabase);
3807 sqlite3DbFree(db, pItem->zName);
3808 sqlite3DbFree(db, pItem->zAlias);
3809 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3810 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3811 sqlite3DeleteTable(db, pItem->pTab);
3812 sqlite3SelectDelete(db, pItem->pSelect);
3813 sqlite3ExprDelete(db, pItem->pOn);
3814 sqlite3IdListDelete(db, pItem->pUsing);
3816 sqlite3DbFreeNN(db, pList);
3820 ** This routine is called by the parser to add a new term to the
3821 ** end of a growing FROM clause. The "p" parameter is the part of
3822 ** the FROM clause that has already been constructed. "p" is NULL
3823 ** if this is the first term of the FROM clause. pTable and pDatabase
3824 ** are the name of the table and database named in the FROM clause term.
3825 ** pDatabase is NULL if the database name qualifier is missing - the
3826 ** usual case. If the term has an alias, then pAlias points to the
3827 ** alias token. If the term is a subquery, then pSubquery is the
3828 ** SELECT statement that the subquery encodes. The pTable and
3829 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3830 ** parameters are the content of the ON and USING clauses.
3832 ** Return a new SrcList which encodes is the FROM with the new
3833 ** term added.
3835 SrcList *sqlite3SrcListAppendFromTerm(
3836 Parse *pParse, /* Parsing context */
3837 SrcList *p, /* The left part of the FROM clause already seen */
3838 Token *pTable, /* Name of the table to add to the FROM clause */
3839 Token *pDatabase, /* Name of the database containing pTable */
3840 Token *pAlias, /* The right-hand side of the AS subexpression */
3841 Select *pSubquery, /* A subquery used in place of a table name */
3842 Expr *pOn, /* The ON clause of a join */
3843 IdList *pUsing /* The USING clause of a join */
3845 struct SrcList_item *pItem;
3846 sqlite3 *db = pParse->db;
3847 if( !p && (pOn || pUsing) ){
3848 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3849 (pOn ? "ON" : "USING")
3851 goto append_from_error;
3853 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3854 if( p==0 || NEVER(p->nSrc==0) ){
3855 goto append_from_error;
3857 pItem = &p->a[p->nSrc-1];
3858 assert( pAlias!=0 );
3859 if( pAlias->n ){
3860 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3862 pItem->pSelect = pSubquery;
3863 pItem->pOn = pOn;
3864 pItem->pUsing = pUsing;
3865 return p;
3867 append_from_error:
3868 assert( p==0 );
3869 sqlite3ExprDelete(db, pOn);
3870 sqlite3IdListDelete(db, pUsing);
3871 sqlite3SelectDelete(db, pSubquery);
3872 return 0;
3876 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3877 ** element of the source-list passed as the second argument.
3879 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3880 assert( pIndexedBy!=0 );
3881 if( p && ALWAYS(p->nSrc>0) ){
3882 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3883 assert( pItem->fg.notIndexed==0 );
3884 assert( pItem->fg.isIndexedBy==0 );
3885 assert( pItem->fg.isTabFunc==0 );
3886 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3887 /* A "NOT INDEXED" clause was supplied. See parse.y
3888 ** construct "indexed_opt" for details. */
3889 pItem->fg.notIndexed = 1;
3890 }else{
3891 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3892 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3898 ** Add the list of function arguments to the SrcList entry for a
3899 ** table-valued-function.
3901 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3902 if( p ){
3903 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3904 assert( pItem->fg.notIndexed==0 );
3905 assert( pItem->fg.isIndexedBy==0 );
3906 assert( pItem->fg.isTabFunc==0 );
3907 pItem->u1.pFuncArg = pList;
3908 pItem->fg.isTabFunc = 1;
3909 }else{
3910 sqlite3ExprListDelete(pParse->db, pList);
3915 ** When building up a FROM clause in the parser, the join operator
3916 ** is initially attached to the left operand. But the code generator
3917 ** expects the join operator to be on the right operand. This routine
3918 ** Shifts all join operators from left to right for an entire FROM
3919 ** clause.
