Simplifications to the implementation of the sum() SQL function.
[sqlite.git] / src / build.c
blob44fc4573b28a419a2909e6bac44815645ee4a447
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
346 sqlite3 *db = pParse->db;
348 /* Read the database schema. If an error occurs, leave an error message
349 ** and code in pParse and return NULL. */
350 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
351 && SQLITE_OK!=sqlite3ReadSchema(pParse)
353 return 0;
356 p = sqlite3FindTable(db, zName, zDbase);
357 if( p==0 ){
358 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
359 #ifndef SQLITE_OMIT_VIRTUALTABLE
360 if( sqlite3FindDbName(db, zDbase)<1 ){
361 /* If zName is the not the name of a table in the schema created using
362 ** CREATE, then check to see if it is the name of an virtual table that
363 ** can be an eponymous virtual table. */
364 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
365 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
366 pMod = sqlite3PragmaVtabRegister(db, zName);
368 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
369 return pMod->pEpoTab;
372 #endif
373 if( (flags & LOCATE_NOERR)==0 ){
374 if( zDbase ){
375 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
376 }else{
377 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
379 pParse->checkSchema = 1;
383 return p;
387 ** Locate the table identified by *p.
389 ** This is a wrapper around sqlite3LocateTable(). The difference between
390 ** sqlite3LocateTable() and this function is that this function restricts
391 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
392 ** non-NULL if it is part of a view or trigger program definition. See
393 ** sqlite3FixSrcList() for details.
395 Table *sqlite3LocateTableItem(
396 Parse *pParse,
397 u32 flags,
398 struct SrcList_item *p
400 const char *zDb;
401 assert( p->pSchema==0 || p->zDatabase==0 );
402 if( p->pSchema ){
403 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
404 zDb = pParse->db->aDb[iDb].zDbSName;
405 }else{
406 zDb = p->zDatabase;
408 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
412 ** Locate the in-memory structure that describes
413 ** a particular index given the name of that index
414 ** and the name of the database that contains the index.
415 ** Return NULL if not found.
417 ** If zDatabase is 0, all databases are searched for the
418 ** table and the first matching index is returned. (No checking
419 ** for duplicate index names is done.) The search order is
420 ** TEMP first, then MAIN, then any auxiliary databases added
421 ** using the ATTACH command.
423 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
424 Index *p = 0;
425 int i;
426 /* All mutexes are required for schema access. Make sure we hold them. */
427 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
428 for(i=OMIT_TEMPDB; i<db->nDb; i++){
429 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
430 Schema *pSchema = db->aDb[j].pSchema;
431 assert( pSchema );
432 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
433 assert( sqlite3SchemaMutexHeld(db, j, 0) );
434 p = sqlite3HashFind(&pSchema->idxHash, zName);
435 if( p ) break;
437 return p;
441 ** Reclaim the memory used by an index
443 static void freeIndex(sqlite3 *db, Index *p){
444 #ifndef SQLITE_OMIT_ANALYZE
445 sqlite3DeleteIndexSamples(db, p);
446 #endif
447 sqlite3ExprDelete(db, p->pPartIdxWhere);
448 sqlite3ExprListDelete(db, p->aColExpr);
449 sqlite3DbFree(db, p->zColAff);
450 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
451 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
452 sqlite3_free(p->aiRowEst);
453 #endif
454 sqlite3DbFree(db, p);
458 ** For the index called zIdxName which is found in the database iDb,
459 ** unlike that index from its Table then remove the index from
460 ** the index hash table and free all memory structures associated
461 ** with the index.
463 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
464 Index *pIndex;
465 Hash *pHash;
467 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
468 pHash = &db->aDb[iDb].pSchema->idxHash;
469 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
470 if( ALWAYS(pIndex) ){
471 if( pIndex->pTable->pIndex==pIndex ){
472 pIndex->pTable->pIndex = pIndex->pNext;
473 }else{
474 Index *p;
475 /* Justification of ALWAYS(); The index must be on the list of
476 ** indices. */
477 p = pIndex->pTable->pIndex;
478 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
479 if( ALWAYS(p && p->pNext==pIndex) ){
480 p->pNext = pIndex->pNext;
483 freeIndex(db, pIndex);
485 db->mDbFlags |= DBFLAG_SchemaChange;
489 ** Look through the list of open database files in db->aDb[] and if
490 ** any have been closed, remove them from the list. Reallocate the
491 ** db->aDb[] structure to a smaller size, if possible.
493 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
494 ** are never candidates for being collapsed.
496 void sqlite3CollapseDatabaseArray(sqlite3 *db){
497 int i, j;
498 for(i=j=2; i<db->nDb; i++){
499 struct Db *pDb = &db->aDb[i];
500 if( pDb->pBt==0 ){
501 sqlite3DbFree(db, pDb->zDbSName);
502 pDb->zDbSName = 0;
503 continue;
505 if( j<i ){
506 db->aDb[j] = db->aDb[i];
508 j++;
510 db->nDb = j;
511 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
512 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
513 sqlite3DbFree(db, db->aDb);
514 db->aDb = db->aDbStatic;
519 ** Reset the schema for the database at index iDb. Also reset the
520 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
521 ** Deferred resets may be run by calling with iDb<0.
523 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
524 int i;
525 assert( iDb<db->nDb );
527 if( iDb>=0 ){
528 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
529 DbSetProperty(db, iDb, DB_ResetWanted);
530 DbSetProperty(db, 1, DB_ResetWanted);
531 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
534 if( db->nSchemaLock==0 ){
535 for(i=0; i<db->nDb; i++){
536 if( DbHasProperty(db, i, DB_ResetWanted) ){
537 sqlite3SchemaClear(db->aDb[i].pSchema);
544 ** Erase all schema information from all attached databases (including
545 ** "main" and "temp") for a single database connection.
547 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
548 int i;
549 sqlite3BtreeEnterAll(db);
550 assert( db->nSchemaLock==0 );
551 for(i=0; i<db->nDb; i++){
552 Db *pDb = &db->aDb[i];
553 if( pDb->pSchema ){
554 sqlite3SchemaClear(pDb->pSchema);
557 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
558 sqlite3VtabUnlockList(db);
559 sqlite3BtreeLeaveAll(db);
560 sqlite3CollapseDatabaseArray(db);
564 ** This routine is called when a commit occurs.
566 void sqlite3CommitInternalChanges(sqlite3 *db){
567 db->mDbFlags &= ~DBFLAG_SchemaChange;
571 ** Delete memory allocated for the column names of a table or view (the
572 ** Table.aCol[] array).
574 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
575 int i;
576 Column *pCol;
577 assert( pTable!=0 );
578 if( (pCol = pTable->aCol)!=0 ){
579 for(i=0; i<pTable->nCol; i++, pCol++){
580 sqlite3DbFree(db, pCol->zName);
581 sqlite3ExprDelete(db, pCol->pDflt);
582 sqlite3DbFree(db, pCol->zColl);
584 sqlite3DbFree(db, pTable->aCol);
589 ** Remove the memory data structures associated with the given
590 ** Table. No changes are made to disk by this routine.
592 ** This routine just deletes the data structure. It does not unlink
593 ** the table data structure from the hash table. But it does destroy
594 ** memory structures of the indices and foreign keys associated with
595 ** the table.
597 ** The db parameter is optional. It is needed if the Table object
598 ** contains lookaside memory. (Table objects in the schema do not use
599 ** lookaside memory, but some ephemeral Table objects do.) Or the
600 ** db parameter can be used with db->pnBytesFreed to measure the memory
601 ** used by the Table object.
603 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
604 Index *pIndex, *pNext;
606 #ifdef SQLITE_DEBUG
607 /* Record the number of outstanding lookaside allocations in schema Tables
608 ** prior to doing any free() operations. Since schema Tables do not use
609 ** lookaside, this number should not change. */
610 int nLookaside = 0;
611 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
612 nLookaside = sqlite3LookasideUsed(db, 0);
614 #endif
616 /* Delete all indices associated with this table. */
617 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
618 pNext = pIndex->pNext;
619 assert( pIndex->pSchema==pTable->pSchema
620 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
621 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
622 char *zName = pIndex->zName;
623 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
624 &pIndex->pSchema->idxHash, zName, 0
626 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
627 assert( pOld==pIndex || pOld==0 );
629 freeIndex(db, pIndex);
632 /* Delete any foreign keys attached to this table. */
633 sqlite3FkDelete(db, pTable);
635 /* Delete the Table structure itself.
637 sqlite3DeleteColumnNames(db, pTable);
638 sqlite3DbFree(db, pTable->zName);
639 sqlite3DbFree(db, pTable->zColAff);
640 sqlite3SelectDelete(db, pTable->pSelect);
641 sqlite3ExprListDelete(db, pTable->pCheck);
642 #ifndef SQLITE_OMIT_VIRTUALTABLE
643 sqlite3VtabClear(db, pTable);
644 #endif
645 sqlite3DbFree(db, pTable);
647 /* Verify that no lookaside memory was used by schema tables */
648 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
650 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
651 /* Do not delete the table until the reference count reaches zero. */
652 if( !pTable ) return;
653 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
654 deleteTable(db, pTable);
659 ** Unlink the given table from the hash tables and the delete the
660 ** table structure with all its indices and foreign keys.
662 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
663 Table *p;
664 Db *pDb;
666 assert( db!=0 );
667 assert( iDb>=0 && iDb<db->nDb );
668 assert( zTabName );
669 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
670 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
671 pDb = &db->aDb[iDb];
672 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
673 sqlite3DeleteTable(db, p);
674 db->mDbFlags |= DBFLAG_SchemaChange;
678 ** Given a token, return a string that consists of the text of that
679 ** token. Space to hold the returned string
680 ** is obtained from sqliteMalloc() and must be freed by the calling
681 ** function.
683 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
684 ** surround the body of the token are removed.
686 ** Tokens are often just pointers into the original SQL text and so
687 ** are not \000 terminated and are not persistent. The returned string
688 ** is \000 terminated and is persistent.
690 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
691 char *zName;
692 if( pName ){
693 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
694 sqlite3Dequote(zName);
695 }else{
696 zName = 0;
698 return zName;
702 ** Open the sqlite_master table stored in database number iDb for
703 ** writing. The table is opened using cursor 0.
705 void sqlite3OpenMasterTable(Parse *p, int iDb){
706 Vdbe *v = sqlite3GetVdbe(p);
707 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
708 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
709 if( p->nTab==0 ){
710 p->nTab = 1;
715 ** Parameter zName points to a nul-terminated buffer containing the name
716 ** of a database ("main", "temp" or the name of an attached db). This
717 ** function returns the index of the named database in db->aDb[], or
718 ** -1 if the named db cannot be found.
720 int sqlite3FindDbName(sqlite3 *db, const char *zName){
721 int i = -1; /* Database number */
722 if( zName ){
723 Db *pDb;
724 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
725 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
726 /* "main" is always an acceptable alias for the primary database
727 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
728 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
731 return i;
735 ** The token *pName contains the name of a database (either "main" or
736 ** "temp" or the name of an attached db). This routine returns the
737 ** index of the named database in db->aDb[], or -1 if the named db
738 ** does not exist.
740 int sqlite3FindDb(sqlite3 *db, Token *pName){
741 int i; /* Database number */
742 char *zName; /* Name we are searching for */
743 zName = sqlite3NameFromToken(db, pName);
744 i = sqlite3FindDbName(db, zName);
745 sqlite3DbFree(db, zName);
746 return i;
749 /* The table or view or trigger name is passed to this routine via tokens
750 ** pName1 and pName2. If the table name was fully qualified, for example:
752 ** CREATE TABLE xxx.yyy (...);
754 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
755 ** the table name is not fully qualified, i.e.:
757 ** CREATE TABLE yyy(...);
759 ** Then pName1 is set to "yyy" and pName2 is "".
761 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
762 ** pName2) that stores the unqualified table name. The index of the
763 ** database "xxx" is returned.
765 int sqlite3TwoPartName(
766 Parse *pParse, /* Parsing and code generating context */
767 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
768 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
769 Token **pUnqual /* Write the unqualified object name here */
771 int iDb; /* Database holding the object */
772 sqlite3 *db = pParse->db;
774 assert( pName2!=0 );
775 if( pName2->n>0 ){
776 if( db->init.busy ) {
777 sqlite3ErrorMsg(pParse, "corrupt database");
778 return -1;
780 *pUnqual = pName2;
781 iDb = sqlite3FindDb(db, pName1);
782 if( iDb<0 ){
783 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
784 return -1;
786 }else{
787 assert( db->init.iDb==0 || db->init.busy
788 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
789 iDb = db->init.iDb;
790 *pUnqual = pName1;
792 return iDb;
796 ** This routine is used to check if the UTF-8 string zName is a legal
797 ** unqualified name for a new schema object (table, index, view or
798 ** trigger). All names are legal except those that begin with the string
799 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
800 ** is reserved for internal use.
802 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
803 if( !pParse->db->init.busy && pParse->nested==0
804 && (pParse->db->flags & SQLITE_WriteSchema)==0
805 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
806 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
807 return SQLITE_ERROR;
809 return SQLITE_OK;
813 ** Return the PRIMARY KEY index of a table
815 Index *sqlite3PrimaryKeyIndex(Table *pTab){
816 Index *p;
817 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
818 return p;
822 ** Return the column of index pIdx that corresponds to table
823 ** column iCol. Return -1 if not found.
825 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
826 int i;
827 for(i=0; i<pIdx->nColumn; i++){
828 if( iCol==pIdx->aiColumn[i] ) return i;
830 return -1;
834 ** Begin constructing a new table representation in memory. This is
835 ** the first of several action routines that get called in response
836 ** to a CREATE TABLE statement. In particular, this routine is called
837 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
838 ** flag is true if the table should be stored in the auxiliary database
839 ** file instead of in the main database file. This is normally the case
840 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
841 ** CREATE and TABLE.
843 ** The new table record is initialized and put in pParse->pNewTable.
844 ** As more of the CREATE TABLE statement is parsed, additional action
845 ** routines will be called to add more information to this record.
846 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
847 ** is called to complete the construction of the new table record.
849 void sqlite3StartTable(
850 Parse *pParse, /* Parser context */
851 Token *pName1, /* First part of the name of the table or view */
852 Token *pName2, /* Second part of the name of the table or view */
853 int isTemp, /* True if this is a TEMP table */
854 int isView, /* True if this is a VIEW */
855 int isVirtual, /* True if this is a VIRTUAL table */
856 int noErr /* Do nothing if table already exists */
858 Table *pTable;
859 char *zName = 0; /* The name of the new table */
860 sqlite3 *db = pParse->db;
861 Vdbe *v;
862 int iDb; /* Database number to create the table in */
863 Token *pName; /* Unqualified name of the table to create */
865 if( db->init.busy && db->init.newTnum==1 ){
866 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
867 iDb = db->init.iDb;
868 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
869 pName = pName1;
870 }else{
871 /* The common case */
872 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
873 if( iDb<0 ) return;
874 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
875 /* If creating a temp table, the name may not be qualified. Unless
876 ** the database name is "temp" anyway. */
877 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
878 return;
880 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
881 zName = sqlite3NameFromToken(db, pName);
883 pParse->sNameToken = *pName;
884 if( zName==0 ) return;
885 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
886 goto begin_table_error;
888 if( db->init.iDb==1 ) isTemp = 1;
889 #ifndef SQLITE_OMIT_AUTHORIZATION
890 assert( isTemp==0 || isTemp==1 );
891 assert( isView==0 || isView==1 );
893 static const u8 aCode[] = {
894 SQLITE_CREATE_TABLE,
895 SQLITE_CREATE_TEMP_TABLE,
896 SQLITE_CREATE_VIEW,
897 SQLITE_CREATE_TEMP_VIEW
899 char *zDb = db->aDb[iDb].zDbSName;
900 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
901 goto begin_table_error;
903 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
904 zName, 0, zDb) ){
905 goto begin_table_error;
908 #endif
910 /* Make sure the new table name does not collide with an existing
911 ** index or table name in the same database. Issue an error message if
912 ** it does. The exception is if the statement being parsed was passed
913 ** to an sqlite3_declare_vtab() call. In that case only the column names
914 ** and types will be used, so there is no need to test for namespace
915 ** collisions.
