Simplifications to the implementation of the sum() SQL function.
[sqlite.git] / src / vdbeapi.c
blobfcc315bc653eae7accfeb32231e572064e4c7f90
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 if( db->xProfile ){
71 db->xProfile(db->pProfileArg, p->zSql, iElapse);
73 if( db->mTrace & SQLITE_TRACE_PROFILE ){
74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
76 p->startTime = 0;
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P) /*no-op*/
86 #endif
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98 int rc;
99 if( pStmt==0 ){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
102 rc = SQLITE_OK;
103 }else{
104 Vdbe *v = (Vdbe*)pStmt;
105 sqlite3 *db = v->db;
106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107 sqlite3_mutex_enter(db->mutex);
108 checkProfileCallback(db, v);
109 rc = sqlite3VdbeFinalize(v);
110 rc = sqlite3ApiExit(db, rc);
111 sqlite3LeaveMutexAndCloseZombie(db);
113 return rc;
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125 int rc;
126 if( pStmt==0 ){
127 rc = SQLITE_OK;
128 }else{
129 Vdbe *v = (Vdbe*)pStmt;
130 sqlite3 *db = v->db;
131 sqlite3_mutex_enter(db->mutex);
132 checkProfileCallback(db, v);
133 rc = sqlite3VdbeReset(v);
134 sqlite3VdbeRewind(v);
135 assert( (rc & (db->errMask))==rc );
136 rc = sqlite3ApiExit(db, rc);
137 sqlite3_mutex_leave(db->mutex);
139 return rc;
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146 int i;
147 int rc = SQLITE_OK;
148 Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152 sqlite3_mutex_enter(mutex);
153 for(i=0; i<p->nVar; i++){
154 sqlite3VdbeMemRelease(&p->aVar[i]);
155 p->aVar[i].flags = MEM_Null;
157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
158 if( p->expmask ){
159 p->expired = 1;
161 sqlite3_mutex_leave(mutex);
162 return rc;
166 /**************************** sqlite3_value_ *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171 Mem *p = (Mem*)pVal;
172 if( p->flags & (MEM_Blob|MEM_Str) ){
173 if( ExpandBlob(p)!=SQLITE_OK ){
174 assert( p->flags==MEM_Null && p->z==0 );
175 return 0;
177 p->flags |= MEM_Blob;
178 return p->n ? p->z : 0;
179 }else{
180 return sqlite3_value_text(pVal);
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
189 double sqlite3_value_double(sqlite3_value *pVal){
190 return sqlite3VdbeRealValue((Mem*)pVal);
192 int sqlite3_value_int(sqlite3_value *pVal){
193 return (int)sqlite3VdbeIntValue((Mem*)pVal);
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196 return sqlite3VdbeIntValue((Mem*)pVal);
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199 Mem *pMem = (Mem*)pVal;
200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
203 Mem *p = (Mem*)pVal;
204 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
205 (MEM_Null|MEM_Term|MEM_Subtype)
206 && zPType!=0
207 && p->eSubtype=='p'
208 && strcmp(p->u.zPType, zPType)==0
210 return (void*)p->z;
211 }else{
212 return 0;
215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
216 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value* pVal){
220 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
222 const void *sqlite3_value_text16be(sqlite3_value *pVal){
223 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
225 const void *sqlite3_value_text16le(sqlite3_value *pVal){
226 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
233 int sqlite3_value_type(sqlite3_value* pVal){
234 static const u8 aType[] = {
235 SQLITE_BLOB, /* 0x00 */
236 SQLITE_NULL, /* 0x01 */
237 SQLITE_TEXT, /* 0x02 */
238 SQLITE_NULL, /* 0x03 */
239 SQLITE_INTEGER, /* 0x04 */
240 SQLITE_NULL, /* 0x05 */
241 SQLITE_INTEGER, /* 0x06 */
242 SQLITE_NULL, /* 0x07 */
243 SQLITE_FLOAT, /* 0x08 */
244 SQLITE_NULL, /* 0x09 */
245 SQLITE_FLOAT, /* 0x0a */
246 SQLITE_NULL, /* 0x0b */
247 SQLITE_INTEGER, /* 0x0c */
248 SQLITE_NULL, /* 0x0d */
249 SQLITE_INTEGER, /* 0x0e */
250 SQLITE_NULL, /* 0x0f */
251 SQLITE_BLOB, /* 0x10 */
252 SQLITE_NULL, /* 0x11 */
253 SQLITE_TEXT, /* 0x12 */
254 SQLITE_NULL, /* 0x13 */
255 SQLITE_INTEGER, /* 0x14 */
256 SQLITE_NULL, /* 0x15 */
257 SQLITE_INTEGER, /* 0x16 */
258 SQLITE_NULL, /* 0x17 */
259 SQLITE_FLOAT, /* 0x18 */
260 SQLITE_NULL, /* 0x19 */
261 SQLITE_FLOAT, /* 0x1a */
262 SQLITE_NULL, /* 0x1b */
263 SQLITE_INTEGER, /* 0x1c */
264 SQLITE_NULL, /* 0x1d */
265 SQLITE_INTEGER, /* 0x1e */
266 SQLITE_NULL, /* 0x1f */
268 return aType[pVal->flags&MEM_AffMask];
271 /* Return true if a parameter to xUpdate represents an unchanged column */
272 int sqlite3_value_nochange(sqlite3_value *pVal){
273 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
276 /* Make a copy of an sqlite3_value object
278 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
279 sqlite3_value *pNew;
280 if( pOrig==0 ) return 0;
281 pNew = sqlite3_malloc( sizeof(*pNew) );
282 if( pNew==0 ) return 0;
283 memset(pNew, 0, sizeof(*pNew));
284 memcpy(pNew, pOrig, MEMCELLSIZE);
285 pNew->flags &= ~MEM_Dyn;
286 pNew->db = 0;
287 if( pNew->flags&(MEM_Str|MEM_Blob) ){
288 pNew->flags &= ~(MEM_Static|MEM_Dyn);
289 pNew->flags |= MEM_Ephem;
290 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
291 sqlite3ValueFree(pNew);
292 pNew = 0;
295 return pNew;
298 /* Destroy an sqlite3_value object previously obtained from
299 ** sqlite3_value_dup().
301 void sqlite3_value_free(sqlite3_value *pOld){
302 sqlite3ValueFree(pOld);
306 /**************************** sqlite3_result_ *******************************
307 ** The following routines are used by user-defined functions to specify
308 ** the function result.
310 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
311 ** result as a string or blob but if the string or blob is too large, it
312 ** then sets the error code to SQLITE_TOOBIG
314 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
315 ** on value P is not going to be used and need to be destroyed.
