4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 #include "sqliteInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
28 int sqlite3_expired(sqlite3_stmt
*pStmt
){
29 Vdbe
*p
= (Vdbe
*)pStmt
;
30 return p
==0 || p
->expired
;
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe
*p
){
41 sqlite3_log(SQLITE_MISUSE
, "API called with finalized prepared statement");
47 static int vdbeSafetyNotNull(Vdbe
*p
){
49 sqlite3_log(SQLITE_MISUSE
, "API called with NULL prepared statement");
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE
void invokeProfileCallback(sqlite3
*db
, Vdbe
*p
){
63 sqlite3_int64 iElapse
;
64 assert( p
->startTime
>0 );
65 assert( db
->xProfile
!=0 || (db
->mTrace
& SQLITE_TRACE_PROFILE
)!=0 );
66 assert( db
->init
.busy
==0 );
68 sqlite3OsCurrentTimeInt64(db
->pVfs
, &iNow
);
69 iElapse
= (iNow
- p
->startTime
)*1000000;
71 db
->xProfile(db
->pProfileArg
, p
->zSql
, iElapse
);
73 if( db
->mTrace
& SQLITE_TRACE_PROFILE
){
74 db
->xTrace(SQLITE_TRACE_PROFILE
, db
->pTraceArg
, p
, (void*)&iElapse
);
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
85 # define checkProfileCallback(DB,P) /*no-op*/
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt
*pStmt
){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
104 Vdbe
*v
= (Vdbe
*)pStmt
;
106 if( vdbeSafety(v
) ) return SQLITE_MISUSE_BKPT
;
107 sqlite3_mutex_enter(db
->mutex
);
108 checkProfileCallback(db
, v
);
109 rc
= sqlite3VdbeFinalize(v
);
110 rc
= sqlite3ApiExit(db
, rc
);
111 sqlite3LeaveMutexAndCloseZombie(db
);
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt
*pStmt
){
129 Vdbe
*v
= (Vdbe
*)pStmt
;
131 sqlite3_mutex_enter(db
->mutex
);
132 checkProfileCallback(db
, v
);
133 rc
= sqlite3VdbeReset(v
);
134 sqlite3VdbeRewind(v
);
135 assert( (rc
& (db
->errMask
))==rc
);
136 rc
= sqlite3ApiExit(db
, rc
);
137 sqlite3_mutex_leave(db
->mutex
);
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt
*pStmt
){
148 Vdbe
*p
= (Vdbe
*)pStmt
;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex
*mutex
= ((Vdbe
*)pStmt
)->db
->mutex
;
152 sqlite3_mutex_enter(mutex
);
153 for(i
=0; i
<p
->nVar
; i
++){
154 sqlite3VdbeMemRelease(&p
->aVar
[i
]);
155 p
->aVar
[i
].flags
= MEM_Null
;
157 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
161 sqlite3_mutex_leave(mutex
);
166 /**************************** sqlite3_value_ *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
170 const void *sqlite3_value_blob(sqlite3_value
*pVal
){
172 if( p
->flags
& (MEM_Blob
|MEM_Str
) ){
173 if( ExpandBlob(p
)!=SQLITE_OK
){
174 assert( p
->flags
==MEM_Null
&& p
->z
==0 );
177 p
->flags
|= MEM_Blob
;
178 return p
->n
? p
->z
: 0;
180 return sqlite3_value_text(pVal
);
183 int sqlite3_value_bytes(sqlite3_value
*pVal
){
184 return sqlite3ValueBytes(pVal
, SQLITE_UTF8
);
186 int sqlite3_value_bytes16(sqlite3_value
*pVal
){
187 return sqlite3ValueBytes(pVal
, SQLITE_UTF16NATIVE
);
189 double sqlite3_value_double(sqlite3_value
*pVal
){
190 return sqlite3VdbeRealValue((Mem
*)pVal
);
192 int sqlite3_value_int(sqlite3_value
*pVal
){
193 return (int)sqlite3VdbeIntValue((Mem
*)pVal
);
195 sqlite_int64
sqlite3_value_int64(sqlite3_value
*pVal
){
196 return sqlite3VdbeIntValue((Mem
*)pVal
);
198 unsigned int sqlite3_value_subtype(sqlite3_value
*pVal
){
199 Mem
*pMem
= (Mem
*)pVal
;
200 return ((pMem
->flags
& MEM_Subtype
) ? pMem
->eSubtype
: 0);
202 void *sqlite3_value_pointer(sqlite3_value
*pVal
, const char *zPType
){
204 if( (p
->flags
&(MEM_TypeMask
|MEM_Term
|MEM_Subtype
)) ==
205 (MEM_Null
|MEM_Term
|MEM_Subtype
)
208 && strcmp(p
->u
.zPType
, zPType
)==0
215 const unsigned char *sqlite3_value_text(sqlite3_value
*pVal
){
216 return (const unsigned char *)sqlite3ValueText(pVal
, SQLITE_UTF8
);
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value
* pVal
){
220 return sqlite3ValueText(pVal
, SQLITE_UTF16NATIVE
);
222 const void *sqlite3_value_text16be(sqlite3_value
*pVal
){
223 return sqlite3ValueText(pVal
, SQLITE_UTF16BE
);
225 const void *sqlite3_value_text16le(sqlite3_value
*pVal
){
226 return sqlite3ValueText(pVal
, SQLITE_UTF16LE
);
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
233 int sqlite3_value_type(sqlite3_value
* pVal
){
234 static const u8 aType
[] = {
235 SQLITE_BLOB
, /* 0x00 */
236 SQLITE_NULL
, /* 0x01 */
237 SQLITE_TEXT
, /* 0x02 */
238 SQLITE_NULL
, /* 0x03 */
239 SQLITE_INTEGER
, /* 0x04 */
240 SQLITE_NULL
, /* 0x05 */
241 SQLITE_INTEGER
, /* 0x06 */
242 SQLITE_NULL
, /* 0x07 */
243 SQLITE_FLOAT
, /* 0x08 */
244 SQLITE_NULL
, /* 0x09 */
245 SQLITE_FLOAT
, /* 0x0a */
246 SQLITE_NULL
, /* 0x0b */
247 SQLITE_INTEGER
, /* 0x0c */
248 SQLITE_NULL
, /* 0x0d */
249 SQLITE_INTEGER
, /* 0x0e */
250 SQLITE_NULL
, /* 0x0f */
251 SQLITE_BLOB
, /* 0x10 */
252 SQLITE_NULL
, /* 0x11 */
253 SQLITE_TEXT
, /* 0x12 */
254 SQLITE_NULL
, /* 0x13 */
255 SQLITE_INTEGER
, /* 0x14 */
256 SQLITE_NULL
, /* 0x15 */
257 SQLITE_INTEGER
, /* 0x16 */
258 SQLITE_NULL
, /* 0x17 */
259 SQLITE_FLOAT
, /* 0x18 */
260 SQLITE_NULL
, /* 0x19 */
261 SQLITE_FLOAT
, /* 0x1a */
262 SQLITE_NULL
, /* 0x1b */
263 SQLITE_INTEGER
, /* 0x1c */
264 SQLITE_NULL
, /* 0x1d */
265 SQLITE_INTEGER
, /* 0x1e */
266 SQLITE_NULL
, /* 0x1f */
268 return aType
[pVal
->flags
&MEM_AffMask
];
271 /* Return true if a parameter to xUpdate represents an unchanged column */
272 int sqlite3_value_nochange(sqlite3_value
*pVal
){
273 return (pVal
->flags
&(MEM_Null
|MEM_Zero
))==(MEM_Null
|MEM_Zero
);
276 /* Make a copy of an sqlite3_value object
278 sqlite3_value
*sqlite3_value_dup(const sqlite3_value
*pOrig
){
280 if( pOrig
==0 ) return 0;
281 pNew
= sqlite3_malloc( sizeof(*pNew
) );
282 if( pNew
==0 ) return 0;
283 memset(pNew
, 0, sizeof(*pNew
));
284 memcpy(pNew
, pOrig
, MEMCELLSIZE
);
285 pNew
->flags
&= ~MEM_Dyn
;
287 if( pNew
->flags
&(MEM_Str
|MEM_Blob
) ){
288 pNew
->flags
&= ~(MEM_Static
|MEM_Dyn
);
289 pNew
->flags
|= MEM_Ephem
;
290 if( sqlite3VdbeMemMakeWriteable(pNew
)!=SQLITE_OK
){
291 sqlite3ValueFree(pNew
);
298 /* Destroy an sqlite3_value object previously obtained from
299 ** sqlite3_value_dup().