917 if( !IN_DECLARE_VTAB ){
918 char *zDb = db->aDb[iDb].zDbSName;
919 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
920 goto begin_table_error;
922 pTable = sqlite3FindTable(db, zName, zDb);
923 if( pTable ){
924 if( !noErr ){
925 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
926 }else{
927 assert( !db->init.busy || CORRUPT_DB );
928 sqlite3CodeVerifySchema(pParse, iDb);
930 goto begin_table_error;
932 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
933 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
934 goto begin_table_error;
938 pTable = sqlite3DbMallocZero(db, sizeof(Table));
939 if( pTable==0 ){
940 assert( db->mallocFailed );
941 pParse->rc = SQLITE_NOMEM_BKPT;
942 pParse->nErr++;
943 goto begin_table_error;
945 pTable->zName = zName;
946 pTable->iPKey = -1;
947 pTable->pSchema = db->aDb[iDb].pSchema;
948 pTable->nTabRef = 1;
949 #ifdef SQLITE_DEFAULT_ROWEST
950 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
951 #else
952 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
953 #endif
954 assert( pParse->pNewTable==0 );
955 pParse->pNewTable = pTable;
957 /* If this is the magic sqlite_sequence table used by autoincrement,
958 ** then record a pointer to this table in the main database structure
959 ** so that INSERT can find the table easily.
961 #ifndef SQLITE_OMIT_AUTOINCREMENT
962 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
963 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
964 pTable->pSchema->pSeqTab = pTable;
966 #endif
968 /* Begin generating the code that will insert the table record into
969 ** the SQLITE_MASTER table. Note in particular that we must go ahead
970 ** and allocate the record number for the table entry now. Before any
971 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
972 ** indices to be created and the table record must come before the
973 ** indices. Hence, the record number for the table must be allocated
974 ** now.
976 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
977 int addr1;
978 int fileFormat;
979 int reg1, reg2, reg3;
980 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
981 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
982 sqlite3BeginWriteOperation(pParse, 1, iDb);
984 #ifndef SQLITE_OMIT_VIRTUALTABLE
985 if( isVirtual ){
986 sqlite3VdbeAddOp0(v, OP_VBegin);
988 #endif
990 /* If the file format and encoding in the database have not been set,
991 ** set them now.
993 reg1 = pParse->regRowid = ++pParse->nMem;
994 reg2 = pParse->regRoot = ++pParse->nMem;
995 reg3 = ++pParse->nMem;
996 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
997 sqlite3VdbeUsesBtree(v, iDb);
998 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
999 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1000 1 : SQLITE_MAX_FILE_FORMAT;
1001 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1002 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1003 sqlite3VdbeJumpHere(v, addr1);
1005 /* This just creates a place-holder record in the sqlite_master table.
1006 ** The record created does not contain anything yet. It will be replaced
1007 ** by the real entry in code generated at sqlite3EndTable().
1009 ** The rowid for the new entry is left in register pParse->regRowid.
1010 ** The root page number of the new table is left in reg pParse->regRoot.
1011 ** The rowid and root page number values are needed by the code that
1012 ** sqlite3EndTable will generate.
1014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1015 if( isView || isVirtual ){
1016 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1017 }else
1018 #endif
1020 pParse->addrCrTab =
1021 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1023 sqlite3OpenMasterTable(pParse, iDb);
1024 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1025 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1026 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1027 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1028 sqlite3VdbeAddOp0(v, OP_Close);
1031 /* Normal (non-error) return. */
1032 return;
1034 /* If an error occurs, we jump here */
1035 begin_table_error:
1036 sqlite3DbFree(db, zName);
1037 return;
1040 /* Set properties of a table column based on the (magical)
1041 ** name of the column.
1043 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1044 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1045 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1046 pCol->colFlags |= COLFLAG_HIDDEN;
1047 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1048 pTab->tabFlags |= TF_OOOHidden;
1051 #endif
1055 ** Add a new column to the table currently being constructed.
1057 ** The parser calls this routine once for each column declaration
1058 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1059 ** first to get things going. Then this routine is called for each
1060 ** column.
1062 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1063 Table *p;
1064 int i;
1065 char *z;
1066 char *zType;
1067 Column *pCol;
1068 sqlite3 *db = pParse->db;
1069 if( (p = pParse->pNewTable)==0 ) return;
1070 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1071 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1072 return;
1074 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1075 if( z==0 ) return;
1076 memcpy(z, pName->z, pName->n);
1077 z[pName->n] = 0;
1078 sqlite3Dequote(z);
1079 for(i=0; i<p->nCol; i++){
1080 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1081 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1082 sqlite3DbFree(db, z);
1083 return;
1086 if( (p->nCol & 0x7)==0 ){
1087 Column *aNew;
1088 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1089 if( aNew==0 ){
1090 sqlite3DbFree(db, z);
1091 return;
1093 p->aCol = aNew;
1095 pCol = &p->aCol[p->nCol];
1096 memset(pCol, 0, sizeof(p->aCol[0]));
1097 pCol->zName = z;
1098 sqlite3ColumnPropertiesFromName(p, pCol);
1100 if( pType->n==0 ){
1101 /* If there is no type specified, columns have the default affinity
1102 ** 'BLOB' with a default size of 4 bytes. */
1103 pCol->affinity = SQLITE_AFF_BLOB;
1104 pCol->szEst = 1;
1105 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1106 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1107 pCol->colFlags |= COLFLAG_SORTERREF;
1109 #endif
1110 }else{
1111 zType = z + sqlite3Strlen30(z) + 1;
1112 memcpy(zType, pType->z, pType->n);
1113 zType[pType->n] = 0;
1114 sqlite3Dequote(zType);
1115 pCol->affinity = sqlite3AffinityType(zType, pCol);
1116 pCol->colFlags |= COLFLAG_HASTYPE;
1118 p->nCol++;
1119 pParse->constraintName.n = 0;
1123 ** This routine is called by the parser while in the middle of
1124 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1125 ** been seen on a column. This routine sets the notNull flag on
1126 ** the column currently under construction.
1128 void sqlite3AddNotNull(Parse *pParse, int onError){
1129 Table *p;
1130 Column *pCol;
1131 p = pParse->pNewTable;
1132 if( p==0 || NEVER(p->nCol<1) ) return;
1133 pCol = &p->aCol[p->nCol-1];
1134 pCol->notNull = (u8)onError;
1135 p->tabFlags |= TF_HasNotNull;
1137 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1138 ** on this column. */
1139 if( pCol->colFlags & COLFLAG_UNIQUE ){
1140 Index *pIdx;
1141 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1142 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1143 if( pIdx->aiColumn[0]==p->nCol-1 ){
1144 pIdx->uniqNotNull = 1;
1151 ** Scan the column type name zType (length nType) and return the
1152 ** associated affinity type.
1154 ** This routine does a case-independent search of zType for the
1155 ** substrings in the following table. If one of the substrings is
1156 ** found, the corresponding affinity is returned. If zType contains
1157 ** more than one of the substrings, entries toward the top of
1158 ** the table take priority. For example, if zType is 'BLOBINT',
1159 ** SQLITE_AFF_INTEGER is returned.
1161 ** Substring | Affinity
1162 ** --------------------------------
1163 ** 'INT' | SQLITE_AFF_INTEGER
1164 ** 'CHAR' | SQLITE_AFF_TEXT
1165 ** 'CLOB' | SQLITE_AFF_TEXT
1166 ** 'TEXT' | SQLITE_AFF_TEXT
1167 ** 'BLOB' | SQLITE_AFF_BLOB
1168 ** 'REAL' | SQLITE_AFF_REAL
1169 ** 'FLOA' | SQLITE_AFF_REAL
1170 ** 'DOUB' | SQLITE_AFF_REAL
1172 ** If none of the substrings in the above table are found,
1173 ** SQLITE_AFF_NUMERIC is returned.
1175 char sqlite3AffinityType(const char *zIn, Column *pCol){
1176 u32 h = 0;
1177 char aff = SQLITE_AFF_NUMERIC;
1178 const char *zChar = 0;
1180 assert( zIn!=0 );
1181 while( zIn[0] ){
1182 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1183 zIn++;
1184 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1185 aff = SQLITE_AFF_TEXT;
1186 zChar = zIn;
1187 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1188 aff = SQLITE_AFF_TEXT;
1189 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1190 aff = SQLITE_AFF_TEXT;
1191 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1192 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1193 aff = SQLITE_AFF_BLOB;
1194 if( zIn[0]=='(' ) zChar = zIn;
1195 #ifndef SQLITE_OMIT_FLOATING_POINT
1196 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1197 && aff==SQLITE_AFF_NUMERIC ){
1198 aff = SQLITE_AFF_REAL;
1199 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1200 && aff==SQLITE_AFF_NUMERIC ){
1201 aff = SQLITE_AFF_REAL;
1202 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1203 && aff==SQLITE_AFF_NUMERIC ){
1204 aff = SQLITE_AFF_REAL;
1205 #endif
1206 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1207 aff = SQLITE_AFF_INTEGER;
1208 break;
1212 /* If pCol is not NULL, store an estimate of the field size. The
1213 ** estimate is scaled so that the size of an integer is 1. */
1214 if( pCol ){
1215 int v = 0; /* default size is approx 4 bytes */
1216 if( aff<SQLITE_AFF_NUMERIC ){
1217 if( zChar ){
1218 while( zChar[0] ){
1219 if( sqlite3Isdigit(zChar[0]) ){
1220 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1221 sqlite3GetInt32(zChar, &v);
1222 break;
1224 zChar++;
1226 }else{
1227 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1230 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1231 if( v>=sqlite3GlobalConfig.szSorterRef ){
1232 pCol->colFlags |= COLFLAG_SORTERREF;
1234 #endif
1235 v = v/4 + 1;
1236 if( v>255 ) v = 255;
1237 pCol->szEst = v;
1239 return aff;
1243 ** The expression is the default value for the most recently added column
1244 ** of the table currently under construction.
1246 ** Default value expressions must be constant. Raise an exception if this
1247 ** is not the case.
1249 ** This routine is called by the parser while in the middle of
1250 ** parsing a CREATE TABLE statement.
1252 void sqlite3AddDefaultValue(
1253 Parse *pParse, /* Parsing context */
1254 Expr *pExpr, /* The parsed expression of the default value */
1255 const char *zStart, /* Start of the default value text */
1256 const char *zEnd /* First character past end of defaut value text */
1258 Table *p;
1259 Column *pCol;
1260 sqlite3 *db = pParse->db;
1261 p = pParse->pNewTable;
1262 if( p!=0 ){
1263 pCol = &(p->aCol[p->nCol-1]);
1264 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1265 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1266 pCol->zName);
1267 }else{
1268 /* A copy of pExpr is used instead of the original, as pExpr contains
1269 ** tokens that point to volatile memory.
1271 Expr x;
1272 sqlite3ExprDelete(db, pCol->pDflt);
1273 memset(&x, 0, sizeof(x));
1274 x.op = TK_SPAN;
1275 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1276 x.pLeft = pExpr;
1277 x.flags = EP_Skip;
1278 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1279 sqlite3DbFree(db, x.u.zToken);
1282 sqlite3ExprDelete(db, pExpr);
1286 ** Backwards Compatibility Hack:
1288 ** Historical versions of SQLite accepted strings as column names in
1289 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1291 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1292 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1294 ** This is goofy. But to preserve backwards compatibility we continue to
1295 ** accept it. This routine does the necessary conversion. It converts
1296 ** the expression given in its argument from a TK_STRING into a TK_ID
1297 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1298 ** If the epxression is anything other than TK_STRING, the expression is
1299 ** unchanged.
1301 static void sqlite3StringToId(Expr *p){
1302 if( p->op==TK_STRING ){
1303 p->op = TK_ID;
1304 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1305 p->pLeft->op = TK_ID;
1310 ** Designate the PRIMARY KEY for the table. pList is a list of names
1311 ** of columns that form the primary key. If pList is NULL, then the
1312 ** most recently added column of the table is the primary key.
1314 ** A table can have at most one primary key. If the table already has
1315 ** a primary key (and this is the second primary key) then create an
1316 ** error.
1318 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1319 ** then we will try to use that column as the rowid. Set the Table.iPKey
1320 ** field of the table under construction to be the index of the
1321 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1322 ** no INTEGER PRIMARY KEY.
1324 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1325 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1327 void sqlite3AddPrimaryKey(
1328 Parse *pParse, /* Parsing context */
1329 ExprList *pList, /* List of field names to be indexed */
1330 int onError, /* What to do with a uniqueness conflict */
1331 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1332 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1334 Table *pTab = pParse->pNewTable;
1335 Column *pCol = 0;
1336 int iCol = -1, i;
1337 int nTerm;
1338 if( pTab==0 ) goto primary_key_exit;
1339 if( pTab->tabFlags & TF_HasPrimaryKey ){
1340 sqlite3ErrorMsg(pParse,
1341 "table \"%s\" has more than one primary key", pTab->zName);
1342 goto primary_key_exit;
1344 pTab->tabFlags |= TF_HasPrimaryKey;
1345 if( pList==0 ){
1346 iCol = pTab->nCol - 1;
1347 pCol = &pTab->aCol[iCol];
1348 pCol->colFlags |= COLFLAG_PRIMKEY;
1349 nTerm = 1;
1350 }else{
1351 nTerm = pList->nExpr;
1352 for(i=0; i<nTerm; i++){
1353 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1354 assert( pCExpr!=0 );
1355 sqlite3StringToId(pCExpr);
1356 if( pCExpr->op==TK_ID ){
1357 const char *zCName = pCExpr->u.zToken;
1358 for(iCol=0; iCol<pTab->nCol; iCol++){
1359 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1360 pCol = &pTab->aCol[iCol];
1361 pCol->colFlags |= COLFLAG_PRIMKEY;
1362 break;
1368 if( nTerm==1
1369 && pCol
1370 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1371 && sortOrder!=SQLITE_SO_DESC
1373 pTab->iPKey = iCol;
1374 pTab->keyConf = (u8)onError;
1375 assert( autoInc==0 || autoInc==1 );
1376 pTab->tabFlags |= autoInc*TF_Autoincrement;
1377 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1378 }else if( autoInc ){
1379 #ifndef SQLITE_OMIT_AUTOINCREMENT
1380 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1381 "INTEGER PRIMARY KEY");
1382 #endif
1383 }else{
1384 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1385 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1386 pList = 0;
1389 primary_key_exit:
1390 sqlite3ExprListDelete(pParse->db, pList);
1391 return;
1395 ** Add a new CHECK constraint to the table currently under construction.
1397 void sqlite3AddCheckConstraint(
1398 Parse *pParse, /* Parsing context */
1399 Expr *pCheckExpr /* The check expression */
1401 #ifndef SQLITE_OMIT_CHECK
1402 Table *pTab = pParse->pNewTable;
1403 sqlite3 *db = pParse->db;
1404 if( pTab && !IN_DECLARE_VTAB
1405 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1407 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1408 if( pParse->constraintName.n ){
1409 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1411 }else
1412 #endif
1414 sqlite3ExprDelete(pParse->db, pCheckExpr);
1419 ** Set the collation function of the most recently parsed table column
1420 ** to the CollSeq given.
1422 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1423 Table *p;
1424 int i;
1425 char *zColl; /* Dequoted name of collation sequence */
1426 sqlite3 *db;
1428 if( (p = pParse->pNewTable)==0 ) return;
1429 i = p->nCol-1;
1430 db = pParse->db;
1431 zColl = sqlite3NameFromToken(db, pToken);
1432 if( !zColl ) return;
1434 if( sqlite3LocateCollSeq(pParse, zColl) ){
1435 Index *pIdx;
1436 sqlite3DbFree(db, p->aCol[i].zColl);
1437 p->aCol[i].zColl = zColl;
1439 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1440 ** then an index may have been created on this column before the
1441 ** collation type was added. Correct this if it is the case.
1443 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1444 assert( pIdx->nKeyCol==1 );
1445 if( pIdx->aiColumn[0]==i ){
1446 pIdx->azColl[0] = p->aCol[i].zColl;
1449 }else{
1450 sqlite3DbFree(db, zColl);
1455 ** This function returns the collation sequence for database native text
1456 ** encoding identified by the string zName, length nName.
1458 ** If the requested collation sequence is not available, or not available
1459 ** in the database native encoding, the collation factory is invoked to
1460 ** request it. If the collation factory does not supply such a sequence,
1461 ** and the sequence is available in another text encoding, then that is
1462 ** returned instead.
1464 ** If no versions of the requested collations sequence are available, or
1465 ** another error occurs, NULL is returned and an error message written into
1466 ** pParse.
1468 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1469 ** invokes the collation factory if the named collation cannot be found
1470 ** and generates an error message.
1472 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1474 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1475 sqlite3 *db = pParse->db;
1476 u8 enc = ENC(db);
1477 u8 initbusy = db->init.busy;
1478 CollSeq *pColl;
1480 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1481 if( !initbusy && (!pColl || !pColl->xCmp) ){
1482 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1485 return pColl;
1490 ** Generate code that will increment the schema cookie.
1492 ** The schema cookie is used to determine when the schema for the
1493 ** database changes. After each schema change, the cookie value
1494 ** changes. When a process first reads the schema it records the
1495 ** cookie. Thereafter, whenever it goes to access the database,
1496 ** it checks the cookie to make sure the schema has not changed
1497 ** since it was last read.
1499 ** This plan is not completely bullet-proof. It is possible for
1500 ** the schema to change multiple times and for the cookie to be
1501 ** set back to prior value. But schema changes are infrequent
1502 ** and the probability of hitting the same cookie value is only
1503 ** 1 chance in 2^32. So we're safe enough.
1505 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1506 ** the schema-version whenever the schema changes.
1508 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1509 sqlite3 *db = pParse->db;
1510 Vdbe *v = pParse->pVdbe;
1511 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1512 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1513 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1517 ** Measure the number of characters needed to output the given
1518 ** identifier. The number returned includes any quotes used
1519 ** but does not include the null terminator.
1521 ** The estimate is conservative. It might be larger that what is
1522 ** really needed.
1524 static int identLength(const char *z){
1525 int n;
1526 for(n=0; *z; n++, z++){
1527 if( *z=='"' ){ n++; }
1529 return n + 2;
1533 ** The first parameter is a pointer to an output buffer. The second
1534 ** parameter is a pointer to an integer that contains the offset at
1535 ** which to write into the output buffer. This function copies the
1536 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1537 ** to the specified offset in the buffer and updates *pIdx to refer
1538 ** to the first byte after the last byte written before returning.
1540 ** If the string zSignedIdent consists entirely of alpha-numeric
1541 ** characters, does not begin with a digit and is not an SQL keyword,
1542 ** then it is copied to the output buffer exactly as it is. Otherwise,
1543 ** it is quoted using double-quotes.
1545 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1546 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1547 int i, j, needQuote;
1548 i = *pIdx;
1550 for(j=0; zIdent[j]; j++){
1551 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1553 needQuote = sqlite3Isdigit(zIdent[0])
1554 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1555 || zIdent[j]!=0
1556 || j==0;
1558 if( needQuote ) z[i++] = '"';
1559 for(j=0; zIdent[j]; j++){
1560 z[i++] = zIdent[j];
1561 if( zIdent[j]=='"' ) z[i++] = '"';
1563 if( needQuote ) z[i++] = '"';
1564 z[i] = 0;
1565 *pIdx = i;
1569 ** Generate a CREATE TABLE statement appropriate for the given
1570 ** table. Memory to hold the text of the statement is obtained
1571 ** from sqliteMalloc() and must be freed by the calling function.
1573 static char *createTableStmt(sqlite3 *db, Table *p){
1574 int i, k, n;
1575 char *zStmt;
1576 char *zSep, *zSep2, *zEnd;
1577 Column *pCol;
1578 n = 0;
1579 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1580 n += identLength(pCol->zName) + 5;
1582 n += identLength(p->zName);
1583 if( n<50 ){
1584 zSep = "";
1585 zSep2 = ",";
1586 zEnd = ")";
1587 }else{
1588 zSep = "\n ";
1589 zSep2 = ",\n ";
1590 zEnd = "\n)";
1592 n += 35 + 6*p->nCol;
1593 zStmt = sqlite3DbMallocRaw(0, n);
1594 if( zStmt==0 ){
1595 sqlite3OomFault(db);
1596 return 0;
1598 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1599 k = sqlite3Strlen30(zStmt);
1600 identPut(zStmt, &k, p->zName);
1601 zStmt[k++] = '(';
1602 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1603 static const char * const azType[] = {
1604 /* SQLITE_AFF_BLOB */ "",
1605 /* SQLITE_AFF_TEXT */ " TEXT",
1606 /* SQLITE_AFF_NUMERIC */ " NUM",
1607 /* SQLITE_AFF_INTEGER */ " INT",
1608 /* SQLITE_AFF_REAL */ " REAL"
1610 int len;
1611 const char *zType;
1613 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1614 k += sqlite3Strlen30(&zStmt[k]);
1615 zSep = zSep2;
1616 identPut(zStmt, &k, pCol->zName);
1617 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1618 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1619 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1620 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1621 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1622 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1623 testcase( pCol->affinity==SQLITE_AFF_REAL );
1625 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1626 len = sqlite3Strlen30(zType);
1627 assert( pCol->affinity==SQLITE_AFF_BLOB
1628 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1629 memcpy(&zStmt[k], zType, len);
1630 k += len;
1631 assert( k<=n );
1633 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1634 return zStmt;
1638 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1639 ** on success and SQLITE_NOMEM on an OOM error.
1641 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1642 char *zExtra;
1643 int nByte;
1644 if( pIdx->nColumn>=N ) return SQLITE_OK;
1645 assert( pIdx->isResized==0 );
1646 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1647 zExtra = sqlite3DbMallocZero(db, nByte);
1648 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1649 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1650 pIdx->azColl = (const char**)zExtra;
1651 zExtra += sizeof(char*)*N;
1652 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1653 pIdx->aiColumn = (i16*)zExtra;
1654 zExtra += sizeof(i16)*N;
1655 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1656 pIdx->aSortOrder = (u8*)zExtra;
1657 pIdx->nColumn = N;
1658 pIdx->isResized = 1;
1659 return SQLITE_OK;
1663 ** Estimate the total row width for a table.
1665 static void estimateTableWidth(Table *pTab){
1666 unsigned wTable = 0;
1667 const Column *pTabCol;
1668 int i;
1669 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1670 wTable += pTabCol->szEst;
1672 if( pTab->iPKey<0 ) wTable++;
1673 pTab->szTabRow = sqlite3LogEst(wTable*4);
1677 ** Estimate the average size of a row for an index.
1679 static void estimateIndexWidth(Index *pIdx){
1680 unsigned wIndex = 0;
1681 int i;
1682 const Column *aCol = pIdx->pTable->aCol;
1683 for(i=0; i<pIdx->nColumn; i++){
1684 i16 x = pIdx->aiColumn[i];
1685 assert( x<pIdx->pTable->nCol );
1686 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1688 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1691 /* Return true if value x is found any of the first nCol entries of aiCol[]
1693 static int hasColumn(const i16 *aiCol, int nCol, int x){
1694 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1695 return 0;
1698 /* Recompute the colNotIdxed field of the Index.
1700 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
1701 ** columns that are within the first 63 columns of the table. The
1702 ** high-order bit of colNotIdxed is always 1. All unindexed columns
1703 ** of the table have a 1.
1705 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
1706 ** to determine if the index is covering index.
1708 static void recomputeColumnsNotIndexed(Index *pIdx){
1709 Bitmask m = 0;
1710 int j;
1711 for(j=pIdx->nColumn-1; j>=0; j--){
1712 int x = pIdx->aiColumn[j];
1713 if( x>=0 ){
1714 testcase( x==BMS-1 );
1715 testcase( x==BMS-2 );
1716 if( x<BMS-1 ) m |= MASKBIT(x);
1719 pIdx->colNotIdxed = ~m;
1720 assert( (pIdx->colNotIdxed>>63)==1 );
1724 ** This routine runs at the end of parsing a CREATE TABLE statement that
1725 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1726 ** internal schema data structures and the generated VDBE code so that they
1727 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1728 ** Changes include:
1730 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1731 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1732 ** into BTREE_BLOBKEY.
1733 ** (3) Bypass the creation of the sqlite_master table entry
1734 ** for the PRIMARY KEY as the primary key index is now
1735 ** identified by the sqlite_master table entry of the table itself.
1736 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1737 ** schema to the rootpage from the main table.
1738 ** (5) Add all table columns to the PRIMARY KEY Index object
1739 ** so that the PRIMARY KEY is a covering index. The surplus
1740 ** columns are part of KeyInfo.nAllField and are not used for
1741 ** sorting or lookup or uniqueness checks.
1742 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1743 ** indices with the PRIMARY KEY columns.
1745 ** For virtual tables, only (1) is performed.
1747 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1748 Index *pIdx;
1749 Index *pPk;
1750 int nPk;
1751 int i, j;
1752 sqlite3 *db = pParse->db;
1753 Vdbe *v = pParse->pVdbe;
1755 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1757 if( !db->init.imposterTable ){
1758 for(i=0; i<pTab->nCol; i++){
1759 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1760 pTab->aCol[i].notNull = OE_Abort;
1765 /* The remaining transformations only apply to b-tree tables, not to
1766 ** virtual tables */
1767 if( IN_DECLARE_VTAB ) return;
1769 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1770 ** into BTREE_BLOBKEY.
1772 if( pParse->addrCrTab ){
1773 assert( v );
1774 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1777 /* Locate the PRIMARY KEY index. Or, if this table was originally
1778 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1780 if( pTab->iPKey>=0 ){
1781 ExprList *pList;
1782 Token ipkToken;
1783 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1784 pList = sqlite3ExprListAppend(pParse, 0,
1785 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1786 if( pList==0 ) return;
1787 pList->a[0].sortOrder = pParse->iPkSortOrder;
1788 assert( pParse->pNewTable==pTab );
1789 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1790 SQLITE_IDXTYPE_PRIMARYKEY);
1791 if( db->mallocFailed ) return;
1792 pPk = sqlite3PrimaryKeyIndex(pTab);
1793 pTab->iPKey = -1;
1794 }else{
1795 pPk = sqlite3PrimaryKeyIndex(pTab);
1798 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1799 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1800 ** code assumes the PRIMARY KEY contains no repeated columns.
1802 for(i=j=1; i<pPk->nKeyCol; i++){
1803 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1804 pPk->nColumn--;
1805 }else{
1806 pPk->aiColumn[j++] = pPk->aiColumn[i];
1809 pPk->nKeyCol = j;
1811 assert( pPk!=0 );
1812 pPk->isCovering = 1;
1813 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1814 nPk = pPk->nKeyCol;
1816 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1817 ** table entry. This is only required if currently generating VDBE
1818 ** code for a CREATE TABLE (not when parsing one as part of reading
1819 ** a database schema). */
1820 if( v && pPk->tnum>0 ){
1821 assert( db->init.busy==0 );
1822 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1825 /* The root page of the PRIMARY KEY is the table root page */
1826 pPk->tnum = pTab->tnum;
1828 /* Update the in-memory representation of all UNIQUE indices by converting
1829 ** the final rowid column into one or more columns of the PRIMARY KEY.
1831 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1832 int n;
1833 if( IsPrimaryKeyIndex(pIdx) ) continue;
1834 for(i=n=0; i<nPk; i++){
1835 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1837 if( n==0 ){
1838 /* This index is a superset of the primary key */
1839 pIdx->nColumn = pIdx->nKeyCol;
1840 continue;
1842 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1843 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1844 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1845 pIdx->aiColumn[j] = pPk->aiColumn[i];
1846 pIdx->azColl[j] = pPk->azColl[i];
1847 j++;
1850 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1851 assert( pIdx->nColumn>=j );
1854 /* Add all table columns to the PRIMARY KEY index
1856 if( nPk<pTab->nCol ){
1857 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1858 for(i=0, j=nPk; i<pTab->nCol; i++){
1859 if( !hasColumn(pPk->aiColumn, j, i) ){
1860 assert( j<pPk->nColumn );
1861 pPk->aiColumn[j] = i;
1862 pPk->azColl[j] = sqlite3StrBINARY;
1863 j++;
1866 assert( pPk->nColumn==j );
1867 assert( pTab->nCol==j );
1868 }else{
1869 pPk->nColumn = pTab->nCol;
1871 recomputeColumnsNotIndexed(pPk);
1875 ** This routine is called to report the final ")" that terminates
1876 ** a CREATE TABLE statement.
1878 ** The table structure that other action routines have been building
1879 ** is added to the internal hash tables, assuming no errors have
1880 ** occurred.
1882 ** An entry for the table is made in the master table on disk, unless
1883 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1884 ** it means we are reading the sqlite_master table because we just
1885 ** connected to the database or because the sqlite_master table has
1886 ** recently changed, so the entry for this table already exists in
1887 ** the sqlite_master table. We do not want to create it again.
1889 ** If the pSelect argument is not NULL, it means that this routine
1890 ** was called to create a table generated from a
1891 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1892 ** the new table will match the result set of the SELECT.
1894 void sqlite3EndTable(
1895 Parse *pParse, /* Parse context */
1896 Token *pCons, /* The ',' token after the last column defn. */
1897 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1898 u8 tabOpts, /* Extra table options. Usually 0. */
1899 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1901 Table *p; /* The new table */
1902 sqlite3 *db = pParse->db; /* The database connection */
1903 int iDb; /* Database in which the table lives */
1904 Index *pIdx; /* An implied index of the table */
1906 if( pEnd==0 && pSelect==0 ){
1907 return;
1909 assert( !db->mallocFailed );
1910 p = pParse->pNewTable;
1911 if( p==0 ) return;
1913 /* If the db->init.busy is 1 it means we are reading the SQL off the
1914 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1915 ** So do not write to the disk again. Extract the root page number
1916 ** for the table from the db->init.newTnum field. (The page number
1917 ** should have been put there by the sqliteOpenCb routine.)
1919 ** If the root page number is 1, that means this is the sqlite_master
1920 ** table itself. So mark it read-only.
1922 if( db->init.busy ){
1923 if( pSelect ){
1924 sqlite3ErrorMsg(pParse, "");
1925 return;
1927 p->tnum = db->init.newTnum;
1928 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1931 /* Special processing for WITHOUT ROWID Tables */
1932 if( tabOpts & TF_WithoutRowid ){
1933 if( (p->tabFlags & TF_Autoincrement) ){
1934 sqlite3ErrorMsg(pParse,
1935 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1936 return;
1938 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1939 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1940 }else{
1941 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1942 convertToWithoutRowidTable(pParse, p);
1946 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1948 #ifndef SQLITE_OMIT_CHECK
1949 /* Resolve names in all CHECK constraint expressions.
1951 if( p->pCheck ){
1952 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1954 #endif /* !defined(SQLITE_OMIT_CHECK) */
1956 /* Estimate the average row size for the table and for all implied indices */
1957 estimateTableWidth(p);
1958 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1959 estimateIndexWidth(pIdx);
1962 /* If not initializing, then create a record for the new table
1963 ** in the SQLITE_MASTER table of the database.
1965 ** If this is a TEMPORARY table, write the entry into the auxiliary
1966 ** file instead of into the main database file.
1968 if( !db->init.busy ){
1969 int n;
1970 Vdbe *v;
1971 char *zType; /* "view" or "table" */
1972 char *zType2; /* "VIEW" or "TABLE" */
1973 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1975 v = sqlite3GetVdbe(pParse);
1976 if( NEVER(v==0) ) return;
1978 sqlite3VdbeAddOp1(v, OP_Close, 0);
1981 ** Initialize zType for the new view or table.
1983 if( p->pSelect==0 ){
1984 /* A regular table */
1985 zType = "table";
1986 zType2 = "TABLE";
1987 #ifndef SQLITE_OMIT_VIEW
1988 }else{
1989 /* A view */
1990 zType = "view";
1991 zType2 = "VIEW";
1992 #endif
1995 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1996 ** statement to populate the new table. The root-page number for the
1997 ** new table is in register pParse->regRoot.
1999 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2000 ** suitable state to query for the column names and types to be used
2001 ** by the new table.
2003 ** A shared-cache write-lock is not required to write to the new table,
2004 ** as a schema-lock must have already been obtained to create it. Since
2005 ** a schema-lock excludes all other database users, the write-lock would
2006 ** be redundant.
2008 if( pSelect ){
2009 SelectDest dest; /* Where the SELECT should store results */
2010 int regYield; /* Register holding co-routine entry-point */
2011 int addrTop; /* Top of the co-routine */
2012 int regRec; /* A record to be insert into the new table */
2013 int regRowid; /* Rowid of the next row to insert */
2014 int addrInsLoop; /* Top of the loop for inserting rows */
2015 Table *pSelTab; /* A table that describes the SELECT results */
2017 regYield = ++pParse->nMem;
2018 regRec = ++pParse->nMem;
2019 regRowid = ++pParse->nMem;
2020 assert(pParse->nTab==1);
2021 sqlite3MayAbort(pParse);
2022 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2023 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2024 pParse->nTab = 2;
2025 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2026 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2027 if( pParse->nErr ) return;
2028 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
2029 if( pSelTab==0 ) return;
2030 assert( p->aCol==0 );
2031 p->nCol = pSelTab->nCol;
2032 p->aCol = pSelTab->aCol;
2033 pSelTab->nCol = 0;
2034 pSelTab->aCol = 0;
2035 sqlite3DeleteTable(db, pSelTab);
2036 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2037 sqlite3Select(pParse, pSelect, &dest);
2038 if( pParse->nErr ) return;
2039 sqlite3VdbeEndCoroutine(v, regYield);
2040 sqlite3VdbeJumpHere(v, addrTop - 1);
2041 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2042 VdbeCoverage(v);
2043 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2044 sqlite3TableAffinity(v, p, 0);
2045 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2046 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2047 sqlite3VdbeGoto(v, addrInsLoop);
2048 sqlite3VdbeJumpHere(v, addrInsLoop);
2049 sqlite3VdbeAddOp1(v, OP_Close, 1);
2052 /* Compute the complete text of the CREATE statement */
2053 if( pSelect ){
2054 zStmt = createTableStmt(db, p);
2055 }else{
2056 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2057 n = (int)(pEnd2->z - pParse->sNameToken.z);
2058 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2059 zStmt = sqlite3MPrintf(db,
2060 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2064 /* A slot for the record has already been allocated in the
2065 ** SQLITE_MASTER table. We just need to update that slot with all
2066 ** the information we've collected.
2068 sqlite3NestedParse(pParse,
2069 "UPDATE %Q.%s "
2070 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2071 "WHERE rowid=#%d",
2072 db->aDb[iDb].zDbSName, MASTER_NAME,
2073 zType,
2074 p->zName,
2075 p->zName,
2076 pParse->regRoot,
2077 zStmt,
2078 pParse->regRowid
2080 sqlite3DbFree(db, zStmt);
2081 sqlite3ChangeCookie(pParse, iDb);
2083 #ifndef SQLITE_OMIT_AUTOINCREMENT
2084 /* Check to see if we need to create an sqlite_sequence table for
2085 ** keeping track of autoincrement keys.
2087 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2088 Db *pDb = &db->aDb[iDb];
2089 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2090 if( pDb->pSchema->pSeqTab==0 ){
2091 sqlite3NestedParse(pParse,
2092 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2093 pDb->zDbSName
2097 #endif
2099 /* Reparse everything to update our internal data structures */
2100 sqlite3VdbeAddParseSchemaOp(v, iDb,
2101 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2105 /* Add the table to the in-memory representation of the database.
2107 if( db->init.busy ){
2108 Table *pOld;
2109 Schema *pSchema = p->pSchema;
2110 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2111 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2112 if( pOld ){
2113 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2114 sqlite3OomFault(db);
2115 return;
2117 pParse->pNewTable = 0;
2118 db->mDbFlags |= DBFLAG_SchemaChange;
2120 #ifndef SQLITE_OMIT_ALTERTABLE
2121 if( !p->pSelect ){
2122 const char *zName = (const char *)pParse->sNameToken.z;
2123 int nName;
2124 assert( !pSelect && pCons && pEnd );
2125 if( pCons->z==0 ){
2126 pCons = pEnd;
2128 nName = (int)((const char *)pCons->z - zName);
2129 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2131 #endif
2135 #ifndef SQLITE_OMIT_VIEW
2137 ** The parser calls this routine in order to create a new VIEW
2139 void sqlite3CreateView(
2140 Parse *pParse, /* The parsing context */
2141 Token *pBegin, /* The CREATE token that begins the statement */
2142 Token *pName1, /* The token that holds the name of the view */
2143 Token *pName2, /* The token that holds the name of the view */
2144 ExprList *pCNames, /* Optional list of view column names */
2145 Select *pSelect, /* A SELECT statement that will become the new view */
2146 int isTemp, /* TRUE for a TEMPORARY view */
2147 int noErr /* Suppress error messages if VIEW already exists */
2149 Table *p;
2150 int n;
2151 const char *z;
2152 Token sEnd;
2153 DbFixer sFix;
2154 Token *pName = 0;
2155 int iDb;
2156 sqlite3 *db = pParse->db;
2158 if( pParse->nVar>0 ){
2159 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2160 goto create_view_fail;
2162 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2163 p = pParse->pNewTable;
2164 if( p==0 || pParse->nErr ) goto create_view_fail;
2165 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2166 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2167 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2168 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2170 /* Make a copy of the entire SELECT statement that defines the view.
2171 ** This will force all the Expr.token.z values to be dynamically
2172 ** allocated rather than point to the input string - which means that
2173 ** they will persist after the current sqlite3_exec() call returns.
2175 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2176 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2177 if( db->mallocFailed ) goto create_view_fail;
2179 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2180 ** the end.
2182 sEnd = pParse->sLastToken;
2183 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2184 if( sEnd.z[0]!=';' ){
2185 sEnd.z += sEnd.n;
2187 sEnd.n = 0;
2188 n = (int)(sEnd.z - pBegin->z);
2189 assert( n>0 );
2190 z = pBegin->z;
2191 while( sqlite3Isspace(z[n-1]) ){ n--; }
2192 sEnd.z = &z[n-1];
2193 sEnd.n = 1;
2195 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2196 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2198 create_view_fail:
2199 sqlite3SelectDelete(db, pSelect);
2200 sqlite3ExprListDelete(db, pCNames);
2201 return;
2203 #endif /* SQLITE_OMIT_VIEW */
2205 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2207 ** The Table structure pTable is really a VIEW. Fill in the names of
2208 ** the columns of the view in the pTable structure. Return the number
2209 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2211 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2212 Table *pSelTab; /* A fake table from which we get the result set */
2213 Select *pSel; /* Copy of the SELECT that implements the view */
2214 int nErr = 0; /* Number of errors encountered */
2215 int n; /* Temporarily holds the number of cursors assigned */
2216 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2217 #ifndef SQLITE_OMIT_VIRTUALTABLE
2218 int rc;
2219 #endif
2220 #ifndef SQLITE_OMIT_AUTHORIZATION
2221 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2222 #endif
2224 assert( pTable );
2226 #ifndef SQLITE_OMIT_VIRTUALTABLE
2227 db->nSchemaLock++;
2228 rc = sqlite3VtabCallConnect(pParse, pTable);
2229 db->nSchemaLock--;
2230 if( rc ){
2231 return 1;
2233 if( IsVirtual(pTable) ) return 0;
2234 #endif
2236 #ifndef SQLITE_OMIT_VIEW
2237 /* A positive nCol means the columns names for this view are
2238 ** already known.
2240 if( pTable->nCol>0 ) return 0;
2242 /* A negative nCol is a special marker meaning that we are currently
2243 ** trying to compute the column names. If we enter this routine with
2244 ** a negative nCol, it means two or more views form a loop, like this:
2246 ** CREATE VIEW one AS SELECT * FROM two;
2247 ** CREATE VIEW two AS SELECT * FROM one;
2249 ** Actually, the error above is now caught prior to reaching this point.
2250 ** But the following test is still important as it does come up
2251 ** in the following:
2253 ** CREATE TABLE main.ex1(a);
2254 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2255 ** SELECT * FROM temp.ex1;
2257 if( pTable->nCol<0 ){
2258 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2259 return 1;
2261 assert( pTable->nCol>=0 );
2263 /* If we get this far, it means we need to compute the table names.
2264 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2265 ** "*" elements in the results set of the view and will assign cursors
2266 ** to the elements of the FROM clause. But we do not want these changes
2267 ** to be permanent. So the computation is done on a copy of the SELECT
2268 ** statement that defines the view.
2270 assert( pTable->pSelect );
2271 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2272 if( pSel ){
2273 n = pParse->nTab;
2274 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2275 pTable->nCol = -1;
2276 db->lookaside.bDisable++;
2277 #ifndef SQLITE_OMIT_AUTHORIZATION
2278 xAuth = db->xAuth;
2279 db->xAuth = 0;
2280 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2281 db->xAuth = xAuth;
2282 #else
2283 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2284 #endif
2285 pParse->nTab = n;
2286 if( pTable->pCheck ){
2287 /* CREATE VIEW name(arglist) AS ...
2288 ** The names of the columns in the table are taken from
2289 ** arglist which is stored in pTable->pCheck. The pCheck field
2290 ** normally holds CHECK constraints on an ordinary table, but for
2291 ** a VIEW it holds the list of column names.
2293 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2294 &pTable->nCol, &pTable->aCol);
2295 if( db->mallocFailed==0
2296 && pParse->nErr==0
2297 && pTable->nCol==pSel->pEList->nExpr
2299 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2301 }else if( pSelTab ){
2302 /* CREATE VIEW name AS... without an argument list. Construct
2303 ** the column names from the SELECT statement that defines the view.
2305 assert( pTable->aCol==0 );
2306 pTable->nCol = pSelTab->nCol;
2307 pTable->aCol = pSelTab->aCol;
2308 pSelTab->nCol = 0;
2309 pSelTab->aCol = 0;
2310 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2311 }else{
2312 pTable->nCol = 0;
2313 nErr++;
2315 sqlite3DeleteTable(db, pSelTab);
2316 sqlite3SelectDelete(db, pSel);
2317 db->lookaside.bDisable--;
2318 } else {
2319 nErr++;
2321 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2322 #endif /* SQLITE_OMIT_VIEW */
2323 return nErr;
2325 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2327 #ifndef SQLITE_OMIT_VIEW
2329 ** Clear the column names from every VIEW in database idx.
2331 static void sqliteViewResetAll(sqlite3 *db, int idx){
2332 HashElem *i;
2333 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2334 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2335 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2336 Table *pTab = sqliteHashData(i);
2337 if( pTab->pSelect ){
2338 sqlite3DeleteColumnNames(db, pTab);
2339 pTab->aCol = 0;
2340 pTab->nCol = 0;
2343 DbClearProperty(db, idx, DB_UnresetViews);
2345 #else
2346 # define sqliteViewResetAll(A,B)
2347 #endif /* SQLITE_OMIT_VIEW */
2350 ** This function is called by the VDBE to adjust the internal schema
2351 ** used by SQLite when the btree layer moves a table root page. The
2352 ** root-page of a table or index in database iDb has changed from iFrom
2353 ** to iTo.
2355 ** Ticket #1728: The symbol table might still contain information
2356 ** on tables and/or indices that are the process of being deleted.
2357 ** If you are unlucky, one of those deleted indices or tables might
2358 ** have the same rootpage number as the real table or index that is
2359 ** being moved. So we cannot stop searching after the first match
2360 ** because the first match might be for one of the deleted indices
2361 ** or tables and not the table/index that is actually being moved.
2362 ** We must continue looping until all tables and indices with
2363 ** rootpage==iFrom have been converted to have a rootpage of iTo
2364 ** in order to be certain that we got the right one.
2366 #ifndef SQLITE_OMIT_AUTOVACUUM
2367 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2368 HashElem *pElem;
2369 Hash *pHash;
2370 Db *pDb;
2372 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2373 pDb = &db->aDb[iDb];
2374 pHash = &pDb->pSchema->tblHash;
2375 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2376 Table *pTab = sqliteHashData(pElem);
2377 if( pTab->tnum==iFrom ){
2378 pTab->tnum = iTo;
2381 pHash = &pDb->pSchema->idxHash;
2382 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2383 Index *pIdx = sqliteHashData(pElem);
2384 if( pIdx->tnum==iFrom ){
2385 pIdx->tnum = iTo;
2389 #endif
2392 ** Write code to erase the table with root-page iTable from database iDb.
2393 ** Also write code to modify the sqlite_master table and internal schema
2394 ** if a root-page of another table is moved by the btree-layer whilst
2395 ** erasing iTable (this can happen with an auto-vacuum database).
2397 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2398 Vdbe *v = sqlite3GetVdbe(pParse);
2399 int r1 = sqlite3GetTempReg(pParse);
2400 assert( iTable>1 );
2401 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2402 sqlite3MayAbort(pParse);
2403 #ifndef SQLITE_OMIT_AUTOVACUUM
2404 /* OP_Destroy stores an in integer r1. If this integer
2405 ** is non-zero, then it is the root page number of a table moved to
2406 ** location iTable. The following code modifies the sqlite_master table to
2407 ** reflect this.
2409 ** The "#NNN" in the SQL is a special constant that means whatever value
2410 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2411 ** token for additional information.
2413 sqlite3NestedParse(pParse,
2414 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2415 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2416 #endif
2417 sqlite3ReleaseTempReg(pParse, r1);
2421 ** Write VDBE code to erase table pTab and all associated indices on disk.
2422 ** Code to update the sqlite_master tables and internal schema definitions
2423 ** in case a root-page belonging to another table is moved by the btree layer
2424 ** is also added (this can happen with an auto-vacuum database).
2426 static void destroyTable(Parse *pParse, Table *pTab){
2427 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2428 ** is not defined), then it is important to call OP_Destroy on the
2429 ** table and index root-pages in order, starting with the numerically
2430 ** largest root-page number. This guarantees that none of the root-pages
2431 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2432 ** following were coded:
2434 ** OP_Destroy 4 0
2435 ** ...
2436 ** OP_Destroy 5 0
2438 ** and root page 5 happened to be the largest root-page number in the
2439 ** database, then root page 5 would be moved to page 4 by the
2440 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2441 ** a free-list page.
2443 int iTab = pTab->tnum;
2444 int iDestroyed = 0;
2446 while( 1 ){
2447 Index *pIdx;
2448 int iLargest = 0;
2450 if( iDestroyed==0 || iTab<iDestroyed ){
2451 iLargest = iTab;
2453 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2454 int iIdx = pIdx->tnum;
2455 assert( pIdx->pSchema==pTab->pSchema );
2456 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2457 iLargest = iIdx;
2460 if( iLargest==0 ){
2461 return;
2462 }else{
2463 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2464 assert( iDb>=0 && iDb<pParse->db->nDb );
2465 destroyRootPage(pParse, iLargest, iDb);
2466 iDestroyed = iLargest;
2472 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2473 ** after a DROP INDEX or DROP TABLE command.
2475 static void sqlite3ClearStatTables(
2476 Parse *pParse, /* The parsing context */
2477 int iDb, /* The database number */
2478 const char *zType, /* "idx" or "tbl" */
2479 const char *zName /* Name of index or table */
2481 int i;
2482 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2483 for(i=1; i<=4; i++){
2484 char zTab[24];
2485 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2486 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2487 sqlite3NestedParse(pParse,
2488 "DELETE FROM %Q.%s WHERE %s=%Q",
2489 zDbName, zTab, zType, zName
2496 ** Generate code to drop a table.
2498 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2499 Vdbe *v;
2500 sqlite3 *db = pParse->db;
2501 Trigger *pTrigger;
2502 Db *pDb = &db->aDb[iDb];
2504 v = sqlite3GetVdbe(pParse);
2505 assert( v!=0 );
2506 sqlite3BeginWriteOperation(pParse, 1, iDb);
2508 #ifndef SQLITE_OMIT_VIRTUALTABLE
2509 if( IsVirtual(pTab) ){
2510 sqlite3VdbeAddOp0(v, OP_VBegin);
2512 #endif
2514 /* Drop all triggers associated with the table being dropped. Code
2515 ** is generated to remove entries from sqlite_master and/or
2516 ** sqlite_temp_master if required.
2518 pTrigger = sqlite3TriggerList(pParse, pTab);
2519 while( pTrigger ){
2520 assert( pTrigger->pSchema==pTab->pSchema ||
2521 pTrigger->pSchema==db->aDb[1].pSchema );
2522 sqlite3DropTriggerPtr(pParse, pTrigger);
2523 pTrigger = pTrigger->pNext;
2526 #ifndef SQLITE_OMIT_AUTOINCREMENT
2527 /* Remove any entries of the sqlite_sequence table associated with
2528 ** the table being dropped. This is done before the table is dropped
2529 ** at the btree level, in case the sqlite_sequence table needs to
2530 ** move as a result of the drop (can happen in auto-vacuum mode).
2532 if( pTab->tabFlags & TF_Autoincrement ){
2533 sqlite3NestedParse(pParse,
2534 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2535 pDb->zDbSName, pTab->zName
2538 #endif
2540 /* Drop all SQLITE_MASTER table and index entries that refer to the
2541 ** table. The program name loops through the master table and deletes
2542 ** every row that refers to a table of the same name as the one being
2543 ** dropped. Triggers are handled separately because a trigger can be
2544 ** created in the temp database that refers to a table in another
2545 ** database.
2547 sqlite3NestedParse(pParse,
2548 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2549 pDb->zDbSName, MASTER_NAME, pTab->zName);
2550 if( !isView && !IsVirtual(pTab) ){
2551 destroyTable(pParse, pTab);
2554 /* Remove the table entry from SQLite's internal schema and modify
2555 ** the schema cookie.
2557 if( IsVirtual(pTab) ){
2558 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2560 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2561 sqlite3ChangeCookie(pParse, iDb);
2562 sqliteViewResetAll(db, iDb);
2566 ** This routine is called to do the work of a DROP TABLE statement.
2567 ** pName is the name of the table to be dropped.
2569 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2570 Table *pTab;
2571 Vdbe *v;
2572 sqlite3 *db = pParse->db;
2573 int iDb;
2575 if( db->mallocFailed ){
2576 goto exit_drop_table;
2578 assert( pParse->nErr==0 );
2579 assert( pName->nSrc==1 );
2580 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2581 if( noErr ) db->suppressErr++;
2582 assert( isView==0 || isView==LOCATE_VIEW );
2583 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2584 if( noErr ) db->suppressErr--;
2586 if( pTab==0 ){
2587 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2588 goto exit_drop_table;
2590 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2591 assert( iDb>=0 && iDb<db->nDb );
2593 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2594 ** it is initialized.
2596 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2597 goto exit_drop_table;
2599 #ifndef SQLITE_OMIT_AUTHORIZATION
2601 int code;
2602 const char *zTab = SCHEMA_TABLE(iDb);
2603 const char *zDb = db->aDb[iDb].zDbSName;
2604 const char *zArg2 = 0;
2605 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2606 goto exit_drop_table;
2608 if( isView ){
2609 if( !OMIT_TEMPDB && iDb==1 ){
2610 code = SQLITE_DROP_TEMP_VIEW;
2611 }else{
2612 code = SQLITE_DROP_VIEW;
2614 #ifndef SQLITE_OMIT_VIRTUALTABLE
2615 }else if( IsVirtual(pTab) ){
2616 code = SQLITE_DROP_VTABLE;
2617 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2618 #endif
2619 }else{
2620 if( !OMIT_TEMPDB && iDb==1 ){
2621 code = SQLITE_DROP_TEMP_TABLE;
2622 }else{
2623 code = SQLITE_DROP_TABLE;
2626 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2627 goto exit_drop_table;
2629 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2630 goto exit_drop_table;
2633 #endif
2634 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2635 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2636 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2637 goto exit_drop_table;
2640 #ifndef SQLITE_OMIT_VIEW
2641 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2642 ** on a table.
2644 if( isView && pTab->pSelect==0 ){
2645 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2646 goto exit_drop_table;
2648 if( !isView && pTab->pSelect ){
2649 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2650 goto exit_drop_table;
2652 #endif
2654 /* Generate code to remove the table from the master table
2655 ** on disk.
2657 v = sqlite3GetVdbe(pParse);
2658 if( v ){
2659 sqlite3BeginWriteOperation(pParse, 1, iDb);
2660 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2661 sqlite3FkDropTable(pParse, pName, pTab);
2662 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2665 exit_drop_table:
2666 sqlite3SrcListDelete(db, pName);
2670 ** This routine is called to create a new foreign key on the table
2671 ** currently under construction. pFromCol determines which columns
2672 ** in the current table point to the foreign key. If pFromCol==0 then
2673 ** connect the key to the last column inserted. pTo is the name of
2674 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2675 ** of tables in the parent pTo table. flags contains all
2676 ** information about the conflict resolution algorithms specified
2677 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2679 ** An FKey structure is created and added to the table currently
2680 ** under construction in the pParse->pNewTable field.
2682 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2683 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2685 void sqlite3CreateForeignKey(
2686 Parse *pParse, /* Parsing context */
2687 ExprList *pFromCol, /* Columns in this table that point to other table */
2688 Token *pTo, /* Name of the other table */
2689 ExprList *pToCol, /* Columns in the other table */
2690 int flags /* Conflict resolution algorithms. */
2692 sqlite3 *db = pParse->db;
2693 #ifndef SQLITE_OMIT_FOREIGN_KEY
2694 FKey *pFKey = 0;
2695 FKey *pNextTo;
2696 Table *p = pParse->pNewTable;
2697 int nByte;
2698 int i;
2699 int nCol;
2700 char *z;
2702 assert( pTo!=0 );
2703 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2704 if( pFromCol==0 ){
2705 int iCol = p->nCol-1;
2706 if( NEVER(iCol<0) ) goto fk_end;
2707 if( pToCol && pToCol->nExpr!=1 ){
2708 sqlite3ErrorMsg(pParse, "foreign key on %s"
2709 " should reference only one column of table %T",
2710 p->aCol[iCol].zName, pTo);
2711 goto fk_end;
2713 nCol = 1;
2714 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2715 sqlite3ErrorMsg(pParse,
2716 "number of columns in foreign key does not match the number of "
2717 "columns in the referenced table");
2718 goto fk_end;
2719 }else{
2720 nCol = pFromCol->nExpr;
2722 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2723 if( pToCol ){
2724 for(i=0; i<pToCol->nExpr; i++){
2725 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2728 pFKey = sqlite3DbMallocZero(db, nByte );
2729 if( pFKey==0 ){
2730 goto fk_end;
2732 pFKey->pFrom = p;
2733 pFKey->pNextFrom = p->pFKey;
2734 z = (char*)&pFKey->aCol[nCol];
2735 pFKey->zTo = z;
2736 memcpy(z, pTo->z, pTo->n);
2737 z[pTo->n] = 0;
2738 sqlite3Dequote(z);
2739 z += pTo->n+1;
2740 pFKey->nCol = nCol;
2741 if( pFromCol==0 ){
2742 pFKey->aCol[0].iFrom = p->nCol-1;
2743 }else{
2744 for(i=0; i<nCol; i++){
2745 int j;
2746 for(j=0; j<p->nCol; j++){
2747 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2748 pFKey->aCol[i].iFrom = j;
2749 break;
2752 if( j>=p->nCol ){
2753 sqlite3ErrorMsg(pParse,
2754 "unknown column \"%s\" in foreign key definition",
2755 pFromCol->a[i].zName);
2756 goto fk_end;
2760 if( pToCol ){
2761 for(i=0; i<nCol; i++){
2762 int n = sqlite3Strlen30(pToCol->a[i].zName);
2763 pFKey->aCol[i].zCol = z;
2764 memcpy(z, pToCol->a[i].zName, n);
2765 z[n] = 0;
2766 z += n+1;
2769 pFKey->isDeferred = 0;
2770 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2771 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2773 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2774 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2775 pFKey->zTo, (void *)pFKey
2777 if( pNextTo==pFKey ){
2778 sqlite3OomFault(db);
2779 goto fk_end;
2781 if( pNextTo ){
2782 assert( pNextTo->pPrevTo==0 );
2783 pFKey->pNextTo = pNextTo;
2784 pNextTo->pPrevTo = pFKey;
2787 /* Link the foreign key to the table as the last step.
2789 p->pFKey = pFKey;
2790 pFKey = 0;
2792 fk_end:
2793 sqlite3DbFree(db, pFKey);
2794 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2795 sqlite3ExprListDelete(db, pFromCol);
2796 sqlite3ExprListDelete(db, pToCol);
2800 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2801 ** clause is seen as part of a foreign key definition. The isDeferred
2802 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2803 ** The behavior of the most recently created foreign key is adjusted
2804 ** accordingly.
2806 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2807 #ifndef SQLITE_OMIT_FOREIGN_KEY
2808 Table *pTab;
2809 FKey *pFKey;
2810 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2811 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2812 pFKey->isDeferred = (u8)isDeferred;
2813 #endif
2817 ** Generate code that will erase and refill index *pIdx. This is
2818 ** used to initialize a newly created index or to recompute the
2819 ** content of an index in response to a REINDEX command.
2821 ** if memRootPage is not negative, it means that the index is newly
2822 ** created. The register specified by memRootPage contains the
2823 ** root page number of the index. If memRootPage is negative, then
2824 ** the index already exists and must be cleared before being refilled and
2825 ** the root page number of the index is taken from pIndex->tnum.
2827 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2828 Table *pTab = pIndex->pTable; /* The table that is indexed */
2829 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2830 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2831 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2832 int addr1; /* Address of top of loop */
2833 int addr2; /* Address to jump to for next iteration */
2834 int tnum; /* Root page of index */
2835 int iPartIdxLabel; /* Jump to this label to skip a row */
2836 Vdbe *v; /* Generate code into this virtual machine */
2837 KeyInfo *pKey; /* KeyInfo for index */
2838 int regRecord; /* Register holding assembled index record */
2839 sqlite3 *db = pParse->db; /* The database connection */
2840 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2842 #ifndef SQLITE_OMIT_AUTHORIZATION
2843 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2844 db->aDb[iDb].zDbSName ) ){
2845 return;
2847 #endif
2849 /* Require a write-lock on the table to perform this operation */
2850 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2852 v = sqlite3GetVdbe(pParse);
2853 if( v==0 ) return;
2854 if( memRootPage>=0 ){
2855 tnum = memRootPage;
2856 }else{
2857 tnum = pIndex->tnum;
2859 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2860 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2862 /* Open the sorter cursor if we are to use one. */
2863 iSorter = pParse->nTab++;
2864 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2865 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2867 /* Open the table. Loop through all rows of the table, inserting index
2868 ** records into the sorter. */
2869 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2870 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2871 regRecord = sqlite3GetTempReg(pParse);
2872 sqlite3MultiWrite(pParse);
2874 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2875 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2876 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2877 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2878 sqlite3VdbeJumpHere(v, addr1);
2879 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2880 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2881 (char *)pKey, P4_KEYINFO);
2882 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2884 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2885 if( IsUniqueIndex(pIndex) ){
2886 int j2 = sqlite3VdbeGoto(v, 1);
2887 addr2 = sqlite3VdbeCurrentAddr(v);
2888 sqlite3VdbeVerifyAbortable(v, OE_Abort);
2889 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2890 pIndex->nKeyCol); VdbeCoverage(v);
2891 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2892 sqlite3VdbeJumpHere(v, j2);
2893 }else{
2894 addr2 = sqlite3VdbeCurrentAddr(v);
2896 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2897 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2898 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2899 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2900 sqlite3ReleaseTempReg(pParse, regRecord);
2901 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2902 sqlite3VdbeJumpHere(v, addr1);
2904 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2905 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2906 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2910 ** Allocate heap space to hold an Index object with nCol columns.
2912 ** Increase the allocation size to provide an extra nExtra bytes
2913 ** of 8-byte aligned space after the Index object and return a
2914 ** pointer to this extra space in *ppExtra.
2916 Index *sqlite3AllocateIndexObject(
2917 sqlite3 *db, /* Database connection */
2918 i16 nCol, /* Total number of columns in the index */
2919 int nExtra, /* Number of bytes of extra space to alloc */
2920 char **ppExtra /* Pointer to the "extra" space */
2922 Index *p; /* Allocated index object */
2923 int nByte; /* Bytes of space for Index object + arrays */
2925 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2926 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2927 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2928 sizeof(i16)*nCol + /* Index.aiColumn */
2929 sizeof(u8)*nCol); /* Index.aSortOrder */
2930 p = sqlite3DbMallocZero(db, nByte + nExtra);
2931 if( p ){
2932 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2933 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2934 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2935 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2936 p->aSortOrder = (u8*)pExtra;
2937 p->nColumn = nCol;
2938 p->nKeyCol = nCol - 1;
2939 *ppExtra = ((char*)p) + nByte;
2941 return p;
2945 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2946 ** and pTblList is the name of the table that is to be indexed. Both will
2947 ** be NULL for a primary key or an index that is created to satisfy a
2948 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2949 ** as the table to be indexed. pParse->pNewTable is a table that is
2950 ** currently being constructed by a CREATE TABLE statement.
2952 ** pList is a list of columns to be indexed. pList will be NULL if this
2953 ** is a primary key or unique-constraint on the most recent column added
2954 ** to the table currently under construction.