317 static void setResultStrOrError(
318 sqlite3_context *pCtx, /* Function context */
319 const char *z, /* String pointer */
320 int n, /* Bytes in string, or negative */
321 u8 enc, /* Encoding of z. 0 for BLOBs */
322 void (*xDel)(void*) /* Destructor function */
324 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
325 sqlite3_result_error_toobig(pCtx);
328 static int invokeValueDestructor(
329 const void *p, /* Value to destroy */
330 void (*xDel)(void*), /* The destructor */
331 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
333 assert( xDel!=SQLITE_DYNAMIC );
334 if( xDel==0 ){
335 /* noop */
336 }else if( xDel==SQLITE_TRANSIENT ){
337 /* noop */
338 }else{
339 xDel((void*)p);
341 if( pCtx ) sqlite3_result_error_toobig(pCtx);
342 return SQLITE_TOOBIG;
344 void sqlite3_result_blob(
345 sqlite3_context *pCtx,
346 const void *z,
347 int n,
348 void (*xDel)(void *)
350 assert( n>=0 );
351 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
352 setResultStrOrError(pCtx, z, n, 0, xDel);
354 void sqlite3_result_blob64(
355 sqlite3_context *pCtx,
356 const void *z,
357 sqlite3_uint64 n,
358 void (*xDel)(void *)
360 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
361 assert( xDel!=SQLITE_DYNAMIC );
362 if( n>0x7fffffff ){
363 (void)invokeValueDestructor(z, xDel, pCtx);
364 }else{
365 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
368 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
370 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
372 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
373 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
374 pCtx->isError = SQLITE_ERROR;
375 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
377 #ifndef SQLITE_OMIT_UTF16
378 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
379 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
380 pCtx->isError = SQLITE_ERROR;
381 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
383 #endif
384 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
385 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
386 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
388 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
389 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
390 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
392 void sqlite3_result_null(sqlite3_context *pCtx){
393 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
394 sqlite3VdbeMemSetNull(pCtx->pOut);
396 void sqlite3_result_pointer(
397 sqlite3_context *pCtx,
398 void *pPtr,
399 const char *zPType,
400 void (*xDestructor)(void*)
402 Mem *pOut = pCtx->pOut;
403 assert( sqlite3_mutex_held(pOut->db->mutex) );
404 sqlite3VdbeMemRelease(pOut);
405 pOut->flags = MEM_Null;
406 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
408 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
409 Mem *pOut = pCtx->pOut;
410 assert( sqlite3_mutex_held(pOut->db->mutex) );
411 pOut->eSubtype = eSubtype & 0xff;
412 pOut->flags |= MEM_Subtype;
414 void sqlite3_result_text(
415 sqlite3_context *pCtx,
416 const char *z,
417 int n,
418 void (*xDel)(void *)
420 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
421 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
423 void sqlite3_result_text64(
424 sqlite3_context *pCtx,
425 const char *z,
426 sqlite3_uint64 n,
427 void (*xDel)(void *),
428 unsigned char enc
430 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
431 assert( xDel!=SQLITE_DYNAMIC );
432 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
433 if( n>0x7fffffff ){
434 (void)invokeValueDestructor(z, xDel, pCtx);
435 }else{
436 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
439 #ifndef SQLITE_OMIT_UTF16
440 void sqlite3_result_text16(
441 sqlite3_context *pCtx,
442 const void *z,
443 int n,
444 void (*xDel)(void *)
446 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
447 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
449 void sqlite3_result_text16be(
450 sqlite3_context *pCtx,
451 const void *z,
452 int n,
453 void (*xDel)(void *)
455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
456 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
458 void sqlite3_result_text16le(
459 sqlite3_context *pCtx,
460 const void *z,
461 int n,
462 void (*xDel)(void *)
464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
467 #endif /* SQLITE_OMIT_UTF16 */
468 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
470 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
472 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
473 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
474 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
476 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
477 Mem *pOut = pCtx->pOut;
478 assert( sqlite3_mutex_held(pOut->db->mutex) );
479 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
480 return SQLITE_TOOBIG;
482 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
483 return SQLITE_OK;
485 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
486 pCtx->isError = errCode ? errCode : -1;
487 #ifdef SQLITE_DEBUG
488 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
489 #endif
490 if( pCtx->pOut->flags & MEM_Null ){
491 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
492 SQLITE_UTF8, SQLITE_STATIC);
496 /* Force an SQLITE_TOOBIG error. */
497 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
498 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
499 pCtx->isError = SQLITE_TOOBIG;
500 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
501 SQLITE_UTF8, SQLITE_STATIC);
504 /* An SQLITE_NOMEM error. */
505 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
506 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
507 sqlite3VdbeMemSetNull(pCtx->pOut);
508 pCtx->isError = SQLITE_NOMEM_BKPT;
509 sqlite3OomFault(pCtx->pOut->db);
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
516 static int doWalCallbacks(sqlite3 *db){
517 int rc = SQLITE_OK;
518 #ifndef SQLITE_OMIT_WAL
519 int i;
520 for(i=0; i<db->nDb; i++){
521 Btree *pBt = db->aDb[i].pBt;
522 if( pBt ){
523 int nEntry;
524 sqlite3BtreeEnter(pBt);
525 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
526 sqlite3BtreeLeave(pBt);
527 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
528 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
532 #endif
533 return rc;
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API. The only thing omitted is the automatic recompile if a
543 ** schema change has occurred. That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
546 static int sqlite3Step(Vdbe *p){
547 sqlite3 *db;
548 int rc;
550 assert(p);
551 if( p->magic!=VDBE_MAGIC_RUN ){
552 /* We used to require that sqlite3_reset() be called before retrying
553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
554 ** with version 3.7.0, we changed this so that sqlite3_reset() would
555 ** be called automatically instead of throwing the SQLITE_MISUSE error.
556 ** This "automatic-reset" change is not technically an incompatibility,
557 ** since any application that receives an SQLITE_MISUSE is broken by
558 ** definition.
560 ** Nevertheless, some published applications that were originally written
561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562 ** returns, and those were broken by the automatic-reset change. As a
563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564 ** legacy behavior of returning SQLITE_MISUSE for cases where the
565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566 ** or SQLITE_BUSY error.