3921 ** Example: Suppose the join is like this:
3923 ** A natural cross join B
3925 ** The operator is "natural cross join". The A and B operands are stored
3926 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3927 ** operator with A. This routine shifts that operator over to B.
3929 void sqlite3SrcListShiftJoinType(SrcList *p){
3930 if( p ){
3931 int i;
3932 for(i=p->nSrc-1; i>0; i--){
3933 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3935 p->a[0].fg.jointype = 0;
3940 ** Generate VDBE code for a BEGIN statement.
3942 void sqlite3BeginTransaction(Parse *pParse, int type){
3943 sqlite3 *db;
3944 Vdbe *v;
3945 int i;
3947 assert( pParse!=0 );
3948 db = pParse->db;
3949 assert( db!=0 );
3950 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3951 return;
3953 v = sqlite3GetVdbe(pParse);
3954 if( !v ) return;
3955 if( type!=TK_DEFERRED ){
3956 for(i=0; i<db->nDb; i++){
3957 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3958 sqlite3VdbeUsesBtree(v, i);
3961 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3965 ** Generate VDBE code for a COMMIT statement.
3967 void sqlite3CommitTransaction(Parse *pParse){
3968 Vdbe *v;
3970 assert( pParse!=0 );
3971 assert( pParse->db!=0 );
3972 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3973 return;
3975 v = sqlite3GetVdbe(pParse);
3976 if( v ){
3977 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3982 ** Generate VDBE code for a ROLLBACK statement.
3984 void sqlite3RollbackTransaction(Parse *pParse){
3985 Vdbe *v;
3987 assert( pParse!=0 );
3988 assert( pParse->db!=0 );
3989 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3990 return;
3992 v = sqlite3GetVdbe(pParse);
3993 if( v ){
3994 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3999 ** This function is called by the parser when it parses a command to create,
4000 ** release or rollback an SQL savepoint.
4002 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4003 char *zName = sqlite3NameFromToken(pParse->db, pName);
4004 if( zName ){
4005 Vdbe *v = sqlite3GetVdbe(pParse);
4006 #ifndef SQLITE_OMIT_AUTHORIZATION
4007 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4008 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4009 #endif
4010 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4011 sqlite3DbFree(pParse->db, zName);
4012 return;
4014 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4019 ** Make sure the TEMP database is open and available for use. Return
4020 ** the number of errors. Leave any error messages in the pParse structure.
4022 int sqlite3OpenTempDatabase(Parse *pParse){
4023 sqlite3 *db = pParse->db;
4024 if( db->aDb[1].pBt==0 && !pParse->explain ){
4025 int rc;
4026 Btree *pBt;
4027 static const int flags =
4028 SQLITE_OPEN_READWRITE |
4029 SQLITE_OPEN_CREATE |
4030 SQLITE_OPEN_EXCLUSIVE |
4031 SQLITE_OPEN_DELETEONCLOSE |
4032 SQLITE_OPEN_TEMP_DB;
4034 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4035 if( rc!=SQLITE_OK ){
4036 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4037 "file for storing temporary tables");
4038 pParse->rc = rc;
4039 return 1;
4041 db->aDb[1].pBt = pBt;
4042 assert( db->aDb[1].pSchema );
4043 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4044 sqlite3OomFault(db);
4045 return 1;
4048 return 0;
4052 ** Record the fact that the schema cookie will need to be verified
4053 ** for database iDb. The code to actually verify the schema cookie
4054 ** will occur at the end of the top-level VDBE and will be generated
4055 ** later, by sqlite3FinishCoding().
4057 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4058 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4060 assert( iDb>=0 && iDb<pParse->db->nDb );
4061 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4062 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4063 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4064 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4065 DbMaskSet(pToplevel->cookieMask, iDb);
4066 if( !OMIT_TEMPDB && iDb==1 ){
4067 sqlite3OpenTempDatabase(pToplevel);
4073 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4074 ** attached database. Otherwise, invoke it for the database named zDb only.