2956 void sqlite3CreateIndex(
2957 Parse *pParse, /* All information about this parse */
2958 Token *pName1, /* First part of index name. May be NULL */
2959 Token *pName2, /* Second part of index name. May be NULL */
2960 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2961 ExprList *pList, /* A list of columns to be indexed */
2962 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2963 Token *pStart, /* The CREATE token that begins this statement */
2964 Expr *pPIWhere, /* WHERE clause for partial indices */
2965 int sortOrder, /* Sort order of primary key when pList==NULL */
2966 int ifNotExist, /* Omit error if index already exists */
2967 u8 idxType /* The index type */
2969 Table *pTab = 0; /* Table to be indexed */
2970 Index *pIndex = 0; /* The index to be created */
2971 char *zName = 0; /* Name of the index */
2972 int nName; /* Number of characters in zName */
2973 int i, j;
2974 DbFixer sFix; /* For assigning database names to pTable */
2975 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2976 sqlite3 *db = pParse->db;
2977 Db *pDb; /* The specific table containing the indexed database */
2978 int iDb; /* Index of the database that is being written */
2979 Token *pName = 0; /* Unqualified name of the index to create */
2980 struct ExprList_item *pListItem; /* For looping over pList */
2981 int nExtra = 0; /* Space allocated for zExtra[] */
2982 int nExtraCol; /* Number of extra columns needed */
2983 char *zExtra = 0; /* Extra space after the Index object */
2984 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2986 if( db->mallocFailed || pParse->nErr>0 ){
2987 goto exit_create_index;
2989 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2990 goto exit_create_index;
2992 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2993 goto exit_create_index;
2997 ** Find the table that is to be indexed. Return early if not found.
2999 if( pTblName!=0 ){
3001 /* Use the two-part index name to determine the database
3002 ** to search for the table. 'Fix' the table name to this db
3003 ** before looking up the table.
3005 assert( pName1 && pName2 );
3006 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3007 if( iDb<0 ) goto exit_create_index;
3008 assert( pName && pName->z );
3010 #ifndef SQLITE_OMIT_TEMPDB
3011 /* If the index name was unqualified, check if the table
3012 ** is a temp table. If so, set the database to 1. Do not do this
3013 ** if initialising a database schema.
3015 if( !db->init.busy ){
3016 pTab = sqlite3SrcListLookup(pParse, pTblName);
3017 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3018 iDb = 1;
3021 #endif
3023 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3024 if( sqlite3FixSrcList(&sFix, pTblName) ){
3025 /* Because the parser constructs pTblName from a single identifier,
3026 ** sqlite3FixSrcList can never fail. */
3027 assert(0);
3029 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3030 assert( db->mallocFailed==0 || pTab==0 );
3031 if( pTab==0 ) goto exit_create_index;
3032 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3033 sqlite3ErrorMsg(pParse,
3034 "cannot create a TEMP index on non-TEMP table \"%s\"",
3035 pTab->zName);
3036 goto exit_create_index;
3038 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3039 }else{
3040 assert( pName==0 );
3041 assert( pStart==0 );
3042 pTab = pParse->pNewTable;
3043 if( !pTab ) goto exit_create_index;
3044 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3046 pDb = &db->aDb[iDb];
3048 assert( pTab!=0 );
3049 assert( pParse->nErr==0 );
3050 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3051 && db->init.busy==0
3052 #if SQLITE_USER_AUTHENTICATION
3053 && sqlite3UserAuthTable(pTab->zName)==0
3054 #endif
3055 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
3056 && sqlite3StrICmp(&pTab->zName[7],"master")!=0
3057 #endif
3058 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
3060 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3061 goto exit_create_index;
3063 #ifndef SQLITE_OMIT_VIEW
3064 if( pTab->pSelect ){
3065 sqlite3ErrorMsg(pParse, "views may not be indexed");
3066 goto exit_create_index;
3068 #endif
3069 #ifndef SQLITE_OMIT_VIRTUALTABLE
3070 if( IsVirtual(pTab) ){
3071 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3072 goto exit_create_index;
3074 #endif
3077 ** Find the name of the index. Make sure there is not already another
3078 ** index or table with the same name.
3080 ** Exception: If we are reading the names of permanent indices from the
3081 ** sqlite_master table (because some other process changed the schema) and
3082 ** one of the index names collides with the name of a temporary table or
3083 ** index, then we will continue to process this index.
3085 ** If pName==0 it means that we are
3086 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3087 ** own name.
3089 if( pName ){
3090 zName = sqlite3NameFromToken(db, pName);
3091 if( zName==0 ) goto exit_create_index;
3092 assert( pName->z!=0 );
3093 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3094 goto exit_create_index;
3096 if( !db->init.busy ){
3097 if( sqlite3FindTable(db, zName, 0)!=0 ){
3098 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3099 goto exit_create_index;
3102 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3103 if( !ifNotExist ){
3104 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3105 }else{
3106 assert( !db->init.busy );
3107 sqlite3CodeVerifySchema(pParse, iDb);
3109 goto exit_create_index;
3111 }else{
3112 int n;
3113 Index *pLoop;
3114 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3115 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3116 if( zName==0 ){
3117 goto exit_create_index;
3120 /* Automatic index names generated from within sqlite3_declare_vtab()
3121 ** must have names that are distinct from normal automatic index names.
3122 ** The following statement converts "sqlite3_autoindex..." into
3123 ** "sqlite3_butoindex..." in order to make the names distinct.
3124 ** The "vtab_err.test" test demonstrates the need of this statement. */
3125 if( IN_DECLARE_VTAB ) zName[7]++;
3128 /* Check for authorization to create an index.
3130 #ifndef SQLITE_OMIT_AUTHORIZATION
3132 const char *zDb = pDb->zDbSName;
3133 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3134 goto exit_create_index;
3136 i = SQLITE_CREATE_INDEX;
3137 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3138 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3139 goto exit_create_index;
3142 #endif
3144 /* If pList==0, it means this routine was called to make a primary
3145 ** key out of the last column added to the table under construction.
3146 ** So create a fake list to simulate this.
3148 if( pList==0 ){
3149 Token prevCol;
3150 Column *pCol = &pTab->aCol[pTab->nCol-1];
3151 pCol->colFlags |= COLFLAG_UNIQUE;
3152 sqlite3TokenInit(&prevCol, pCol->zName);
3153 pList = sqlite3ExprListAppend(pParse, 0,
3154 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3155 if( pList==0 ) goto exit_create_index;
3156 assert( pList->nExpr==1 );
3157 sqlite3ExprListSetSortOrder(pList, sortOrder);
3158 }else{
3159 sqlite3ExprListCheckLength(pParse, pList, "index");
3162 /* Figure out how many bytes of space are required to store explicitly
3163 ** specified collation sequence names.
3165 for(i=0; i<pList->nExpr; i++){
3166 Expr *pExpr = pList->a[i].pExpr;
3167 assert( pExpr!=0 );
3168 if( pExpr->op==TK_COLLATE ){
3169 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3174 ** Allocate the index structure.
3176 nName = sqlite3Strlen30(zName);
3177 nExtraCol = pPk ? pPk->nKeyCol : 1;
3178 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3179 nName + nExtra + 1, &zExtra);
3180 if( db->mallocFailed ){
3181 goto exit_create_index;
3183 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3184 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3185 pIndex->zName = zExtra;
3186 zExtra += nName + 1;
3187 memcpy(pIndex->zName, zName, nName+1);
3188 pIndex->pTable = pTab;
3189 pIndex->onError = (u8)onError;
3190 pIndex->uniqNotNull = onError!=OE_None;
3191 pIndex->idxType = idxType;
3192 pIndex->pSchema = db->aDb[iDb].pSchema;
3193 pIndex->nKeyCol = pList->nExpr;
3194 if( pPIWhere ){
3195 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3196 pIndex->pPartIdxWhere = pPIWhere;
3197 pPIWhere = 0;
3199 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3201 /* Check to see if we should honor DESC requests on index columns
3203 if( pDb->pSchema->file_format>=4 ){
3204 sortOrderMask = -1; /* Honor DESC */
3205 }else{
3206 sortOrderMask = 0; /* Ignore DESC */
3209 /* Analyze the list of expressions that form the terms of the index and
3210 ** report any errors. In the common case where the expression is exactly
3211 ** a table column, store that column in aiColumn[]. For general expressions,
3212 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3214 ** TODO: Issue a warning if two or more columns of the index are identical.
3215 ** TODO: Issue a warning if the table primary key is used as part of the
3216 ** index key.
3218 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3219 Expr *pCExpr; /* The i-th index expression */
3220 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3221 const char *zColl; /* Collation sequence name */
3223 sqlite3StringToId(pListItem->pExpr);
3224 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3225 if( pParse->nErr ) goto exit_create_index;
3226 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3227 if( pCExpr->op!=TK_COLUMN ){
3228 if( pTab==pParse->pNewTable ){
3229 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3230 "UNIQUE constraints");
3231 goto exit_create_index;
3233 if( pIndex->aColExpr==0 ){
3234 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3235 pIndex->aColExpr = pCopy;
3236 if( !db->mallocFailed ){
3237 assert( pCopy!=0 );
3238 pListItem = &pCopy->a[i];
3241 j = XN_EXPR;
3242 pIndex->aiColumn[i] = XN_EXPR;
3243 pIndex->uniqNotNull = 0;
3244 }else{
3245 j = pCExpr->iColumn;
3246 assert( j<=0x7fff );
3247 if( j<0 ){
3248 j = pTab->iPKey;
3249 }else if( pTab->aCol[j].notNull==0 ){
3250 pIndex->uniqNotNull = 0;
3252 pIndex->aiColumn[i] = (i16)j;
3254 zColl = 0;
3255 if( pListItem->pExpr->op==TK_COLLATE ){
3256 int nColl;
3257 zColl = pListItem->pExpr->u.zToken;
3258 nColl = sqlite3Strlen30(zColl) + 1;
3259 assert( nExtra>=nColl );
3260 memcpy(zExtra, zColl, nColl);
3261 zColl = zExtra;
3262 zExtra += nColl;
3263 nExtra -= nColl;
3264 }else if( j>=0 ){
3265 zColl = pTab->aCol[j].zColl;
3267 if( !zColl ) zColl = sqlite3StrBINARY;
3268 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3269 goto exit_create_index;
3271 pIndex->azColl[i] = zColl;
3272 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3273 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3276 /* Append the table key to the end of the index. For WITHOUT ROWID
3277 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3278 ** normal tables (when pPk==0) this will be the rowid.
3280 if( pPk ){
3281 for(j=0; j<pPk->nKeyCol; j++){
3282 int x = pPk->aiColumn[j];
3283 assert( x>=0 );
3284 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3285 pIndex->nColumn--;
3286 }else{
3287 pIndex->aiColumn[i] = x;
3288 pIndex->azColl[i] = pPk->azColl[j];
3289 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3290 i++;
3293 assert( i==pIndex->nColumn );
3294 }else{
3295 pIndex->aiColumn[i] = XN_ROWID;
3296 pIndex->azColl[i] = sqlite3StrBINARY;
3298 sqlite3DefaultRowEst(pIndex);
3299 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3301 /* If this index contains every column of its table, then mark
3302 ** it as a covering index */
3303 assert( HasRowid(pTab)
3304 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3305 recomputeColumnsNotIndexed(pIndex);
3306 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3307 pIndex->isCovering = 1;
3308 for(j=0; j<pTab->nCol; j++){
3309 if( j==pTab->iPKey ) continue;
3310 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3311 pIndex->isCovering = 0;
3312 break;
3316 if( pTab==pParse->pNewTable ){
3317 /* This routine has been called to create an automatic index as a
3318 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3319 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3320 ** i.e. one of:
3322 ** CREATE TABLE t(x PRIMARY KEY, y);
3323 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3325 ** Either way, check to see if the table already has such an index. If
3326 ** so, don't bother creating this one. This only applies to
3327 ** automatically created indices. Users can do as they wish with
3328 ** explicit indices.
3330 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3331 ** (and thus suppressing the second one) even if they have different
3332 ** sort orders.
3334 ** If there are different collating sequences or if the columns of
3335 ** the constraint occur in different orders, then the constraints are
3336 ** considered distinct and both result in separate indices.
3338 Index *pIdx;
3339 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3340 int k;
3341 assert( IsUniqueIndex(pIdx) );
3342 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3343 assert( IsUniqueIndex(pIndex) );
3345 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3346 for(k=0; k<pIdx->nKeyCol; k++){
3347 const char *z1;
3348 const char *z2;
3349 assert( pIdx->aiColumn[k]>=0 );
3350 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3351 z1 = pIdx->azColl[k];
3352 z2 = pIndex->azColl[k];
3353 if( sqlite3StrICmp(z1, z2) ) break;
3355 if( k==pIdx->nKeyCol ){
3356 if( pIdx->onError!=pIndex->onError ){
3357 /* This constraint creates the same index as a previous
3358 ** constraint specified somewhere in the CREATE TABLE statement.
3359 ** However the ON CONFLICT clauses are different. If both this
3360 ** constraint and the previous equivalent constraint have explicit
3361 ** ON CONFLICT clauses this is an error. Otherwise, use the
3362 ** explicitly specified behavior for the index.
3364 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3365 sqlite3ErrorMsg(pParse,
3366 "conflicting ON CONFLICT clauses specified", 0);
3368 if( pIdx->onError==OE_Default ){
3369 pIdx->onError = pIndex->onError;
3372 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3373 goto exit_create_index;
3378 /* Link the new Index structure to its table and to the other
3379 ** in-memory database structures.
3381 assert( pParse->nErr==0 );
3382 if( db->init.busy ){
3383 Index *p;
3384 assert( !IN_DECLARE_VTAB );
3385 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3386 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3387 pIndex->zName, pIndex);
3388 if( p ){
3389 assert( p==pIndex ); /* Malloc must have failed */
3390 sqlite3OomFault(db);
3391 goto exit_create_index;
3393 db->mDbFlags |= DBFLAG_SchemaChange;
3394 if( pTblName!=0 ){
3395 pIndex->tnum = db->init.newTnum;
3399 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3400 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3401 ** emit code to allocate the index rootpage on disk and make an entry for
3402 ** the index in the sqlite_master table and populate the index with
3403 ** content. But, do not do this if we are simply reading the sqlite_master
3404 ** table to parse the schema, or if this index is the PRIMARY KEY index
3405 ** of a WITHOUT ROWID table.
3407 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3408 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3409 ** has just been created, it contains no data and the index initialization
3410 ** step can be skipped.
3412 else if( HasRowid(pTab) || pTblName!=0 ){
3413 Vdbe *v;
3414 char *zStmt;
3415 int iMem = ++pParse->nMem;
3417 v = sqlite3GetVdbe(pParse);
3418 if( v==0 ) goto exit_create_index;
3420 sqlite3BeginWriteOperation(pParse, 1, iDb);
3422 /* Create the rootpage for the index using CreateIndex. But before
3423 ** doing so, code a Noop instruction and store its address in
3424 ** Index.tnum. This is required in case this index is actually a
3425 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3426 ** that case the convertToWithoutRowidTable() routine will replace
3427 ** the Noop with a Goto to jump over the VDBE code generated below. */
3428 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3429 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3431 /* Gather the complete text of the CREATE INDEX statement into
3432 ** the zStmt variable
3434 if( pStart ){
3435 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3436 if( pName->z[n-1]==';' ) n--;
3437 /* A named index with an explicit CREATE INDEX statement */
3438 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3439 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3440 }else{
3441 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3442 /* zStmt = sqlite3MPrintf(""); */
3443 zStmt = 0;
3446 /* Add an entry in sqlite_master for this index
3448 sqlite3NestedParse(pParse,
3449 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3450 db->aDb[iDb].zDbSName, MASTER_NAME,
3451 pIndex->zName,
3452 pTab->zName,
3453 iMem,
3454 zStmt
3456 sqlite3DbFree(db, zStmt);
3458 /* Fill the index with data and reparse the schema. Code an OP_Expire
3459 ** to invalidate all pre-compiled statements.
3461 if( pTblName ){
3462 sqlite3RefillIndex(pParse, pIndex, iMem);
3463 sqlite3ChangeCookie(pParse, iDb);
3464 sqlite3VdbeAddParseSchemaOp(v, iDb,
3465 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3466 sqlite3VdbeAddOp0(v, OP_Expire);
3469 sqlite3VdbeJumpHere(v, pIndex->tnum);
3472 /* When adding an index to the list of indices for a table, make
3473 ** sure all indices labeled OE_Replace come after all those labeled
3474 ** OE_Ignore. This is necessary for the correct constraint check
3475 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3476 ** UPDATE and INSERT statements.
3478 if( db->init.busy || pTblName==0 ){
3479 if( onError!=OE_Replace || pTab->pIndex==0
3480 || pTab->pIndex->onError==OE_Replace){
3481 pIndex->pNext = pTab->pIndex;
3482 pTab->pIndex = pIndex;
3483 }else{
3484 Index *pOther = pTab->pIndex;
3485 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3486 pOther = pOther->pNext;
3488 pIndex->pNext = pOther->pNext;
3489 pOther->pNext = pIndex;
3491 pIndex = 0;
3494 /* Clean up before exiting */
3495 exit_create_index:
3496 if( pIndex ) freeIndex(db, pIndex);
3497 sqlite3ExprDelete(db, pPIWhere);
3498 sqlite3ExprListDelete(db, pList);
3499 sqlite3SrcListDelete(db, pTblName);
3500 sqlite3DbFree(db, zName);
3504 ** Fill the Index.aiRowEst[] array with default information - information
3505 ** to be used when we have not run the ANALYZE command.
3507 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3508 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3509 ** number of rows in the table that match any particular value of the
3510 ** first column of the index. aiRowEst[2] is an estimate of the number
3511 ** of rows that match any particular combination of the first 2 columns
3512 ** of the index. And so forth. It must always be the case that
3514 ** aiRowEst[N]<=aiRowEst[N-1]
3515 ** aiRowEst[N]>=1
3517 ** Apart from that, we have little to go on besides intuition as to
3518 ** how aiRowEst[] should be initialized. The numbers generated here
3519 ** are based on typical values found in actual indices.
3521 void sqlite3DefaultRowEst(Index *pIdx){
3522 /* 10, 9, 8, 7, 6 */
3523 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3524 LogEst *a = pIdx->aiRowLogEst;
3525 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3526 int i;
3528 /* Indexes with default row estimates should not have stat1 data */
3529 assert( !pIdx->hasStat1 );
3531 /* Set the first entry (number of rows in the index) to the estimated
3532 ** number of rows in the table, or half the number of rows in the table
3533 ** for a partial index. But do not let the estimate drop below 10. */
3534 a[0] = pIdx->pTable->nRowLogEst;
3535 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3536 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3538 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3539 ** 6 and each subsequent value (if any) is 5. */
3540 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3541 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3542 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3545 assert( 0==sqlite3LogEst(1) );
3546 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3550 ** This routine will drop an existing named index. This routine
3551 ** implements the DROP INDEX statement.
3553 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3554 Index *pIndex;
3555 Vdbe *v;
3556 sqlite3 *db = pParse->db;
3557 int iDb;
3559 assert( pParse->nErr==0 ); /* Never called with prior errors */
3560 if( db->mallocFailed ){
3561 goto exit_drop_index;
3563 assert( pName->nSrc==1 );
3564 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3565 goto exit_drop_index;
3567 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3568 if( pIndex==0 ){
3569 if( !ifExists ){
3570 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3571 }else{
3572 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3574 pParse->checkSchema = 1;
3575 goto exit_drop_index;
3577 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3578 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3579 "or PRIMARY KEY constraint cannot be dropped", 0);
3580 goto exit_drop_index;
3582 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3583 #ifndef SQLITE_OMIT_AUTHORIZATION
3585 int code = SQLITE_DROP_INDEX;
3586 Table *pTab = pIndex->pTable;
3587 const char *zDb = db->aDb[iDb].zDbSName;
3588 const char *zTab = SCHEMA_TABLE(iDb);
3589 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3590 goto exit_drop_index;
3592 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3593 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3594 goto exit_drop_index;
3597 #endif
3599 /* Generate code to remove the index and from the master table */
3600 v = sqlite3GetVdbe(pParse);
3601 if( v ){
3602 sqlite3BeginWriteOperation(pParse, 1, iDb);
3603 sqlite3NestedParse(pParse,
3604 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3605 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3607 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3608 sqlite3ChangeCookie(pParse, iDb);
3609 destroyRootPage(pParse, pIndex->tnum, iDb);
3610 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3613 exit_drop_index:
3614 sqlite3SrcListDelete(db, pName);
3618 ** pArray is a pointer to an array of objects. Each object in the
3619 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3620 ** to extend the array so that there is space for a new object at the end.
3622 ** When this function is called, *pnEntry contains the current size of
3623 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3624 ** in total).
3626 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3627 ** space allocated for the new object is zeroed, *pnEntry updated to
3628 ** reflect the new size of the array and a pointer to the new allocation
3629 ** returned. *pIdx is set to the index of the new array entry in this case.
3631 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3632 ** unchanged and a copy of pArray returned.
3634 void *sqlite3ArrayAllocate(
3635 sqlite3 *db, /* Connection to notify of malloc failures */
3636 void *pArray, /* Array of objects. Might be reallocated */
3637 int szEntry, /* Size of each object in the array */
3638 int *pnEntry, /* Number of objects currently in use */
3639 int *pIdx /* Write the index of a new slot here */
3641 char *z;
3642 int n = *pnEntry;
3643 if( (n & (n-1))==0 ){
3644 int sz = (n==0) ? 1 : 2*n;
3645 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3646 if( pNew==0 ){
3647 *pIdx = -1;
3648 return pArray;
3650 pArray = pNew;
3652 z = (char*)pArray;
3653 memset(&z[n * szEntry], 0, szEntry);
3654 *pIdx = n;
3655 ++*pnEntry;
3656 return pArray;
3660 ** Append a new element to the given IdList. Create a new IdList if
3661 ** need be.
3663 ** A new IdList is returned, or NULL if malloc() fails.
3665 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3666 int i;
3667 if( pList==0 ){
3668 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3669 if( pList==0 ) return 0;
3671 pList->a = sqlite3ArrayAllocate(
3673 pList->a,
3674 sizeof(pList->a[0]),
3675 &pList->nId,
3678 if( i<0 ){
3679 sqlite3IdListDelete(db, pList);
3680 return 0;
3682 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3683 return pList;
3687 ** Delete an IdList.
3689 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3690 int i;
3691 if( pList==0 ) return;
3692 for(i=0; i<pList->nId; i++){
3693 sqlite3DbFree(db, pList->a[i].zName);
3695 sqlite3DbFree(db, pList->a);
3696 sqlite3DbFreeNN(db, pList);
3700 ** Return the index in pList of the identifier named zId. Return -1
3701 ** if not found.
3703 int sqlite3IdListIndex(IdList *pList, const char *zName){
3704 int i;
3705 if( pList==0 ) return -1;
3706 for(i=0; i<pList->nId; i++){
3707 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3709 return -1;
3713 ** Expand the space allocated for the given SrcList object by
3714 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3715 ** New slots are zeroed.
3717 ** For example, suppose a SrcList initially contains two entries: A,B.
3718 ** To append 3 new entries onto the end, do this:
3720 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3722 ** After the call above it would contain: A, B, nil, nil, nil.
3723 ** If the iStart argument had been 1 instead of 2, then the result
3724 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3725 ** the iStart value would be 0. The result then would
3726 ** be: nil, nil, nil, A, B.
3728 ** If a memory allocation fails the SrcList is unchanged. The
3729 ** db->mallocFailed flag will be set to true.
3731 SrcList *sqlite3SrcListEnlarge(
3732 sqlite3 *db, /* Database connection to notify of OOM errors */
3733 SrcList *pSrc, /* The SrcList to be enlarged */
3734 int nExtra, /* Number of new slots to add to pSrc->a[] */
3735 int iStart /* Index in pSrc->a[] of first new slot */
3737 int i;
3739 /* Sanity checking on calling parameters */
3740 assert( iStart>=0 );
3741 assert( nExtra>=1 );
3742 assert( pSrc!=0 );
3743 assert( iStart<=pSrc->nSrc );
3745 /* Allocate additional space if needed */
3746 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3747 SrcList *pNew;
3748 int nAlloc = pSrc->nSrc*2+nExtra;
3749 int nGot;
3750 pNew = sqlite3DbRealloc(db, pSrc,
3751 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3752 if( pNew==0 ){
3753 assert( db->mallocFailed );
3754 return pSrc;
3756 pSrc = pNew;
3757 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3758 pSrc->nAlloc = nGot;
3761 /* Move existing slots that come after the newly inserted slots
3762 ** out of the way */
3763 for(i=pSrc->nSrc-1; i>=iStart; i--){
3764 pSrc->a[i+nExtra] = pSrc->a[i];
3766 pSrc->nSrc += nExtra;
3768 /* Zero the newly allocated slots */
3769 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3770 for(i=iStart; i<iStart+nExtra; i++){
3771 pSrc->a[i].iCursor = -1;
3774 /* Return a pointer to the enlarged SrcList */
3775 return pSrc;
3780 ** Append a new table name to the given SrcList. Create a new SrcList if
3781 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3783 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3784 ** SrcList might be the same as the SrcList that was input or it might be
3785 ** a new one. If an OOM error does occurs, then the prior value of pList
3786 ** that is input to this routine is automatically freed.
3788 ** If pDatabase is not null, it means that the table has an optional
3789 ** database name prefix. Like this: "database.table". The pDatabase
3790 ** points to the table name and the pTable points to the database name.
3791 ** The SrcList.a[].zName field is filled with the table name which might
3792 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3793 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3794 ** or with NULL if no database is specified.
3796 ** In other words, if call like this:
3798 ** sqlite3SrcListAppend(D,A,B,0);
3800 ** Then B is a table name and the database name is unspecified. If called
3801 ** like this:
3803 ** sqlite3SrcListAppend(D,A,B,C);
3805 ** Then C is the table name and B is the database name. If C is defined
3806 ** then so is B. In other words, we never have a case where:
3808 ** sqlite3SrcListAppend(D,A,0,C);
3810 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3811 ** before being added to the SrcList.
3813 SrcList *sqlite3SrcListAppend(
3814 sqlite3 *db, /* Connection to notify of malloc failures */
3815 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3816 Token *pTable, /* Table to append */
3817 Token *pDatabase /* Database of the table */
3819 struct SrcList_item *pItem;
3820 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3821 assert( db!=0 );
3822 if( pList==0 ){
3823 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3824 if( pList==0 ) return 0;
3825 pList->nAlloc = 1;
3826 pList->nSrc = 1;
3827 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3828 pList->a[0].iCursor = -1;
3829 }else{
3830 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3832 if( db->mallocFailed ){
3833 sqlite3SrcListDelete(db, pList);
3834 return 0;
3836 pItem = &pList->a[pList->nSrc-1];
3837 if( pDatabase && pDatabase->z==0 ){
3838 pDatabase = 0;
3840 if( pDatabase ){
3841 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3842 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3843 }else{
3844 pItem->zName = sqlite3NameFromToken(db, pTable);
3845 pItem->zDatabase = 0;
3847 return pList;
3851 ** Assign VdbeCursor index numbers to all tables in a SrcList
3853 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3854 int i;
3855 struct SrcList_item *pItem;
3856 assert(pList || pParse->db->mallocFailed );
3857 if( pList ){
3858 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3859 if( pItem->iCursor>=0 ) break;
3860 pItem->iCursor = pParse->nTab++;
3861 if( pItem->pSelect ){
3862 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3869 ** Delete an entire SrcList including all its substructure.
3871 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3872 int i;
3873 struct SrcList_item *pItem;
3874 if( pList==0 ) return;
3875 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3876 sqlite3DbFree(db, pItem->zDatabase);
3877 sqlite3DbFree(db, pItem->zName);
3878 sqlite3DbFree(db, pItem->zAlias);
3879 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3880 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3881 sqlite3DeleteTable(db, pItem->pTab);
3882 sqlite3SelectDelete(db, pItem->pSelect);
3883 sqlite3ExprDelete(db, pItem->pOn);
3884 sqlite3IdListDelete(db, pItem->pUsing);
3886 sqlite3DbFreeNN(db, pList);
3890 ** This routine is called by the parser to add a new term to the
3891 ** end of a growing FROM clause. The "p" parameter is the part of
3892 ** the FROM clause that has already been constructed. "p" is NULL
3893 ** if this is the first term of the FROM clause. pTable and pDatabase
3894 ** are the name of the table and database named in the FROM clause term.
3895 ** pDatabase is NULL if the database name qualifier is missing - the
3896 ** usual case. If the term has an alias, then pAlias points to the
3897 ** alias token. If the term is a subquery, then pSubquery is the
3898 ** SELECT statement that the subquery encodes. The pTable and
3899 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3900 ** parameters are the content of the ON and USING clauses.
3902 ** Return a new SrcList which encodes is the FROM with the new
3903 ** term added.
3905 SrcList *sqlite3SrcListAppendFromTerm(
3906 Parse *pParse, /* Parsing context */
3907 SrcList *p, /* The left part of the FROM clause already seen */
3908 Token *pTable, /* Name of the table to add to the FROM clause */
3909 Token *pDatabase, /* Name of the database containing pTable */
3910 Token *pAlias, /* The right-hand side of the AS subexpression */
3911 Select *pSubquery, /* A subquery used in place of a table name */
3912 Expr *pOn, /* The ON clause of a join */
3913 IdList *pUsing /* The USING clause of a join */
3915 struct SrcList_item *pItem;
3916 sqlite3 *db = pParse->db;
3917 if( !p && (pOn || pUsing) ){
3918 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3919 (pOn ? "ON" : "USING")
3921 goto append_from_error;
3923 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3924 if( p==0 ){
3925 goto append_from_error;
3927 assert( p->nSrc>0 );
3928 pItem = &p->a[p->nSrc-1];
3929 assert( pAlias!=0 );
3930 if( pAlias->n ){
3931 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3933 pItem->pSelect = pSubquery;
3934 pItem->pOn = pOn;
3935 pItem->pUsing = pUsing;
3936 return p;
3938 append_from_error:
3939 assert( p==0 );
3940 sqlite3ExprDelete(db, pOn);
3941 sqlite3IdListDelete(db, pUsing);
3942 sqlite3SelectDelete(db, pSubquery);
3943 return 0;
3947 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3948 ** element of the source-list passed as the second argument.
3950 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3951 assert( pIndexedBy!=0 );
3952 if( p && pIndexedBy->n>0 ){
3953 struct SrcList_item *pItem;
3954 assert( p->nSrc>0 );
3955 pItem = &p->a[p->nSrc-1];
3956 assert( pItem->fg.notIndexed==0 );
3957 assert( pItem->fg.isIndexedBy==0 );
3958 assert( pItem->fg.isTabFunc==0 );
3959 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3960 /* A "NOT INDEXED" clause was supplied. See parse.y
3961 ** construct "indexed_opt" for details. */
3962 pItem->fg.notIndexed = 1;
3963 }else{
3964 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3965 pItem->fg.isIndexedBy = 1;
3971 ** Add the list of function arguments to the SrcList entry for a
3972 ** table-valued-function.
3974 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3975 if( p ){
3976 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3977 assert( pItem->fg.notIndexed==0 );
3978 assert( pItem->fg.isIndexedBy==0 );
3979 assert( pItem->fg.isTabFunc==0 );
3980 pItem->u1.pFuncArg = pList;
3981 pItem->fg.isTabFunc = 1;
3982 }else{
3983 sqlite3ExprListDelete(pParse->db, pList);
3988 ** When building up a FROM clause in the parser, the join operator
3989 ** is initially attached to the left operand. But the code generator
3990 ** expects the join operator to be on the right operand. This routine
3991 ** Shifts all join operators from left to right for an entire FROM
3992 ** clause.
3994 ** Example: Suppose the join is like this:
3996 ** A natural cross join B
3998 ** The operator is "natural cross join". The A and B operands are stored
3999 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4000 ** operator with A. This routine shifts that operator over to B.
4002 void sqlite3SrcListShiftJoinType(SrcList *p){
4003 if( p ){
4004 int i;
4005 for(i=p->nSrc-1; i>0; i--){
4006 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
4008 p->a[0].fg.jointype = 0;
4013 ** Generate VDBE code for a BEGIN statement.
4015 void sqlite3BeginTransaction(Parse *pParse, int type){
4016 sqlite3 *db;
4017 Vdbe *v;
4018 int i;
4020 assert( pParse!=0 );
4021 db = pParse->db;
4022 assert( db!=0 );
4023 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
4024 return;
4026 v = sqlite3GetVdbe(pParse);
4027 if( !v ) return;
4028 if( type!=TK_DEFERRED ){
4029 for(i=0; i<db->nDb; i++){
4030 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
4031 sqlite3VdbeUsesBtree(v, i);
4034 sqlite3VdbeAddOp0(v, OP_AutoCommit);
4038 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4039 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4040 ** code is generated for a COMMIT.
4042 void sqlite3EndTransaction(Parse *pParse, int eType){
4043 Vdbe *v;
4044 int isRollback;
4046 assert( pParse!=0 );
4047 assert( pParse->db!=0 );
4048 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4049 isRollback = eType==TK_ROLLBACK;
4050 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4051 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4052 return;
4054 v = sqlite3GetVdbe(pParse);
4055 if( v ){
4056 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4061 ** This function is called by the parser when it parses a command to create,
4062 ** release or rollback an SQL savepoint.
4064 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4065 char *zName = sqlite3NameFromToken(pParse->db, pName);
4066 if( zName ){
4067 Vdbe *v = sqlite3GetVdbe(pParse);
4068 #ifndef SQLITE_OMIT_AUTHORIZATION
4069 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4070 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4071 #endif
4072 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4073 sqlite3DbFree(pParse->db, zName);
4074 return;
4076 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4081 ** Make sure the TEMP database is open and available for use. Return
4082 ** the number of errors. Leave any error messages in the pParse structure.
4084 int sqlite3OpenTempDatabase(Parse *pParse){
4085 sqlite3 *db = pParse->db;
4086 if( db->aDb[1].pBt==0 && !pParse->explain ){
4087 int rc;
4088 Btree *pBt;
4089 static const int flags =
4090 SQLITE_OPEN_READWRITE |
4091 SQLITE_OPEN_CREATE |
4092 SQLITE_OPEN_EXCLUSIVE |
4093 SQLITE_OPEN_DELETEONCLOSE |
4094 SQLITE_OPEN_TEMP_DB;
4096 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4097 if( rc!=SQLITE_OK ){
4098 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4099 "file for storing temporary tables");
4100 pParse->rc = rc;
4101 return 1;
4103 db->aDb[1].pBt = pBt;
4104 assert( db->aDb[1].pSchema );
4105 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4106 sqlite3OomFault(db);
4107 return 1;
4110 return 0;
4114 ** Record the fact that the schema cookie will need to be verified
4115 ** for database iDb. The code to actually verify the schema cookie
4116 ** will occur at the end of the top-level VDBE and will be generated
4117 ** later, by sqlite3FinishCoding().
4119 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4120 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4122 assert( iDb>=0 && iDb<pParse->db->nDb );
4123 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4124 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4125 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4126 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4127 DbMaskSet(pToplevel->cookieMask, iDb);
4128 if( !OMIT_TEMPDB && iDb==1 ){
4129 sqlite3OpenTempDatabase(pToplevel);
4135 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4136 ** attached database. Otherwise, invoke it for the database named zDb only.
4138 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4139 sqlite3 *db = pParse->db;
4140 int i;
4141 for(i=0; i<db->nDb; i++){
4142 Db *pDb = &db->aDb[i];
4143 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4144 sqlite3CodeVerifySchema(pParse, i);
4150 ** Generate VDBE code that prepares for doing an operation that
4151 ** might change the database.
4153 ** This routine starts a new transaction if we are not already within
4154 ** a transaction. If we are already within a transaction, then a checkpoint
4155 ** is set if the setStatement parameter is true. A checkpoint should
4156 ** be set for operations that might fail (due to a constraint) part of
4157 ** the way through and which will need to undo some writes without having to
4158 ** rollback the whole transaction. For operations where all constraints
4159 ** can be checked before any changes are made to the database, it is never
4160 ** necessary to undo a write and the checkpoint should not be set.
4162 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4163 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4164 sqlite3CodeVerifySchema(pParse, iDb);
4165 DbMaskSet(pToplevel->writeMask, iDb);
4166 pToplevel->isMultiWrite |= setStatement;
4170 ** Indicate that the statement currently under construction might write
4171 ** more than one entry (example: deleting one row then inserting another,
4172 ** inserting multiple rows in a table, or inserting a row and index entries.)
4173 ** If an abort occurs after some of these writes have completed, then it will
4174 ** be necessary to undo the completed writes.
4176 void sqlite3MultiWrite(Parse *pParse){
4177 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4178 pToplevel->isMultiWrite = 1;
4182 ** The code generator calls this routine if is discovers that it is
4183 ** possible to abort a statement prior to completion. In order to
4184 ** perform this abort without corrupting the database, we need to make
4185 ** sure that the statement is protected by a statement transaction.
4187 ** Technically, we only need to set the mayAbort flag if the
4188 ** isMultiWrite flag was previously set. There is a time dependency
4189 ** such that the abort must occur after the multiwrite. This makes
4190 ** some statements involving the REPLACE conflict resolution algorithm
4191 ** go a little faster. But taking advantage of this time dependency
4192 ** makes it more difficult to prove that the code is correct (in
4193 ** particular, it prevents us from writing an effective
4194 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4195 ** to take the safe route and skip the optimization.
4197 void sqlite3MayAbort(Parse *pParse){
4198 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4199 pToplevel->mayAbort = 1;
4203 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4204 ** error. The onError parameter determines which (if any) of the statement
4205 ** and/or current transaction is rolled back.
4207 void sqlite3HaltConstraint(
4208 Parse *pParse, /* Parsing context */
4209 int errCode, /* extended error code */
4210 int onError, /* Constraint type */
4211 char *p4, /* Error message */
4212 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4213 u8 p5Errmsg /* P5_ErrMsg type */
4215 Vdbe *v = sqlite3GetVdbe(pParse);
4216 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4217 if( onError==OE_Abort ){
4218 sqlite3MayAbort(pParse);
4220 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4221 sqlite3VdbeChangeP5(v, p5Errmsg);
4225 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4227 void sqlite3UniqueConstraint(
4228 Parse *pParse, /* Parsing context */
4229 int onError, /* Constraint type */
4230 Index *pIdx /* The index that triggers the constraint */
4232 char *zErr;
4233 int j;
4234 StrAccum errMsg;
4235 Table *pTab = pIdx->pTable;
4237 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4238 if( pIdx->aColExpr ){
4239 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
4240 }else{
4241 for(j=0; j<pIdx->nKeyCol; j++){
4242 char *zCol;
4243 assert( pIdx->aiColumn[j]>=0 );
4244 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4245 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
4246 sqlite3_str_appendall(&errMsg, pTab->zName);
4247 sqlite3_str_append(&errMsg, ".", 1);
4248 sqlite3_str_appendall(&errMsg, zCol);
4251 zErr = sqlite3StrAccumFinish(&errMsg);
4252 sqlite3HaltConstraint(pParse,
4253 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4254 : SQLITE_CONSTRAINT_UNIQUE,
4255 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4260 ** Code an OP_Halt due to non-unique rowid.
4262 void sqlite3RowidConstraint(
4263 Parse *pParse, /* Parsing context */
4264 int onError, /* Conflict resolution algorithm */
4265 Table *pTab /* The table with the non-unique rowid */
4267 char *zMsg;
4268 int rc;
4269 if( pTab->iPKey>=0 ){
4270 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4271 pTab->aCol[pTab->iPKey].zName);
4272 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4273 }else{
4274 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4275 rc = SQLITE_CONSTRAINT_ROWID;
4277 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4278 P5_ConstraintUnique);
4282 ** Check to see if pIndex uses the collating sequence pColl. Return
4283 ** true if it does and false if it does not.
4285 #ifndef SQLITE_OMIT_REINDEX
4286 static int collationMatch(const char *zColl, Index *pIndex){
4287 int i;
4288 assert( zColl!=0 );
4289 for(i=0; i<pIndex->nColumn; i++){
4290 const char *z = pIndex->azColl[i];
4291 assert( z!=0 || pIndex->aiColumn[i]<0 );
4292 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4293 return 1;
4296 return 0;
4298 #endif
4301 ** Recompute all indices of pTab that use the collating sequence pColl.
4302 ** If pColl==0 then recompute all indices of pTab.
4304 #ifndef SQLITE_OMIT_REINDEX
4305 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4306 Index *pIndex; /* An index associated with pTab */
4308 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4309 if( zColl==0 || collationMatch(zColl, pIndex) ){
4310 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4311 sqlite3BeginWriteOperation(pParse, 0, iDb);
4312 sqlite3RefillIndex(pParse, pIndex, -1);
4316 #endif
4319 ** Recompute all indices of all tables in all databases where the
4320 ** indices use the collating sequence pColl. If pColl==0 then recompute
4321 ** all indices everywhere.
4323 #ifndef SQLITE_OMIT_REINDEX
4324 static void reindexDatabases(Parse *pParse, char const *zColl){
4325 Db *pDb; /* A single database */
4326 int iDb; /* The database index number */
4327 sqlite3 *db = pParse->db; /* The database connection */
4328 HashElem *k; /* For looping over tables in pDb */
4329 Table *pTab; /* A table in the database */
4331 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4332 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4333 assert( pDb!=0 );
4334 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4335 pTab = (Table*)sqliteHashData(k);
4336 reindexTable(pParse, pTab, zColl);
4340 #endif
4343 ** Generate code for the REINDEX command.
4345 ** REINDEX -- 1
4346 ** REINDEX <collation> -- 2
4347 ** REINDEX ?<database>.?<tablename> -- 3
4348 ** REINDEX ?<database>.?<indexname> -- 4
4350 ** Form 1 causes all indices in all attached databases to be rebuilt.
4351 ** Form 2 rebuilds all indices in all databases that use the named
4352 ** collating function. Forms 3 and 4 rebuild the named index or all
4353 ** indices associated with the named table.
4355 #ifndef SQLITE_OMIT_REINDEX
4356 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4357 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4358 char *z; /* Name of a table or index */
4359 const char *zDb; /* Name of the database */
4360 Table *pTab; /* A table in the database */
4361 Index *pIndex; /* An index associated with pTab */
4362 int iDb; /* The database index number */
4363 sqlite3 *db = pParse->db; /* The database connection */
4364 Token *pObjName; /* Name of the table or index to be reindexed */
4366 /* Read the database schema. If an error occurs, leave an error message
4367 ** and code in pParse and return NULL. */
4368 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4369 return;
4372 if( pName1==0 ){
4373 reindexDatabases(pParse, 0);
4374 return;
4375 }else if( NEVER(pName2==0) || pName2->z==0 ){
4376 char *zColl;
4377 assert( pName1->z );
4378 zColl = sqlite3NameFromToken(pParse->db, pName1);
4379 if( !zColl ) return;
4380 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4381 if( pColl ){
4382 reindexDatabases(pParse, zColl);
4383 sqlite3DbFree(db, zColl);
4384 return;
4386 sqlite3DbFree(db, zColl);
4388 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4389 if( iDb<0 ) return;
4390 z = sqlite3NameFromToken(db, pObjName);
4391 if( z==0 ) return;
4392 zDb = db->aDb[iDb].zDbSName;
4393 pTab = sqlite3FindTable(db, z, zDb);
4394 if( pTab ){
4395 reindexTable(pParse, pTab, 0);
4396 sqlite3DbFree(db, z);
4397 return;
4399 pIndex = sqlite3FindIndex(db, z, zDb);
4400 sqlite3DbFree(db, z);
4401 if( pIndex ){
4402 sqlite3BeginWriteOperation(pParse, 0, iDb);
4403 sqlite3RefillIndex(pParse, pIndex, -1);
4404 return;
4406 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4408 #endif
4411 ** Return a KeyInfo structure that is appropriate for the given Index.
4413 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4414 ** when it has finished using it.
4416 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4417 int i;
4418 int nCol = pIdx->nColumn;
4419 int nKey = pIdx->nKeyCol;
4420 KeyInfo *pKey;
4421 if( pParse->nErr ) return 0;
4422 if( pIdx->uniqNotNull ){
4423 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4424 }else{
4425 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4427 if( pKey ){
4428 assert( sqlite3KeyInfoIsWriteable(pKey) );
4429 for(i=0; i<nCol; i++){
4430 const char *zColl = pIdx->azColl[i];
4431 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4432 sqlite3LocateCollSeq(pParse, zColl);
4433 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4435 if( pParse->nErr ){
4436 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4437 if( pIdx->bNoQuery==0 ){
4438 /* Deactivate the index because it contains an unknown collating
4439 ** sequence. The only way to reactive the index is to reload the
4440 ** schema. Adding the missing collating sequence later does not
4441 ** reactive the index. The application had the chance to register
4442 ** the missing index using the collation-needed callback. For
4443 ** simplicity, SQLite will not give the application a second chance.
4445 pIdx->bNoQuery = 1;
4446 pParse->rc = SQLITE_ERROR_RETRY;
4448 sqlite3KeyInfoUnref(pKey);
4449 pKey = 0;
4452 return pKey;
4455 #ifndef SQLITE_OMIT_CTE
4457 ** This routine is invoked once per CTE by the parser while parsing a
4458 ** WITH clause.
4460 With *sqlite3WithAdd(
4461 Parse *pParse, /* Parsing context */
4462 With *pWith, /* Existing WITH clause, or NULL */
4463 Token *pName, /* Name of the common-table */
4464 ExprList *pArglist, /* Optional column name list for the table */
4465 Select *pQuery /* Query used to initialize the table */
4467 sqlite3 *db = pParse->db;
4468 With *pNew;
4469 char *zName;
4471 /* Check that the CTE name is unique within this WITH clause. If
4472 ** not, store an error in the Parse structure. */
4473 zName = sqlite3NameFromToken(pParse->db, pName);
4474 if( zName && pWith ){
4475 int i;
4476 for(i=0; i<pWith->nCte; i++){
4477 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4478 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4483 if( pWith ){
4484 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4485 pNew = sqlite3DbRealloc(db, pWith, nByte);
4486 }else{
4487 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4489 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4491 if( db->mallocFailed ){
4492 sqlite3ExprListDelete(db, pArglist);
4493 sqlite3SelectDelete(db, pQuery);
4494 sqlite3DbFree(db, zName);
4495 pNew = pWith;
4496 }else{
4497 pNew->a[pNew->nCte].pSelect = pQuery;
4498 pNew->a[pNew->nCte].pCols = pArglist;
4499 pNew->a[pNew->nCte].zName = zName;
4500 pNew->a[pNew->nCte].zCteErr = 0;
4501 pNew->nCte++;
4504 return pNew;
4508 ** Free the contents of the With object passed as the second argument.
4510 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4511 if( pWith ){
4512 int i;
4513 for(i=0; i<pWith->nCte; i++){
4514 struct Cte *pCte = &pWith->a[i];
4515 sqlite3ExprListDelete(db, pCte->pCols);
4516 sqlite3SelectDelete(db, pCte->pSelect);
4517 sqlite3DbFree(db, pCte->zName);
4519 sqlite3DbFree(db, pWith);
4522 #endif /* !defined(SQLITE_OMIT_CTE) */