568 #ifdef SQLITE_OMIT_AUTORESET
569 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
570 sqlite3_reset((sqlite3_stmt*)p);
571 }else{
572 return SQLITE_MISUSE_BKPT;
574 #else
575 sqlite3_reset((sqlite3_stmt*)p);
576 #endif
579 /* Check that malloc() has not failed. If it has, return early. */
580 db = p->db;
581 if( db->mallocFailed ){
582 p->rc = SQLITE_NOMEM;
583 return SQLITE_NOMEM_BKPT;
586 if( p->pc<=0 && p->expired ){
587 p->rc = SQLITE_SCHEMA;
588 rc = SQLITE_ERROR;
589 goto end_of_step;
591 if( p->pc<0 ){
592 /* If there are no other statements currently running, then
593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
594 ** from interrupting a statement that has not yet started.
596 if( db->nVdbeActive==0 ){
597 db->u1.isInterrupted = 0;
600 assert( db->nVdbeWrite>0 || db->autoCommit==0
601 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
604 #ifndef SQLITE_OMIT_TRACE
605 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
606 && !db->init.busy && p->zSql ){
607 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
608 }else{
609 assert( p->startTime==0 );
611 #endif
613 db->nVdbeActive++;
614 if( p->readOnly==0 ) db->nVdbeWrite++;
615 if( p->bIsReader ) db->nVdbeRead++;
616 p->pc = 0;
618 #ifdef SQLITE_DEBUG
619 p->rcApp = SQLITE_OK;
620 #endif
621 #ifndef SQLITE_OMIT_EXPLAIN
622 if( p->explain ){
623 rc = sqlite3VdbeList(p);
624 }else
625 #endif /* SQLITE_OMIT_EXPLAIN */
627 db->nVdbeExec++;
628 rc = sqlite3VdbeExec(p);
629 db->nVdbeExec--;
632 #ifndef SQLITE_OMIT_TRACE
633 /* If the statement completed successfully, invoke the profile callback */
634 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
635 #endif
637 if( rc==SQLITE_DONE && db->autoCommit ){
638 assert( p->rc==SQLITE_OK );
639 p->rc = doWalCallbacks(db);
640 if( p->rc!=SQLITE_OK ){
641 rc = SQLITE_ERROR;
645 db->errCode = rc;
646 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
647 p->rc = SQLITE_NOMEM_BKPT;
649 end_of_step:
650 /* At this point local variable rc holds the value that should be
651 ** returned if this statement was compiled using the legacy
652 ** sqlite3_prepare() interface. According to the docs, this can only
653 ** be one of the values in the first assert() below. Variable p->rc
654 ** contains the value that would be returned if sqlite3_finalize()
655 ** were called on statement p.
657 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
658 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
660 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
661 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
662 && rc!=SQLITE_ROW
663 && rc!=SQLITE_DONE
665 /* If this statement was prepared using saved SQL and an
666 ** error has occurred, then return the error code in p->rc to the
667 ** caller. Set the error code in the database handle to the same value.
669 rc = sqlite3VdbeTransferError(p);
671 return (rc&db->errMask);
675 ** This is the top-level implementation of sqlite3_step(). Call
676 ** sqlite3Step() to do most of the work. If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
679 int sqlite3_step(sqlite3_stmt *pStmt){
680 int rc = SQLITE_OK; /* Result from sqlite3Step() */
681 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
682 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
683 sqlite3 *db; /* The database connection */
685 if( vdbeSafetyNotNull(v) ){
686 return SQLITE_MISUSE_BKPT;
688 db = v->db;
689 sqlite3_mutex_enter(db->mutex);
690 v->doingRerun = 0;
691 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
692 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
693 int savedPc = v->pc;
694 rc = sqlite3Reprepare(v);
695 if( rc!=SQLITE_OK ){
696 /* This case occurs after failing to recompile an sql statement.
697 ** The error message from the SQL compiler has already been loaded
698 ** into the database handle. This block copies the error message
699 ** from the database handle into the statement and sets the statement
700 ** program counter to 0 to ensure that when the statement is
701 ** finalized or reset the parser error message is available via
702 ** sqlite3_errmsg() and sqlite3_errcode().
704 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
705 sqlite3DbFree(db, v->zErrMsg);
706 if( !db->mallocFailed ){
707 v->zErrMsg = sqlite3DbStrDup(db, zErr);
708 v->rc = rc = sqlite3ApiExit(db, rc);
709 } else {
710 v->zErrMsg = 0;
711 v->rc = rc = SQLITE_NOMEM_BKPT;
713 break;
715 sqlite3_reset(pStmt);
716 if( savedPc>=0 ) v->doingRerun = 1;
717 assert( v->expired==0 );
719 sqlite3_mutex_leave(db->mutex);
720 return rc;
725 ** Extract the user data from a sqlite3_context structure and return a
726 ** pointer to it.
728 void *sqlite3_user_data(sqlite3_context *p){
729 assert( p && p->pFunc );
730 return p->pFunc->pUserData;
734 ** Extract the user data from a sqlite3_context structure and return a
735 ** pointer to it.
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
744 assert( p && p->pOut );
745 return p->pOut->db;
749 ** If this routine is invoked from within an xColumn method of a virtual
750 ** table, then it returns true if and only if the the call is during an
751 ** UPDATE operation and the value of the column will not be modified
752 ** by the UPDATE.
754 ** If this routine is called from any context other than within the
755 ** xColumn method of a virtual table, then the return value is meaningless
756 ** and arbitrary.
758 ** Virtual table implements might use this routine to optimize their
759 ** performance by substituting a NULL result, or some other light-weight
760 ** value, as a signal to the xUpdate routine that the column is unchanged.
762 int sqlite3_vtab_nochange(sqlite3_context *p){
763 assert( p );
764 return sqlite3_value_nochange(p->pOut);
768 ** Return the current time for a statement. If the current time
769 ** is requested more than once within the same run of a single prepared
770 ** statement, the exact same time is returned for each invocation regardless
771 ** of the amount of time that elapses between invocations. In other words,
772 ** the time returned is always the time of the first call.
774 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
775 int rc;
776 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
777 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
778 assert( p->pVdbe!=0 );
779 #else
780 sqlite3_int64 iTime = 0;
781 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
782 #endif
783 if( *piTime==0 ){
784 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
785 if( rc ) *piTime = 0;
787 return *piTime;
791 ** Create a new aggregate context for p and return a pointer to
792 ** its pMem->z element.
794 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
795 Mem *pMem = p->pMem;
796 assert( (pMem->flags & MEM_Agg)==0 );
797 if( nByte<=0 ){
798 sqlite3VdbeMemSetNull(pMem);
799 pMem->z = 0;
800 }else{
801 sqlite3VdbeMemClearAndResize(pMem, nByte);
802 pMem->flags = MEM_Agg;
803 pMem->u.pDef = p->pFunc;
804 if( pMem->z ){
805 memset(pMem->z, 0, nByte);
808 return (void*)pMem->z;
812 ** Allocate or return the aggregate context for a user function. A new
813 ** context is allocated on the first call. Subsequent calls return the
814 ** same context that was returned on prior calls.