4076 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4077 sqlite3 *db = pParse->db;
4078 int i;
4079 for(i=0; i<db->nDb; i++){
4080 Db *pDb = &db->aDb[i];
4081 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4082 sqlite3CodeVerifySchema(pParse, i);
4088 ** Generate VDBE code that prepares for doing an operation that
4089 ** might change the database.
4091 ** This routine starts a new transaction if we are not already within
4092 ** a transaction. If we are already within a transaction, then a checkpoint
4093 ** is set if the setStatement parameter is true. A checkpoint should
4094 ** be set for operations that might fail (due to a constraint) part of
4095 ** the way through and which will need to undo some writes without having to
4096 ** rollback the whole transaction. For operations where all constraints
4097 ** can be checked before any changes are made to the database, it is never
4098 ** necessary to undo a write and the checkpoint should not be set.
4100 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4101 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4102 sqlite3CodeVerifySchema(pParse, iDb);
4103 DbMaskSet(pToplevel->writeMask, iDb);
4104 pToplevel->isMultiWrite |= setStatement;
4108 ** Indicate that the statement currently under construction might write
4109 ** more than one entry (example: deleting one row then inserting another,
4110 ** inserting multiple rows in a table, or inserting a row and index entries.)
4111 ** If an abort occurs after some of these writes have completed, then it will
4112 ** be necessary to undo the completed writes.
4114 void sqlite3MultiWrite(Parse *pParse){
4115 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4116 pToplevel->isMultiWrite = 1;
4120 ** The code generator calls this routine if is discovers that it is
4121 ** possible to abort a statement prior to completion. In order to
4122 ** perform this abort without corrupting the database, we need to make
4123 ** sure that the statement is protected by a statement transaction.
4125 ** Technically, we only need to set the mayAbort flag if the
4126 ** isMultiWrite flag was previously set. There is a time dependency
4127 ** such that the abort must occur after the multiwrite. This makes
4128 ** some statements involving the REPLACE conflict resolution algorithm
4129 ** go a little faster. But taking advantage of this time dependency
4130 ** makes it more difficult to prove that the code is correct (in
4131 ** particular, it prevents us from writing an effective
4132 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4133 ** to take the safe route and skip the optimization.
4135 void sqlite3MayAbort(Parse *pParse){
4136 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4137 pToplevel->mayAbort = 1;
4141 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4142 ** error. The onError parameter determines which (if any) of the statement
4143 ** and/or current transaction is rolled back.
4145 void sqlite3HaltConstraint(
4146 Parse *pParse, /* Parsing context */
4147 int errCode, /* extended error code */
4148 int onError, /* Constraint type */
4149 char *p4, /* Error message */
4150 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4151 u8 p5Errmsg /* P5_ErrMsg type */
4153 Vdbe *v = sqlite3GetVdbe(pParse);
4154 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4155 if( onError==OE_Abort ){
4156 sqlite3MayAbort(pParse);
4158 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4159 sqlite3VdbeChangeP5(v, p5Errmsg);
4163 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4165 void sqlite3UniqueConstraint(
4166 Parse *pParse, /* Parsing context */
4167 int onError, /* Constraint type */
4168 Index *pIdx /* The index that triggers the constraint */
4170 char *zErr;
4171 int j;
4172 StrAccum errMsg;
4173 Table *pTab = pIdx->pTable;
4175 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4176 if( pIdx->aColExpr ){
4177 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4178 }else{
4179 for(j=0; j<pIdx->nKeyCol; j++){
4180 char *zCol;
4181 assert( pIdx->aiColumn[j]>=0 );
4182 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4183 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4184 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4187 zErr = sqlite3StrAccumFinish(&errMsg);
4188 sqlite3HaltConstraint(pParse,
4189 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4190 : SQLITE_CONSTRAINT_UNIQUE,
4191 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4196 ** Code an OP_Halt due to non-unique rowid.
4198 void sqlite3RowidConstraint(
4199 Parse *pParse, /* Parsing context */
4200 int onError, /* Conflict resolution algorithm */
4201 Table *pTab /* The table with the non-unique rowid */
4203 char *zMsg;
4204 int rc;
4205 if( pTab->iPKey>=0 ){
4206 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4207 pTab->aCol[pTab->iPKey].zName);
4208 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4209 }else{
4210 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4211 rc = SQLITE_CONSTRAINT_ROWID;
4213 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4214 P5_ConstraintUnique);
4218 ** Check to see if pIndex uses the collating sequence pColl. Return
4219 ** true if it does and false if it does not.
4221 #ifndef SQLITE_OMIT_REINDEX
4222 static int collationMatch(const char *zColl, Index *pIndex){
4223 int i;
4224 assert( zColl!=0 );
4225 for(i=0; i<pIndex->nColumn; i++){
4226 const char *z = pIndex->azColl[i];
4227 assert( z!=0 || pIndex->aiColumn[i]<0 );
4228 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4229 return 1;
4232 return 0;
4234 #endif
4237 ** Recompute all indices of pTab that use the collating sequence pColl.
4238 ** If pColl==0 then recompute all indices of pTab.
4240 #ifndef SQLITE_OMIT_REINDEX
4241 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4242 Index *pIndex; /* An index associated with pTab */
4244 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4245 if( zColl==0 || collationMatch(zColl, pIndex) ){
4246 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4247 sqlite3BeginWriteOperation(pParse, 0, iDb);
4248 sqlite3RefillIndex(pParse, pIndex, -1);
4252 #endif
4255 ** Recompute all indices of all tables in all databases where the
4256 ** indices use the collating sequence pColl. If pColl==0 then recompute
4257 ** all indices everywhere.
4259 #ifndef SQLITE_OMIT_REINDEX
4260 static void reindexDatabases(Parse *pParse, char const *zColl){
4261 Db *pDb; /* A single database */
4262 int iDb; /* The database index number */
4263 sqlite3 *db = pParse->db; /* The database connection */
4264 HashElem *k; /* For looping over tables in pDb */
4265 Table *pTab; /* A table in the database */
4267 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4268 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4269 assert( pDb!=0 );
4270 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4271 pTab = (Table*)sqliteHashData(k);
4272 reindexTable(pParse, pTab, zColl);
4276 #endif
4279 ** Generate code for the REINDEX command.
4281 ** REINDEX -- 1
4282 ** REINDEX <collation> -- 2
4283 ** REINDEX ?<database>.?<tablename> -- 3
4284 ** REINDEX ?<database>.?<indexname> -- 4
4286 ** Form 1 causes all indices in all attached databases to be rebuilt.
4287 ** Form 2 rebuilds all indices in all databases that use the named
4288 ** collating function. Forms 3 and 4 rebuild the named index or all
4289 ** indices associated with the named table.
