Improve the performance of the built-in REPLACE() function in cases where
[sqlite.git] / src / vdbemem.c
blobc02370c738f44024aef141c3a90c26f365268619
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
96 #ifdef SQLITE_DEBUG
98 ** Check that string value of pMem agrees with its integer or real value.
100 ** A single int or real value always converts to the same strings. But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent. See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around. It returns
112 ** true if everything is ok and false if there is a problem.
114 ** This routine is for use inside of assert() statements only.
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
138 return 1;
140 #endif /* SQLITE_DEBUG */
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157 int rc;
158 #endif
159 assert( (pMem->flags&MEM_RowSet)==0 );
160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163 return SQLITE_OK;
165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168 #else
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177 return rc;
178 #endif
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation. pMem must be either a string or
187 ** blob if bPreserve is true. If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
192 assert( (pMem->flags&MEM_RowSet)==0 );
193 testcase( pMem->db==0 );
195 /* If the bPreserve flag is set to true, then the memory cell must already
196 ** contain a valid string or blob value. */
197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202 if( n<32 ) n = 32;
203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225 pMem->xDel((void *)(pMem->z));
228 pMem->z = pMem->zMalloc;
229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230 return SQLITE_OK;
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249 if( pMem->szMalloc<szNew ){
250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
252 assert( (pMem->flags & MEM_Dyn)==0 );
253 pMem->z = pMem->zMalloc;
254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255 return SQLITE_OK;
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280 assert( (pMem->flags&MEM_RowSet)==0 );
281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
288 pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291 #endif
293 return SQLITE_OK;
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302 int nByte;
303 assert( pMem->flags & MEM_Zero );
304 assert( pMem->flags&MEM_Blob );
305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
320 return SQLITE_OK;
322 #endif
325 ** Make sure the given Mem is \u0000 terminated.
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
339 ** Add MEM_Str to the set of representations for the given Mem. Numbers
340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341 ** is a no-op.
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353 int fg = pMem->flags;
354 const int nByte = 32;
356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357 assert( !(fg&MEM_Zero) );
358 assert( !(fg&(MEM_Str|MEM_Blob)) );
359 assert( fg&(MEM_Int|MEM_Real) );
360 assert( (pMem->flags&MEM_RowSet)==0 );
361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365 pMem->enc = 0;
366 return SQLITE_NOMEM_BKPT;
369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
375 if( fg & MEM_Int ){
376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377 }else{
378 assert( fg & MEM_Real );
379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
381 pMem->n = sqlite3Strlen30(pMem->z);
382 pMem->enc = SQLITE_UTF8;
383 pMem->flags |= MEM_Str|MEM_Term;
384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385 sqlite3VdbeChangeEncoding(pMem, enc);
386 return SQLITE_OK;
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function. The
392 ** result of the aggregate is stored back into pMem.
394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395 ** otherwise.
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
419 ** If the memory cell contains a value that must be freed by
420 ** invoking the external callback in Mem.xDel, then this routine
421 ** will free that value. It also sets Mem.flags to MEM_Null.
423 ** This is a helper routine for sqlite3VdbeMemSetNull() and
424 ** for sqlite3VdbeMemRelease(). Use those other routines as the
425 ** entry point for releasing Mem resources.
427 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
428 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
429 assert( VdbeMemDynamic(p) );
430 if( p->flags&MEM_Agg ){
431 sqlite3VdbeMemFinalize(p, p->u.pDef);
432 assert( (p->flags & MEM_Agg)==0 );
433 testcase( p->flags & MEM_Dyn );
435 if( p->flags&MEM_Dyn ){
436 assert( (p->flags&MEM_RowSet)==0 );
437 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
438 p->xDel((void *)p->z);
439 }else if( p->flags&MEM_RowSet ){
440 sqlite3RowSetClear(p->u.pRowSet);
441 }else if( p->flags&MEM_Frame ){
442 VdbeFrame *pFrame = p->u.pFrame;
443 pFrame->pParent = pFrame->v->pDelFrame;
444 pFrame->v->pDelFrame = pFrame;
446 p->flags = MEM_Null;
450 ** Release memory held by the Mem p, both external memory cleared
451 ** by p->xDel and memory in p->zMalloc.
453 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
454 ** the unusual case where there really is memory in p that needs
455 ** to be freed.
457 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
458 if( VdbeMemDynamic(p) ){
459 vdbeMemClearExternAndSetNull(p);
461 if( p->szMalloc ){
462 sqlite3DbFreeNN(p->db, p->zMalloc);
463 p->szMalloc = 0;
465 p->z = 0;
469 ** Release any memory resources held by the Mem. Both the memory that is
470 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
472 ** Use this routine prior to clean up prior to abandoning a Mem, or to
473 ** reset a Mem back to its minimum memory utilization.
475 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
476 ** prior to inserting new content into the Mem.
478 void sqlite3VdbeMemRelease(Mem *p){
479 assert( sqlite3VdbeCheckMemInvariants(p) );
480 if( VdbeMemDynamic(p) || p->szMalloc ){
481 vdbeMemClear(p);
486 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
487 ** If the double is out of range of a 64-bit signed integer then
488 ** return the closest available 64-bit signed integer.
490 static SQLITE_NOINLINE i64 doubleToInt64(double r){
491 #ifdef SQLITE_OMIT_FLOATING_POINT
492 /* When floating-point is omitted, double and int64 are the same thing */
493 return r;
494 #else
496 ** Many compilers we encounter do not define constants for the
497 ** minimum and maximum 64-bit integers, or they define them
498 ** inconsistently. And many do not understand the "LL" notation.
499 ** So we define our own static constants here using nothing
500 ** larger than a 32-bit integer constant.
502 static const i64 maxInt = LARGEST_INT64;
503 static const i64 minInt = SMALLEST_INT64;
505 if( r<=(double)minInt ){
506 return minInt;
507 }else if( r>=(double)maxInt ){
508 return maxInt;
509 }else{
510 return (i64)r;
512 #endif
516 ** Return some kind of integer value which is the best we can do
517 ** at representing the value that *pMem describes as an integer.
518 ** If pMem is an integer, then the value is exact. If pMem is
519 ** a floating-point then the value returned is the integer part.
520 ** If pMem is a string or blob, then we make an attempt to convert
521 ** it into an integer and return that. If pMem represents an
522 ** an SQL-NULL value, return 0.
524 ** If pMem represents a string value, its encoding might be changed.
526 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
527 i64 value = 0;
528 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
529 return value;
531 i64 sqlite3VdbeIntValue(Mem *pMem){
532 int flags;
533 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
534 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
535 flags = pMem->flags;
536 if( flags & MEM_Int ){
537 return pMem->u.i;
538 }else if( flags & MEM_Real ){
539 return doubleToInt64(pMem->u.r);
540 }else if( flags & (MEM_Str|MEM_Blob) ){
541 assert( pMem->z || pMem->n==0 );
542 return memIntValue(pMem);
543 }else{
544 return 0;
549 ** Return the best representation of pMem that we can get into a
550 ** double. If pMem is already a double or an integer, return its
551 ** value. If it is a string or blob, try to convert it to a double.
552 ** If it is a NULL, return 0.0.
554 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
555 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
556 double val = (double)0;
557 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
558 return val;
560 double sqlite3VdbeRealValue(Mem *pMem){
561 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
562 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
563 if( pMem->flags & MEM_Real ){
564 return pMem->u.r;
565 }else if( pMem->flags & MEM_Int ){
566 return (double)pMem->u.i;
567 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
568 return memRealValue(pMem);
569 }else{
570 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
571 return (double)0;
576 ** The MEM structure is already a MEM_Real. Try to also make it a
577 ** MEM_Int if we can.
579 void sqlite3VdbeIntegerAffinity(Mem *pMem){
580 i64 ix;
581 assert( pMem->flags & MEM_Real );
582 assert( (pMem->flags & MEM_RowSet)==0 );
583 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
584 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
586 ix = doubleToInt64(pMem->u.r);
588 /* Only mark the value as an integer if
590 ** (1) the round-trip conversion real->int->real is a no-op, and
591 ** (2) The integer is neither the largest nor the smallest
592 ** possible integer (ticket #3922)
594 ** The second and third terms in the following conditional enforces
595 ** the second condition under the assumption that addition overflow causes
596 ** values to wrap around.
598 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
599 pMem->u.i = ix;
600 MemSetTypeFlag(pMem, MEM_Int);
605 ** Convert pMem to type integer. Invalidate any prior representations.
607 int sqlite3VdbeMemIntegerify(Mem *pMem){
608 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
609 assert( (pMem->flags & MEM_RowSet)==0 );
610 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
612 pMem->u.i = sqlite3VdbeIntValue(pMem);
613 MemSetTypeFlag(pMem, MEM_Int);
614 return SQLITE_OK;
618 ** Convert pMem so that it is of type MEM_Real.
619 ** Invalidate any prior representations.
621 int sqlite3VdbeMemRealify(Mem *pMem){
622 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
623 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
625 pMem->u.r = sqlite3VdbeRealValue(pMem);
626 MemSetTypeFlag(pMem, MEM_Real);
627 return SQLITE_OK;
630 /* Compare a floating point value to an integer. Return true if the two
631 ** values are the same within the precision of the floating point value.
633 ** For some versions of GCC on 32-bit machines, if you do the more obvious
634 ** comparison of "r1==(double)i" you sometimes get an answer of false even
635 ** though the r1 and (double)i values are bit-for-bit the same.
637 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
638 double r2 = (double)i;
639 return memcmp(&r1, &r2, sizeof(r1))==0;
643 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
644 ** Invalidate any prior representations.
646 ** Every effort is made to force the conversion, even if the input
647 ** is a string that does not look completely like a number. Convert
648 ** as much of the string as we can and ignore the rest.
650 int sqlite3VdbeMemNumerify(Mem *pMem){
651 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
652 int rc;
653 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
654 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
655 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
656 if( rc==0 ){
657 MemSetTypeFlag(pMem, MEM_Int);
658 }else{
659 i64 i = pMem->u.i;
660 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
661 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
662 pMem->u.i = i;
663 MemSetTypeFlag(pMem, MEM_Int);
664 }else{
665 MemSetTypeFlag(pMem, MEM_Real);
669 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
670 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
671 return SQLITE_OK;
675 ** Cast the datatype of the value in pMem according to the affinity
676 ** "aff". Casting is different from applying affinity in that a cast
677 ** is forced. In other words, the value is converted into the desired
678 ** affinity even if that results in loss of data. This routine is
679 ** used (for example) to implement the SQL "cast()" operator.
681 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
682 if( pMem->flags & MEM_Null ) return;
683 switch( aff ){
684 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
685 if( (pMem->flags & MEM_Blob)==0 ){
686 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
687 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
688 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
689 }else{
690 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
692 break;
694 case SQLITE_AFF_NUMERIC: {
695 sqlite3VdbeMemNumerify(pMem);
696 break;
698 case SQLITE_AFF_INTEGER: {
699 sqlite3VdbeMemIntegerify(pMem);
700 break;
702 case SQLITE_AFF_REAL: {
703 sqlite3VdbeMemRealify(pMem);
704 break;
706 default: {
707 assert( aff==SQLITE_AFF_TEXT );
708 assert( MEM_Str==(MEM_Blob>>3) );
709 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
710 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
711 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
712 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
713 break;
719 ** Initialize bulk memory to be a consistent Mem object.
721 ** The minimum amount of initialization feasible is performed.
723 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
724 assert( (flags & ~MEM_TypeMask)==0 );
725 pMem->flags = flags;
726 pMem->db = db;
727 pMem->szMalloc = 0;
732 ** Delete any previous value and set the value stored in *pMem to NULL.
734 ** This routine calls the Mem.xDel destructor to dispose of values that
735 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
736 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
737 ** routine to invoke the destructor and deallocates Mem.zMalloc.
739 ** Use this routine to reset the Mem prior to insert a new value.
741 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
743 void sqlite3VdbeMemSetNull(Mem *pMem){
744 if( VdbeMemDynamic(pMem) ){
745 vdbeMemClearExternAndSetNull(pMem);
746 }else{
747 pMem->flags = MEM_Null;
750 void sqlite3ValueSetNull(sqlite3_value *p){
751 sqlite3VdbeMemSetNull((Mem*)p);
755 ** Delete any previous value and set the value to be a BLOB of length
756 ** n containing all zeros.
758 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
759 sqlite3VdbeMemRelease(pMem);
760 pMem->flags = MEM_Blob|MEM_Zero;
761 pMem->n = 0;
762 if( n<0 ) n = 0;
763 pMem->u.nZero = n;
764 pMem->enc = SQLITE_UTF8;
765 pMem->z = 0;
769 ** The pMem is known to contain content that needs to be destroyed prior
770 ** to a value change. So invoke the destructor, then set the value to
771 ** a 64-bit integer.
773 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
774 sqlite3VdbeMemSetNull(pMem);
775 pMem->u.i = val;
776 pMem->flags = MEM_Int;
780 ** Delete any previous value and set the value stored in *pMem to val,
781 ** manifest type INTEGER.
783 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
784 if( VdbeMemDynamic(pMem) ){
785 vdbeReleaseAndSetInt64(pMem, val);
786 }else{
787 pMem->u.i = val;
788 pMem->flags = MEM_Int;
792 /* A no-op destructor */
793 static void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
796 ** Set the value stored in *pMem should already be a NULL.
797 ** Also store a pointer to go with it.
799 void sqlite3VdbeMemSetPointer(
800 Mem *pMem,
801 void *pPtr,
802 const char *zPType,
803 void (*xDestructor)(void*)
805 assert( pMem->flags==MEM_Null );
806 pMem->u.zPType = zPType ? zPType : "";
807 pMem->z = pPtr;
808 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
809 pMem->eSubtype = 'p';
810 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
813 #ifndef SQLITE_OMIT_FLOATING_POINT
815 ** Delete any previous value and set the value stored in *pMem to val,
816 ** manifest type REAL.
818 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
819 sqlite3VdbeMemSetNull(pMem);
820 if( !sqlite3IsNaN(val) ){
821 pMem->u.r = val;
822 pMem->flags = MEM_Real;
825 #endif
828 ** Delete any previous value and set the value of pMem to be an
829 ** empty boolean index.
831 void sqlite3VdbeMemSetRowSet(Mem *pMem){
832 sqlite3 *db = pMem->db;
833 assert( db!=0 );
834 assert( (pMem->flags & MEM_RowSet)==0 );
835 sqlite3VdbeMemRelease(pMem);
836 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
837 if( db->mallocFailed ){
838 pMem->flags = MEM_Null;
839 pMem->szMalloc = 0;
840 }else{
841 assert( pMem->zMalloc );
842 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
843 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
844 assert( pMem->u.pRowSet!=0 );
845 pMem->flags = MEM_RowSet;
850 ** Return true if the Mem object contains a TEXT or BLOB that is
851 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
853 int sqlite3VdbeMemTooBig(Mem *p){
854 assert( p->db!=0 );
855 if( p->flags & (MEM_Str|MEM_Blob) ){
856 int n = p->n;
857 if( p->flags & MEM_Zero ){
858 n += p->u.nZero;
860 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
862 return 0;
865 #ifdef SQLITE_DEBUG
867 ** This routine prepares a memory cell for modification by breaking
868 ** its link to a shallow copy and by marking any current shallow
869 ** copies of this cell as invalid.
871 ** This is used for testing and debugging only - to make sure shallow
872 ** copies are not misused.
874 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
875 int i;
876 Mem *pX;
877 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
878 if( pX->pScopyFrom==pMem ){
879 pX->flags |= MEM_Undefined;
880 pX->pScopyFrom = 0;
883 pMem->pScopyFrom = 0;
885 #endif /* SQLITE_DEBUG */
889 ** Make an shallow copy of pFrom into pTo. Prior contents of
890 ** pTo are freed. The pFrom->z field is not duplicated. If
891 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
892 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
894 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
895 vdbeMemClearExternAndSetNull(pTo);
896 assert( !VdbeMemDynamic(pTo) );
897 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
899 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
900 assert( (pFrom->flags & MEM_RowSet)==0 );
901 assert( pTo->db==pFrom->db );
902 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
903 memcpy(pTo, pFrom, MEMCELLSIZE);
904 if( (pFrom->flags&MEM_Static)==0 ){
905 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
906 assert( srcType==MEM_Ephem || srcType==MEM_Static );
907 pTo->flags |= srcType;
912 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
913 ** freed before the copy is made.
915 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
916 int rc = SQLITE_OK;
918 assert( (pFrom->flags & MEM_RowSet)==0 );
919 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
920 memcpy(pTo, pFrom, MEMCELLSIZE);
921 pTo->flags &= ~MEM_Dyn;
922 if( pTo->flags&(MEM_Str|MEM_Blob) ){
923 if( 0==(pFrom->flags&MEM_Static) ){
924 pTo->flags |= MEM_Ephem;
925 rc = sqlite3VdbeMemMakeWriteable(pTo);
929 return rc;
933 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
934 ** freed. If pFrom contains ephemeral data, a copy is made.
936 ** pFrom contains an SQL NULL when this routine returns.
938 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
939 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
940 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
941 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
943 sqlite3VdbeMemRelease(pTo);
944 memcpy(pTo, pFrom, sizeof(Mem));
945 pFrom->flags = MEM_Null;
946 pFrom->szMalloc = 0;
950 ** Change the value of a Mem to be a string or a BLOB.
952 ** The memory management strategy depends on the value of the xDel
953 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
954 ** string is copied into a (possibly existing) buffer managed by the
955 ** Mem structure. Otherwise, any existing buffer is freed and the
956 ** pointer copied.
958 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
959 ** size limit) then no memory allocation occurs. If the string can be
960 ** stored without allocating memory, then it is. If a memory allocation
961 ** is required to store the string, then value of pMem is unchanged. In
962 ** either case, SQLITE_TOOBIG is returned.
964 int sqlite3VdbeMemSetStr(
965 Mem *pMem, /* Memory cell to set to string value */
966 const char *z, /* String pointer */
967 int n, /* Bytes in string, or negative */
968 u8 enc, /* Encoding of z. 0 for BLOBs */
969 void (*xDel)(void*) /* Destructor function */
971 int nByte = n; /* New value for pMem->n */
972 int iLimit; /* Maximum allowed string or blob size */
973 u16 flags = 0; /* New value for pMem->flags */
975 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
976 assert( (pMem->flags & MEM_RowSet)==0 );
978 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
979 if( !z ){
980 sqlite3VdbeMemSetNull(pMem);
981 return SQLITE_OK;
984 if( pMem->db ){
985 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
986 }else{
987 iLimit = SQLITE_MAX_LENGTH;
989 flags = (enc==0?MEM_Blob:MEM_Str);
990 if( nByte<0 ){
991 assert( enc!=0 );
992 if( enc==SQLITE_UTF8 ){
993 nByte = 0x7fffffff & (int)strlen(z);
994 if( nByte>iLimit ) nByte = iLimit+1;
995 }else{
996 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
998 flags |= MEM_Term;
1001 /* The following block sets the new values of Mem.z and Mem.xDel. It
1002 ** also sets a flag in local variable "flags" to indicate the memory
1003 ** management (one of MEM_Dyn or MEM_Static).
1005 if( xDel==SQLITE_TRANSIENT ){
1006 int nAlloc = nByte;
1007 if( flags&MEM_Term ){
1008 nAlloc += (enc==SQLITE_UTF8?1:2);
1010 if( nByte>iLimit ){
1011 return SQLITE_TOOBIG;
1013 testcase( nAlloc==0 );
1014 testcase( nAlloc==31 );
1015 testcase( nAlloc==32 );
1016 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1017 return SQLITE_NOMEM_BKPT;
1019 memcpy(pMem->z, z, nAlloc);
1020 }else if( xDel==SQLITE_DYNAMIC ){
1021 sqlite3VdbeMemRelease(pMem);
1022 pMem->zMalloc = pMem->z = (char *)z;
1023 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1024 }else{
1025 sqlite3VdbeMemRelease(pMem);
1026 pMem->z = (char *)z;
1027 pMem->xDel = xDel;
1028 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1031 pMem->n = nByte;
1032 pMem->flags = flags;
1033 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1035 #ifndef SQLITE_OMIT_UTF16
1036 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1037 return SQLITE_NOMEM_BKPT;
1039 #endif
1041 if( nByte>iLimit ){
1042 return SQLITE_TOOBIG;
1045 return SQLITE_OK;
1049 ** Move data out of a btree key or data field and into a Mem structure.
1050 ** The data is payload from the entry that pCur is currently pointing
1051 ** to. offset and amt determine what portion of the data or key to retrieve.
1052 ** The result is written into the pMem element.
1054 ** The pMem object must have been initialized. This routine will use
1055 ** pMem->zMalloc to hold the content from the btree, if possible. New
1056 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1057 ** is responsible for making sure that the pMem object is eventually
1058 ** destroyed.
1060 ** If this routine fails for any reason (malloc returns NULL or unable
1061 ** to read from the disk) then the pMem is left in an inconsistent state.
1063 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1064 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1065 u32 offset, /* Offset from the start of data to return bytes from. */
1066 u32 amt, /* Number of bytes to return. */
1067 Mem *pMem /* OUT: Return data in this Mem structure. */
1069 int rc;
1070 pMem->flags = MEM_Null;
1071 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1072 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1073 if( rc==SQLITE_OK ){
1074 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1075 pMem->flags = MEM_Blob;
1076 pMem->n = (int)amt;
1077 }else{
1078 sqlite3VdbeMemRelease(pMem);
1081 return rc;
1083 int sqlite3VdbeMemFromBtree(
1084 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1085 u32 offset, /* Offset from the start of data to return bytes from. */
1086 u32 amt, /* Number of bytes to return. */
1087 Mem *pMem /* OUT: Return data in this Mem structure. */
1089 char *zData; /* Data from the btree layer */
1090 u32 available = 0; /* Number of bytes available on the local btree page */
1091 int rc = SQLITE_OK; /* Return code */
1093 assert( sqlite3BtreeCursorIsValid(pCur) );
1094 assert( !VdbeMemDynamic(pMem) );
1096 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1097 ** that both the BtShared and database handle mutexes are held. */
1098 assert( (pMem->flags & MEM_RowSet)==0 );
1099 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1100 assert( zData!=0 );
1102 if( offset+amt<=available ){
1103 pMem->z = &zData[offset];
1104 pMem->flags = MEM_Blob|MEM_Ephem;
1105 pMem->n = (int)amt;
1106 }else{
1107 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1110 return rc;
1114 ** The pVal argument is known to be a value other than NULL.
1115 ** Convert it into a string with encoding enc and return a pointer
1116 ** to a zero-terminated version of that string.
1118 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1119 assert( pVal!=0 );
1120 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1121 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1122 assert( (pVal->flags & MEM_RowSet)==0 );
1123 assert( (pVal->flags & (MEM_Null))==0 );
1124 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1125 if( ExpandBlob(pVal) ) return 0;
1126 pVal->flags |= MEM_Str;
1127 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1128 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1130 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1131 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1132 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1133 return 0;
1136 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1137 }else{
1138 sqlite3VdbeMemStringify(pVal, enc, 0);
1139 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1141 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1142 || pVal->db->mallocFailed );
1143 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1144 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1145 return pVal->z;
1146 }else{
1147 return 0;
1151 /* This function is only available internally, it is not part of the
1152 ** external API. It works in a similar way to sqlite3_value_text(),
1153 ** except the data returned is in the encoding specified by the second
1154 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1155 ** SQLITE_UTF8.
1157 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1158 ** If that is the case, then the result must be aligned on an even byte
1159 ** boundary.
1161 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1162 if( !pVal ) return 0;
1163 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1164 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1165 assert( (pVal->flags & MEM_RowSet)==0 );
1166 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1167 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1168 return pVal->z;
1170 if( pVal->flags&MEM_Null ){
1171 return 0;
1173 return valueToText(pVal, enc);
1177 ** Create a new sqlite3_value object.
1179 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1180 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1181 if( p ){
1182 p->flags = MEM_Null;
1183 p->db = db;
1185 return p;
1189 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1190 ** valueNew(). See comments above valueNew() for details.
1192 struct ValueNewStat4Ctx {
1193 Parse *pParse;
1194 Index *pIdx;
1195 UnpackedRecord **ppRec;
1196 int iVal;
1200 ** Allocate and return a pointer to a new sqlite3_value object. If
1201 ** the second argument to this function is NULL, the object is allocated
1202 ** by calling sqlite3ValueNew().
1204 ** Otherwise, if the second argument is non-zero, then this function is
1205 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1206 ** already been allocated, allocate the UnpackedRecord structure that
1207 ** that function will return to its caller here. Then return a pointer to
1208 ** an sqlite3_value within the UnpackedRecord.a[] array.
1210 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1211 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1212 if( p ){
1213 UnpackedRecord *pRec = p->ppRec[0];
1215 if( pRec==0 ){
1216 Index *pIdx = p->pIdx; /* Index being probed */
1217 int nByte; /* Bytes of space to allocate */
1218 int i; /* Counter variable */
1219 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1221 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1222 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1223 if( pRec ){
1224 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1225 if( pRec->pKeyInfo ){
1226 assert( pRec->pKeyInfo->nAllField==nCol );
1227 assert( pRec->pKeyInfo->enc==ENC(db) );
1228 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1229 for(i=0; i<nCol; i++){
1230 pRec->aMem[i].flags = MEM_Null;
1231 pRec->aMem[i].db = db;
1233 }else{
1234 sqlite3DbFreeNN(db, pRec);
1235 pRec = 0;
1238 if( pRec==0 ) return 0;
1239 p->ppRec[0] = pRec;
1242 pRec->nField = p->iVal+1;
1243 return &pRec->aMem[p->iVal];
1245 #else
1246 UNUSED_PARAMETER(p);
1247 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1248 return sqlite3ValueNew(db);
1252 ** The expression object indicated by the second argument is guaranteed
1253 ** to be a scalar SQL function. If
1255 ** * all function arguments are SQL literals,
1256 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1257 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1259 ** then this routine attempts to invoke the SQL function. Assuming no
1260 ** error occurs, output parameter (*ppVal) is set to point to a value
1261 ** object containing the result before returning SQLITE_OK.
1263 ** Affinity aff is applied to the result of the function before returning.
1264 ** If the result is a text value, the sqlite3_value object uses encoding
1265 ** enc.
1267 ** If the conditions above are not met, this function returns SQLITE_OK
1268 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1269 ** NULL and an SQLite error code returned.
1271 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1272 static int valueFromFunction(
1273 sqlite3 *db, /* The database connection */
1274 Expr *p, /* The expression to evaluate */
1275 u8 enc, /* Encoding to use */
1276 u8 aff, /* Affinity to use */
1277 sqlite3_value **ppVal, /* Write the new value here */
1278 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1280 sqlite3_context ctx; /* Context object for function invocation */
1281 sqlite3_value **apVal = 0; /* Function arguments */
1282 int nVal = 0; /* Size of apVal[] array */
1283 FuncDef *pFunc = 0; /* Function definition */
1284 sqlite3_value *pVal = 0; /* New value */
1285 int rc = SQLITE_OK; /* Return code */
1286 ExprList *pList = 0; /* Function arguments */
1287 int i; /* Iterator variable */
1289 assert( pCtx!=0 );
1290 assert( (p->flags & EP_TokenOnly)==0 );
1291 pList = p->x.pList;
1292 if( pList ) nVal = pList->nExpr;
1293 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1294 assert( pFunc );
1295 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1296 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1298 return SQLITE_OK;
1301 if( pList ){
1302 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1303 if( apVal==0 ){
1304 rc = SQLITE_NOMEM_BKPT;
1305 goto value_from_function_out;
1307 for(i=0; i<nVal; i++){
1308 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1309 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1313 pVal = valueNew(db, pCtx);
1314 if( pVal==0 ){
1315 rc = SQLITE_NOMEM_BKPT;
1316 goto value_from_function_out;
1319 assert( pCtx->pParse->rc==SQLITE_OK );
1320 memset(&ctx, 0, sizeof(ctx));
1321 ctx.pOut = pVal;
1322 ctx.pFunc = pFunc;
1323 pFunc->xSFunc(&ctx, nVal, apVal);
1324 if( ctx.isError ){
1325 rc = ctx.isError;
1326 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1327 }else{
1328 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1329 assert( rc==SQLITE_OK );
1330 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1331 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1332 rc = SQLITE_TOOBIG;
1333 pCtx->pParse->nErr++;
1336 pCtx->pParse->rc = rc;
1338 value_from_function_out:
1339 if( rc!=SQLITE_OK ){
1340 pVal = 0;
1342 if( apVal ){
1343 for(i=0; i<nVal; i++){
1344 sqlite3ValueFree(apVal[i]);
1346 sqlite3DbFreeNN(db, apVal);
1349 *ppVal = pVal;
1350 return rc;
1352 #else
1353 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1354 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1357 ** Extract a value from the supplied expression in the manner described
1358 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1359 ** using valueNew().
1361 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1362 ** has been allocated, it is freed before returning. Or, if pCtx is not
1363 ** NULL, it is assumed that the caller will free any allocated object
1364 ** in all cases.
1366 static int valueFromExpr(
1367 sqlite3 *db, /* The database connection */
1368 Expr *pExpr, /* The expression to evaluate */
1369 u8 enc, /* Encoding to use */
1370 u8 affinity, /* Affinity to use */
1371 sqlite3_value **ppVal, /* Write the new value here */
1372 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1374 int op;
1375 char *zVal = 0;
1376 sqlite3_value *pVal = 0;
1377 int negInt = 1;
1378 const char *zNeg = "";
1379 int rc = SQLITE_OK;
1381 assert( pExpr!=0 );
1382 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1383 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1384 if( op==TK_REGISTER ) op = pExpr->op2;
1385 #else
1386 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1387 #endif
1389 /* Compressed expressions only appear when parsing the DEFAULT clause
1390 ** on a table column definition, and hence only when pCtx==0. This
1391 ** check ensures that an EP_TokenOnly expression is never passed down
1392 ** into valueFromFunction(). */
1393 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1395 if( op==TK_CAST ){
1396 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1397 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1398 testcase( rc!=SQLITE_OK );
1399 if( *ppVal ){
1400 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1401 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1403 return rc;
1406 /* Handle negative integers in a single step. This is needed in the
1407 ** case when the value is -9223372036854775808.
1409 if( op==TK_UMINUS
1410 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1411 pExpr = pExpr->pLeft;
1412 op = pExpr->op;
1413 negInt = -1;
1414 zNeg = "-";
1417 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1418 pVal = valueNew(db, pCtx);
1419 if( pVal==0 ) goto no_mem;
1420 if( ExprHasProperty(pExpr, EP_IntValue) ){
1421 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1422 }else{
1423 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1424 if( zVal==0 ) goto no_mem;
1425 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1427 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1428 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1429 }else{
1430 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1432 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1433 if( enc!=SQLITE_UTF8 ){
1434 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1436 }else if( op==TK_UMINUS ) {
1437 /* This branch happens for multiple negative signs. Ex: -(-5) */
1438 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1439 && pVal!=0
1441 sqlite3VdbeMemNumerify(pVal);
1442 if( pVal->flags & MEM_Real ){
1443 pVal->u.r = -pVal->u.r;
1444 }else if( pVal->u.i==SMALLEST_INT64 ){
1445 pVal->u.r = -(double)SMALLEST_INT64;
1446 MemSetTypeFlag(pVal, MEM_Real);
1447 }else{
1448 pVal->u.i = -pVal->u.i;
1450 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1452 }else if( op==TK_NULL ){
1453 pVal = valueNew(db, pCtx);
1454 if( pVal==0 ) goto no_mem;
1455 sqlite3VdbeMemNumerify(pVal);
1457 #ifndef SQLITE_OMIT_BLOB_LITERAL
1458 else if( op==TK_BLOB ){
1459 int nVal;
1460 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1461 assert( pExpr->u.zToken[1]=='\'' );
1462 pVal = valueNew(db, pCtx);
1463 if( !pVal ) goto no_mem;
1464 zVal = &pExpr->u.zToken[2];
1465 nVal = sqlite3Strlen30(zVal)-1;
1466 assert( zVal[nVal]=='\'' );
1467 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1468 0, SQLITE_DYNAMIC);
1470 #endif
1472 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1473 else if( op==TK_FUNCTION && pCtx!=0 ){
1474 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1476 #endif
1478 *ppVal = pVal;
1479 return rc;
1481 no_mem:
1482 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1483 if( pCtx==0 || pCtx->pParse->nErr==0 )
1484 #endif
1485 sqlite3OomFault(db);
1486 sqlite3DbFree(db, zVal);
1487 assert( *ppVal==0 );
1488 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1489 if( pCtx==0 ) sqlite3ValueFree(pVal);
1490 #else
1491 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1492 #endif
1493 return SQLITE_NOMEM_BKPT;
1497 ** Create a new sqlite3_value object, containing the value of pExpr.
1499 ** This only works for very simple expressions that consist of one constant
1500 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1501 ** be converted directly into a value, then the value is allocated and
1502 ** a pointer written to *ppVal. The caller is responsible for deallocating
1503 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1504 ** cannot be converted to a value, then *ppVal is set to NULL.
1506 int sqlite3ValueFromExpr(
1507 sqlite3 *db, /* The database connection */
1508 Expr *pExpr, /* The expression to evaluate */
1509 u8 enc, /* Encoding to use */
1510 u8 affinity, /* Affinity to use */
1511 sqlite3_value **ppVal /* Write the new value here */
1513 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1516 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1518 ** The implementation of the sqlite_record() function. This function accepts
1519 ** a single argument of any type. The return value is a formatted database
1520 ** record (a blob) containing the argument value.
1522 ** This is used to convert the value stored in the 'sample' column of the
1523 ** sqlite_stat3 table to the record format SQLite uses internally.
1525 static void recordFunc(
1526 sqlite3_context *context,
1527 int argc,
1528 sqlite3_value **argv
1530 const int file_format = 1;
1531 u32 iSerial; /* Serial type */
1532 int nSerial; /* Bytes of space for iSerial as varint */
1533 u32 nVal; /* Bytes of space required for argv[0] */
1534 int nRet;
1535 sqlite3 *db;
1536 u8 *aRet;
1538 UNUSED_PARAMETER( argc );
1539 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1540 nSerial = sqlite3VarintLen(iSerial);
1541 db = sqlite3_context_db_handle(context);
1543 nRet = 1 + nSerial + nVal;
1544 aRet = sqlite3DbMallocRawNN(db, nRet);
1545 if( aRet==0 ){
1546 sqlite3_result_error_nomem(context);
1547 }else{
1548 aRet[0] = nSerial+1;
1549 putVarint32(&aRet[1], iSerial);
1550 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1551 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1552 sqlite3DbFreeNN(db, aRet);
1557 ** Register built-in functions used to help read ANALYZE data.
1559 void sqlite3AnalyzeFunctions(void){
1560 static FuncDef aAnalyzeTableFuncs[] = {
1561 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1563 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1567 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1569 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1570 ** pAlloc if one does not exist and the new value is added to the
1571 ** UnpackedRecord object.
1573 ** A value is extracted in the following cases:
1575 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1577 ** * The expression is a bound variable, and this is a reprepare, or
1579 ** * The expression is a literal value.
1581 ** On success, *ppVal is made to point to the extracted value. The caller
1582 ** is responsible for ensuring that the value is eventually freed.
1584 static int stat4ValueFromExpr(
1585 Parse *pParse, /* Parse context */
1586 Expr *pExpr, /* The expression to extract a value from */
1587 u8 affinity, /* Affinity to use */
1588 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1589 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1591 int rc = SQLITE_OK;
1592 sqlite3_value *pVal = 0;
1593 sqlite3 *db = pParse->db;
1595 /* Skip over any TK_COLLATE nodes */
1596 pExpr = sqlite3ExprSkipCollate(pExpr);
1598 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1599 if( !pExpr ){
1600 pVal = valueNew(db, pAlloc);
1601 if( pVal ){
1602 sqlite3VdbeMemSetNull((Mem*)pVal);
1604 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1605 Vdbe *v;
1606 int iBindVar = pExpr->iColumn;
1607 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1608 if( (v = pParse->pReprepare)!=0 ){
1609 pVal = valueNew(db, pAlloc);
1610 if( pVal ){
1611 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1612 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1613 pVal->db = pParse->db;
1616 }else{
1617 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1620 assert( pVal==0 || pVal->db==db );
1621 *ppVal = pVal;
1622 return rc;
1626 ** This function is used to allocate and populate UnpackedRecord
1627 ** structures intended to be compared against sample index keys stored
1628 ** in the sqlite_stat4 table.
1630 ** A single call to this function populates zero or more fields of the
1631 ** record starting with field iVal (fields are numbered from left to
1632 ** right starting with 0). A single field is populated if:
1634 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1636 ** * The expression is a bound variable, and this is a reprepare, or
1638 ** * The sqlite3ValueFromExpr() function is able to extract a value
1639 ** from the expression (i.e. the expression is a literal value).
1641 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1642 ** vector components that match either of the two latter criteria listed
1643 ** above.
1645 ** Before any value is appended to the record, the affinity of the
1646 ** corresponding column within index pIdx is applied to it. Before
1647 ** this function returns, output parameter *pnExtract is set to the
1648 ** number of values appended to the record.
1650 ** When this function is called, *ppRec must either point to an object
1651 ** allocated by an earlier call to this function, or must be NULL. If it
1652 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1653 ** is allocated (and *ppRec set to point to it) before returning.
1655 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1656 ** error if a value cannot be extracted from pExpr. If an error does
1657 ** occur, an SQLite error code is returned.
1659 int sqlite3Stat4ProbeSetValue(
1660 Parse *pParse, /* Parse context */
1661 Index *pIdx, /* Index being probed */
1662 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1663 Expr *pExpr, /* The expression to extract a value from */
1664 int nElem, /* Maximum number of values to append */
1665 int iVal, /* Array element to populate */
1666 int *pnExtract /* OUT: Values appended to the record */
1668 int rc = SQLITE_OK;
1669 int nExtract = 0;
1671 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1672 int i;
1673 struct ValueNewStat4Ctx alloc;
1675 alloc.pParse = pParse;
1676 alloc.pIdx = pIdx;
1677 alloc.ppRec = ppRec;
1679 for(i=0; i<nElem; i++){
1680 sqlite3_value *pVal = 0;
1681 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1682 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1683 alloc.iVal = iVal+i;
1684 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1685 if( !pVal ) break;
1686 nExtract++;
1690 *pnExtract = nExtract;
1691 return rc;
1695 ** Attempt to extract a value from expression pExpr using the methods
1696 ** as described for sqlite3Stat4ProbeSetValue() above.
1698 ** If successful, set *ppVal to point to a new value object and return
1699 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1700 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1701 ** does occur, return an SQLite error code. The final value of *ppVal
1702 ** is undefined in this case.
1704 int sqlite3Stat4ValueFromExpr(
1705 Parse *pParse, /* Parse context */
1706 Expr *pExpr, /* The expression to extract a value from */
1707 u8 affinity, /* Affinity to use */
1708 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1710 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1714 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1715 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1716 ** sqlite3_value object is allocated.
1718 ** If *ppVal is initially NULL then the caller is responsible for
1719 ** ensuring that the value written into *ppVal is eventually freed.
1721 int sqlite3Stat4Column(
1722 sqlite3 *db, /* Database handle */
1723 const void *pRec, /* Pointer to buffer containing record */
1724 int nRec, /* Size of buffer pRec in bytes */
1725 int iCol, /* Column to extract */
1726 sqlite3_value **ppVal /* OUT: Extracted value */
1728 u32 t; /* a column type code */
1729 int nHdr; /* Size of the header in the record */
1730 int iHdr; /* Next unread header byte */
1731 int iField; /* Next unread data byte */
1732 int szField; /* Size of the current data field */
1733 int i; /* Column index */
1734 u8 *a = (u8*)pRec; /* Typecast byte array */
1735 Mem *pMem = *ppVal; /* Write result into this Mem object */
1737 assert( iCol>0 );
1738 iHdr = getVarint32(a, nHdr);
1739 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1740 iField = nHdr;
1741 for(i=0; i<=iCol; i++){
1742 iHdr += getVarint32(&a[iHdr], t);
1743 testcase( iHdr==nHdr );
1744 testcase( iHdr==nHdr+1 );
1745 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1746 szField = sqlite3VdbeSerialTypeLen(t);
1747 iField += szField;
1749 testcase( iField==nRec );
1750 testcase( iField==nRec+1 );
1751 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1752 if( pMem==0 ){
1753 pMem = *ppVal = sqlite3ValueNew(db);
1754 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1756 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1757 pMem->enc = ENC(db);
1758 return SQLITE_OK;
1762 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1763 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1764 ** the object.
1766 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1767 if( pRec ){
1768 int i;
1769 int nCol = pRec->pKeyInfo->nAllField;
1770 Mem *aMem = pRec->aMem;
1771 sqlite3 *db = aMem[0].db;
1772 for(i=0; i<nCol; i++){
1773 sqlite3VdbeMemRelease(&aMem[i]);
1775 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1776 sqlite3DbFreeNN(db, pRec);
1779 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1782 ** Change the string value of an sqlite3_value object
1784 void sqlite3ValueSetStr(
1785 sqlite3_value *v, /* Value to be set */
1786 int n, /* Length of string z */
1787 const void *z, /* Text of the new string */
1788 u8 enc, /* Encoding to use */
1789 void (*xDel)(void*) /* Destructor for the string */
1791 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1795 ** Free an sqlite3_value object
1797 void sqlite3ValueFree(sqlite3_value *v){
1798 if( !v ) return;
1799 sqlite3VdbeMemRelease((Mem *)v);
1800 sqlite3DbFreeNN(((Mem*)v)->db, v);
1804 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1805 ** sqlite3_value object assuming that it uses the encoding "enc".
1806 ** The valueBytes() routine is a helper function.
1808 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1809 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1811 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1812 Mem *p = (Mem*)pVal;
1813 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1814 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1815 return p->n;
1817 if( (p->flags & MEM_Blob)!=0 ){
1818 if( p->flags & MEM_Zero ){
1819 return p->n + p->u.nZero;
1820 }else{
1821 return p->n;
1824 if( p->flags & MEM_Null ) return 0;
1825 return valueBytes(pVal, enc);