816 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
817 assert( p && p->pFunc && p->pFunc->xFinalize );
818 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
819 testcase( nByte<0 );
820 if( (p->pMem->flags & MEM_Agg)==0 ){
821 return createAggContext(p, nByte);
822 }else{
823 return (void*)p->pMem->z;
828 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
829 ** the user-function defined by pCtx.
831 ** The left-most argument is 0.
833 ** Undocumented behavior: If iArg is negative then access a cache of
834 ** auxiliary data pointers that is available to all functions within a
835 ** single prepared statement. The iArg values must match.
837 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
838 AuxData *pAuxData;
840 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
841 #if SQLITE_ENABLE_STAT3_OR_STAT4
842 if( pCtx->pVdbe==0 ) return 0;
843 #else
844 assert( pCtx->pVdbe!=0 );
845 #endif
846 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
847 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
848 return pAuxData->pAux;
851 return 0;
855 ** Set the auxiliary data pointer and delete function, for the iArg'th
856 ** argument to the user-function defined by pCtx. Any previous value is
857 ** deleted by calling the delete function specified when it was set.
859 ** The left-most argument is 0.
861 ** Undocumented behavior: If iArg is negative then make the data available
862 ** to all functions within the current prepared statement using iArg as an
863 ** access code.
865 void sqlite3_set_auxdata(
866 sqlite3_context *pCtx,
867 int iArg,
868 void *pAux,
869 void (*xDelete)(void*)
871 AuxData *pAuxData;
872 Vdbe *pVdbe = pCtx->pVdbe;
874 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
875 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
876 if( pVdbe==0 ) goto failed;
877 #else
878 assert( pVdbe!=0 );
879 #endif
881 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
882 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
883 break;
886 if( pAuxData==0 ){
887 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
888 if( !pAuxData ) goto failed;
889 pAuxData->iAuxOp = pCtx->iOp;
890 pAuxData->iAuxArg = iArg;
891 pAuxData->pNextAux = pVdbe->pAuxData;
892 pVdbe->pAuxData = pAuxData;
893 if( pCtx->isError==0 ) pCtx->isError = -1;
894 }else if( pAuxData->xDeleteAux ){
895 pAuxData->xDeleteAux(pAuxData->pAux);
898 pAuxData->pAux = pAux;
899 pAuxData->xDeleteAux = xDelete;
900 return;
902 failed:
903 if( xDelete ){
904 xDelete(pAux);
908 #ifndef SQLITE_OMIT_DEPRECATED
910 ** Return the number of times the Step function of an aggregate has been
911 ** called.
913 ** This function is deprecated. Do not use it for new code. It is
914 ** provide only to avoid breaking legacy code. New aggregate function
915 ** implementations should keep their own counts within their aggregate
916 ** context.
918 int sqlite3_aggregate_count(sqlite3_context *p){
919 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
920 return p->pMem->n;
922 #endif
925 ** Return the number of columns in the result set for the statement pStmt.
927 int sqlite3_column_count(sqlite3_stmt *pStmt){
928 Vdbe *pVm = (Vdbe *)pStmt;
929 return pVm ? pVm->nResColumn : 0;
933 ** Return the number of values available from the current row of the
934 ** currently executing statement pStmt.
936 int sqlite3_data_count(sqlite3_stmt *pStmt){
937 Vdbe *pVm = (Vdbe *)pStmt;
938 if( pVm==0 || pVm->pResultSet==0 ) return 0;
939 return pVm->nResColumn;
943 ** Return a pointer to static memory containing an SQL NULL value.
945 static const Mem *columnNullValue(void){
946 /* Even though the Mem structure contains an element
947 ** of type i64, on certain architectures (x86) with certain compiler
948 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
949 ** instead of an 8-byte one. This all works fine, except that when
950 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
951 ** that a Mem structure is located on an 8-byte boundary. To prevent
952 ** these assert()s from failing, when building with SQLITE_DEBUG defined
953 ** using gcc, we force nullMem to be 8-byte aligned using the magical
954 ** __attribute__((aligned(8))) macro. */
955 static const Mem nullMem
956 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
957 __attribute__((aligned(8)))
958 #endif
960 /* .u = */ {0},
961 /* .flags = */ (u16)MEM_Null,
962 /* .enc = */ (u8)0,
963 /* .eSubtype = */ (u8)0,
964 /* .n = */ (int)0,
965 /* .z = */ (char*)0,
966 /* .zMalloc = */ (char*)0,
967 /* .szMalloc = */ (int)0,
968 /* .uTemp = */ (u32)0,
969 /* .db = */ (sqlite3*)0,
970 /* .xDel = */ (void(*)(void*))0,
971 #ifdef SQLITE_DEBUG
972 /* .pScopyFrom = */ (Mem*)0,
973 /* .mScopyFlags= */ 0,
974 #endif
975 #ifdef SQLITE_DEBUG_COLUMNCACHE
976 /* .iTabColHash= */ 0,
977 #endif
979 return &nullMem;
983 ** Check to see if column iCol of the given statement is valid. If
984 ** it is, return a pointer to the Mem for the value of that column.
985 ** If iCol is not valid, return a pointer to a Mem which has a value
986 ** of NULL.
988 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
989 Vdbe *pVm;
990 Mem *pOut;
992 pVm = (Vdbe *)pStmt;
993 if( pVm==0 ) return (Mem*)columnNullValue();
994 assert( pVm->db );
995 sqlite3_mutex_enter(pVm->db->mutex);
996 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
997 pOut = &pVm->pResultSet[i];
998 }else{
999 sqlite3Error(pVm->db, SQLITE_RANGE);
1000 pOut = (Mem*)columnNullValue();
1002 return pOut;
1006 ** This function is called after invoking an sqlite3_value_XXX function on a
1007 ** column value (i.e. a value returned by evaluating an SQL expression in the
1008 ** select list of a SELECT statement) that may cause a malloc() failure. If
1009 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1010 ** code of statement pStmt set to SQLITE_NOMEM.
1012 ** Specifically, this is called from within:
1014 ** sqlite3_column_int()
1015 ** sqlite3_column_int64()
1016 ** sqlite3_column_text()
1017 ** sqlite3_column_text16()
1018 ** sqlite3_column_real()
1019 ** sqlite3_column_bytes()
1020 ** sqlite3_column_bytes16()
1021 ** sqiite3_column_blob()
1023 static void columnMallocFailure(sqlite3_stmt *pStmt)
1025 /* If malloc() failed during an encoding conversion within an
1026 ** sqlite3_column_XXX API, then set the return code of the statement to
1027 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1028 ** and _finalize() will return NOMEM.