4291 #ifndef SQLITE_OMIT_REINDEX
4292 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4293 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4294 char *z; /* Name of a table or index */
4295 const char *zDb; /* Name of the database */
4296 Table *pTab; /* A table in the database */
4297 Index *pIndex; /* An index associated with pTab */
4298 int iDb; /* The database index number */
4299 sqlite3 *db = pParse->db; /* The database connection */
4300 Token *pObjName; /* Name of the table or index to be reindexed */
4302 /* Read the database schema. If an error occurs, leave an error message
4303 ** and code in pParse and return NULL. */
4304 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4305 return;
4308 if( pName1==0 ){
4309 reindexDatabases(pParse, 0);
4310 return;
4311 }else if( NEVER(pName2==0) || pName2->z==0 ){
4312 char *zColl;
4313 assert( pName1->z );
4314 zColl = sqlite3NameFromToken(pParse->db, pName1);
4315 if( !zColl ) return;
4316 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4317 if( pColl ){
4318 reindexDatabases(pParse, zColl);
4319 sqlite3DbFree(db, zColl);
4320 return;
4322 sqlite3DbFree(db, zColl);
4324 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4325 if( iDb<0 ) return;
4326 z = sqlite3NameFromToken(db, pObjName);
4327 if( z==0 ) return;
4328 zDb = db->aDb[iDb].zDbSName;
4329 pTab = sqlite3FindTable(db, z, zDb);
4330 if( pTab ){
4331 reindexTable(pParse, pTab, 0);
4332 sqlite3DbFree(db, z);
4333 return;
4335 pIndex = sqlite3FindIndex(db, z, zDb);
4336 sqlite3DbFree(db, z);
4337 if( pIndex ){
4338 sqlite3BeginWriteOperation(pParse, 0, iDb);
4339 sqlite3RefillIndex(pParse, pIndex, -1);
4340 return;
4342 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4344 #endif
4347 ** Return a KeyInfo structure that is appropriate for the given Index.
4349 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4350 ** when it has finished using it.
4352 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4353 int i;
4354 int nCol = pIdx->nColumn;
4355 int nKey = pIdx->nKeyCol;
4356 KeyInfo *pKey;
4357 if( pParse->nErr ) return 0;
4358 if( pIdx->uniqNotNull ){
4359 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4360 }else{
4361 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4363 if( pKey ){
4364 assert( sqlite3KeyInfoIsWriteable(pKey) );
4365 for(i=0; i<nCol; i++){
4366 const char *zColl = pIdx->azColl[i];
4367 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4368 sqlite3LocateCollSeq(pParse, zColl);
4369 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4371 if( pParse->nErr ){
4372 sqlite3KeyInfoUnref(pKey);
4373 pKey = 0;
4376 return pKey;
4379 #ifndef SQLITE_OMIT_CTE
4381 ** This routine is invoked once per CTE by the parser while parsing a
4382 ** WITH clause.
4384 With *sqlite3WithAdd(
4385 Parse *pParse, /* Parsing context */
4386 With *pWith, /* Existing WITH clause, or NULL */
4387 Token *pName, /* Name of the common-table */
4388 ExprList *pArglist, /* Optional column name list for the table */
4389 Select *pQuery /* Query used to initialize the table */
4391 sqlite3 *db = pParse->db;
4392 With *pNew;
4393 char *zName;
4395 /* Check that the CTE name is unique within this WITH clause. If
4396 ** not, store an error in the Parse structure. */
4397 zName = sqlite3NameFromToken(pParse->db, pName);
4398 if( zName && pWith ){
4399 int i;
4400 for(i=0; i<pWith->nCte; i++){
4401 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4402 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4407 if( pWith ){
4408 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4409 pNew = sqlite3DbRealloc(db, pWith, nByte);
4410 }else{
4411 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4413 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4415 if( db->mallocFailed ){
4416 sqlite3ExprListDelete(db, pArglist);
4417 sqlite3SelectDelete(db, pQuery);
4418 sqlite3DbFree(db, zName);
4419 pNew = pWith;
4420 }else{
4421 pNew->a[pNew->nCte].pSelect = pQuery;
4422 pNew->a[pNew->nCte].pCols = pArglist;
4423 pNew->a[pNew->nCte].zName = zName;
4424 pNew->a[pNew->nCte].zCteErr = 0;
4425 pNew->nCte++;
4428 return pNew;
4432 ** Free the contents of the With object passed as the second argument.
4434 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4435 if( pWith ){
4436 int i;
4437 for(i=0; i<pWith->nCte; i++){
4438 struct Cte *pCte = &pWith->a[i];
4439 sqlite3ExprListDelete(db, pCte->pCols);
4440 sqlite3SelectDelete(db, pCte->pSelect);
4441 sqlite3DbFree(db, pCte->zName);
4443 sqlite3DbFree(db, pWith);
4446 #endif /* !defined(SQLITE_OMIT_CTE) */