3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
10 #***********************************************************************
12 # This file contains test cases focused on the two memory-management APIs,
13 # sqlite3_soft_heap_limit() and sqlite3_release_memory().
15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
16 # the configured soft heap limit could cause sqlite to upgrade database
17 # locks and flush dirty pages to the file system. As of 3.6.2, this is
18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only
19 # reclaims clean pages. This test file has been updated accordingly.
21 # $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $
23 set testdir [file dirname $argv0]
24 source $testdir/tester.tcl
25 source $testdir/malloc_common.tcl
28 # Only run these tests if memory debugging is turned on.
31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
37 ifcapable !memorymanage {
42 # The sizes of memory allocations from system malloc() might vary,
43 # depending on the memory allocator algorithms used. The following
44 # routine is designed to support answers that fall within a range
45 # of values while also supplying easy-to-understand "expected" values
48 proc value_in_range {target x args} {
49 set v [lindex $args 0]
51 if {$v<$target*$x} {return $v}
52 if {$v>$target/$x} {return $v}
54 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]"
56 set mrange 0.98 ;# plus or minus 2%
58 test_set_config_pagecache 0 100
60 sqlite3_soft_heap_limit 0
62 # db eval {PRAGMA cache_size=1}
65 # Simplest possible test. Call sqlite3_release_memory when there is exactly
66 # one unused page in a single pager cache. The page cannot be freed, as
67 # it is dirty. So sqlite3_release_memory() returns 0.
70 PRAGMA auto_vacuum=OFF;
72 CREATE TABLE abc(a, b, c);
74 sqlite3_release_memory
78 # Test that the transaction started in the above test is still active.
79 # The lock on the database file should not have been upgraded (this was
80 # not the case before version 3.6.2).
83 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2
86 # Call [sqlite3_release_memory] when there is exactly one unused page
87 # in the cache belonging to db2.
89 set ::pgalloc [sqlite3_release_memory]
90 value_in_range 1288 0.75
91 } [value_in_range 1288 0.75]
94 # Commit the transaction and open a new one. Read 1 page into the cache.
95 # Because the page is not dirty, it is eligible for collection even
96 # before the transaction is concluded.
103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
104 } [value_in_range $::pgalloc $::mrange]
106 do_test malloc5-1.5 {
107 # Conclude the transaction opened in the previous [do_test] block. This
108 # causes another page (page 1) to become eligible for recycling.
111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
112 } [value_in_range $::pgalloc $::mrange]
114 do_test malloc5-1.6 {
115 # Manipulate the cache so that it contains two unused pages. One requires
116 # a journal-sync to free, the other does not.
120 CREATE TABLE def(d, e, f);
123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500]
124 } [value_in_range $::pgalloc $::mrange]
125 do_test malloc5-1.7 {
126 # Database should not be locked this time.
128 catchsql { SELECT * FROM abc } db2
130 do_test malloc5-1.8 {
131 # Try to release another block of memory. This will fail as the only
132 # pages currently in the cache are dirty (page 3) or pinned (page 1).
134 sqlite3_release_memory 500
136 do_test malloc5-1.8 {
137 # Database is still not locked.
140 catchsql { SELECT * FROM abc } db2
142 do_test malloc5-1.9 {
148 do_test malloc5-2.1 {
149 # Put some data in tables abc and def. Both tables are still wholly
150 # contained within their root pages.
152 INSERT INTO abc VALUES(1, 2, 3);
153 INSERT INTO abc VALUES(4, 5, 6);
154 INSERT INTO def VALUES(7, 8, 9);
155 INSERT INTO def VALUES(10,11,12);
158 do_test malloc5-2.2 {
159 # Load the root-page for table def into the cache. Then query table abc.
160 # Halfway through the query call sqlite3_release_memory(). The goal of this
161 # test is to make sure we don't free pages that are in use (specifically,
162 # the root of table abc).
163 sqlite3_release_memory
170 db eval {SELECT * FROM abc} {
171 incr nRelease [sqlite3_release_memory]
172 lappend data $a $b $c
177 value_in_range $::pgalloc $::mrange $nRelease
178 } [value_in_range $::pgalloc $::mrange]
179 do_test malloc5-2.2.1 {
183 do_test malloc5-3.1 {
184 # Simple test to show that if two pagers are opened from within this
185 # thread, memory is freed from both when sqlite3_release_memory() is
192 SELECT * FROM sqlite_master;
196 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory]
197 } [value_in_range [expr $::pgalloc * 2] 0.99]
198 do_test malloc5-3.2 {
200 [execsql {SELECT * FROM abc; COMMIT}] \
201 [execsql {SELECT * FROM def; COMMIT} db2]
202 } {1 2 3 4 5 6 7 8 9 10 11 12}
205 puts "Highwater mark: [sqlite3_memory_highwater]"
207 # The following two test cases each execute a transaction in which
208 # 10000 rows are inserted into table abc. The first test case is used
209 # to ensure that more than 1MB of dynamic memory is used to perform
212 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
213 # and tests to see that this limit is not exceeded at any point during
214 # transaction execution.
216 # Before executing malloc5-4.* we save the value of the current soft heap
217 # limit in variable ::soft_limit. The original value is restored after
220 set ::soft_limit [sqlite3_soft_heap_limit -1]
221 execsql {PRAGMA cache_size=2000}
222 do_test malloc5-4.1 {
224 execsql {DELETE FROM abc;}
225 for {set i 0} {$i < 10000} {incr i} {
226 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
230 sqlite3_release_memory
231 sqlite3_memory_highwater 1
232 execsql {SELECT * FROM abc}
233 set nMaxBytes [sqlite3_memory_highwater 1]
234 puts -nonewline " (Highwater mark: $nMaxBytes) "
235 expr $nMaxBytes > 1000000
237 do_test malloc5-4.2 {
238 db eval {PRAGMA cache_size=1}
240 sqlite3_release_memory
241 sqlite3_soft_heap_limit 200000
242 sqlite3_memory_highwater 1
243 execsql {SELECT * FROM abc}
244 set nMaxBytes [sqlite3_memory_highwater 1]
245 puts -nonewline " (Highwater mark: $nMaxBytes) "
246 expr $nMaxBytes <= 210000
248 do_test malloc5-4.3 {
249 # Check that the content of table abc is at least roughly as expected.
251 SELECT count(*), sum(a), sum(b) FROM abc;
253 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
255 # Restore the soft heap limit.
256 sqlite3_soft_heap_limit $::soft_limit
258 # Test that there are no problems calling sqlite3_release_memory when
259 # there are open in-memory databases.
261 # At one point these tests would cause a seg-fault.
263 do_test malloc5-5.1 {
268 CREATE TABLE abc(a, b, c);
269 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
270 INSERT INTO abc SELECT * FROM abc;
271 INSERT INTO abc SELECT * FROM abc;
272 INSERT INTO abc SELECT * FROM abc;
273 INSERT INTO abc SELECT * FROM abc;
274 INSERT INTO abc SELECT * FROM abc;
275 INSERT INTO abc SELECT * FROM abc;
276 INSERT INTO abc SELECT * FROM abc;
278 sqlite3_release_memory
280 do_test malloc5-5.2 {
281 sqlite3_soft_heap_limit 5000
284 PRAGMA temp_store = memory;
285 SELECT * FROM abc ORDER BY a;
289 sqlite3_soft_heap_limit $::soft_limit
291 #-------------------------------------------------------------------------
292 # The following test cases (malloc5-6.*) test the new global LRU list
293 # used to determine the pages to recycle when sqlite3_release_memory is
294 # called and there is more than one pager open.
297 set bt [btree_from_db $db]
298 array set stats [btree_pager_stats $bt]
302 forcedelete test.db test.db-journal test2.db test2.db-journal
304 # This block of test-cases (malloc5-6.1.*) prepares two database files
305 # for the subsequent tests.
306 do_test malloc5-6.1.1 {
309 PRAGMA page_size=1024;
310 PRAGMA default_cache_size=2;
313 PRAGMA temp_store = memory;
315 CREATE TABLE abc(a PRIMARY KEY, b, c);
316 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
318 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
320 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
322 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
324 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
326 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
328 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
331 forcecopy test.db test2.db
333 db2 eval {PRAGMA cache_size=2}
335 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
337 do_test malloc5-6.1.2 {
338 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
341 do_test malloc5-6.2.1 {
342 execsql {SELECT * FROM abc} db2
343 execsql {SELECT * FROM abc} db
344 expr [nPage db] + [nPage db2]
347 do_test malloc5-6.2.2 {
348 # If we now try to reclaim some memory, it should come from the db2 cache.
349 sqlite3_release_memory 3000
350 expr [nPage db] + [nPage db2]
352 do_test malloc5-6.2.3 {
353 # Access the db2 cache again, so that all the db2 pages have been used
354 # more recently than all the db pages. Then try to reclaim 3000 bytes.
355 # This time, 3 pages should be pulled from the db cache.
356 execsql { SELECT * FROM abc } db2
357 sqlite3_release_memory 3000
358 expr [nPage db] + [nPage db2]
361 do_test malloc5-6.3.1 {
362 # Now open a transaction and update 2 pages in the db2 cache. Then
363 # do a SELECT on the db cache so that all the db pages are more recently
364 # used than the db2 pages. When we try to free memory, SQLite should
365 # free the non-dirty db2 pages, then the db pages, then finally use
366 # sync() to free up the dirty db2 pages. The only page that cannot be
367 # freed is page1 of db2. Because there is an open transaction, the
368 # btree layer holds a reference to page 1 in the db2 cache.
370 # UPDATE: No longer. As release_memory() does not cause a sync()
373 UPDATE abc SET c = randstr(100,100)
374 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
376 execsql { SELECT * FROM abc } db
377 expr [nPage db] + [nPage db2]
379 do_test malloc5-6.3.2 {
380 # Try to release 7700 bytes. This should release all the
381 # non-dirty pages held by db2.
382 sqlite3_release_memory [expr 7*1132]
383 list [nPage db] [nPage db2]
385 do_test malloc5-6.3.3 {
386 # Try to release another 1000 bytes. This should come fromt the db
387 # cache, since all three pages held by db2 are either in-use or diry.
388 sqlite3_release_memory 1000
389 list [nPage db] [nPage db2]
391 do_test malloc5-6.3.4 {
392 # Now release 9900 more (about 9 pages worth). This should expunge
393 # the rest of the db cache. But the db2 cache remains intact, because
394 # SQLite tries to avoid calling sync().
395 if {$::tcl_platform(wordSize)==8} {
396 sqlite3_release_memory 10500
398 sqlite3_release_memory 9900
400 list [nPage db] [nPage db2]
402 do_test malloc5-6.3.5 {
403 # But if we are really insistent, SQLite will consent to call sync()
404 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
405 # call sync() in this scenario. So no further memory can be reclaimed.
406 sqlite3_release_memory 1000
407 list [nPage db] [nPage db2]
409 do_test malloc5-6.3.6 {
410 # The referenced page (page 1 of the db2 cache) will not be freed no
411 # matter how much memory we ask for:
412 sqlite3_release_memory 31459
413 list [nPage db] [nPage db2]
418 sqlite3_soft_heap_limit $::soft_limit
419 test_restore_config_pagecache