1030 Vdbe *p = (Vdbe *)pStmt;
1031 if( p ){
1032 assert( p->db!=0 );
1033 assert( sqlite3_mutex_held(p->db->mutex) );
1034 p->rc = sqlite3ApiExit(p->db, p->rc);
1035 sqlite3_mutex_leave(p->db->mutex);
1039 /**************************** sqlite3_column_ *******************************
1040 ** The following routines are used to access elements of the current row
1041 ** in the result set.
1043 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1044 const void *val;
1045 val = sqlite3_value_blob( columnMem(pStmt,i) );
1046 /* Even though there is no encoding conversion, value_blob() might
1047 ** need to call malloc() to expand the result of a zeroblob()
1048 ** expression.
1050 columnMallocFailure(pStmt);
1051 return val;
1053 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1054 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1055 columnMallocFailure(pStmt);
1056 return val;
1058 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1059 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1060 columnMallocFailure(pStmt);
1061 return val;
1063 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1064 double val = sqlite3_value_double( columnMem(pStmt,i) );
1065 columnMallocFailure(pStmt);
1066 return val;
1068 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1069 int val = sqlite3_value_int( columnMem(pStmt,i) );
1070 columnMallocFailure(pStmt);
1071 return val;
1073 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1074 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1075 columnMallocFailure(pStmt);
1076 return val;
1078 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1079 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1080 columnMallocFailure(pStmt);
1081 return val;
1083 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1084 Mem *pOut = columnMem(pStmt, i);
1085 if( pOut->flags&MEM_Static ){
1086 pOut->flags &= ~MEM_Static;
1087 pOut->flags |= MEM_Ephem;
1089 columnMallocFailure(pStmt);
1090 return (sqlite3_value *)pOut;
1092 #ifndef SQLITE_OMIT_UTF16
1093 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1094 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1095 columnMallocFailure(pStmt);
1096 return val;
1098 #endif /* SQLITE_OMIT_UTF16 */
1099 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1100 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1101 columnMallocFailure(pStmt);
1102 return iType;
1106 ** Convert the N-th element of pStmt->pColName[] into a string using
1107 ** xFunc() then return that string. If N is out of range, return 0.
1109 ** There are up to 5 names for each column. useType determines which
1110 ** name is returned. Here are the names:
1112 ** 0 The column name as it should be displayed for output
1113 ** 1 The datatype name for the column
1114 ** 2 The name of the database that the column derives from
1115 ** 3 The name of the table that the column derives from
1116 ** 4 The name of the table column that the result column derives from
1118 ** If the result is not a simple column reference (if it is an expression
1119 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1121 static const void *columnName(
1122 sqlite3_stmt *pStmt,
1123 int N,
1124 const void *(*xFunc)(Mem*),
1125 int useType
1127 const void *ret;
1128 Vdbe *p;
1129 int n;
1130 sqlite3 *db;
1131 #ifdef SQLITE_ENABLE_API_ARMOR
1132 if( pStmt==0 ){
1133 (void)SQLITE_MISUSE_BKPT;
1134 return 0;
1136 #endif
1137 ret = 0;
1138 p = (Vdbe *)pStmt;
1139 db = p->db;
1140 assert( db!=0 );
1141 n = sqlite3_column_count(pStmt);
1142 if( N<n && N>=0 ){
1143 N += useType*n;
1144 sqlite3_mutex_enter(db->mutex);
1145 assert( db->mallocFailed==0 );
1146 ret = xFunc(&p->aColName[N]);
1147 /* A malloc may have failed inside of the xFunc() call. If this
1148 ** is the case, clear the mallocFailed flag and return NULL.
1150 if( db->mallocFailed ){
1151 sqlite3OomClear(db);
1152 ret = 0;
1154 sqlite3_mutex_leave(db->mutex);
1156 return ret;
1160 ** Return the name of the Nth column of the result set returned by SQL
1161 ** statement pStmt.
1163 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1164 return columnName(
1165 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1167 #ifndef SQLITE_OMIT_UTF16
1168 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1169 return columnName(
1170 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1172 #endif
1175 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1176 ** not define OMIT_DECLTYPE.
1178 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1179 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1180 and SQLITE_ENABLE_COLUMN_METADATA"
1181 #endif
1183 #ifndef SQLITE_OMIT_DECLTYPE
1185 ** Return the column declaration type (if applicable) of the 'i'th column
1186 ** of the result set of SQL statement pStmt.
1188 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1189 return columnName(
1190 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1192 #ifndef SQLITE_OMIT_UTF16
1193 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1194 return columnName(
1195 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1197 #endif /* SQLITE_OMIT_UTF16 */
1198 #endif /* SQLITE_OMIT_DECLTYPE */
1200 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1202 ** Return the name of the database from which a result column derives.
1203 ** NULL is returned if the result column is an expression or constant or
1204 ** anything else which is not an unambiguous reference to a database column.
1206 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1207 return columnName(
1208 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1210 #ifndef SQLITE_OMIT_UTF16
1211 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1212 return columnName(
1213 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1215 #endif /* SQLITE_OMIT_UTF16 */
1218 ** Return the name of the table from which a result column derives.
1219 ** NULL is returned if the result column is an expression or constant or
1220 ** anything else which is not an unambiguous reference to a database column.
1222 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1223 return columnName(
1224 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1226 #ifndef SQLITE_OMIT_UTF16
1227 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1228 return columnName(
1229 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1231 #endif /* SQLITE_OMIT_UTF16 */
1234 ** Return the name of the table column from which a result column derives.
1235 ** NULL is returned if the result column is an expression or constant or
1236 ** anything else which is not an unambiguous reference to a database column.
1238 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1239 return columnName(
1240 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1242 #ifndef SQLITE_OMIT_UTF16
1243 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1244 return columnName(
1245 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1247 #endif /* SQLITE_OMIT_UTF16 */
1248 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1251 /******************************* sqlite3_bind_ ***************************
1253 ** Routines used to attach values to wildcards in a compiled SQL statement.
1256 ** Unbind the value bound to variable i in virtual machine p. This is the
1257 ** the same as binding a NULL value to the column. If the "i" parameter is
1258 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1260 ** A successful evaluation of this routine acquires the mutex on p.
1261 ** the mutex is released if any kind of error occurs.