301 void sqlite3_value_free(sqlite3_value
*pOld
){
302 sqlite3ValueFree(pOld
);
306 /**************************** sqlite3_result_ *******************************
307 ** The following routines are used by user-defined functions to specify
308 ** the function result.
310 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
311 ** result as a string or blob but if the string or blob is too large, it
312 ** then sets the error code to SQLITE_TOOBIG
314 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
315 ** on value P is not going to be used and need to be destroyed.
317 static void setResultStrOrError(
318 sqlite3_context
*pCtx
, /* Function context */
319 const char *z
, /* String pointer */
320 int n
, /* Bytes in string, or negative */
321 u8 enc
, /* Encoding of z. 0 for BLOBs */
322 void (*xDel
)(void*) /* Destructor function */
324 if( sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, enc
, xDel
)==SQLITE_TOOBIG
){
325 sqlite3_result_error_toobig(pCtx
);
328 static int invokeValueDestructor(
329 const void *p
, /* Value to destroy */
330 void (*xDel
)(void*), /* The destructor */
331 sqlite3_context
*pCtx
/* Set a SQLITE_TOOBIG error if no NULL */
333 assert( xDel
!=SQLITE_DYNAMIC
);
336 }else if( xDel
==SQLITE_TRANSIENT
){
341 if( pCtx
) sqlite3_result_error_toobig(pCtx
);
342 return SQLITE_TOOBIG
;
344 void sqlite3_result_blob(
345 sqlite3_context
*pCtx
,
351 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
352 setResultStrOrError(pCtx
, z
, n
, 0, xDel
);
354 void sqlite3_result_blob64(
355 sqlite3_context
*pCtx
,
360 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
361 assert( xDel
!=SQLITE_DYNAMIC
);
363 (void)invokeValueDestructor(z
, xDel
, pCtx
);
365 setResultStrOrError(pCtx
, z
, (int)n
, 0, xDel
);
368 void sqlite3_result_double(sqlite3_context
*pCtx
, double rVal
){
369 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
370 sqlite3VdbeMemSetDouble(pCtx
->pOut
, rVal
);
372 void sqlite3_result_error(sqlite3_context
*pCtx
, const char *z
, int n
){
373 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
374 pCtx
->isError
= SQLITE_ERROR
;
375 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
377 #ifndef SQLITE_OMIT_UTF16
378 void sqlite3_result_error16(sqlite3_context
*pCtx
, const void *z
, int n
){
379 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
380 pCtx
->isError
= SQLITE_ERROR
;
381 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF16NATIVE
, SQLITE_TRANSIENT
);
384 void sqlite3_result_int(sqlite3_context
*pCtx
, int iVal
){
385 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
386 sqlite3VdbeMemSetInt64(pCtx
->pOut
, (i64
)iVal
);
388 void sqlite3_result_int64(sqlite3_context
*pCtx
, i64 iVal
){
389 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
390 sqlite3VdbeMemSetInt64(pCtx
->pOut
, iVal
);
392 void sqlite3_result_null(sqlite3_context
*pCtx
){
393 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
394 sqlite3VdbeMemSetNull(pCtx
->pOut
);
396 void sqlite3_result_pointer(
397 sqlite3_context
*pCtx
,
400 void (*xDestructor
)(void*)
402 Mem
*pOut
= pCtx
->pOut
;
403 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
404 sqlite3VdbeMemRelease(pOut
);
405 pOut
->flags
= MEM_Null
;
406 sqlite3VdbeMemSetPointer(pOut
, pPtr
, zPType
, xDestructor
);
408 void sqlite3_result_subtype(sqlite3_context
*pCtx
, unsigned int eSubtype
){
409 Mem
*pOut
= pCtx
->pOut
;
410 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
411 pOut
->eSubtype
= eSubtype
& 0xff;
412 pOut
->flags
|= MEM_Subtype
;
414 void sqlite3_result_text(
415 sqlite3_context
*pCtx
,
420 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
421 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF8
, xDel
);
423 void sqlite3_result_text64(
424 sqlite3_context
*pCtx
,
427 void (*xDel
)(void *),
430 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
431 assert( xDel
!=SQLITE_DYNAMIC
);
432 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
434 (void)invokeValueDestructor(z
, xDel
, pCtx
);
436 setResultStrOrError(pCtx
, z
, (int)n
, enc
, xDel
);
439 #ifndef SQLITE_OMIT_UTF16
440 void sqlite3_result_text16(
441 sqlite3_context
*pCtx
,
446 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
447 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16NATIVE
, xDel
);
449 void sqlite3_result_text16be(
450 sqlite3_context
*pCtx
,
455 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
456 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16BE
, xDel
);
458 void sqlite3_result_text16le(
459 sqlite3_context
*pCtx
,
464 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
465 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16LE
, xDel
);
467 #endif /* SQLITE_OMIT_UTF16 */
468 void sqlite3_result_value(sqlite3_context
*pCtx
, sqlite3_value
*pValue
){
469 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
470 sqlite3VdbeMemCopy(pCtx
->pOut
, pValue
);
472 void sqlite3_result_zeroblob(sqlite3_context
*pCtx
, int n
){
473 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
474 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, n
);
476 int sqlite3_result_zeroblob64(sqlite3_context
*pCtx
, u64 n
){
477 Mem
*pOut
= pCtx
->pOut
;
478 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
479 if( n
>(u64
)pOut
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
480 return SQLITE_TOOBIG
;
482 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
485 void sqlite3_result_error_code(sqlite3_context
*pCtx
, int errCode
){
486 pCtx
->isError
= errCode
? errCode
: -1;
488 if( pCtx
->pVdbe
) pCtx
->pVdbe
->rcApp
= errCode
;
490 if( pCtx
->pOut
->flags
& MEM_Null
){
491 sqlite3VdbeMemSetStr(pCtx
->pOut
, sqlite3ErrStr(errCode
), -1,
492 SQLITE_UTF8
, SQLITE_STATIC
);
496 /* Force an SQLITE_TOOBIG error. */
497 void sqlite3_result_error_toobig(sqlite3_context
*pCtx
){
498 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
499 pCtx
->isError
= SQLITE_TOOBIG
;
500 sqlite3VdbeMemSetStr(pCtx
->pOut
, "string or blob too big", -1,
501 SQLITE_UTF8
, SQLITE_STATIC
);
504 /* An SQLITE_NOMEM error. */
505 void sqlite3_result_error_nomem(sqlite3_context
*pCtx
){
506 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
507 sqlite3VdbeMemSetNull(pCtx
->pOut
);
508 pCtx
->isError
= SQLITE_NOMEM_BKPT
;
509 sqlite3OomFault(pCtx
->pOut
->db
);
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
516 static int doWalCallbacks(sqlite3
*db
){
518 #ifndef SQLITE_OMIT_WAL
520 for(i
=0; i
<db
->nDb
; i
++){
521 Btree
*pBt
= db
->aDb
[i
].pBt
;
524 sqlite3BtreeEnter(pBt
);
525 nEntry
= sqlite3PagerWalCallback(sqlite3BtreePager(pBt
));
526 sqlite3BtreeLeave(pBt
);
527 if( nEntry
>0 && db
->xWalCallback
&& rc
==SQLITE_OK
){
528 rc
= db
->xWalCallback(db
->pWalArg
, db
, db
->aDb
[i
].zDbSName
, nEntry
);
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API. The only thing omitted is the automatic recompile if a
543 ** schema change has occurred. That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
546 static int sqlite3Step(Vdbe
*p
){
551 if( p
->magic
!=VDBE_MAGIC_RUN
){
552 /* We used to require that sqlite3_reset() be called before retrying
553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
554 ** with version 3.7.0, we changed this so that sqlite3_reset() would
555 ** be called automatically instead of throwing the SQLITE_MISUSE error.
556 ** This "automatic-reset" change is not technically an incompatibility,
557 ** since any application that receives an SQLITE_MISUSE is broken by
560 ** Nevertheless, some published applications that were originally written
561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562 ** returns, and those were broken by the automatic-reset change. As a
563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564 ** legacy behavior of returning SQLITE_MISUSE for cases where the
565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566 ** or SQLITE_BUSY error.
568 #ifdef SQLITE_OMIT_AUTORESET
569 if( (rc
= p
->rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_LOCKED
){
570 sqlite3_reset((sqlite3_stmt
*)p
);
572 return SQLITE_MISUSE_BKPT
;
575 sqlite3_reset((sqlite3_stmt
*)p
);
579 /* Check that malloc() has not failed. If it has, return early. */
581 if( db
->mallocFailed
){
582 p
->rc
= SQLITE_NOMEM
;
583 return SQLITE_NOMEM_BKPT
;
586 if( p
->pc
<=0 && p
->expired
){
587 p
->rc
= SQLITE_SCHEMA
;
592 /* If there are no other statements currently running, then
593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
594 ** from interrupting a statement that has not yet started.
596 if( db
->nVdbeActive
==0 ){
597 db
->u1
.isInterrupted
= 0;
600 assert( db
->nVdbeWrite
>0 || db
->autoCommit
==0
601 || (db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0)
604 #ifndef SQLITE_OMIT_TRACE
605 if( (db
->xProfile
|| (db
->mTrace
& SQLITE_TRACE_PROFILE
)!=0)
606 && !db
->init
.busy
&& p
->zSql
){
607 sqlite3OsCurrentTimeInt64(db
->pVfs
, &p
->startTime
);
609 assert( p
->startTime
==0 );
614 if( p
->readOnly
==0 ) db
->nVdbeWrite
++;
615 if( p
->bIsReader
) db
->nVdbeRead
++;
619 p
->rcApp
= SQLITE_OK
;
621 #ifndef SQLITE_OMIT_EXPLAIN
623 rc
= sqlite3VdbeList(p
);
625 #endif /* SQLITE_OMIT_EXPLAIN */
628 rc
= sqlite3VdbeExec(p
);
632 #ifndef SQLITE_OMIT_TRACE
633 /* If the statement completed successfully, invoke the profile callback */
634 if( rc
!=SQLITE_ROW
) checkProfileCallback(db
, p
);
637 if( rc
==SQLITE_DONE
&& db
->autoCommit
){
638 assert( p
->rc
==SQLITE_OK
);
639 p
->rc
= doWalCallbacks(db
);
640 if( p
->rc
!=SQLITE_OK
){
646 if( SQLITE_NOMEM
==sqlite3ApiExit(p
->db
, p
->rc
) ){
647 p
->rc
= SQLITE_NOMEM_BKPT
;
650 /* At this point local variable rc holds the value that should be
651 ** returned if this statement was compiled using the legacy
652 ** sqlite3_prepare() interface. According to the docs, this can only
653 ** be one of the values in the first assert() below. Variable p->rc
654 ** contains the value that would be returned if sqlite3_finalize()
655 ** were called on statement p.
657 assert( rc
==SQLITE_ROW
|| rc
==SQLITE_DONE
|| rc
==SQLITE_ERROR
658 || (rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_MISUSE
660 assert( (p
->rc
!=SQLITE_ROW
&& p
->rc
!=SQLITE_DONE
) || p
->rc
==p
->rcApp
);
661 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0
665 /* If this statement was prepared using saved SQL and an
666 ** error has occurred, then return the error code in p->rc to the
667 ** caller. Set the error code in the database handle to the same value.
669 rc
= sqlite3VdbeTransferError(p
);
671 return (rc
&db
->errMask
);
675 ** This is the top-level implementation of sqlite3_step(). Call
676 ** sqlite3Step() to do most of the work. If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
679 int sqlite3_step(sqlite3_stmt
*pStmt
){
680 int rc
= SQLITE_OK
; /* Result from sqlite3Step() */
681 Vdbe
*v
= (Vdbe
*)pStmt
; /* the prepared statement */
682 int cnt
= 0; /* Counter to prevent infinite loop of reprepares */
683 sqlite3
*db
; /* The database connection */
685 if( vdbeSafetyNotNull(v
) ){
686 return SQLITE_MISUSE_BKPT
;
689 sqlite3_mutex_enter(db
->mutex
);
691 while( (rc
= sqlite3Step(v
))==SQLITE_SCHEMA
692 && cnt
++ < SQLITE_MAX_SCHEMA_RETRY
){
694 rc
= sqlite3Reprepare(v
);
696 /* This case occurs after failing to recompile an sql statement.
697 ** The error message from the SQL compiler has already been loaded
698 ** into the database handle. This block copies the error message
699 ** from the database handle into the statement and sets the statement
700 ** program counter to 0 to ensure that when the statement is
701 ** finalized or reset the parser error message is available via
702 ** sqlite3_errmsg() and sqlite3_errcode().
704 const char *zErr
= (const char *)sqlite3_value_text(db
->pErr
);
705 sqlite3DbFree(db
, v
->zErrMsg
);
706 if( !db
->mallocFailed
){
707 v
->zErrMsg
= sqlite3DbStrDup(db
, zErr
);
708 v
->rc
= rc
= sqlite3ApiExit(db
, rc
);
711 v
->rc
= rc
= SQLITE_NOMEM_BKPT
;
715 sqlite3_reset(pStmt
);
716 if( savedPc
>=0 ) v
->doingRerun
= 1;
717 assert( v
->expired
==0 );
719 sqlite3_mutex_leave(db
->mutex
);
725 ** Extract the user data from a sqlite3_context structure and return a
728 void *sqlite3_user_data(sqlite3_context
*p
){
729 assert( p
&& p
->pFunc
);
730 return p
->pFunc
->pUserData
;
734 ** Extract the user data from a sqlite3_context structure and return a
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
743 sqlite3
*sqlite3_context_db_handle(sqlite3_context
*p
){
744 assert( p
&& p
->pOut
);
749 ** If this routine is invoked from within an xColumn method of a virtual
750 ** table, then it returns true if and only if the the call is during an
751 ** UPDATE operation and the value of the column will not be modified
754 ** If this routine is called from any context other than within the
755 ** xColumn method of a virtual table, then the return value is meaningless
758 ** Virtual table implements might use this routine to optimize their
759 ** performance by substituting a NULL result, or some other light-weight
760 ** value, as a signal to the xUpdate routine that the column is unchanged.
762 int sqlite3_vtab_nochange(sqlite3_context
*p
){
764 return sqlite3_value_nochange(p
->pOut
);
768 ** Return the current time for a statement. If the current time
769 ** is requested more than once within the same run of a single prepared
770 ** statement, the exact same time is returned for each invocation regardless
771 ** of the amount of time that elapses between invocations. In other words,
772 ** the time returned is always the time of the first call.
774 sqlite3_int64
sqlite3StmtCurrentTime(sqlite3_context
*p
){
776 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
777 sqlite3_int64
*piTime
= &p
->pVdbe
->iCurrentTime
;
778 assert( p
->pVdbe
!=0 );
780 sqlite3_int64 iTime
= 0;
781 sqlite3_int64
*piTime
= p
->pVdbe
!=0 ? &p
->pVdbe
->iCurrentTime
: &iTime
;
784 rc
= sqlite3OsCurrentTimeInt64(p
->pOut
->db
->pVfs
, piTime
);
785 if( rc
) *piTime
= 0;
791 ** Create a new aggregate context for p and return a pointer to
792 ** its pMem->z element.
794 static SQLITE_NOINLINE
void *createAggContext(sqlite3_context
*p
, int nByte
){
796 assert( (pMem
->flags
& MEM_Agg
)==0 );
798 sqlite3VdbeMemSetNull(pMem
);
801 sqlite3VdbeMemClearAndResize(pMem
, nByte
);
802 pMem
->flags
= MEM_Agg
;
803 pMem
->u
.pDef
= p
->pFunc
;
805 memset(pMem
->z
, 0, nByte
);
808 return (void*)pMem
->z
;
812 ** Allocate or return the aggregate context for a user function. A new
813 ** context is allocated on the first call. Subsequent calls return the
814 ** same context that was returned on prior calls.
816 void *sqlite3_aggregate_context(sqlite3_context
*p
, int nByte
){
817 assert( p
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
818 assert( sqlite3_mutex_held(p
->pOut
->db
->mutex
) );
820 if( (p
->pMem
->flags
& MEM_Agg
)==0 ){
821 return createAggContext(p
, nByte
);
823 return (void*)p
->pMem
->z
;
828 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
829 ** the user-function defined by pCtx.
831 ** The left-most argument is 0.
833 ** Undocumented behavior: If iArg is negative then access a cache of
834 ** auxiliary data pointers that is available to all functions within a
835 ** single prepared statement. The iArg values must match.
837 void *sqlite3_get_auxdata(sqlite3_context
*pCtx
, int iArg
){
840 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
841 #if SQLITE_ENABLE_STAT3_OR_STAT4
842 if( pCtx
->pVdbe
==0 ) return 0;
844 assert( pCtx
->pVdbe
!=0 );
846 for(pAuxData
=pCtx
->pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
847 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
848 return pAuxData
->pAux
;
855 ** Set the auxiliary data pointer and delete function, for the iArg'th
856 ** argument to the user-function defined by pCtx. Any previous value is
857 ** deleted by calling the delete function specified when it was set.
859 ** The left-most argument is 0.
861 ** Undocumented behavior: If iArg is negative then make the data available
862 ** to all functions within the current prepared statement using iArg as an
865 void sqlite3_set_auxdata(
866 sqlite3_context
*pCtx
,
869 void (*xDelete
)(void*)
872 Vdbe
*pVdbe
= pCtx
->pVdbe
;
874 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
875 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
876 if( pVdbe
==0 ) goto failed
;
881 for(pAuxData
=pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
882 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
887 pAuxData
= sqlite3DbMallocZero(pVdbe
->db
, sizeof(AuxData
));
888 if( !pAuxData
) goto failed
;
889 pAuxData
->iAuxOp
= pCtx
->iOp
;
890 pAuxData
->iAuxArg
= iArg
;
891 pAuxData
->pNextAux
= pVdbe
->pAuxData
;
892 pVdbe
->pAuxData
= pAuxData
;
893 if( pCtx
->isError
==0 ) pCtx
->isError
= -1;
894 }else if( pAuxData
->xDeleteAux
){
895 pAuxData
->xDeleteAux(pAuxData
->pAux
);
898 pAuxData
->pAux
= pAux
;
899 pAuxData
->xDeleteAux
= xDelete
;
908 #ifndef SQLITE_OMIT_DEPRECATED
910 ** Return the number of times the Step function of an aggregate has been
913 ** This function is deprecated. Do not use it for new code. It is
914 ** provide only to avoid breaking legacy code. New aggregate function
915 ** implementations should keep their own counts within their aggregate
918 int sqlite3_aggregate_count(sqlite3_context
*p
){
919 assert( p
&& p
->pMem
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
925 ** Return the number of columns in the result set for the statement pStmt.
927 int sqlite3_column_count(sqlite3_stmt
*pStmt
){
928 Vdbe
*pVm
= (Vdbe
*)pStmt
;
929 return pVm
? pVm
->nResColumn
: 0;
933 ** Return the number of values available from the current row of the
934 ** currently executing statement pStmt.
936 int sqlite3_data_count(sqlite3_stmt
*pStmt
){
937 Vdbe
*pVm
= (Vdbe
*)pStmt
;
938 if( pVm
==0 || pVm
->pResultSet
==0 ) return 0;
939 return pVm
->nResColumn
;
943 ** Return a pointer to static memory containing an SQL NULL value.
945 static const Mem
*columnNullValue(void){
946 /* Even though the Mem structure contains an element
947 ** of type i64, on certain architectures (x86) with certain compiler
948 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
949 ** instead of an 8-byte one. This all works fine, except that when
950 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
951 ** that a Mem structure is located on an 8-byte boundary. To prevent
952 ** these assert()s from failing, when building with SQLITE_DEBUG defined
953 ** using gcc, we force nullMem to be 8-byte aligned using the magical
954 ** __attribute__((aligned(8))) macro. */
955 static const Mem nullMem
956 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
957 __attribute__((aligned(8)))
961 /* .flags = */ (u16
)MEM_Null
,
963 /* .eSubtype = */ (u8
)0,
966 /* .zMalloc = */ (char*)0,
967 /* .szMalloc = */ (int)0,
968 /* .uTemp = */ (u32
)0,
969 /* .db = */ (sqlite3
*)0,
970 /* .xDel = */ (void(*)(void*))0,
972 /* .pScopyFrom = */ (Mem
*)0,
973 /* .pFiller = */ (void*)0,
980 ** Check to see if column iCol of the given statement is valid. If
981 ** it is, return a pointer to the Mem for the value of that column.
982 ** If iCol is not valid, return a pointer to a Mem which has a value
985 static Mem
*columnMem(sqlite3_stmt
*pStmt
, int i
){
990 if( pVm
==0 ) return (Mem
*)columnNullValue();
992 sqlite3_mutex_enter(pVm
->db
->mutex
);
993 if( pVm
->pResultSet
!=0 && i
<pVm
->nResColumn
&& i
>=0 ){
994 pOut
= &pVm
->pResultSet
[i
];
996 sqlite3Error(pVm
->db
, SQLITE_RANGE
);
997 pOut
= (Mem
*)columnNullValue();
1003 ** This function is called after invoking an sqlite3_value_XXX function on a
1004 ** column value (i.e. a value returned by evaluating an SQL expression in the
1005 ** select list of a SELECT statement) that may cause a malloc() failure. If
1006 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1007 ** code of statement pStmt set to SQLITE_NOMEM.
1009 ** Specifically, this is called from within:
1011 ** sqlite3_column_int()
1012 ** sqlite3_column_int64()
1013 ** sqlite3_column_text()
1014 ** sqlite3_column_text16()
1015 ** sqlite3_column_real()
1016 ** sqlite3_column_bytes()
1017 ** sqlite3_column_bytes16()
1018 ** sqiite3_column_blob()
1020 static void columnMallocFailure(sqlite3_stmt
*pStmt
)
1022 /* If malloc() failed during an encoding conversion within an
1023 ** sqlite3_column_XXX API, then set the return code of the statement to
1024 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1025 ** and _finalize() will return NOMEM.
1027 Vdbe
*p
= (Vdbe
*)pStmt
;
1030 assert( sqlite3_mutex_held(p
->db
->mutex
) );
1031 p
->rc
= sqlite3ApiExit(p
->db
, p
->rc
);
1032 sqlite3_mutex_leave(p
->db
->mutex
);
1036 /**************************** sqlite3_column_ *******************************
1037 ** The following routines are used to access elements of the current row
1038 ** in the result set.
1040 const void *sqlite3_column_blob(sqlite3_stmt
*pStmt
, int i
){
1042 val
= sqlite3_value_blob( columnMem(pStmt
,i
) );
1043 /* Even though there is no encoding conversion, value_blob() might
1044 ** need to call malloc() to expand the result of a zeroblob()
1047 columnMallocFailure(pStmt
);
1050 int sqlite3_column_bytes(sqlite3_stmt
*pStmt
, int i
){
1051 int val
= sqlite3_value_bytes( columnMem(pStmt
,i
) );
1052 columnMallocFailure(pStmt
);
1055 int sqlite3_column_bytes16(sqlite3_stmt
*pStmt
, int i
){
1056 int val
= sqlite3_value_bytes16( columnMem(pStmt
,i
) );
1057 columnMallocFailure(pStmt
);
1060 double sqlite3_column_double(sqlite3_stmt
*pStmt
, int i
){
1061 double val
= sqlite3_value_double( columnMem(pStmt
,i
) );
1062 columnMallocFailure(pStmt
);
1065 int sqlite3_column_int(sqlite3_stmt
*pStmt
, int i
){
1066 int val
= sqlite3_value_int( columnMem(pStmt
,i
) );
1067 columnMallocFailure(pStmt
);
1070 sqlite_int64
sqlite3_column_int64(sqlite3_stmt
*pStmt
, int i
){
1071 sqlite_int64 val
= sqlite3_value_int64( columnMem(pStmt
,i
) );
1072 columnMallocFailure(pStmt
);
1075 const unsigned char *sqlite3_column_text(sqlite3_stmt
*pStmt
, int i
){
1076 const unsigned char *val
= sqlite3_value_text( columnMem(pStmt
,i
) );
1077 columnMallocFailure(pStmt
);
1080 sqlite3_value
*sqlite3_column_value(sqlite3_stmt
*pStmt
, int i
){
1081 Mem
*pOut
= columnMem(pStmt
, i
);
1082 if( pOut
->flags
&MEM_Static
){
1083 pOut
->flags
&= ~MEM_Static
;
1084 pOut
->flags
|= MEM_Ephem
;
1086 columnMallocFailure(pStmt
);
1087 return (sqlite3_value
*)pOut
;
1089 #ifndef SQLITE_OMIT_UTF16
1090 const void *sqlite3_column_text16(sqlite3_stmt
*pStmt
, int i
){
1091 const void *val
= sqlite3_value_text16( columnMem(pStmt
,i
) );
1092 columnMallocFailure(pStmt
);
1095 #endif /* SQLITE_OMIT_UTF16 */
1096 int sqlite3_column_type(sqlite3_stmt
*pStmt
, int i
){
1097 int iType
= sqlite3_value_type( columnMem(pStmt
,i
) );
1098 columnMallocFailure(pStmt
);
1103 ** Convert the N-th element of pStmt->pColName[] into a string using
1104 ** xFunc() then return that string. If N is out of range, return 0.
1106 ** There are up to 5 names for each column. useType determines which
1107 ** name is returned. Here are the names:
1109 ** 0 The column name as it should be displayed for output
1110 ** 1 The datatype name for the column
1111 ** 2 The name of the database that the column derives from
1112 ** 3 The name of the table that the column derives from
1113 ** 4 The name of the table column that the result column derives from
1115 ** If the result is not a simple column reference (if it is an expression
1116 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1118 static const void *columnName(
1119 sqlite3_stmt
*pStmt
,
1121 const void *(*xFunc
)(Mem
*),
1128 #ifdef SQLITE_ENABLE_API_ARMOR
1130 (void)SQLITE_MISUSE_BKPT
;
1138 n
= sqlite3_column_count(pStmt
);
1141 sqlite3_mutex_enter(db
->mutex
);
1142 assert( db
->mallocFailed
==0 );
1143 ret
= xFunc(&p
->aColName
[N
]);
1144 /* A malloc may have failed inside of the xFunc() call. If this
1145 ** is the case, clear the mallocFailed flag and return NULL.
1147 if( db
->mallocFailed
){
1148 sqlite3OomClear(db
);
1151 sqlite3_mutex_leave(db
->mutex
);
1157 ** Return the name of the Nth column of the result set returned by SQL
1160 const char *sqlite3_column_name(sqlite3_stmt
*pStmt
, int N
){
1162 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_NAME
);
1164 #ifndef SQLITE_OMIT_UTF16
1165 const void *sqlite3_column_name16(sqlite3_stmt
*pStmt
, int N
){
1167 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_NAME
);
1172 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1173 ** not define OMIT_DECLTYPE.
1175 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1176 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1177 and SQLITE_ENABLE_COLUMN_METADATA"
1180 #ifndef SQLITE_OMIT_DECLTYPE
1182 ** Return the column declaration type (if applicable) of the 'i'th column
1183 ** of the result set of SQL statement pStmt.
1185 const char *sqlite3_column_decltype(sqlite3_stmt
*pStmt
, int N
){
1187 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_DECLTYPE
);
1189 #ifndef SQLITE_OMIT_UTF16
1190 const void *sqlite3_column_decltype16(sqlite3_stmt
*pStmt
, int N
){
1192 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_DECLTYPE
);
1194 #endif /* SQLITE_OMIT_UTF16 */
1195 #endif /* SQLITE_OMIT_DECLTYPE */
1197 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1199 ** Return the name of the database from which a result column derives.
1200 ** NULL is returned if the result column is an expression or constant or
1201 ** anything else which is not an unambiguous reference to a database column.
1203 const char *sqlite3_column_database_name(sqlite3_stmt
*pStmt
, int N
){
1205 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_DATABASE
);
1207 #ifndef SQLITE_OMIT_UTF16
1208 const void *sqlite3_column_database_name16(sqlite3_stmt
*pStmt
, int N
){
1210 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_DATABASE
);
1212 #endif /* SQLITE_OMIT_UTF16 */
1215 ** Return the name of the table from which a result column derives.
1216 ** NULL is returned if the result column is an expression or constant or
1217 ** anything else which is not an unambiguous reference to a database column.
1219 const char *sqlite3_column_table_name(sqlite3_stmt
*pStmt
, int N
){
1221 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_TABLE
);
1223 #ifndef SQLITE_OMIT_UTF16
1224 const void *sqlite3_column_table_name16(sqlite3_stmt
*pStmt
, int N
){
1226 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_TABLE
);
1228 #endif /* SQLITE_OMIT_UTF16 */
1231 ** Return the name of the table column from which a result column derives.
1232 ** NULL is returned if the result column is an expression or constant or
1233 ** anything else which is not an unambiguous reference to a database column.
1235 const char *sqlite3_column_origin_name(sqlite3_stmt
*pStmt
, int N
){
1237 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_COLUMN
);
1239 #ifndef SQLITE_OMIT_UTF16
1240 const void *sqlite3_column_origin_name16(sqlite3_stmt
*pStmt
, int N
){
1242 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_COLUMN
);
1244 #endif /* SQLITE_OMIT_UTF16 */
1245 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1248 /******************************* sqlite3_bind_ ***************************
1250 ** Routines used to attach values to wildcards in a compiled SQL statement.
1253 ** Unbind the value bound to variable i in virtual machine p. This is the
1254 ** the same as binding a NULL value to the column. If the "i" parameter is
1255 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1257 ** A successful evaluation of this routine acquires the mutex on p.
1258 ** the mutex is released if any kind of error occurs.
1260 ** The error code stored in database p->db is overwritten with the return
1261 ** value in any case.
1263 static int vdbeUnbind(Vdbe
*p
, int i
){
1265 if( vdbeSafetyNotNull(p
) ){
1266 return SQLITE_MISUSE_BKPT
;
1268 sqlite3_mutex_enter(p
->db
->mutex
);
1269 if( p
->magic
!=VDBE_MAGIC_RUN
|| p
->pc
>=0 ){
1270 sqlite3Error(p
->db
, SQLITE_MISUSE
);
1271 sqlite3_mutex_leave(p
->db
->mutex
);
1272 sqlite3_log(SQLITE_MISUSE
,
1273 "bind on a busy prepared statement: [%s]", p
->zSql
);
1274 return SQLITE_MISUSE_BKPT
;
1276 if( i
<1 || i
>p
->nVar
){
1277 sqlite3Error(p
->db
, SQLITE_RANGE
);
1278 sqlite3_mutex_leave(p
->db
->mutex
);
1279 return SQLITE_RANGE
;
1283 sqlite3VdbeMemRelease(pVar
);
1284 pVar
->flags
= MEM_Null
;
1285 sqlite3Error(p
->db
, SQLITE_OK
);
1287 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1288 ** binding a new value to this variable invalidates the current query plan.
1290 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1291 ** parameter in the WHERE clause might influence the choice of query plan
1292 ** for a statement, then the statement will be automatically recompiled,
1293 ** as if there had been a schema change, on the first sqlite3_step() call
1294 ** following any change to the bindings of that parameter.
1296 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
1297 if( p
->expmask
!=0 && (p
->expmask
& (i
>=31 ? 0x80000000 : (u32
)1<<i
))!=0 ){
1304 ** Bind a text or BLOB value.
1306 static int bindText(
1307 sqlite3_stmt
*pStmt
, /* The statement to bind against */
1308 int i
, /* Index of the parameter to bind */
1309 const void *zData
, /* Pointer to the data to be bound */
1310 int nData
, /* Number of bytes of data to be bound */
1311 void (*xDel
)(void*), /* Destructor for the data */
1312 u8 encoding
/* Encoding for the data */
1314 Vdbe
*p
= (Vdbe
*)pStmt
;
1318 rc
= vdbeUnbind(p
, i
);
1319 if( rc
==SQLITE_OK
){
1321 pVar
= &p
->aVar
[i
-1];
1322 rc
= sqlite3VdbeMemSetStr(pVar
, zData
, nData
, encoding
, xDel
);
1323 if( rc
==SQLITE_OK
&& encoding
!=0 ){
1324 rc
= sqlite3VdbeChangeEncoding(pVar
, ENC(p
->db
));
1327 sqlite3Error(p
->db
, rc
);
1328 rc
= sqlite3ApiExit(p
->db
, rc
);
1331 sqlite3_mutex_leave(p
->db
->mutex
);
1332 }else if( xDel
!=SQLITE_STATIC
&& xDel
!=SQLITE_TRANSIENT
){
1340 ** Bind a blob value to an SQL statement variable.
1342 int sqlite3_bind_blob(
1343 sqlite3_stmt
*pStmt
,
1349 #ifdef SQLITE_ENABLE_API_ARMOR
1350 if( nData
<0 ) return SQLITE_MISUSE_BKPT
;
1352 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1354 int sqlite3_bind_blob64(
1355 sqlite3_stmt
*pStmt
,
1358 sqlite3_uint64 nData
,
1361 assert( xDel
!=SQLITE_DYNAMIC
);
1362 if( nData
>0x7fffffff ){
1363 return invokeValueDestructor(zData
, xDel
, 0);
1365 return bindText(pStmt
, i
, zData
, (int)nData
, xDel
, 0);
1368 int sqlite3_bind_double(sqlite3_stmt
*pStmt
, int i
, double rValue
){
1370 Vdbe
*p
= (Vdbe
*)pStmt
;
1371 rc
= vdbeUnbind(p
, i
);
1372 if( rc
==SQLITE_OK
){
1373 sqlite3VdbeMemSetDouble(&p
->aVar
[i
-1], rValue
);
1374 sqlite3_mutex_leave(p
->db
->mutex
);
1378 int sqlite3_bind_int(sqlite3_stmt
*p
, int i
, int iValue
){
1379 return sqlite3_bind_int64(p
, i
, (i64
)iValue
);
1381 int sqlite3_bind_int64(sqlite3_stmt
*pStmt
, int i
, sqlite_int64 iValue
){
1383 Vdbe
*p
= (Vdbe
*)pStmt
;
1384 rc
= vdbeUnbind(p
, i
);
1385 if( rc
==SQLITE_OK
){
1386 sqlite3VdbeMemSetInt64(&p
->aVar
[i
-1], iValue
);
1387 sqlite3_mutex_leave(p
->db
->mutex
);
1391 int sqlite3_bind_null(sqlite3_stmt
*pStmt
, int i
){
1393 Vdbe
*p
= (Vdbe
*)pStmt
;
1394 rc
= vdbeUnbind(p
, i
);
1395 if( rc
==SQLITE_OK
){
1396 sqlite3_mutex_leave(p
->db
->mutex
);
1400 int sqlite3_bind_pointer(
1401 sqlite3_stmt
*pStmt
,
1404 const char *zPTtype
,
1405 void (*xDestructor
)(void*)
1408 Vdbe
*p
= (Vdbe
*)pStmt
;
1409 rc
= vdbeUnbind(p
, i
);
1410 if( rc
==SQLITE_OK
){
1411 sqlite3VdbeMemSetPointer(&p
->aVar
[i
-1], pPtr
, zPTtype
, xDestructor
);
1412 sqlite3_mutex_leave(p
->db
->mutex
);
1413 }else if( xDestructor
){
1418 int sqlite3_bind_text(
1419 sqlite3_stmt
*pStmt
,
1425 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF8
);
1427 int sqlite3_bind_text64(
1428 sqlite3_stmt
*pStmt
,
1431 sqlite3_uint64 nData
,
1432 void (*xDel
)(void*),
1435 assert( xDel
!=SQLITE_DYNAMIC
);
1436 if( nData
>0x7fffffff ){
1437 return invokeValueDestructor(zData
, xDel
, 0);
1439 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
1440 return bindText(pStmt
, i
, zData
, (int)nData
, xDel
, enc
);
1443 #ifndef SQLITE_OMIT_UTF16
1444 int sqlite3_bind_text16(
1445 sqlite3_stmt
*pStmt
,
1451 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF16NATIVE
);
1453 #endif /* SQLITE_OMIT_UTF16 */
1454 int sqlite3_bind_value(sqlite3_stmt
*pStmt
, int i
, const sqlite3_value
*pValue
){
1456 switch( sqlite3_value_type((sqlite3_value
*)pValue
) ){
1457 case SQLITE_INTEGER
: {
1458 rc
= sqlite3_bind_int64(pStmt
, i
, pValue
->u
.i
);
1461 case SQLITE_FLOAT
: {
1462 rc
= sqlite3_bind_double(pStmt
, i
, pValue
->u
.r
);
1466 if( pValue
->flags
& MEM_Zero
){
1467 rc
= sqlite3_bind_zeroblob(pStmt
, i
, pValue
->u
.nZero
);
1469 rc
= sqlite3_bind_blob(pStmt
, i
, pValue
->z
, pValue
->n
,SQLITE_TRANSIENT
);
1474 rc
= bindText(pStmt
,i
, pValue
->z
, pValue
->n
, SQLITE_TRANSIENT
,
1479 rc
= sqlite3_bind_null(pStmt
, i
);
1485 int sqlite3_bind_zeroblob(sqlite3_stmt
*pStmt
, int i
, int n
){
1487 Vdbe
*p
= (Vdbe
*)pStmt
;
1488 rc
= vdbeUnbind(p
, i
);
1489 if( rc
==SQLITE_OK
){
1490 sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1491 sqlite3_mutex_leave(p
->db
->mutex
);
1495 int sqlite3_bind_zeroblob64(sqlite3_stmt
*pStmt
, int i
, sqlite3_uint64 n
){
1497 Vdbe
*p
= (Vdbe
*)pStmt
;
1498 sqlite3_mutex_enter(p
->db
->mutex
);
1499 if( n
>(u64
)p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1502 assert( (n
& 0x7FFFFFFF)==n
);
1503 rc
= sqlite3_bind_zeroblob(pStmt
, i
, n
);
1505 rc
= sqlite3ApiExit(p
->db
, rc
);
1506 sqlite3_mutex_leave(p
->db
->mutex
);
1511 ** Return the number of wildcards that can be potentially bound to.
1512 ** This routine is added to support DBD::SQLite.
1514 int sqlite3_bind_parameter_count(sqlite3_stmt
*pStmt
){
1515 Vdbe
*p
= (Vdbe
*)pStmt
;
1516 return p
? p
->nVar
: 0;
1520 ** Return the name of a wildcard parameter. Return NULL if the index
1521 ** is out of range or if the wildcard is unnamed.
1523 ** The result is always UTF-8.
1525 const char *sqlite3_bind_parameter_name(sqlite3_stmt
*pStmt
, int i
){
1526 Vdbe
*p
= (Vdbe
*)pStmt
;
1527 if( p
==0 ) return 0;
1528 return sqlite3VListNumToName(p
->pVList
, i
);
1532 ** Given a wildcard parameter name, return the index of the variable
1533 ** with that name. If there is no variable with the given name,
1536 int sqlite3VdbeParameterIndex(Vdbe
*p
, const char *zName
, int nName
){
1537 if( p
==0 || zName
==0 ) return 0;
1538 return sqlite3VListNameToNum(p
->pVList
, zName
, nName
);
1540 int sqlite3_bind_parameter_index(sqlite3_stmt
*pStmt
, const char *zName
){
1541 return sqlite3VdbeParameterIndex((Vdbe
*)pStmt
, zName
, sqlite3Strlen30(zName
));
1545 ** Transfer all bindings from the first statement over to the second.
1547 int sqlite3TransferBindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1548 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1549 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1551 assert( pTo
->db
==pFrom
->db
);
1552 assert( pTo
->nVar
==pFrom
->nVar
);
1553 sqlite3_mutex_enter(pTo
->db
->mutex
);
1554 for(i
=0; i
<pFrom
->nVar
; i
++){
1555 sqlite3VdbeMemMove(&pTo
->aVar
[i
], &pFrom
->aVar
[i
]);
1557 sqlite3_mutex_leave(pTo
->db
->mutex
);
1561 #ifndef SQLITE_OMIT_DEPRECATED
1563 ** Deprecated external interface. Internal/core SQLite code
1564 ** should call sqlite3TransferBindings.
1566 ** It is misuse to call this routine with statements from different
1567 ** database connections. But as this is a deprecated interface, we
1568 ** will not bother to check for that condition.
1570 ** If the two statements contain a different number of bindings, then
1571 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1572 ** SQLITE_OK is returned.
1574 int sqlite3_transfer_bindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1575 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1576 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1577 if( pFrom
->nVar
!=pTo
->nVar
){
1578 return SQLITE_ERROR
;
1580 assert( (pTo
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pTo
->expmask
==0 );
1584 assert( (pFrom
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pFrom
->expmask
==0 );
1585 if( pFrom
->expmask
){
1588 return sqlite3TransferBindings(pFromStmt
, pToStmt
);
1593 ** Return the sqlite3* database handle to which the prepared statement given
1594 ** in the argument belongs. This is the same database handle that was
1595 ** the first argument to the sqlite3_prepare() that was used to create
1596 ** the statement in the first place.
1598 sqlite3
*sqlite3_db_handle(sqlite3_stmt
*pStmt
){
1599 return pStmt
? ((Vdbe
*)pStmt
)->db
: 0;
1603 ** Return true if the prepared statement is guaranteed to not modify the
1606 int sqlite3_stmt_readonly(sqlite3_stmt
*pStmt
){
1607 return pStmt
? ((Vdbe
*)pStmt
)->readOnly
: 1;
1611 ** Return true if the prepared statement is in need of being reset.
1613 int sqlite3_stmt_busy(sqlite3_stmt
*pStmt
){
1614 Vdbe
*v
= (Vdbe
*)pStmt
;
1615 return v
!=0 && v
->magic
==VDBE_MAGIC_RUN
&& v
->pc
>=0;
1619 ** Return a pointer to the next prepared statement after pStmt associated
1620 ** with database connection pDb. If pStmt is NULL, return the first
1621 ** prepared statement for the database connection. Return NULL if there
1624 sqlite3_stmt
*sqlite3_next_stmt(sqlite3
*pDb
, sqlite3_stmt
*pStmt
){
1625 sqlite3_stmt
*pNext
;
1626 #ifdef SQLITE_ENABLE_API_ARMOR
1627 if( !sqlite3SafetyCheckOk(pDb
) ){
1628 (void)SQLITE_MISUSE_BKPT
;
1632 sqlite3_mutex_enter(pDb
->mutex
);
1634 pNext
= (sqlite3_stmt
*)pDb
->pVdbe
;
1636 pNext
= (sqlite3_stmt
*)((Vdbe
*)pStmt
)->pNext
;
1638 sqlite3_mutex_leave(pDb
->mutex
);
1643 ** Return the value of a status counter for a prepared statement
1645 int sqlite3_stmt_status(sqlite3_stmt
*pStmt
, int op
, int resetFlag
){
1646 Vdbe
*pVdbe
= (Vdbe
*)pStmt
;
1648 #ifdef SQLITE_ENABLE_API_ARMOR
1650 || (op
!=SQLITE_STMTSTATUS_MEMUSED
&& (op
<0||op
>=ArraySize(pVdbe
->aCounter
)))
1652 (void)SQLITE_MISUSE_BKPT
;
1656 if( op
==SQLITE_STMTSTATUS_MEMUSED
){
1657 sqlite3
*db
= pVdbe
->db
;
1658 sqlite3_mutex_enter(db
->mutex
);
1660 db
->pnBytesFreed
= (int*)&v
;
1661 sqlite3VdbeClearObject(db
, pVdbe
);
1662 sqlite3DbFree(db
, pVdbe
);
1663 db
->pnBytesFreed
= 0;
1664 sqlite3_mutex_leave(db
->mutex
);
1666 v
= pVdbe
->aCounter
[op
];
1667 if( resetFlag
) pVdbe
->aCounter
[op
] = 0;
1673 ** Return the SQL associated with a prepared statement
1675 const char *sqlite3_sql(sqlite3_stmt
*pStmt
){
1676 Vdbe
*p
= (Vdbe
*)pStmt
;
1677 return p
? p
->zSql
: 0;
1681 ** Return the SQL associated with a prepared statement with
1682 ** bound parameters expanded. Space to hold the returned string is
1683 ** obtained from sqlite3_malloc(). The caller is responsible for
1684 ** freeing the returned string by passing it to sqlite3_free().
1686 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1687 ** expanded bound parameters.
1689 char *sqlite3_expanded_sql(sqlite3_stmt
*pStmt
){
1690 #ifdef SQLITE_OMIT_TRACE
1694 const char *zSql
= sqlite3_sql(pStmt
);
1696 Vdbe
*p
= (Vdbe
*)pStmt
;
1697 sqlite3_mutex_enter(p
->db
->mutex
);
1698 z
= sqlite3VdbeExpandSql(p
, zSql
);
1699 sqlite3_mutex_leave(p
->db
->mutex
);
1705 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1707 ** Allocate and populate an UnpackedRecord structure based on the serialized
1708 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1709 ** if successful, or a NULL pointer if an OOM error is encountered.
1711 static UnpackedRecord
*vdbeUnpackRecord(
1716 UnpackedRecord
*pRet
; /* Return value */
1718 pRet
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
1720 memset(pRet
->aMem
, 0, sizeof(Mem
)*(pKeyInfo
->nKeyField
+1));
1721 sqlite3VdbeRecordUnpack(pKeyInfo
, nKey
, pKey
, pRet
);
1727 ** This function is called from within a pre-update callback to retrieve
1728 ** a field of the row currently being updated or deleted.
1730 int sqlite3_preupdate_old(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
1731 PreUpdate
*p
= db
->pPreUpdate
;
1735 /* Test that this call is being made from within an SQLITE_DELETE or
1736 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1737 if( !p
|| p
->op
==SQLITE_INSERT
){
1738 rc
= SQLITE_MISUSE_BKPT
;
1739 goto preupdate_old_out
;
1742 iIdx
= sqlite3ColumnOfIndex(p
->pPk
, iIdx
);
1744 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
1746 goto preupdate_old_out
;
1749 /* If the old.* record has not yet been loaded into memory, do so now. */
1750 if( p
->pUnpacked
==0 ){
1754 nRec
= sqlite3BtreePayloadSize(p
->pCsr
->uc
.pCursor
);
1755 aRec
= sqlite3DbMallocRaw(db
, nRec
);
1756 if( !aRec
) goto preupdate_old_out
;
1757 rc
= sqlite3BtreePayload(p
->pCsr
->uc
.pCursor
, 0, nRec
, aRec
);
1758 if( rc
==SQLITE_OK
){
1759 p
->pUnpacked
= vdbeUnpackRecord(&p
->keyinfo
, nRec
, aRec
);
1760 if( !p
->pUnpacked
) rc
= SQLITE_NOMEM
;
1762 if( rc
!=SQLITE_OK
){
1763 sqlite3DbFree(db
, aRec
);
1764 goto preupdate_old_out
;
1769 pMem
= *ppValue
= &p
->pUnpacked
->aMem
[iIdx
];
1770 if( iIdx
==p
->pTab
->iPKey
){
1771 sqlite3VdbeMemSetInt64(pMem
, p
->iKey1
);
1772 }else if( iIdx
>=p
->pUnpacked
->nField
){
1773 *ppValue
= (sqlite3_value
*)columnNullValue();
1774 }else if( p
->pTab
->aCol
[iIdx
].affinity
==SQLITE_AFF_REAL
){
1775 if( pMem
->flags
& MEM_Int
){
1776 sqlite3VdbeMemRealify(pMem
);
1781 sqlite3Error(db
, rc
);
1782 return sqlite3ApiExit(db
, rc
);
1784 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1786 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1788 ** This function is called from within a pre-update callback to retrieve
1789 ** the number of columns in the row being updated, deleted or inserted.
1791 int sqlite3_preupdate_count(sqlite3
*db
){
1792 PreUpdate
*p
= db
->pPreUpdate
;
1793 return (p
? p
->keyinfo
.nKeyField
: 0);
1795 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1797 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1799 ** This function is designed to be called from within a pre-update callback
1800 ** only. It returns zero if the change that caused the callback was made
1801 ** immediately by a user SQL statement. Or, if the change was made by a
1802 ** trigger program, it returns the number of trigger programs currently
1803 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1804 ** top-level trigger etc.).
1806 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1807 ** or SET DEFAULT action is considered a trigger.
1809 int sqlite3_preupdate_depth(sqlite3
*db
){
1810 PreUpdate
*p
= db
->pPreUpdate
;
1811 return (p
? p
->v
->nFrame
: 0);
1813 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1815 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1817 ** This function is called from within a pre-update callback to retrieve
1818 ** a field of the row currently being updated or inserted.
1820 int sqlite3_preupdate_new(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
1821 PreUpdate
*p
= db
->pPreUpdate
;
1825 if( !p
|| p
->op
==SQLITE_DELETE
){
1826 rc
= SQLITE_MISUSE_BKPT
;
1827 goto preupdate_new_out
;
1829 if( p
->pPk
&& p
->op
!=SQLITE_UPDATE
){
1830 iIdx
= sqlite3ColumnOfIndex(p
->pPk
, iIdx
);
1832 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
1834 goto preupdate_new_out
;
1837 if( p
->op
==SQLITE_INSERT
){
1838 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1839 ** that is being inserted. Deserialize it. */
1840 UnpackedRecord
*pUnpack
= p
->pNewUnpacked
;
1842 Mem
*pData
= &p
->v
->aMem
[p
->iNewReg
];
1843 rc
= ExpandBlob(pData
);
1844 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
1845 pUnpack
= vdbeUnpackRecord(&p
->keyinfo
, pData
->n
, pData
->z
);
1848 goto preupdate_new_out
;
1850 p
->pNewUnpacked
= pUnpack
;
1852 pMem
= &pUnpack
->aMem
[iIdx
];
1853 if( iIdx
==p
->pTab
->iPKey
){
1854 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
1855 }else if( iIdx
>=pUnpack
->nField
){
1856 pMem
= (sqlite3_value
*)columnNullValue();
1859 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1860 ** value. Make a copy of the cell contents and return a pointer to it.
1861 ** It is not safe to return a pointer to the memory cell itself as the
1862 ** caller may modify the value text encoding.
1864 assert( p
->op
==SQLITE_UPDATE
);
1866 p
->aNew
= (Mem
*)sqlite3DbMallocZero(db
, sizeof(Mem
) * p
->pCsr
->nField
);
1869 goto preupdate_new_out
;
1872 assert( iIdx
>=0 && iIdx
<p
->pCsr
->nField
);
1873 pMem
= &p
->aNew
[iIdx
];
1874 if( pMem
->flags
==0 ){
1875 if( iIdx
==p
->pTab
->iPKey
){
1876 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
1878 rc
= sqlite3VdbeMemCopy(pMem
, &p
->v
->aMem
[p
->iNewReg
+1+iIdx
]);
1879 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
1886 sqlite3Error(db
, rc
);
1887 return sqlite3ApiExit(db
, rc
);
1889 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1891 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1893 ** Return status data for a single loop within query pStmt.
1895 int sqlite3_stmt_scanstatus(
1896 sqlite3_stmt
*pStmt
, /* Prepared statement being queried */
1897 int idx
, /* Index of loop to report on */
1898 int iScanStatusOp
, /* Which metric to return */
1899 void *pOut
/* OUT: Write the answer here */
1901 Vdbe
*p
= (Vdbe
*)pStmt
;
1903 if( idx
<0 || idx
>=p
->nScan
) return 1;
1904 pScan
= &p
->aScan
[idx
];
1905 switch( iScanStatusOp
){
1906 case SQLITE_SCANSTAT_NLOOP
: {
1907 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrLoop
];
1910 case SQLITE_SCANSTAT_NVISIT
: {
1911 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrVisit
];
1914 case SQLITE_SCANSTAT_EST
: {
1916 LogEst x
= pScan
->nEst
;
1921 *(double*)pOut
= r
*sqlite3LogEstToInt(x
);
1924 case SQLITE_SCANSTAT_NAME
: {
1925 *(const char**)pOut
= pScan
->zName
;
1928 case SQLITE_SCANSTAT_EXPLAIN
: {
1929 if( pScan
->addrExplain
){
1930 *(const char**)pOut
= p
->aOp
[ pScan
->addrExplain
].p4
.z
;
1932 *(const char**)pOut
= 0;
1936 case SQLITE_SCANSTAT_SELECTID
: {
1937 if( pScan
->addrExplain
){
1938 *(int*)pOut
= p
->aOp
[ pScan
->addrExplain
].p1
;
1952 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1954 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt
*pStmt
){
1955 Vdbe
*p
= (Vdbe
*)pStmt
;
1956 memset(p
->anExec
, 0, p
->nOp
* sizeof(i64
));
1958 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */