Omit unused batch-atomic-write code if SQLITE_ENABLE_BATCH_ATOMIC_WRITE is
[sqlite.git] / src / wherecode.c
blobd577f1d3f67abe6c9e95c27bb31fe8263015d2f2
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
63 sqlite3StrAccumAppend(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68 sqlite3StrAccumAppend(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3StrAccumAppend(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3StrAccumAppend(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 int iLevel, /* Value for "level" column of output */
126 int iFrom, /* Value for "from" column of output */
127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
129 int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131 if( pParse->explain==2 )
132 #endif
134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135 Vdbe *v = pParse->pVdbe; /* VM being constructed */
136 sqlite3 *db = pParse->db; /* Database handle */
137 int iId = pParse->iSelectId; /* Select id (left-most output column) */
138 int isSearch; /* True for a SEARCH. False for SCAN. */
139 WhereLoop *pLoop; /* The controlling WhereLoop object */
140 u32 flags; /* Flags that describe this loop */
141 char *zMsg; /* Text to add to EQP output */
142 StrAccum str; /* EQP output string */
143 char zBuf[100]; /* Initial space for EQP output string */
145 pLoop = pLevel->pWLoop;
146 flags = pLoop->wsFlags;
147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155 if( pItem->pSelect ){
156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157 }else{
158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
161 if( pItem->zAlias ){
162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165 const char *zFmt = 0;
166 Index *pIdx;
168 assert( pLoop->u.btree.pIndex!=0 );
169 pIdx = pLoop->u.btree.pIndex;
170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172 if( isSearch ){
173 zFmt = "PRIMARY KEY";
175 }else if( flags & WHERE_PARTIALIDX ){
176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177 }else if( flags & WHERE_AUTO_INDEX ){
178 zFmt = "AUTOMATIC COVERING INDEX";
179 }else if( flags & WHERE_IDX_ONLY ){
180 zFmt = "COVERING INDEX %s";
181 }else{
182 zFmt = "INDEX %s";
184 if( zFmt ){
185 sqlite3StrAccumAppend(&str, " USING ", 7);
186 sqlite3XPrintf(&str, zFmt, pIdx->zName);
187 explainIndexRange(&str, pLoop);
189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190 const char *zRangeOp;
191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192 zRangeOp = "=";
193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194 zRangeOp = ">? AND rowid<";
195 }else if( flags&WHERE_BTM_LIMIT ){
196 zRangeOp = ">";
197 }else{
198 assert( flags&WHERE_TOP_LIMIT);
199 zRangeOp = "<";
201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210 if( pLoop->nOut>=10 ){
211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212 }else{
213 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
215 #endif
216 zMsg = sqlite3StrAccumFinish(&str);
217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
219 return ret;
221 #endif /* SQLITE_OMIT_EXPLAIN */
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
233 void sqlite3WhereAddScanStatus(
234 Vdbe *v, /* Vdbe to add scanstatus entry to */
235 SrcList *pSrclist, /* FROM clause pLvl reads data from */
236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
237 int addrExplain /* Address of OP_Explain (or 0) */
239 const char *zObj = 0;
240 WhereLoop *pLoop = pLvl->pWLoop;
241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
242 zObj = pLoop->u.btree.pIndex->zName;
243 }else{
244 zObj = pSrclist->a[pLvl->iFrom].zName;
246 sqlite3VdbeScanStatus(
247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
250 #endif
254 ** Disable a term in the WHERE clause. Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
258 ** Consider the term t2.z='ok' in the following queries:
260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause. The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join. Disabling is an optimization. When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop. We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower. The trick is to disable as much
273 ** as we can without disabling too much. If we disabled in (1), we'd get
274 ** the wrong answer. See ticket #813.
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled. In this way, terms get disabled if derived
278 ** virtual terms are tested first. For example:
280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 ** \___________/ \______/ \_____/
282 ** parent child1 child2
284 ** Only the parent term was in the original WHERE clause. The child1
285 ** and child2 terms were added by the LIKE optimization. If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
289 ** Usually the parent term is marked as TERM_CODED. But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296 int nLoop = 0;
297 while( ALWAYS(pTerm!=0)
298 && (pTerm->wtFlags & TERM_CODED)==0
299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 && (pLevel->notReady & pTerm->prereqAll)==0
302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303 pTerm->wtFlags |= TERM_LIKECOND;
304 }else{
305 pTerm->wtFlags |= TERM_CODED;
307 if( pTerm->iParent<0 ) break;
308 pTerm = &pTerm->pWC->a[pTerm->iParent];
309 pTerm->nChild--;
310 if( pTerm->nChild!=0 ) break;
311 nLoop++;
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
320 ** beginning and end of zAff are ignored. If all entries in zAff are
321 ** SQLITE_AFF_BLOB, then no code gets generated.
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327 Vdbe *v = pParse->pVdbe;
328 if( zAff==0 ){
329 assert( pParse->db->mallocFailed );
330 return;
332 assert( v!=0 );
334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
335 ** and end of the affinity string.
337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
338 n--;
339 base++;
340 zAff++;
342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
343 n--;
346 /* Code the OP_Affinity opcode if there is anything left to do. */
347 if( n>0 ){
348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
349 sqlite3ExprCacheAffinityChange(pParse, base, n);
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
360 ** * the comparison will be performed with no affinity, or
361 ** * the affinity change in zAff is guaranteed not to change the value.
363 static void updateRangeAffinityStr(
364 Expr *pRight, /* RHS of comparison */
365 int n, /* Number of vector elements in comparison */
366 char *zAff /* Affinity string to modify */
368 int i;
369 for(i=0; i<n; i++){
370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374 zAff[i] = SQLITE_AFF_BLOB;
380 ** Generate code for a single equality term of the WHERE clause. An equality
381 ** term can be either X=expr or X IN (...). pTerm is the term to be
382 ** coded.
384 ** The current value for the constraint is left in a register, the index
385 ** of which is returned. An attempt is made store the result in iTarget but
386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
388 ** some other register and it is the caller's responsibility to compensate.
390 ** For a constraint of the form X=expr, the expression is evaluated in
391 ** straight-line code. For constraints of the form X IN (...)
392 ** this routine sets up a loop that will iterate over all values of X.
394 static int codeEqualityTerm(
395 Parse *pParse, /* The parsing context */
396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
398 int iEq, /* Index of the equality term within this level */
399 int bRev, /* True for reverse-order IN operations */
400 int iTarget /* Attempt to leave results in this register */
402 Expr *pX = pTerm->pExpr;
403 Vdbe *v = pParse->pVdbe;
404 int iReg; /* Register holding results */
406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
407 assert( iTarget>0 );
408 if( pX->op==TK_EQ || pX->op==TK_IS ){
409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
410 }else if( pX->op==TK_ISNULL ){
411 iReg = iTarget;
412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
413 #ifndef SQLITE_OMIT_SUBQUERY
414 }else{
415 int eType = IN_INDEX_NOOP;
416 int iTab;
417 struct InLoop *pIn;
418 WhereLoop *pLoop = pLevel->pWLoop;
419 int i;
420 int nEq = 0;
421 int *aiMap = 0;
423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
424 && pLoop->u.btree.pIndex!=0
425 && pLoop->u.btree.pIndex->aSortOrder[iEq]
427 testcase( iEq==0 );
428 testcase( bRev );
429 bRev = !bRev;
431 assert( pX->op==TK_IN );
432 iReg = iTarget;
434 for(i=0; i<iEq; i++){
435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
436 disableTerm(pLevel, pTerm);
437 return iTarget;
440 for(i=iEq;i<pLoop->nLTerm; i++){
441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
446 }else{
447 Select *pSelect = pX->x.pSelect;
448 sqlite3 *db = pParse->db;
449 u16 savedDbOptFlags = db->dbOptFlags;
450 ExprList *pOrigRhs = pSelect->pEList;
451 ExprList *pOrigLhs = pX->pLeft->x.pList;
452 ExprList *pRhs = 0; /* New Select.pEList for RHS */
453 ExprList *pLhs = 0; /* New pX->pLeft vector */
455 for(i=iEq;i<pLoop->nLTerm; i++){
456 if( pLoop->aLTerm[i]->pExpr==pX ){
457 int iField = pLoop->aLTerm[i]->iField - 1;
458 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
459 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
461 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
462 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
465 if( !db->mallocFailed ){
466 Expr *pLeft = pX->pLeft;
468 if( pSelect->pOrderBy ){
469 /* If the SELECT statement has an ORDER BY clause, zero the
470 ** iOrderByCol variables. These are set to non-zero when an
471 ** ORDER BY term exactly matches one of the terms of the
472 ** result-set. Since the result-set of the SELECT statement may
473 ** have been modified or reordered, these variables are no longer
474 ** set correctly. Since setting them is just an optimization,
475 ** it's easiest just to zero them here. */
476 ExprList *pOrderBy = pSelect->pOrderBy;
477 for(i=0; i<pOrderBy->nExpr; i++){
478 pOrderBy->a[i].u.x.iOrderByCol = 0;
482 /* Take care here not to generate a TK_VECTOR containing only a
483 ** single value. Since the parser never creates such a vector, some
484 ** of the subroutines do not handle this case. */
485 if( pLhs->nExpr==1 ){
486 pX->pLeft = pLhs->a[0].pExpr;
487 }else{
488 pLeft->x.pList = pLhs;
489 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
490 testcase( aiMap==0 );
492 pSelect->pEList = pRhs;
493 db->dbOptFlags |= SQLITE_QueryFlattener;
494 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
495 db->dbOptFlags = savedDbOptFlags;
496 testcase( aiMap!=0 && aiMap[0]!=0 );
497 pSelect->pEList = pOrigRhs;
498 pLeft->x.pList = pOrigLhs;
499 pX->pLeft = pLeft;
501 sqlite3ExprListDelete(pParse->db, pLhs);
502 sqlite3ExprListDelete(pParse->db, pRhs);
505 if( eType==IN_INDEX_INDEX_DESC ){
506 testcase( bRev );
507 bRev = !bRev;
509 iTab = pX->iTable;
510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
511 VdbeCoverageIf(v, bRev);
512 VdbeCoverageIf(v, !bRev);
513 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
515 pLoop->wsFlags |= WHERE_IN_ABLE;
516 if( pLevel->u.in.nIn==0 ){
517 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
520 i = pLevel->u.in.nIn;
521 pLevel->u.in.nIn += nEq;
522 pLevel->u.in.aInLoop =
523 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
524 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
525 pIn = pLevel->u.in.aInLoop;
526 if( pIn ){
527 int iMap = 0; /* Index in aiMap[] */
528 pIn += i;
529 for(i=iEq;i<pLoop->nLTerm; i++){
530 if( pLoop->aLTerm[i]->pExpr==pX ){
531 int iOut = iReg + i - iEq;
532 if( eType==IN_INDEX_ROWID ){
533 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */
534 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
535 }else{
536 int iCol = aiMap ? aiMap[iMap++] : 0;
537 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
539 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
540 if( i==iEq ){
541 pIn->iCur = iTab;
542 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
543 }else{
544 pIn->eEndLoopOp = OP_Noop;
546 pIn++;
549 }else{
550 pLevel->u.in.nIn = 0;
552 sqlite3DbFree(pParse->db, aiMap);
553 #endif
555 disableTerm(pLevel, pTerm);
556 return iReg;
560 ** Generate code that will evaluate all == and IN constraints for an
561 ** index scan.
563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
564 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
565 ** The index has as many as three equality constraints, but in this
566 ** example, the third "c" value is an inequality. So only two
567 ** constraints are coded. This routine will generate code to evaluate
568 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
569 ** in consecutive registers and the index of the first register is returned.
571 ** In the example above nEq==2. But this subroutine works for any value
572 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
573 ** The only thing it does is allocate the pLevel->iMem memory cell and
574 ** compute the affinity string.
576 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
577 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
579 ** occurs after the nEq quality constraints.
581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
582 ** the index of the first memory cell in that range. The code that
583 ** calls this routine will use that memory range to store keys for
584 ** start and termination conditions of the loop.
585 ** key value of the loop. If one or more IN operators appear, then
586 ** this routine allocates an additional nEq memory cells for internal
587 ** use.
589 ** Before returning, *pzAff is set to point to a buffer containing a
590 ** copy of the column affinity string of the index allocated using
591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
592 ** with equality constraints that use BLOB or NONE affinity are set to
593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
595 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
596 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
598 ** In the example above, the index on t1(a) has TEXT affinity. But since
599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
600 ** no conversion should be attempted before using a t2.b value as part of
601 ** a key to search the index. Hence the first byte in the returned affinity
602 ** string in this example would be set to SQLITE_AFF_BLOB.
604 static int codeAllEqualityTerms(
605 Parse *pParse, /* Parsing context */
606 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
607 int bRev, /* Reverse the order of IN operators */
608 int nExtraReg, /* Number of extra registers to allocate */
609 char **pzAff /* OUT: Set to point to affinity string */
611 u16 nEq; /* The number of == or IN constraints to code */
612 u16 nSkip; /* Number of left-most columns to skip */
613 Vdbe *v = pParse->pVdbe; /* The vm under construction */
614 Index *pIdx; /* The index being used for this loop */
615 WhereTerm *pTerm; /* A single constraint term */
616 WhereLoop *pLoop; /* The WhereLoop object */
617 int j; /* Loop counter */
618 int regBase; /* Base register */
619 int nReg; /* Number of registers to allocate */
620 char *zAff; /* Affinity string to return */
622 /* This module is only called on query plans that use an index. */
623 pLoop = pLevel->pWLoop;
624 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
625 nEq = pLoop->u.btree.nEq;
626 nSkip = pLoop->nSkip;
627 pIdx = pLoop->u.btree.pIndex;
628 assert( pIdx!=0 );
630 /* Figure out how many memory cells we will need then allocate them.
632 regBase = pParse->nMem + 1;
633 nReg = pLoop->u.btree.nEq + nExtraReg;
634 pParse->nMem += nReg;
636 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
637 assert( zAff!=0 || pParse->db->mallocFailed );
639 if( nSkip ){
640 int iIdxCur = pLevel->iIdxCur;
641 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
642 VdbeCoverageIf(v, bRev==0);
643 VdbeCoverageIf(v, bRev!=0);
644 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
645 j = sqlite3VdbeAddOp0(v, OP_Goto);
646 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
647 iIdxCur, 0, regBase, nSkip);
648 VdbeCoverageIf(v, bRev==0);
649 VdbeCoverageIf(v, bRev!=0);
650 sqlite3VdbeJumpHere(v, j);
651 for(j=0; j<nSkip; j++){
652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
653 testcase( pIdx->aiColumn[j]==XN_EXPR );
654 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
658 /* Evaluate the equality constraints
660 assert( zAff==0 || (int)strlen(zAff)>=nEq );
661 for(j=nSkip; j<nEq; j++){
662 int r1;
663 pTerm = pLoop->aLTerm[j];
664 assert( pTerm!=0 );
665 /* The following testcase is true for indices with redundant columns.
666 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
667 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
668 testcase( pTerm->wtFlags & TERM_VIRTUAL );
669 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
670 if( r1!=regBase+j ){
671 if( nReg==1 ){
672 sqlite3ReleaseTempReg(pParse, regBase);
673 regBase = r1;
674 }else{
675 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
678 if( pTerm->eOperator & WO_IN ){
679 if( pTerm->pExpr->flags & EP_xIsSelect ){
680 /* No affinity ever needs to be (or should be) applied to a value
681 ** from the RHS of an "? IN (SELECT ...)" expression. The
682 ** sqlite3FindInIndex() routine has already ensured that the
683 ** affinity of the comparison has been applied to the value. */
684 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
686 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
687 Expr *pRight = pTerm->pExpr->pRight;
688 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
689 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
690 VdbeCoverage(v);
692 if( zAff ){
693 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
694 zAff[j] = SQLITE_AFF_BLOB;
696 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
697 zAff[j] = SQLITE_AFF_BLOB;
702 *pzAff = zAff;
703 return regBase;
706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
708 ** If the most recently coded instruction is a constant range constraint
709 ** (a string literal) that originated from the LIKE optimization, then
710 ** set P3 and P5 on the OP_String opcode so that the string will be cast
711 ** to a BLOB at appropriate times.
713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
714 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
715 ** scan loop run twice, once for strings and a second time for BLOBs.
716 ** The OP_String opcodes on the second pass convert the upper and lower
717 ** bound string constants to blobs. This routine makes the necessary changes
718 ** to the OP_String opcodes for that to happen.
720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
721 ** only the one pass through the string space is required, so this routine
722 ** becomes a no-op.
724 static void whereLikeOptimizationStringFixup(
725 Vdbe *v, /* prepared statement under construction */
726 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
727 WhereTerm *pTerm /* The upper or lower bound just coded */
729 if( pTerm->wtFlags & TERM_LIKEOPT ){
730 VdbeOp *pOp;
731 assert( pLevel->iLikeRepCntr>0 );
732 pOp = sqlite3VdbeGetOp(v, -1);
733 assert( pOp!=0 );
734 assert( pOp->opcode==OP_String8
735 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
736 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
737 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
740 #else
741 # define whereLikeOptimizationStringFixup(A,B,C)
742 #endif
744 #ifdef SQLITE_ENABLE_CURSOR_HINTS
746 ** Information is passed from codeCursorHint() down to individual nodes of
747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
748 ** structure.
750 struct CCurHint {
751 int iTabCur; /* Cursor for the main table */
752 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
753 Index *pIdx; /* The index used to access the table */
757 ** This function is called for every node of an expression that is a candidate
758 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
759 ** the table CCurHint.iTabCur, verify that the same column can be
760 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
763 struct CCurHint *pHint = pWalker->u.pCCurHint;
764 assert( pHint->pIdx!=0 );
765 if( pExpr->op==TK_COLUMN
766 && pExpr->iTable==pHint->iTabCur
767 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
769 pWalker->eCode = 1;
771 return WRC_Continue;
775 ** Test whether or not expression pExpr, which was part of a WHERE clause,
776 ** should be included in the cursor-hint for a table that is on the rhs
777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
778 ** expression is not suitable.
780 ** An expression is unsuitable if it might evaluate to non NULL even if
781 ** a TK_COLUMN node that does affect the value of the expression is set
782 ** to NULL. For example:
784 ** col IS NULL
785 ** col IS NOT NULL
786 ** coalesce(col, 1)
787 ** CASE WHEN col THEN 0 ELSE 1 END
789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
790 if( pExpr->op==TK_IS
791 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
792 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
794 pWalker->eCode = 1;
795 }else if( pExpr->op==TK_FUNCTION ){
796 int d1;
797 char d2[3];
798 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
799 pWalker->eCode = 1;
803 return WRC_Continue;
808 ** This function is called on every node of an expression tree used as an
809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
810 ** that accesses any table other than the one identified by
811 ** CCurHint.iTabCur, then do the following:
813 ** 1) allocate a register and code an OP_Column instruction to read
814 ** the specified column into the new register, and
816 ** 2) transform the expression node to a TK_REGISTER node that reads
817 ** from the newly populated register.
819 ** Also, if the node is a TK_COLUMN that does access the table idenified
820 ** by pCCurHint.iTabCur, and an index is being used (which we will
821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
822 ** an access of the index rather than the original table.
824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
825 int rc = WRC_Continue;
826 struct CCurHint *pHint = pWalker->u.pCCurHint;
827 if( pExpr->op==TK_COLUMN ){
828 if( pExpr->iTable!=pHint->iTabCur ){
829 Vdbe *v = pWalker->pParse->pVdbe;
830 int reg = ++pWalker->pParse->nMem; /* Register for column value */
831 sqlite3ExprCodeGetColumnOfTable(
832 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
834 pExpr->op = TK_REGISTER;
835 pExpr->iTable = reg;
836 }else if( pHint->pIdx!=0 ){
837 pExpr->iTable = pHint->iIdxCur;
838 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
839 assert( pExpr->iColumn>=0 );
841 }else if( pExpr->op==TK_AGG_FUNCTION ){
842 /* An aggregate function in the WHERE clause of a query means this must
843 ** be a correlated sub-query, and expression pExpr is an aggregate from
844 ** the parent context. Do not walk the function arguments in this case.
846 ** todo: It should be possible to replace this node with a TK_REGISTER
847 ** expression, as the result of the expression must be stored in a
848 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
849 rc = WRC_Prune;
851 return rc;
855 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
857 static void codeCursorHint(
858 struct SrcList_item *pTabItem, /* FROM clause item */
859 WhereInfo *pWInfo, /* The where clause */
860 WhereLevel *pLevel, /* Which loop to provide hints for */
861 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
863 Parse *pParse = pWInfo->pParse;
864 sqlite3 *db = pParse->db;
865 Vdbe *v = pParse->pVdbe;
866 Expr *pExpr = 0;
867 WhereLoop *pLoop = pLevel->pWLoop;
868 int iCur;
869 WhereClause *pWC;
870 WhereTerm *pTerm;
871 int i, j;
872 struct CCurHint sHint;
873 Walker sWalker;
875 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
876 iCur = pLevel->iTabCur;
877 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
878 sHint.iTabCur = iCur;
879 sHint.iIdxCur = pLevel->iIdxCur;
880 sHint.pIdx = pLoop->u.btree.pIndex;
881 memset(&sWalker, 0, sizeof(sWalker));
882 sWalker.pParse = pParse;
883 sWalker.u.pCCurHint = &sHint;
884 pWC = &pWInfo->sWC;
885 for(i=0; i<pWC->nTerm; i++){
886 pTerm = &pWC->a[i];
887 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
888 if( pTerm->prereqAll & pLevel->notReady ) continue;
890 /* Any terms specified as part of the ON(...) clause for any LEFT
891 ** JOIN for which the current table is not the rhs are omitted
892 ** from the cursor-hint.
894 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
895 ** that were specified as part of the WHERE clause must be excluded.
896 ** This is to address the following:
898 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
900 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
901 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
902 ** pushed down to the cursor, this row is filtered out, causing
903 ** SQLite to synthesize a row of NULL values. Which does match the
904 ** WHERE clause, and so the query returns a row. Which is incorrect.
906 ** For the same reason, WHERE terms such as:
908 ** WHERE 1 = (t2.c IS NULL)
910 ** are also excluded. See codeCursorHintIsOrFunction() for details.
912 if( pTabItem->fg.jointype & JT_LEFT ){
913 Expr *pExpr = pTerm->pExpr;
914 if( !ExprHasProperty(pExpr, EP_FromJoin)
915 || pExpr->iRightJoinTable!=pTabItem->iCursor
917 sWalker.eCode = 0;
918 sWalker.xExprCallback = codeCursorHintIsOrFunction;
919 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
920 if( sWalker.eCode ) continue;
922 }else{
923 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
926 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
927 ** the cursor. These terms are not needed as hints for a pure range
928 ** scan (that has no == terms) so omit them. */
929 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
930 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
931 if( j<pLoop->nLTerm ) continue;
934 /* No subqueries or non-deterministic functions allowed */
935 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
937 /* For an index scan, make sure referenced columns are actually in
938 ** the index. */
939 if( sHint.pIdx!=0 ){
940 sWalker.eCode = 0;
941 sWalker.xExprCallback = codeCursorHintCheckExpr;
942 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
943 if( sWalker.eCode ) continue;
946 /* If we survive all prior tests, that means this term is worth hinting */
947 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
949 if( pExpr!=0 ){
950 sWalker.xExprCallback = codeCursorHintFixExpr;
951 sqlite3WalkExpr(&sWalker, pExpr);
952 sqlite3VdbeAddOp4(v, OP_CursorHint,
953 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
954 (const char*)pExpr, P4_EXPR);
957 #else
958 # define codeCursorHint(A,B,C,D) /* No-op */
959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
964 ** function generates code to do a deferred seek of cursor iCur to the
965 ** rowid stored in register iRowid.
967 ** Normally, this is just:
969 ** OP_DeferredSeek $iCur $iRowid
971 ** However, if the scan currently being coded is a branch of an OR-loop and
972 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
973 ** is set to iIdxCur and P4 is set to point to an array of integers
974 ** containing one entry for each column of the table cursor iCur is open
975 ** on. For each table column, if the column is the i'th column of the
976 ** index, then the corresponding array entry is set to (i+1). If the column
977 ** does not appear in the index at all, the array entry is set to 0.
979 static void codeDeferredSeek(
980 WhereInfo *pWInfo, /* Where clause context */
981 Index *pIdx, /* Index scan is using */
982 int iCur, /* Cursor for IPK b-tree */
983 int iIdxCur /* Index cursor */
985 Parse *pParse = pWInfo->pParse; /* Parse context */
986 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
988 assert( iIdxCur>0 );
989 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
991 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
992 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
993 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
995 int i;
996 Table *pTab = pIdx->pTable;
997 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
998 if( ai ){
999 ai[0] = pTab->nCol;
1000 for(i=0; i<pIdx->nColumn-1; i++){
1001 assert( pIdx->aiColumn[i]<pTab->nCol );
1002 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1004 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1010 ** If the expression passed as the second argument is a vector, generate
1011 ** code to write the first nReg elements of the vector into an array
1012 ** of registers starting with iReg.
1014 ** If the expression is not a vector, then nReg must be passed 1. In
1015 ** this case, generate code to evaluate the expression and leave the
1016 ** result in register iReg.
1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1019 assert( nReg>0 );
1020 if( sqlite3ExprIsVector(p) ){
1021 #ifndef SQLITE_OMIT_SUBQUERY
1022 if( (p->flags & EP_xIsSelect) ){
1023 Vdbe *v = pParse->pVdbe;
1024 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1025 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1026 }else
1027 #endif
1029 int i;
1030 ExprList *pList = p->x.pList;
1031 assert( nReg<=pList->nExpr );
1032 for(i=0; i<nReg; i++){
1033 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1036 }else{
1037 assert( nReg==1 );
1038 sqlite3ExprCode(pParse, p, iReg);
1042 /* An instance of the IdxExprTrans object carries information about a
1043 ** mapping from an expression on table columns into a column in an index
1044 ** down through the Walker.
1046 typedef struct IdxExprTrans {
1047 Expr *pIdxExpr; /* The index expression */
1048 int iTabCur; /* The cursor of the corresponding table */
1049 int iIdxCur; /* The cursor for the index */
1050 int iIdxCol; /* The column for the index */
1051 } IdxExprTrans;
1053 /* The walker node callback used to transform matching expressions into
1054 ** a reference to an index column for an index on an expression.
1056 ** If pExpr matches, then transform it into a reference to the index column
1057 ** that contains the value of pExpr.
1059 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1060 IdxExprTrans *pX = p->u.pIdxTrans;
1061 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1062 pExpr->op = TK_COLUMN;
1063 pExpr->iTable = pX->iIdxCur;
1064 pExpr->iColumn = pX->iIdxCol;
1065 pExpr->pTab = 0;
1066 return WRC_Prune;
1067 }else{
1068 return WRC_Continue;
1073 ** For an indexes on expression X, locate every instance of expression X in pExpr
1074 ** and change that subexpression into a reference to the appropriate column of
1075 ** the index.
1077 static void whereIndexExprTrans(
1078 Index *pIdx, /* The Index */
1079 int iTabCur, /* Cursor of the table that is being indexed */
1080 int iIdxCur, /* Cursor of the index itself */
1081 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1083 int iIdxCol; /* Column number of the index */
1084 ExprList *aColExpr; /* Expressions that are indexed */
1085 Walker w;
1086 IdxExprTrans x;
1087 aColExpr = pIdx->aColExpr;
1088 if( aColExpr==0 ) return; /* Not an index on expressions */
1089 memset(&w, 0, sizeof(w));
1090 w.xExprCallback = whereIndexExprTransNode;
1091 w.u.pIdxTrans = &x;
1092 x.iTabCur = iTabCur;
1093 x.iIdxCur = iIdxCur;
1094 for(iIdxCol=0; iIdxCol<aColExpr->nExpr; iIdxCol++){
1095 if( pIdx->aiColumn[iIdxCol]!=XN_EXPR ) continue;
1096 assert( aColExpr->a[iIdxCol].pExpr!=0 );
1097 x.iIdxCol = iIdxCol;
1098 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1099 sqlite3WalkExpr(&w, pWInfo->pWhere);
1100 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1101 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1106 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1107 ** implementation described by pWInfo.
1109 Bitmask sqlite3WhereCodeOneLoopStart(
1110 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1111 int iLevel, /* Which level of pWInfo->a[] should be coded */
1112 Bitmask notReady /* Which tables are currently available */
1114 int j, k; /* Loop counters */
1115 int iCur; /* The VDBE cursor for the table */
1116 int addrNxt; /* Where to jump to continue with the next IN case */
1117 int omitTable; /* True if we use the index only */
1118 int bRev; /* True if we need to scan in reverse order */
1119 WhereLevel *pLevel; /* The where level to be coded */
1120 WhereLoop *pLoop; /* The WhereLoop object being coded */
1121 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1122 WhereTerm *pTerm; /* A WHERE clause term */
1123 Parse *pParse; /* Parsing context */
1124 sqlite3 *db; /* Database connection */
1125 Vdbe *v; /* The prepared stmt under constructions */
1126 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1127 int addrBrk; /* Jump here to break out of the loop */
1128 int addrHalt; /* addrBrk for the outermost loop */
1129 int addrCont; /* Jump here to continue with next cycle */
1130 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1131 int iReleaseReg = 0; /* Temp register to free before returning */
1132 Index *pIdx = 0; /* Index used by loop (if any) */
1133 int iLoop; /* Iteration of constraint generator loop */
1135 pParse = pWInfo->pParse;
1136 v = pParse->pVdbe;
1137 pWC = &pWInfo->sWC;
1138 db = pParse->db;
1139 pLevel = &pWInfo->a[iLevel];
1140 pLoop = pLevel->pWLoop;
1141 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1142 iCur = pTabItem->iCursor;
1143 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1144 bRev = (pWInfo->revMask>>iLevel)&1;
1145 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1146 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1147 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1149 /* Create labels for the "break" and "continue" instructions
1150 ** for the current loop. Jump to addrBrk to break out of a loop.
1151 ** Jump to cont to go immediately to the next iteration of the
1152 ** loop.
1154 ** When there is an IN operator, we also have a "addrNxt" label that
1155 ** means to continue with the next IN value combination. When
1156 ** there are no IN operators in the constraints, the "addrNxt" label
1157 ** is the same as "addrBrk".
1159 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1160 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1162 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1163 ** initialize a memory cell that records if this table matches any
1164 ** row of the left table of the join.
1166 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1167 pLevel->iLeftJoin = ++pParse->nMem;
1168 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1169 VdbeComment((v, "init LEFT JOIN no-match flag"));
1172 /* Compute a safe address to jump to if we discover that the table for
1173 ** this loop is empty and can never contribute content. */
1174 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1175 addrHalt = pWInfo->a[j].addrBrk;
1177 /* Special case of a FROM clause subquery implemented as a co-routine */
1178 if( pTabItem->fg.viaCoroutine ){
1179 int regYield = pTabItem->regReturn;
1180 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1181 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1182 VdbeCoverage(v);
1183 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1184 pLevel->op = OP_Goto;
1185 }else
1187 #ifndef SQLITE_OMIT_VIRTUALTABLE
1188 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1189 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1190 ** to access the data.
1192 int iReg; /* P3 Value for OP_VFilter */
1193 int addrNotFound;
1194 int nConstraint = pLoop->nLTerm;
1195 int iIn; /* Counter for IN constraints */
1197 sqlite3ExprCachePush(pParse);
1198 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1199 addrNotFound = pLevel->addrBrk;
1200 for(j=0; j<nConstraint; j++){
1201 int iTarget = iReg+j+2;
1202 pTerm = pLoop->aLTerm[j];
1203 if( NEVER(pTerm==0) ) continue;
1204 if( pTerm->eOperator & WO_IN ){
1205 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1206 addrNotFound = pLevel->addrNxt;
1207 }else{
1208 Expr *pRight = pTerm->pExpr->pRight;
1209 codeExprOrVector(pParse, pRight, iTarget, 1);
1212 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1213 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1214 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1215 pLoop->u.vtab.idxStr,
1216 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1217 VdbeCoverage(v);
1218 pLoop->u.vtab.needFree = 0;
1219 pLevel->p1 = iCur;
1220 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1221 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1222 iIn = pLevel->u.in.nIn;
1223 for(j=nConstraint-1; j>=0; j--){
1224 pTerm = pLoop->aLTerm[j];
1225 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1226 disableTerm(pLevel, pTerm);
1227 }else if( (pTerm->eOperator & WO_IN)!=0 ){
1228 Expr *pCompare; /* The comparison operator */
1229 Expr *pRight; /* RHS of the comparison */
1230 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1232 /* Reload the constraint value into reg[iReg+j+2]. The same value
1233 ** was loaded into the same register prior to the OP_VFilter, but
1234 ** the xFilter implementation might have changed the datatype or
1235 ** encoding of the value in the register, so it *must* be reloaded. */
1236 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1237 if( !db->mallocFailed ){
1238 assert( iIn>0 );
1239 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1240 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1241 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1242 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1243 testcase( pOp->opcode==OP_Rowid );
1244 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1247 /* Generate code that will continue to the next row if
1248 ** the IN constraint is not satisfied */
1249 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1250 assert( pCompare!=0 || db->mallocFailed );
1251 if( pCompare ){
1252 pCompare->pLeft = pTerm->pExpr->pLeft;
1253 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1254 if( pRight ){
1255 pRight->iTable = iReg+j+2;
1256 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1258 pCompare->pLeft = 0;
1259 sqlite3ExprDelete(db, pCompare);
1263 /* These registers need to be preserved in case there is an IN operator
1264 ** loop. So we could deallocate the registers here (and potentially
1265 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1266 ** simpler and safer to simply not reuse the registers.
1268 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1270 sqlite3ExprCachePop(pParse);
1271 }else
1272 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1274 if( (pLoop->wsFlags & WHERE_IPK)!=0
1275 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1277 /* Case 2: We can directly reference a single row using an
1278 ** equality comparison against the ROWID field. Or
1279 ** we reference multiple rows using a "rowid IN (...)"
1280 ** construct.
1282 assert( pLoop->u.btree.nEq==1 );
1283 pTerm = pLoop->aLTerm[0];
1284 assert( pTerm!=0 );
1285 assert( pTerm->pExpr!=0 );
1286 assert( omitTable==0 );
1287 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1288 iReleaseReg = ++pParse->nMem;
1289 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1290 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1291 addrNxt = pLevel->addrNxt;
1292 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1293 VdbeCoverage(v);
1294 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1295 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1296 VdbeComment((v, "pk"));
1297 pLevel->op = OP_Noop;
1298 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1299 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1301 /* Case 3: We have an inequality comparison against the ROWID field.
1303 int testOp = OP_Noop;
1304 int start;
1305 int memEndValue = 0;
1306 WhereTerm *pStart, *pEnd;
1308 assert( omitTable==0 );
1309 j = 0;
1310 pStart = pEnd = 0;
1311 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1312 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1313 assert( pStart!=0 || pEnd!=0 );
1314 if( bRev ){
1315 pTerm = pStart;
1316 pStart = pEnd;
1317 pEnd = pTerm;
1319 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1320 if( pStart ){
1321 Expr *pX; /* The expression that defines the start bound */
1322 int r1, rTemp; /* Registers for holding the start boundary */
1323 int op; /* Cursor seek operation */
1325 /* The following constant maps TK_xx codes into corresponding
1326 ** seek opcodes. It depends on a particular ordering of TK_xx
1328 const u8 aMoveOp[] = {
1329 /* TK_GT */ OP_SeekGT,
1330 /* TK_LE */ OP_SeekLE,
1331 /* TK_LT */ OP_SeekLT,
1332 /* TK_GE */ OP_SeekGE
1334 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1335 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1336 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1338 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1339 testcase( pStart->wtFlags & TERM_VIRTUAL );
1340 pX = pStart->pExpr;
1341 assert( pX!=0 );
1342 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1343 if( sqlite3ExprIsVector(pX->pRight) ){
1344 r1 = rTemp = sqlite3GetTempReg(pParse);
1345 codeExprOrVector(pParse, pX->pRight, r1, 1);
1346 op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1347 }else{
1348 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1349 disableTerm(pLevel, pStart);
1350 op = aMoveOp[(pX->op - TK_GT)];
1352 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1353 VdbeComment((v, "pk"));
1354 VdbeCoverageIf(v, pX->op==TK_GT);
1355 VdbeCoverageIf(v, pX->op==TK_LE);
1356 VdbeCoverageIf(v, pX->op==TK_LT);
1357 VdbeCoverageIf(v, pX->op==TK_GE);
1358 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1359 sqlite3ReleaseTempReg(pParse, rTemp);
1360 }else{
1361 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1362 VdbeCoverageIf(v, bRev==0);
1363 VdbeCoverageIf(v, bRev!=0);
1365 if( pEnd ){
1366 Expr *pX;
1367 pX = pEnd->pExpr;
1368 assert( pX!=0 );
1369 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1370 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1371 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1372 memEndValue = ++pParse->nMem;
1373 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1374 if( 0==sqlite3ExprIsVector(pX->pRight)
1375 && (pX->op==TK_LT || pX->op==TK_GT)
1377 testOp = bRev ? OP_Le : OP_Ge;
1378 }else{
1379 testOp = bRev ? OP_Lt : OP_Gt;
1381 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1382 disableTerm(pLevel, pEnd);
1385 start = sqlite3VdbeCurrentAddr(v);
1386 pLevel->op = bRev ? OP_Prev : OP_Next;
1387 pLevel->p1 = iCur;
1388 pLevel->p2 = start;
1389 assert( pLevel->p5==0 );
1390 if( testOp!=OP_Noop ){
1391 iRowidReg = ++pParse->nMem;
1392 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1393 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1394 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1395 VdbeCoverageIf(v, testOp==OP_Le);
1396 VdbeCoverageIf(v, testOp==OP_Lt);
1397 VdbeCoverageIf(v, testOp==OP_Ge);
1398 VdbeCoverageIf(v, testOp==OP_Gt);
1399 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1401 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1402 /* Case 4: A scan using an index.
1404 ** The WHERE clause may contain zero or more equality
1405 ** terms ("==" or "IN" operators) that refer to the N
1406 ** left-most columns of the index. It may also contain
1407 ** inequality constraints (>, <, >= or <=) on the indexed
1408 ** column that immediately follows the N equalities. Only
1409 ** the right-most column can be an inequality - the rest must
1410 ** use the "==" and "IN" operators. For example, if the
1411 ** index is on (x,y,z), then the following clauses are all
1412 ** optimized:
1414 ** x=5
1415 ** x=5 AND y=10
1416 ** x=5 AND y<10
1417 ** x=5 AND y>5 AND y<10
1418 ** x=5 AND y=5 AND z<=10
1420 ** The z<10 term of the following cannot be used, only
1421 ** the x=5 term:
1423 ** x=5 AND z<10
1425 ** N may be zero if there are inequality constraints.
1426 ** If there are no inequality constraints, then N is at
1427 ** least one.
1429 ** This case is also used when there are no WHERE clause
1430 ** constraints but an index is selected anyway, in order
1431 ** to force the output order to conform to an ORDER BY.
1433 static const u8 aStartOp[] = {
1436 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1437 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1438 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1439 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1440 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1441 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1443 static const u8 aEndOp[] = {
1444 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1445 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1446 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1447 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1449 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1450 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1451 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1452 int regBase; /* Base register holding constraint values */
1453 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1454 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1455 int startEq; /* True if range start uses ==, >= or <= */
1456 int endEq; /* True if range end uses ==, >= or <= */
1457 int start_constraints; /* Start of range is constrained */
1458 int nConstraint; /* Number of constraint terms */
1459 int iIdxCur; /* The VDBE cursor for the index */
1460 int nExtraReg = 0; /* Number of extra registers needed */
1461 int op; /* Instruction opcode */
1462 char *zStartAff; /* Affinity for start of range constraint */
1463 char *zEndAff = 0; /* Affinity for end of range constraint */
1464 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1465 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1467 pIdx = pLoop->u.btree.pIndex;
1468 iIdxCur = pLevel->iIdxCur;
1469 assert( nEq>=pLoop->nSkip );
1471 /* If this loop satisfies a sort order (pOrderBy) request that
1472 ** was passed to this function to implement a "SELECT min(x) ..."
1473 ** query, then the caller will only allow the loop to run for
1474 ** a single iteration. This means that the first row returned
1475 ** should not have a NULL value stored in 'x'. If column 'x' is
1476 ** the first one after the nEq equality constraints in the index,
1477 ** this requires some special handling.
1479 assert( pWInfo->pOrderBy==0
1480 || pWInfo->pOrderBy->nExpr==1
1481 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1482 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1483 && pWInfo->nOBSat>0
1484 && (pIdx->nKeyCol>nEq)
1486 assert( pLoop->nSkip==0 );
1487 bSeekPastNull = 1;
1488 nExtraReg = 1;
1491 /* Find any inequality constraint terms for the start and end
1492 ** of the range.
1494 j = nEq;
1495 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1496 pRangeStart = pLoop->aLTerm[j++];
1497 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1498 /* Like optimization range constraints always occur in pairs */
1499 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1500 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1502 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1503 pRangeEnd = pLoop->aLTerm[j++];
1504 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1505 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1506 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1507 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1508 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1509 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1510 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1511 VdbeComment((v, "LIKE loop counter"));
1512 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1513 /* iLikeRepCntr actually stores 2x the counter register number. The
1514 ** bottom bit indicates whether the search order is ASC or DESC. */
1515 testcase( bRev );
1516 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1517 assert( (bRev & ~1)==0 );
1518 pLevel->iLikeRepCntr <<=1;
1519 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1521 #endif
1522 if( pRangeStart==0 ){
1523 j = pIdx->aiColumn[nEq];
1524 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1525 bSeekPastNull = 1;
1529 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1531 /* If we are doing a reverse order scan on an ascending index, or
1532 ** a forward order scan on a descending index, interchange the
1533 ** start and end terms (pRangeStart and pRangeEnd).
1535 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1536 || (bRev && pIdx->nKeyCol==nEq)
1538 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1539 SWAP(u8, bSeekPastNull, bStopAtNull);
1540 SWAP(u8, nBtm, nTop);
1543 /* Generate code to evaluate all constraint terms using == or IN
1544 ** and store the values of those terms in an array of registers
1545 ** starting at regBase.
1547 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1548 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1549 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1550 if( zStartAff && nTop ){
1551 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1553 addrNxt = pLevel->addrNxt;
1555 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1556 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1557 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1558 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1559 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1560 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1561 start_constraints = pRangeStart || nEq>0;
1563 /* Seek the index cursor to the start of the range. */
1564 nConstraint = nEq;
1565 if( pRangeStart ){
1566 Expr *pRight = pRangeStart->pExpr->pRight;
1567 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1568 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1569 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1570 && sqlite3ExprCanBeNull(pRight)
1572 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1573 VdbeCoverage(v);
1575 if( zStartAff ){
1576 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1578 nConstraint += nBtm;
1579 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1580 if( sqlite3ExprIsVector(pRight)==0 ){
1581 disableTerm(pLevel, pRangeStart);
1582 }else{
1583 startEq = 1;
1585 bSeekPastNull = 0;
1586 }else if( bSeekPastNull ){
1587 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1588 nConstraint++;
1589 startEq = 0;
1590 start_constraints = 1;
1592 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1593 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1594 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1595 ** above has already left the cursor sitting on the correct row,
1596 ** so no further seeking is needed */
1597 }else{
1598 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1599 assert( op!=0 );
1600 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1601 VdbeCoverage(v);
1602 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1603 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1604 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1605 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1606 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1607 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1610 /* Load the value for the inequality constraint at the end of the
1611 ** range (if any).
1613 nConstraint = nEq;
1614 if( pRangeEnd ){
1615 Expr *pRight = pRangeEnd->pExpr->pRight;
1616 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1617 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1618 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1619 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1620 && sqlite3ExprCanBeNull(pRight)
1622 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1623 VdbeCoverage(v);
1625 if( zEndAff ){
1626 updateRangeAffinityStr(pRight, nTop, zEndAff);
1627 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1628 }else{
1629 assert( pParse->db->mallocFailed );
1631 nConstraint += nTop;
1632 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1634 if( sqlite3ExprIsVector(pRight)==0 ){
1635 disableTerm(pLevel, pRangeEnd);
1636 }else{
1637 endEq = 1;
1639 }else if( bStopAtNull ){
1640 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1641 endEq = 0;
1642 nConstraint++;
1644 sqlite3DbFree(db, zStartAff);
1645 sqlite3DbFree(db, zEndAff);
1647 /* Top of the loop body */
1648 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1650 /* Check if the index cursor is past the end of the range. */
1651 if( nConstraint ){
1652 op = aEndOp[bRev*2 + endEq];
1653 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1654 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1655 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1656 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1657 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1660 /* Seek the table cursor, if required */
1661 if( omitTable ){
1662 /* pIdx is a covering index. No need to access the main table. */
1663 }else if( HasRowid(pIdx->pTable) ){
1664 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1665 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1666 && (pWInfo->eOnePass==ONEPASS_SINGLE)
1668 iRowidReg = ++pParse->nMem;
1669 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1670 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1671 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1672 VdbeCoverage(v);
1673 }else{
1674 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1676 }else if( iCur!=iIdxCur ){
1677 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1678 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1679 for(j=0; j<pPk->nKeyCol; j++){
1680 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1681 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1683 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1684 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1687 /* If pIdx is an index on one or more expressions, then look through
1688 ** all the expressions in pWInfo and try to transform matching expressions
1689 ** into reference to index columns.
1691 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1694 /* Record the instruction used to terminate the loop. */
1695 if( pLoop->wsFlags & WHERE_ONEROW ){
1696 pLevel->op = OP_Noop;
1697 }else if( bRev ){
1698 pLevel->op = OP_Prev;
1699 }else{
1700 pLevel->op = OP_Next;
1702 pLevel->p1 = iIdxCur;
1703 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1704 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1705 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1706 }else{
1707 assert( pLevel->p5==0 );
1709 if( omitTable ) pIdx = 0;
1710 }else
1712 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1713 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1714 /* Case 5: Two or more separately indexed terms connected by OR
1716 ** Example:
1718 ** CREATE TABLE t1(a,b,c,d);
1719 ** CREATE INDEX i1 ON t1(a);
1720 ** CREATE INDEX i2 ON t1(b);
1721 ** CREATE INDEX i3 ON t1(c);
1723 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1725 ** In the example, there are three indexed terms connected by OR.
1726 ** The top of the loop looks like this:
1728 ** Null 1 # Zero the rowset in reg 1
1730 ** Then, for each indexed term, the following. The arguments to
1731 ** RowSetTest are such that the rowid of the current row is inserted
1732 ** into the RowSet. If it is already present, control skips the
1733 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1735 ** sqlite3WhereBegin(<term>)
1736 ** RowSetTest # Insert rowid into rowset
1737 ** Gosub 2 A
1738 ** sqlite3WhereEnd()
1740 ** Following the above, code to terminate the loop. Label A, the target
1741 ** of the Gosub above, jumps to the instruction right after the Goto.
1743 ** Null 1 # Zero the rowset in reg 1
1744 ** Goto B # The loop is finished.
1746 ** A: <loop body> # Return data, whatever.
1748 ** Return 2 # Jump back to the Gosub
1750 ** B: <after the loop>
1752 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1753 ** use an ephemeral index instead of a RowSet to record the primary
1754 ** keys of the rows we have already seen.
1757 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1758 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1759 Index *pCov = 0; /* Potential covering index (or NULL) */
1760 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1762 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1763 int regRowset = 0; /* Register for RowSet object */
1764 int regRowid = 0; /* Register holding rowid */
1765 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1766 int iRetInit; /* Address of regReturn init */
1767 int untestedTerms = 0; /* Some terms not completely tested */
1768 int ii; /* Loop counter */
1769 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1770 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1771 Table *pTab = pTabItem->pTab;
1773 pTerm = pLoop->aLTerm[0];
1774 assert( pTerm!=0 );
1775 assert( pTerm->eOperator & WO_OR );
1776 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1777 pOrWc = &pTerm->u.pOrInfo->wc;
1778 pLevel->op = OP_Return;
1779 pLevel->p1 = regReturn;
1781 /* Set up a new SrcList in pOrTab containing the table being scanned
1782 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1783 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1785 if( pWInfo->nLevel>1 ){
1786 int nNotReady; /* The number of notReady tables */
1787 struct SrcList_item *origSrc; /* Original list of tables */
1788 nNotReady = pWInfo->nLevel - iLevel - 1;
1789 pOrTab = sqlite3StackAllocRaw(db,
1790 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1791 if( pOrTab==0 ) return notReady;
1792 pOrTab->nAlloc = (u8)(nNotReady + 1);
1793 pOrTab->nSrc = pOrTab->nAlloc;
1794 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1795 origSrc = pWInfo->pTabList->a;
1796 for(k=1; k<=nNotReady; k++){
1797 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1799 }else{
1800 pOrTab = pWInfo->pTabList;
1803 /* Initialize the rowset register to contain NULL. An SQL NULL is
1804 ** equivalent to an empty rowset. Or, create an ephemeral index
1805 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1807 ** Also initialize regReturn to contain the address of the instruction
1808 ** immediately following the OP_Return at the bottom of the loop. This
1809 ** is required in a few obscure LEFT JOIN cases where control jumps
1810 ** over the top of the loop into the body of it. In this case the
1811 ** correct response for the end-of-loop code (the OP_Return) is to
1812 ** fall through to the next instruction, just as an OP_Next does if
1813 ** called on an uninitialized cursor.
1815 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1816 if( HasRowid(pTab) ){
1817 regRowset = ++pParse->nMem;
1818 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1819 }else{
1820 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1821 regRowset = pParse->nTab++;
1822 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1823 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1825 regRowid = ++pParse->nMem;
1827 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1829 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1830 ** Then for every term xN, evaluate as the subexpression: xN AND z
1831 ** That way, terms in y that are factored into the disjunction will
1832 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1834 ** Actually, each subexpression is converted to "xN AND w" where w is
1835 ** the "interesting" terms of z - terms that did not originate in the
1836 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1837 ** indices.
1839 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1840 ** is not contained in the ON clause of a LEFT JOIN.
1841 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1843 if( pWC->nTerm>1 ){
1844 int iTerm;
1845 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1846 Expr *pExpr = pWC->a[iTerm].pExpr;
1847 if( &pWC->a[iTerm] == pTerm ) continue;
1848 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1849 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1850 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1851 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1852 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1853 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1854 pExpr = sqlite3ExprDup(db, pExpr, 0);
1855 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1857 if( pAndExpr ){
1858 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1862 /* Run a separate WHERE clause for each term of the OR clause. After
1863 ** eliminating duplicates from other WHERE clauses, the action for each
1864 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1866 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1867 for(ii=0; ii<pOrWc->nTerm; ii++){
1868 WhereTerm *pOrTerm = &pOrWc->a[ii];
1869 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1870 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1871 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1872 int jmp1 = 0; /* Address of jump operation */
1873 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1874 pAndExpr->pLeft = pOrExpr;
1875 pOrExpr = pAndExpr;
1877 /* Loop through table entries that match term pOrTerm. */
1878 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1879 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1880 wctrlFlags, iCovCur);
1881 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1882 if( pSubWInfo ){
1883 WhereLoop *pSubLoop;
1884 int addrExplain = sqlite3WhereExplainOneScan(
1885 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1887 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1889 /* This is the sub-WHERE clause body. First skip over
1890 ** duplicate rows from prior sub-WHERE clauses, and record the
1891 ** rowid (or PRIMARY KEY) for the current row so that the same
1892 ** row will be skipped in subsequent sub-WHERE clauses.
1894 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1895 int r;
1896 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1897 if( HasRowid(pTab) ){
1898 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1899 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1900 r,iSet);
1901 VdbeCoverage(v);
1902 }else{
1903 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1904 int nPk = pPk->nKeyCol;
1905 int iPk;
1907 /* Read the PK into an array of temp registers. */
1908 r = sqlite3GetTempRange(pParse, nPk);
1909 for(iPk=0; iPk<nPk; iPk++){
1910 int iCol = pPk->aiColumn[iPk];
1911 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1914 /* Check if the temp table already contains this key. If so,
1915 ** the row has already been included in the result set and
1916 ** can be ignored (by jumping past the Gosub below). Otherwise,
1917 ** insert the key into the temp table and proceed with processing
1918 ** the row.
1920 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1921 ** is zero, assume that the key cannot already be present in
1922 ** the temp table. And if iSet is -1, assume that there is no
1923 ** need to insert the key into the temp table, as it will never
1924 ** be tested for. */
1925 if( iSet ){
1926 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1927 VdbeCoverage(v);
1929 if( iSet>=0 ){
1930 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1931 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1932 r, nPk);
1933 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1936 /* Release the array of temp registers */
1937 sqlite3ReleaseTempRange(pParse, r, nPk);
1941 /* Invoke the main loop body as a subroutine */
1942 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1944 /* Jump here (skipping the main loop body subroutine) if the
1945 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1946 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1948 /* The pSubWInfo->untestedTerms flag means that this OR term
1949 ** contained one or more AND term from a notReady table. The
1950 ** terms from the notReady table could not be tested and will
1951 ** need to be tested later.
1953 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1955 /* If all of the OR-connected terms are optimized using the same
1956 ** index, and the index is opened using the same cursor number
1957 ** by each call to sqlite3WhereBegin() made by this loop, it may
1958 ** be possible to use that index as a covering index.
1960 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1961 ** uses an index, and this is either the first OR-connected term
1962 ** processed or the index is the same as that used by all previous
1963 ** terms, set pCov to the candidate covering index. Otherwise, set
1964 ** pCov to NULL to indicate that no candidate covering index will
1965 ** be available.
1967 pSubLoop = pSubWInfo->a[0].pWLoop;
1968 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1969 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1970 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1971 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1973 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1974 pCov = pSubLoop->u.btree.pIndex;
1975 }else{
1976 pCov = 0;
1979 /* Finish the loop through table entries that match term pOrTerm. */
1980 sqlite3WhereEnd(pSubWInfo);
1984 pLevel->u.pCovidx = pCov;
1985 if( pCov ) pLevel->iIdxCur = iCovCur;
1986 if( pAndExpr ){
1987 pAndExpr->pLeft = 0;
1988 sqlite3ExprDelete(db, pAndExpr);
1990 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1991 sqlite3VdbeGoto(v, pLevel->addrBrk);
1992 sqlite3VdbeResolveLabel(v, iLoopBody);
1994 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1995 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1996 }else
1997 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2000 /* Case 6: There is no usable index. We must do a complete
2001 ** scan of the entire table.
2003 static const u8 aStep[] = { OP_Next, OP_Prev };
2004 static const u8 aStart[] = { OP_Rewind, OP_Last };
2005 assert( bRev==0 || bRev==1 );
2006 if( pTabItem->fg.isRecursive ){
2007 /* Tables marked isRecursive have only a single row that is stored in
2008 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2009 pLevel->op = OP_Noop;
2010 }else{
2011 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2012 pLevel->op = aStep[bRev];
2013 pLevel->p1 = iCur;
2014 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2015 VdbeCoverageIf(v, bRev==0);
2016 VdbeCoverageIf(v, bRev!=0);
2017 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2021 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2022 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2023 #endif
2025 /* Insert code to test every subexpression that can be completely
2026 ** computed using the current set of tables.
2028 ** This loop may run between one and three times, depending on the
2029 ** constraints to be generated. The value of stack variable iLoop
2030 ** determines the constraints coded by each iteration, as follows:
2032 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2033 ** iLoop==2: Code remaining expressions that do not contain correlated
2034 ** sub-queries.
2035 ** iLoop==3: Code all remaining expressions.
2037 ** An effort is made to skip unnecessary iterations of the loop.
2039 iLoop = (pIdx ? 1 : 2);
2041 int iNext = 0; /* Next value for iLoop */
2042 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2043 Expr *pE;
2044 int skipLikeAddr = 0;
2045 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2046 testcase( pTerm->wtFlags & TERM_CODED );
2047 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2048 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2049 testcase( pWInfo->untestedTerms==0
2050 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2051 pWInfo->untestedTerms = 1;
2052 continue;
2054 pE = pTerm->pExpr;
2055 assert( pE!=0 );
2056 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2057 continue;
2060 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2061 iNext = 2;
2062 continue;
2064 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2065 if( iNext==0 ) iNext = 3;
2066 continue;
2069 if( pTerm->wtFlags & TERM_LIKECOND ){
2070 /* If the TERM_LIKECOND flag is set, that means that the range search
2071 ** is sufficient to guarantee that the LIKE operator is true, so we
2072 ** can skip the call to the like(A,B) function. But this only works
2073 ** for strings. So do not skip the call to the function on the pass
2074 ** that compares BLOBs. */
2075 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2076 continue;
2077 #else
2078 u32 x = pLevel->iLikeRepCntr;
2079 assert( x>0 );
2080 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If, (int)(x>>1));
2081 VdbeCoverage(v);
2082 #endif
2084 #ifdef WHERETRACE_ENABLED /* 0xffff */
2085 if( sqlite3WhereTrace ){
2086 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2087 pWC->nTerm-j, pTerm, iLoop));
2089 #endif
2090 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2091 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2092 pTerm->wtFlags |= TERM_CODED;
2094 iLoop = iNext;
2095 }while( iLoop>0 );
2097 /* Insert code to test for implied constraints based on transitivity
2098 ** of the "==" operator.
2100 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2101 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2102 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2103 ** the implied "t1.a=123" constraint.
2105 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2106 Expr *pE, sEAlt;
2107 WhereTerm *pAlt;
2108 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2109 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2110 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2111 if( pTerm->leftCursor!=iCur ) continue;
2112 if( pLevel->iLeftJoin ) continue;
2113 pE = pTerm->pExpr;
2114 assert( !ExprHasProperty(pE, EP_FromJoin) );
2115 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2116 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2117 WO_EQ|WO_IN|WO_IS, 0);
2118 if( pAlt==0 ) continue;
2119 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2120 testcase( pAlt->eOperator & WO_EQ );
2121 testcase( pAlt->eOperator & WO_IS );
2122 testcase( pAlt->eOperator & WO_IN );
2123 VdbeModuleComment((v, "begin transitive constraint"));
2124 sEAlt = *pAlt->pExpr;
2125 sEAlt.pLeft = pE->pLeft;
2126 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2129 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2130 ** at least one row of the right table has matched the left table.
2132 if( pLevel->iLeftJoin ){
2133 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2134 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2135 VdbeComment((v, "record LEFT JOIN hit"));
2136 sqlite3ExprCacheClear(pParse);
2137 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2138 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2139 testcase( pTerm->wtFlags & TERM_CODED );
2140 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2141 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2142 assert( pWInfo->untestedTerms );
2143 continue;
2145 assert( pTerm->pExpr );
2146 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2147 pTerm->wtFlags |= TERM_CODED;
2151 return pLevel->notReady;