1263 ** The error code stored in database p->db is overwritten with the return
1264 ** value in any case.
1266 static int vdbeUnbind(Vdbe *p, int i){
1267 Mem *pVar;
1268 if( vdbeSafetyNotNull(p) ){
1269 return SQLITE_MISUSE_BKPT;
1271 sqlite3_mutex_enter(p->db->mutex);
1272 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1273 sqlite3Error(p->db, SQLITE_MISUSE);
1274 sqlite3_mutex_leave(p->db->mutex);
1275 sqlite3_log(SQLITE_MISUSE,
1276 "bind on a busy prepared statement: [%s]", p->zSql);
1277 return SQLITE_MISUSE_BKPT;
1279 if( i<1 || i>p->nVar ){
1280 sqlite3Error(p->db, SQLITE_RANGE);
1281 sqlite3_mutex_leave(p->db->mutex);
1282 return SQLITE_RANGE;
1284 i--;
1285 pVar = &p->aVar[i];
1286 sqlite3VdbeMemRelease(pVar);
1287 pVar->flags = MEM_Null;
1288 sqlite3Error(p->db, SQLITE_OK);
1290 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1291 ** binding a new value to this variable invalidates the current query plan.
1293 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1294 ** parameter in the WHERE clause might influence the choice of query plan
1295 ** for a statement, then the statement will be automatically recompiled,
1296 ** as if there had been a schema change, on the first sqlite3_step() call
1297 ** following any change to the bindings of that parameter.
1299 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1300 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1301 p->expired = 1;
1303 return SQLITE_OK;
1307 ** Bind a text or BLOB value.
1309 static int bindText(
1310 sqlite3_stmt *pStmt, /* The statement to bind against */
1311 int i, /* Index of the parameter to bind */
1312 const void *zData, /* Pointer to the data to be bound */
1313 int nData, /* Number of bytes of data to be bound */
1314 void (*xDel)(void*), /* Destructor for the data */
1315 u8 encoding /* Encoding for the data */
1317 Vdbe *p = (Vdbe *)pStmt;
1318 Mem *pVar;
1319 int rc;
1321 rc = vdbeUnbind(p, i);
1322 if( rc==SQLITE_OK ){
1323 if( zData!=0 ){
1324 pVar = &p->aVar[i-1];
1325 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1326 if( rc==SQLITE_OK && encoding!=0 ){
1327 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1329 if( rc ){
1330 sqlite3Error(p->db, rc);
1331 rc = sqlite3ApiExit(p->db, rc);
1334 sqlite3_mutex_leave(p->db->mutex);
1335 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1336 xDel((void*)zData);
1338 return rc;
1343 ** Bind a blob value to an SQL statement variable.
1345 int sqlite3_bind_blob(
1346 sqlite3_stmt *pStmt,
1347 int i,
1348 const void *zData,
1349 int nData,
1350 void (*xDel)(void*)
1352 #ifdef SQLITE_ENABLE_API_ARMOR
1353 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1354 #endif
1355 return bindText(pStmt, i, zData, nData, xDel, 0);
1357 int sqlite3_bind_blob64(
1358 sqlite3_stmt *pStmt,
1359 int i,
1360 const void *zData,
1361 sqlite3_uint64 nData,
1362 void (*xDel)(void*)
1364 assert( xDel!=SQLITE_DYNAMIC );
1365 if( nData>0x7fffffff ){
1366 return invokeValueDestructor(zData, xDel, 0);
1367 }else{
1368 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1371 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1372 int rc;
1373 Vdbe *p = (Vdbe *)pStmt;
1374 rc = vdbeUnbind(p, i);
1375 if( rc==SQLITE_OK ){
1376 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1377 sqlite3_mutex_leave(p->db->mutex);
1379 return rc;
1381 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1382 return sqlite3_bind_int64(p, i, (i64)iValue);
1384 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1385 int rc;
1386 Vdbe *p = (Vdbe *)pStmt;
1387 rc = vdbeUnbind(p, i);
1388 if( rc==SQLITE_OK ){
1389 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1390 sqlite3_mutex_leave(p->db->mutex);
1392 return rc;
1394 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1395 int rc;
1396 Vdbe *p = (Vdbe*)pStmt;
1397 rc = vdbeUnbind(p, i);
1398 if( rc==SQLITE_OK ){
1399 sqlite3_mutex_leave(p->db->mutex);
1401 return rc;
1403 int sqlite3_bind_pointer(
1404 sqlite3_stmt *pStmt,
1405 int i,
1406 void *pPtr,
1407 const char *zPTtype,
1408 void (*xDestructor)(void*)
1410 int rc;
1411 Vdbe *p = (Vdbe*)pStmt;
1412 rc = vdbeUnbind(p, i);
1413 if( rc==SQLITE_OK ){
1414 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1415 sqlite3_mutex_leave(p->db->mutex);
1416 }else if( xDestructor ){
1417 xDestructor(pPtr);
1419 return rc;
1421 int sqlite3_bind_text(
1422 sqlite3_stmt *pStmt,
1423 int i,
1424 const char *zData,
1425 int nData,
1426 void (*xDel)(void*)
1428 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1430 int sqlite3_bind_text64(
1431 sqlite3_stmt *pStmt,
1432 int i,
1433 const char *zData,
1434 sqlite3_uint64 nData,
1435 void (*xDel)(void*),
1436 unsigned char enc
1438 assert( xDel!=SQLITE_DYNAMIC );
1439 if( nData>0x7fffffff ){
1440 return invokeValueDestructor(zData, xDel, 0);
1441 }else{
1442 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1443 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1446 #ifndef SQLITE_OMIT_UTF16
1447 int sqlite3_bind_text16(
1448 sqlite3_stmt *pStmt,
1449 int i,
1450 const void *zData,
1451 int nData,
1452 void (*xDel)(void*)
1454 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1456 #endif /* SQLITE_OMIT_UTF16 */
1457 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1458 int rc;
1459 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1460 case SQLITE_INTEGER: {
1461 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1462 break;
1464 case SQLITE_FLOAT: {
1465 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1466 break;
1468 case SQLITE_BLOB: {
1469 if( pValue->flags & MEM_Zero ){
1470 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1471 }else{
1472 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1474 break;
1476 case SQLITE_TEXT: {
1477 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1478 pValue->enc);
1479 break;
1481 default: {
1482 rc = sqlite3_bind_null(pStmt, i);
1483 break;
1486 return rc;
1488 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1489 int rc;
1490 Vdbe *p = (Vdbe *)pStmt;
1491 rc = vdbeUnbind(p, i);
1492 if( rc==SQLITE_OK ){
1493 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1494 sqlite3_mutex_leave(p->db->mutex);
1496 return rc;
1498 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1499 int rc;
1500 Vdbe *p = (Vdbe *)pStmt;
1501 sqlite3_mutex_enter(p->db->mutex);
1502 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1503 rc = SQLITE_TOOBIG;
1504 }else{
1505 assert( (n & 0x7FFFFFFF)==n );
1506 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1508 rc = sqlite3ApiExit(p->db, rc);
1509 sqlite3_mutex_leave(p->db->mutex);
1510 return rc;
1514 ** Return the number of wildcards that can be potentially bound to.
1515 ** This routine is added to support DBD::SQLite.
1517 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1518 Vdbe *p = (Vdbe*)pStmt;
1519 return p ? p->nVar : 0;
1523 ** Return the name of a wildcard parameter. Return NULL if the index
1524 ** is out of range or if the wildcard is unnamed.
1526 ** The result is always UTF-8.
1528 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1529 Vdbe *p = (Vdbe*)pStmt;
1530 if( p==0 ) return 0;
1531 return sqlite3VListNumToName(p->pVList, i);
1535 ** Given a wildcard parameter name, return the index of the variable
1536 ** with that name. If there is no variable with the given name,
1537 ** return 0.
1539 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1540 if( p==0 || zName==0 ) return 0;
1541 return sqlite3VListNameToNum(p->pVList, zName, nName);
1543 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1544 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1548 ** Transfer all bindings from the first statement over to the second.
1550 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1551 Vdbe *pFrom = (Vdbe*)pFromStmt;
1552 Vdbe *pTo = (Vdbe*)pToStmt;
1553 int i;
1554 assert( pTo->db==pFrom->db );
1555 assert( pTo->nVar==pFrom->nVar );
1556 sqlite3_mutex_enter(pTo->db->mutex);
1557 for(i=0; i<pFrom->nVar; i++){
1558 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1560 sqlite3_mutex_leave(pTo->db->mutex);
1561 return SQLITE_OK;
1564 #ifndef SQLITE_OMIT_DEPRECATED
1566 ** Deprecated external interface. Internal/core SQLite code
1567 ** should call sqlite3TransferBindings.
1569 ** It is misuse to call this routine with statements from different
1570 ** database connections. But as this is a deprecated interface, we
1571 ** will not bother to check for that condition.
1573 ** If the two statements contain a different number of bindings, then
1574 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1575 ** SQLITE_OK is returned.
1577 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1578 Vdbe *pFrom = (Vdbe*)pFromStmt;
1579 Vdbe *pTo = (Vdbe*)pToStmt;
1580 if( pFrom->nVar!=pTo->nVar ){
1581 return SQLITE_ERROR;
1583 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1584 if( pTo->expmask ){
1585 pTo->expired = 1;
1587 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1588 if( pFrom->expmask ){
1589 pFrom->expired = 1;
1591 return sqlite3TransferBindings(pFromStmt, pToStmt);
1593 #endif
1596 ** Return the sqlite3* database handle to which the prepared statement given
1597 ** in the argument belongs. This is the same database handle that was
1598 ** the first argument to the sqlite3_prepare() that was used to create
1599 ** the statement in the first place.
1601 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1602 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1606 ** Return true if the prepared statement is guaranteed to not modify the
1607 ** database.
1609 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1610 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1614 ** Return true if the prepared statement is in need of being reset.
1616 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1617 Vdbe *v = (Vdbe*)pStmt;
1618 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1622 ** Return a pointer to the next prepared statement after pStmt associated
1623 ** with database connection pDb. If pStmt is NULL, return the first
1624 ** prepared statement for the database connection. Return NULL if there
1625 ** are no more.
1627 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1628 sqlite3_stmt *pNext;
1629 #ifdef SQLITE_ENABLE_API_ARMOR
1630 if( !sqlite3SafetyCheckOk(pDb) ){
1631 (void)SQLITE_MISUSE_BKPT;
1632 return 0;
1634 #endif
1635 sqlite3_mutex_enter(pDb->mutex);
1636 if( pStmt==0 ){
1637 pNext = (sqlite3_stmt*)pDb->pVdbe;
1638 }else{
1639 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1641 sqlite3_mutex_leave(pDb->mutex);
1642 return pNext;
1646 ** Return the value of a status counter for a prepared statement
1648 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1649 Vdbe *pVdbe = (Vdbe*)pStmt;
1650 u32 v;
1651 #ifdef SQLITE_ENABLE_API_ARMOR
1652 if( !pStmt
1653 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1655 (void)SQLITE_MISUSE_BKPT;
1656 return 0;
1658 #endif
1659 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1660 sqlite3 *db = pVdbe->db;
1661 sqlite3_mutex_enter(db->mutex);
1662 v = 0;
1663 db->pnBytesFreed = (int*)&v;
1664 sqlite3VdbeClearObject(db, pVdbe);
1665 sqlite3DbFree(db, pVdbe);
1666 db->pnBytesFreed = 0;
1667 sqlite3_mutex_leave(db->mutex);
1668 }else{
1669 v = pVdbe->aCounter[op];
1670 if( resetFlag ) pVdbe->aCounter[op] = 0;
1672 return (int)v;
1676 ** Return the SQL associated with a prepared statement
1678 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1679 Vdbe *p = (Vdbe *)pStmt;
1680 return p ? p->zSql : 0;
1684 ** Return the SQL associated with a prepared statement with
1685 ** bound parameters expanded. Space to hold the returned string is
1686 ** obtained from sqlite3_malloc(). The caller is responsible for
1687 ** freeing the returned string by passing it to sqlite3_free().
1689 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1690 ** expanded bound parameters.
1692 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1693 #ifdef SQLITE_OMIT_TRACE
1694 return 0;
1695 #else
1696 char *z = 0;
1697 const char *zSql = sqlite3_sql(pStmt);
1698 if( zSql ){
1699 Vdbe *p = (Vdbe *)pStmt;
1700 sqlite3_mutex_enter(p->db->mutex);
1701 z = sqlite3VdbeExpandSql(p, zSql);
1702 sqlite3_mutex_leave(p->db->mutex);
1704 return z;
1705 #endif
1708 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1710 ** Allocate and populate an UnpackedRecord structure based on the serialized
1711 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1712 ** if successful, or a NULL pointer if an OOM error is encountered.
1714 static UnpackedRecord *vdbeUnpackRecord(
1715 KeyInfo *pKeyInfo,
1716 int nKey,
1717 const void *pKey
1719 UnpackedRecord *pRet; /* Return value */
1721 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1722 if( pRet ){
1723 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1724 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1726 return pRet;
1730 ** This function is called from within a pre-update callback to retrieve
1731 ** a field of the row currently being updated or deleted.
1733 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1734 PreUpdate *p = db->pPreUpdate;
1735 Mem *pMem;
1736 int rc = SQLITE_OK;
1738 /* Test that this call is being made from within an SQLITE_DELETE or
1739 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1740 if( !p || p->op==SQLITE_INSERT ){
1741 rc = SQLITE_MISUSE_BKPT;
1742 goto preupdate_old_out;
1744 if( p->pPk ){
1745 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1747 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1748 rc = SQLITE_RANGE;
1749 goto preupdate_old_out;
1752 /* If the old.* record has not yet been loaded into memory, do so now. */
1753 if( p->pUnpacked==0 ){
1754 u32 nRec;
1755 u8 *aRec;
1757 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1758 aRec = sqlite3DbMallocRaw(db, nRec);
1759 if( !aRec ) goto preupdate_old_out;
1760 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1761 if( rc==SQLITE_OK ){
1762 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1763 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1765 if( rc!=SQLITE_OK ){
1766 sqlite3DbFree(db, aRec);
1767 goto preupdate_old_out;
1769 p->aRecord = aRec;
1772 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1773 if( iIdx==p->pTab->iPKey ){
1774 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1775 }else if( iIdx>=p->pUnpacked->nField ){
1776 *ppValue = (sqlite3_value *)columnNullValue();
1777 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1778 if( pMem->flags & MEM_Int ){
1779 sqlite3VdbeMemRealify(pMem);
1783 preupdate_old_out:
1784 sqlite3Error(db, rc);
1785 return sqlite3ApiExit(db, rc);
1787 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1789 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1791 ** This function is called from within a pre-update callback to retrieve
1792 ** the number of columns in the row being updated, deleted or inserted.
1794 int sqlite3_preupdate_count(sqlite3 *db){
1795 PreUpdate *p = db->pPreUpdate;
1796 return (p ? p->keyinfo.nKeyField : 0);
1798 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1800 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1802 ** This function is designed to be called from within a pre-update callback
1803 ** only. It returns zero if the change that caused the callback was made
1804 ** immediately by a user SQL statement. Or, if the change was made by a
1805 ** trigger program, it returns the number of trigger programs currently
1806 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1807 ** top-level trigger etc.).
1809 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1810 ** or SET DEFAULT action is considered a trigger.
1812 int sqlite3_preupdate_depth(sqlite3 *db){
1813 PreUpdate *p = db->pPreUpdate;
1814 return (p ? p->v->nFrame : 0);
1816 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1818 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1820 ** This function is called from within a pre-update callback to retrieve
1821 ** a field of the row currently being updated or inserted.
1823 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1824 PreUpdate *p = db->pPreUpdate;
1825 int rc = SQLITE_OK;
1826 Mem *pMem;
1828 if( !p || p->op==SQLITE_DELETE ){
1829 rc = SQLITE_MISUSE_BKPT;
1830 goto preupdate_new_out;
1832 if( p->pPk && p->op!=SQLITE_UPDATE ){
1833 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1835 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1836 rc = SQLITE_RANGE;
1837 goto preupdate_new_out;
1840 if( p->op==SQLITE_INSERT ){
1841 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1842 ** that is being inserted. Deserialize it. */
1843 UnpackedRecord *pUnpack = p->pNewUnpacked;
1844 if( !pUnpack ){
1845 Mem *pData = &p->v->aMem[p->iNewReg];
1846 rc = ExpandBlob(pData);
1847 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1848 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1849 if( !pUnpack ){
1850 rc = SQLITE_NOMEM;
1851 goto preupdate_new_out;
1853 p->pNewUnpacked = pUnpack;
1855 pMem = &pUnpack->aMem[iIdx];
1856 if( iIdx==p->pTab->iPKey ){
1857 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1858 }else if( iIdx>=pUnpack->nField ){
1859 pMem = (sqlite3_value *)columnNullValue();
1861 }else{
1862 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1863 ** value. Make a copy of the cell contents and return a pointer to it.
1864 ** It is not safe to return a pointer to the memory cell itself as the
1865 ** caller may modify the value text encoding.
1867 assert( p->op==SQLITE_UPDATE );
1868 if( !p->aNew ){
1869 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1870 if( !p->aNew ){
1871 rc = SQLITE_NOMEM;
1872 goto preupdate_new_out;
1875 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1876 pMem = &p->aNew[iIdx];
1877 if( pMem->flags==0 ){
1878 if( iIdx==p->pTab->iPKey ){
1879 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1880 }else{
1881 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1882 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1886 *ppValue = pMem;
1888 preupdate_new_out:
1889 sqlite3Error(db, rc);
1890 return sqlite3ApiExit(db, rc);
1892 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1894 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1896 ** Return status data for a single loop within query pStmt.
1898 int sqlite3_stmt_scanstatus(
1899 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1900 int idx, /* Index of loop to report on */
1901 int iScanStatusOp, /* Which metric to return */
1902 void *pOut /* OUT: Write the answer here */
1904 Vdbe *p = (Vdbe*)pStmt;
1905 ScanStatus *pScan;
1906 if( idx<0 || idx>=p->nScan ) return 1;
1907 pScan = &p->aScan[idx];
1908 switch( iScanStatusOp ){
1909 case SQLITE_SCANSTAT_NLOOP: {
1910 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1911 break;
1913 case SQLITE_SCANSTAT_NVISIT: {
1914 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1915 break;
1917 case SQLITE_SCANSTAT_EST: {
1918 double r = 1.0;
1919 LogEst x = pScan->nEst;
1920 while( x<100 ){
1921 x += 10;
1922 r *= 0.5;
1924 *(double*)pOut = r*sqlite3LogEstToInt(x);
1925 break;
1927 case SQLITE_SCANSTAT_NAME: {
1928 *(const char**)pOut = pScan->zName;
1929 break;
1931 case SQLITE_SCANSTAT_EXPLAIN: {
1932 if( pScan->addrExplain ){
1933 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1934 }else{
1935 *(const char**)pOut = 0;
1937 break;
1939 case SQLITE_SCANSTAT_SELECTID: {
1940 if( pScan->addrExplain ){
1941 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1942 }else{
1943 *(int*)pOut = -1;
1945 break;
1947 default: {
1948 return 1;
1951 return 0;
1955 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1957 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1958 Vdbe *p = (Vdbe*)pStmt;
1959 memset(p->anExec, 0, p->nOp * sizeof(i64));
1961 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */