Fix a test script problem causing shell1.test to fail with
[sqlite.git] / src / vdbeapi.c
blob2a6e1f8f0e0400ba8888016c0a6519bfed892e4d
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 if( db->xProfile ){
71 db->xProfile(db->pProfileArg, p->zSql, iElapse);
73 if( db->mTrace & SQLITE_TRACE_PROFILE ){
74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
76 p->startTime = 0;
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P) /*no-op*/
86 #endif
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98 int rc;
99 if( pStmt==0 ){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
102 rc = SQLITE_OK;
103 }else{
104 Vdbe *v = (Vdbe*)pStmt;
105 sqlite3 *db = v->db;
106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107 sqlite3_mutex_enter(db->mutex);
108 checkProfileCallback(db, v);
109 rc = sqlite3VdbeFinalize(v);
110 rc = sqlite3ApiExit(db, rc);
111 sqlite3LeaveMutexAndCloseZombie(db);
113 return rc;
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125 int rc;
126 if( pStmt==0 ){
127 rc = SQLITE_OK;
128 }else{
129 Vdbe *v = (Vdbe*)pStmt;
130 sqlite3 *db = v->db;
131 sqlite3_mutex_enter(db->mutex);
132 checkProfileCallback(db, v);
133 rc = sqlite3VdbeReset(v);
134 sqlite3VdbeRewind(v);
135 assert( (rc & (db->errMask))==rc );
136 rc = sqlite3ApiExit(db, rc);
137 sqlite3_mutex_leave(db->mutex);
139 return rc;
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146 int i;
147 int rc = SQLITE_OK;
148 Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152 sqlite3_mutex_enter(mutex);
153 for(i=0; i<p->nVar; i++){
154 sqlite3VdbeMemRelease(&p->aVar[i]);
155 p->aVar[i].flags = MEM_Null;
157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
158 if( p->expmask ){
159 p->expired = 1;
161 sqlite3_mutex_leave(mutex);
162 return rc;
166 /**************************** sqlite3_value_ *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171 Mem *p = (Mem*)pVal;
172 if( p->flags & (MEM_Blob|MEM_Str) ){
173 if( ExpandBlob(p)!=SQLITE_OK ){
174 assert( p->flags==MEM_Null && p->z==0 );
175 return 0;
177 p->flags |= MEM_Blob;
178 return p->n ? p->z : 0;
179 }else{
180 return sqlite3_value_text(pVal);
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
189 double sqlite3_value_double(sqlite3_value *pVal){
190 return sqlite3VdbeRealValue((Mem*)pVal);
192 int sqlite3_value_int(sqlite3_value *pVal){
193 return (int)sqlite3VdbeIntValue((Mem*)pVal);
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196 return sqlite3VdbeIntValue((Mem*)pVal);
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199 Mem *pMem = (Mem*)pVal;
200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
203 Mem *p = (Mem*)pVal;
204 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
205 (MEM_Null|MEM_Term|MEM_Subtype)
206 && zPType!=0
207 && p->eSubtype=='p'
208 && strcmp(p->u.zPType, zPType)==0
210 return (void*)p->z;
211 }else{
212 return 0;
215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
216 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value* pVal){
220 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
222 const void *sqlite3_value_text16be(sqlite3_value *pVal){
223 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
225 const void *sqlite3_value_text16le(sqlite3_value *pVal){
226 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
233 int sqlite3_value_type(sqlite3_value* pVal){
234 static const u8 aType[] = {
235 SQLITE_BLOB, /* 0x00 */
236 SQLITE_NULL, /* 0x01 */
237 SQLITE_TEXT, /* 0x02 */
238 SQLITE_NULL, /* 0x03 */
239 SQLITE_INTEGER, /* 0x04 */
240 SQLITE_NULL, /* 0x05 */
241 SQLITE_INTEGER, /* 0x06 */
242 SQLITE_NULL, /* 0x07 */
243 SQLITE_FLOAT, /* 0x08 */
244 SQLITE_NULL, /* 0x09 */
245 SQLITE_FLOAT, /* 0x0a */
246 SQLITE_NULL, /* 0x0b */
247 SQLITE_INTEGER, /* 0x0c */
248 SQLITE_NULL, /* 0x0d */
249 SQLITE_INTEGER, /* 0x0e */
250 SQLITE_NULL, /* 0x0f */
251 SQLITE_BLOB, /* 0x10 */
252 SQLITE_NULL, /* 0x11 */
253 SQLITE_TEXT, /* 0x12 */
254 SQLITE_NULL, /* 0x13 */
255 SQLITE_INTEGER, /* 0x14 */
256 SQLITE_NULL, /* 0x15 */
257 SQLITE_INTEGER, /* 0x16 */
258 SQLITE_NULL, /* 0x17 */
259 SQLITE_FLOAT, /* 0x18 */
260 SQLITE_NULL, /* 0x19 */
261 SQLITE_FLOAT, /* 0x1a */
262 SQLITE_NULL, /* 0x1b */
263 SQLITE_INTEGER, /* 0x1c */
264 SQLITE_NULL, /* 0x1d */
265 SQLITE_INTEGER, /* 0x1e */
266 SQLITE_NULL, /* 0x1f */
268 return aType[pVal->flags&MEM_AffMask];
271 /* Return true if a parameter to xUpdate represents an unchanged column */
272 int sqlite3_value_nochange(sqlite3_value *pVal){
273 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
276 /* Make a copy of an sqlite3_value object
278 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
279 sqlite3_value *pNew;
280 if( pOrig==0 ) return 0;
281 pNew = sqlite3_malloc( sizeof(*pNew) );
282 if( pNew==0 ) return 0;
283 memset(pNew, 0, sizeof(*pNew));
284 memcpy(pNew, pOrig, MEMCELLSIZE);
285 pNew->flags &= ~MEM_Dyn;
286 pNew->db = 0;
287 if( pNew->flags&(MEM_Str|MEM_Blob) ){
288 pNew->flags &= ~(MEM_Static|MEM_Dyn);
289 pNew->flags |= MEM_Ephem;
290 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
291 sqlite3ValueFree(pNew);
292 pNew = 0;
295 return pNew;
298 /* Destroy an sqlite3_value object previously obtained from
299 ** sqlite3_value_dup().
301 void sqlite3_value_free(sqlite3_value *pOld){
302 sqlite3ValueFree(pOld);
306 /**************************** sqlite3_result_ *******************************
307 ** The following routines are used by user-defined functions to specify
308 ** the function result.
310 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
311 ** result as a string or blob but if the string or blob is too large, it
312 ** then sets the error code to SQLITE_TOOBIG
314 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
315 ** on value P is not going to be used and need to be destroyed.
317 static void setResultStrOrError(
318 sqlite3_context *pCtx, /* Function context */
319 const char *z, /* String pointer */
320 int n, /* Bytes in string, or negative */
321 u8 enc, /* Encoding of z. 0 for BLOBs */
322 void (*xDel)(void*) /* Destructor function */
324 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
325 sqlite3_result_error_toobig(pCtx);
328 static int invokeValueDestructor(
329 const void *p, /* Value to destroy */
330 void (*xDel)(void*), /* The destructor */
331 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
333 assert( xDel!=SQLITE_DYNAMIC );
334 if( xDel==0 ){
335 /* noop */
336 }else if( xDel==SQLITE_TRANSIENT ){
337 /* noop */
338 }else{
339 xDel((void*)p);
341 if( pCtx ) sqlite3_result_error_toobig(pCtx);
342 return SQLITE_TOOBIG;
344 void sqlite3_result_blob(
345 sqlite3_context *pCtx,
346 const void *z,
347 int n,
348 void (*xDel)(void *)
350 assert( n>=0 );
351 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
352 setResultStrOrError(pCtx, z, n, 0, xDel);
354 void sqlite3_result_blob64(
355 sqlite3_context *pCtx,
356 const void *z,
357 sqlite3_uint64 n,
358 void (*xDel)(void *)
360 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
361 assert( xDel!=SQLITE_DYNAMIC );
362 if( n>0x7fffffff ){
363 (void)invokeValueDestructor(z, xDel, pCtx);
364 }else{
365 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
368 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
369 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
370 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
372 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
373 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
374 pCtx->isError = SQLITE_ERROR;
375 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
377 #ifndef SQLITE_OMIT_UTF16
378 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
379 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
380 pCtx->isError = SQLITE_ERROR;
381 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
383 #endif
384 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
385 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
386 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
388 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
389 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
390 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
392 void sqlite3_result_null(sqlite3_context *pCtx){
393 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
394 sqlite3VdbeMemSetNull(pCtx->pOut);
396 void sqlite3_result_pointer(
397 sqlite3_context *pCtx,
398 void *pPtr,
399 const char *zPType,
400 void (*xDestructor)(void*)
402 Mem *pOut = pCtx->pOut;
403 assert( sqlite3_mutex_held(pOut->db->mutex) );
404 sqlite3VdbeMemRelease(pOut);
405 pOut->flags = MEM_Null;
406 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
408 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
409 Mem *pOut = pCtx->pOut;
410 assert( sqlite3_mutex_held(pOut->db->mutex) );
411 pOut->eSubtype = eSubtype & 0xff;
412 pOut->flags |= MEM_Subtype;
414 void sqlite3_result_text(
415 sqlite3_context *pCtx,
416 const char *z,
417 int n,
418 void (*xDel)(void *)
420 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
421 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
423 void sqlite3_result_text64(
424 sqlite3_context *pCtx,
425 const char *z,
426 sqlite3_uint64 n,
427 void (*xDel)(void *),
428 unsigned char enc
430 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
431 assert( xDel!=SQLITE_DYNAMIC );
432 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
433 if( n>0x7fffffff ){
434 (void)invokeValueDestructor(z, xDel, pCtx);
435 }else{
436 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
439 #ifndef SQLITE_OMIT_UTF16
440 void sqlite3_result_text16(
441 sqlite3_context *pCtx,
442 const void *z,
443 int n,
444 void (*xDel)(void *)
446 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
447 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
449 void sqlite3_result_text16be(
450 sqlite3_context *pCtx,
451 const void *z,
452 int n,
453 void (*xDel)(void *)
455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
456 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
458 void sqlite3_result_text16le(
459 sqlite3_context *pCtx,
460 const void *z,
461 int n,
462 void (*xDel)(void *)
464 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
465 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
467 #endif /* SQLITE_OMIT_UTF16 */
468 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
470 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
472 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
473 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
474 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
476 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
477 Mem *pOut = pCtx->pOut;
478 assert( sqlite3_mutex_held(pOut->db->mutex) );
479 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
480 return SQLITE_TOOBIG;
482 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
483 return SQLITE_OK;
485 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
486 pCtx->isError = errCode ? errCode : -1;
487 #ifdef SQLITE_DEBUG
488 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
489 #endif
490 if( pCtx->pOut->flags & MEM_Null ){
491 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
492 SQLITE_UTF8, SQLITE_STATIC);
496 /* Force an SQLITE_TOOBIG error. */
497 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
498 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
499 pCtx->isError = SQLITE_TOOBIG;
500 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
501 SQLITE_UTF8, SQLITE_STATIC);
504 /* An SQLITE_NOMEM error. */
505 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
506 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
507 sqlite3VdbeMemSetNull(pCtx->pOut);
508 pCtx->isError = SQLITE_NOMEM_BKPT;
509 sqlite3OomFault(pCtx->pOut->db);
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
516 static int doWalCallbacks(sqlite3 *db){
517 int rc = SQLITE_OK;
518 #ifndef SQLITE_OMIT_WAL
519 int i;
520 for(i=0; i<db->nDb; i++){
521 Btree *pBt = db->aDb[i].pBt;
522 if( pBt ){
523 int nEntry;
524 sqlite3BtreeEnter(pBt);
525 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
526 sqlite3BtreeLeave(pBt);
527 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
528 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
532 #endif
533 return rc;
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API. The only thing omitted is the automatic recompile if a
543 ** schema change has occurred. That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
546 static int sqlite3Step(Vdbe *p){
547 sqlite3 *db;
548 int rc;
550 assert(p);
551 if( p->magic!=VDBE_MAGIC_RUN ){
552 /* We used to require that sqlite3_reset() be called before retrying
553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
554 ** with version 3.7.0, we changed this so that sqlite3_reset() would
555 ** be called automatically instead of throwing the SQLITE_MISUSE error.
556 ** This "automatic-reset" change is not technically an incompatibility,
557 ** since any application that receives an SQLITE_MISUSE is broken by
558 ** definition.
560 ** Nevertheless, some published applications that were originally written
561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562 ** returns, and those were broken by the automatic-reset change. As a
563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564 ** legacy behavior of returning SQLITE_MISUSE for cases where the
565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566 ** or SQLITE_BUSY error.
568 #ifdef SQLITE_OMIT_AUTORESET
569 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
570 sqlite3_reset((sqlite3_stmt*)p);
571 }else{
572 return SQLITE_MISUSE_BKPT;
574 #else
575 sqlite3_reset((sqlite3_stmt*)p);
576 #endif
579 /* Check that malloc() has not failed. If it has, return early. */
580 db = p->db;
581 if( db->mallocFailed ){
582 p->rc = SQLITE_NOMEM;
583 return SQLITE_NOMEM_BKPT;
586 if( p->pc<=0 && p->expired ){
587 p->rc = SQLITE_SCHEMA;
588 rc = SQLITE_ERROR;
589 goto end_of_step;
591 if( p->pc<0 ){
592 /* If there are no other statements currently running, then
593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
594 ** from interrupting a statement that has not yet started.
596 if( db->nVdbeActive==0 ){
597 db->u1.isInterrupted = 0;
600 assert( db->nVdbeWrite>0 || db->autoCommit==0
601 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
604 #ifndef SQLITE_OMIT_TRACE
605 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
606 && !db->init.busy && p->zSql ){
607 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
608 }else{
609 assert( p->startTime==0 );
611 #endif
613 db->nVdbeActive++;
614 if( p->readOnly==0 ) db->nVdbeWrite++;
615 if( p->bIsReader ) db->nVdbeRead++;
616 p->pc = 0;
618 #ifdef SQLITE_DEBUG
619 p->rcApp = SQLITE_OK;
620 #endif
621 #ifndef SQLITE_OMIT_EXPLAIN
622 if( p->explain ){
623 rc = sqlite3VdbeList(p);
624 }else
625 #endif /* SQLITE_OMIT_EXPLAIN */
627 db->nVdbeExec++;
628 rc = sqlite3VdbeExec(p);
629 db->nVdbeExec--;
632 #ifndef SQLITE_OMIT_TRACE
633 /* If the statement completed successfully, invoke the profile callback */
634 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
635 #endif
637 if( rc==SQLITE_DONE && db->autoCommit ){
638 assert( p->rc==SQLITE_OK );
639 p->rc = doWalCallbacks(db);
640 if( p->rc!=SQLITE_OK ){
641 rc = SQLITE_ERROR;
645 db->errCode = rc;
646 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
647 p->rc = SQLITE_NOMEM_BKPT;
649 end_of_step:
650 /* At this point local variable rc holds the value that should be
651 ** returned if this statement was compiled using the legacy
652 ** sqlite3_prepare() interface. According to the docs, this can only
653 ** be one of the values in the first assert() below. Variable p->rc
654 ** contains the value that would be returned if sqlite3_finalize()
655 ** were called on statement p.
657 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
658 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
660 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
661 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
662 && rc!=SQLITE_ROW
663 && rc!=SQLITE_DONE
665 /* If this statement was prepared using saved SQL and an
666 ** error has occurred, then return the error code in p->rc to the
667 ** caller. Set the error code in the database handle to the same value.
669 rc = sqlite3VdbeTransferError(p);
671 return (rc&db->errMask);
675 ** This is the top-level implementation of sqlite3_step(). Call
676 ** sqlite3Step() to do most of the work. If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
679 int sqlite3_step(sqlite3_stmt *pStmt){
680 int rc = SQLITE_OK; /* Result from sqlite3Step() */
681 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
682 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
683 sqlite3 *db; /* The database connection */
685 if( vdbeSafetyNotNull(v) ){
686 return SQLITE_MISUSE_BKPT;
688 db = v->db;
689 sqlite3_mutex_enter(db->mutex);
690 v->doingRerun = 0;
691 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
692 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
693 int savedPc = v->pc;
694 rc = sqlite3Reprepare(v);
695 if( rc!=SQLITE_OK ){
696 /* This case occurs after failing to recompile an sql statement.
697 ** The error message from the SQL compiler has already been loaded
698 ** into the database handle. This block copies the error message
699 ** from the database handle into the statement and sets the statement
700 ** program counter to 0 to ensure that when the statement is
701 ** finalized or reset the parser error message is available via
702 ** sqlite3_errmsg() and sqlite3_errcode().
704 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
705 sqlite3DbFree(db, v->zErrMsg);
706 if( !db->mallocFailed ){
707 v->zErrMsg = sqlite3DbStrDup(db, zErr);
708 v->rc = rc = sqlite3ApiExit(db, rc);
709 } else {
710 v->zErrMsg = 0;
711 v->rc = rc = SQLITE_NOMEM_BKPT;
713 break;
715 sqlite3_reset(pStmt);
716 if( savedPc>=0 ) v->doingRerun = 1;
717 assert( v->expired==0 );
719 sqlite3_mutex_leave(db->mutex);
720 return rc;
725 ** Extract the user data from a sqlite3_context structure and return a
726 ** pointer to it.
728 void *sqlite3_user_data(sqlite3_context *p){
729 assert( p && p->pFunc );
730 return p->pFunc->pUserData;
734 ** Extract the user data from a sqlite3_context structure and return a
735 ** pointer to it.
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
744 assert( p && p->pOut );
745 return p->pOut->db;
749 ** If this routine is invoked from within an xColumn method of a virtual
750 ** table, then it returns true if and only if the the call is during an
751 ** UPDATE operation and the value of the column will not be modified
752 ** by the UPDATE.
754 ** If this routine is called from any context other than within the
755 ** xColumn method of a virtual table, then the return value is meaningless
756 ** and arbitrary.
758 ** Virtual table implements might use this routine to optimize their
759 ** performance by substituting a NULL result, or some other light-weight
760 ** value, as a signal to the xUpdate routine that the column is unchanged.
762 int sqlite3_vtab_nochange(sqlite3_context *p){
763 assert( p );
764 return sqlite3_value_nochange(p->pOut);
768 ** Return the current time for a statement. If the current time
769 ** is requested more than once within the same run of a single prepared
770 ** statement, the exact same time is returned for each invocation regardless
771 ** of the amount of time that elapses between invocations. In other words,
772 ** the time returned is always the time of the first call.
774 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
775 int rc;
776 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
777 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
778 assert( p->pVdbe!=0 );
779 #else
780 sqlite3_int64 iTime = 0;
781 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
782 #endif
783 if( *piTime==0 ){
784 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
785 if( rc ) *piTime = 0;
787 return *piTime;
791 ** The following is the implementation of an SQL function that always
792 ** fails with an error message stating that the function is used in the
793 ** wrong context. The sqlite3_overload_function() API might construct
794 ** SQL function that use this routine so that the functions will exist
795 ** for name resolution but are actually overloaded by the xFindFunction
796 ** method of virtual tables.
798 void sqlite3InvalidFunction(
799 sqlite3_context *context, /* The function calling context */
800 int NotUsed, /* Number of arguments to the function */
801 sqlite3_value **NotUsed2 /* Value of each argument */
803 const char *zName = context->pFunc->zName;
804 char *zErr;
805 UNUSED_PARAMETER2(NotUsed, NotUsed2);
806 zErr = sqlite3_mprintf(
807 "unable to use function %s in the requested context", zName);
808 sqlite3_result_error(context, zErr, -1);
809 sqlite3_free(zErr);
813 ** Create a new aggregate context for p and return a pointer to
814 ** its pMem->z element.
816 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
817 Mem *pMem = p->pMem;
818 assert( (pMem->flags & MEM_Agg)==0 );
819 if( nByte<=0 ){
820 sqlite3VdbeMemSetNull(pMem);
821 pMem->z = 0;
822 }else{
823 sqlite3VdbeMemClearAndResize(pMem, nByte);
824 pMem->flags = MEM_Agg;
825 pMem->u.pDef = p->pFunc;
826 if( pMem->z ){
827 memset(pMem->z, 0, nByte);
830 return (void*)pMem->z;
834 ** Allocate or return the aggregate context for a user function. A new
835 ** context is allocated on the first call. Subsequent calls return the
836 ** same context that was returned on prior calls.
838 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
839 assert( p && p->pFunc && p->pFunc->xFinalize );
840 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
841 testcase( nByte<0 );
842 if( (p->pMem->flags & MEM_Agg)==0 ){
843 return createAggContext(p, nByte);
844 }else{
845 return (void*)p->pMem->z;
850 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
851 ** the user-function defined by pCtx.
853 ** The left-most argument is 0.
855 ** Undocumented behavior: If iArg is negative then access a cache of
856 ** auxiliary data pointers that is available to all functions within a
857 ** single prepared statement. The iArg values must match.
859 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
860 AuxData *pAuxData;
862 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
863 #if SQLITE_ENABLE_STAT3_OR_STAT4
864 if( pCtx->pVdbe==0 ) return 0;
865 #else
866 assert( pCtx->pVdbe!=0 );
867 #endif
868 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
869 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
870 return pAuxData->pAux;
873 return 0;
877 ** Set the auxiliary data pointer and delete function, for the iArg'th
878 ** argument to the user-function defined by pCtx. Any previous value is
879 ** deleted by calling the delete function specified when it was set.
881 ** The left-most argument is 0.
883 ** Undocumented behavior: If iArg is negative then make the data available
884 ** to all functions within the current prepared statement using iArg as an
885 ** access code.
887 void sqlite3_set_auxdata(
888 sqlite3_context *pCtx,
889 int iArg,
890 void *pAux,
891 void (*xDelete)(void*)
893 AuxData *pAuxData;
894 Vdbe *pVdbe = pCtx->pVdbe;
896 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
898 if( pVdbe==0 ) goto failed;
899 #else
900 assert( pVdbe!=0 );
901 #endif
903 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
904 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
905 break;
908 if( pAuxData==0 ){
909 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
910 if( !pAuxData ) goto failed;
911 pAuxData->iAuxOp = pCtx->iOp;
912 pAuxData->iAuxArg = iArg;
913 pAuxData->pNextAux = pVdbe->pAuxData;
914 pVdbe->pAuxData = pAuxData;
915 if( pCtx->isError==0 ) pCtx->isError = -1;
916 }else if( pAuxData->xDeleteAux ){
917 pAuxData->xDeleteAux(pAuxData->pAux);
920 pAuxData->pAux = pAux;
921 pAuxData->xDeleteAux = xDelete;
922 return;
924 failed:
925 if( xDelete ){
926 xDelete(pAux);
930 #ifndef SQLITE_OMIT_DEPRECATED
932 ** Return the number of times the Step function of an aggregate has been
933 ** called.
935 ** This function is deprecated. Do not use it for new code. It is
936 ** provide only to avoid breaking legacy code. New aggregate function
937 ** implementations should keep their own counts within their aggregate
938 ** context.
940 int sqlite3_aggregate_count(sqlite3_context *p){
941 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
942 return p->pMem->n;
944 #endif
947 ** Return the number of columns in the result set for the statement pStmt.
949 int sqlite3_column_count(sqlite3_stmt *pStmt){
950 Vdbe *pVm = (Vdbe *)pStmt;
951 return pVm ? pVm->nResColumn : 0;
955 ** Return the number of values available from the current row of the
956 ** currently executing statement pStmt.
958 int sqlite3_data_count(sqlite3_stmt *pStmt){
959 Vdbe *pVm = (Vdbe *)pStmt;
960 if( pVm==0 || pVm->pResultSet==0 ) return 0;
961 return pVm->nResColumn;
965 ** Return a pointer to static memory containing an SQL NULL value.
967 static const Mem *columnNullValue(void){
968 /* Even though the Mem structure contains an element
969 ** of type i64, on certain architectures (x86) with certain compiler
970 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
971 ** instead of an 8-byte one. This all works fine, except that when
972 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
973 ** that a Mem structure is located on an 8-byte boundary. To prevent
974 ** these assert()s from failing, when building with SQLITE_DEBUG defined
975 ** using gcc, we force nullMem to be 8-byte aligned using the magical
976 ** __attribute__((aligned(8))) macro. */
977 static const Mem nullMem
978 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
979 __attribute__((aligned(8)))
980 #endif
982 /* .u = */ {0},
983 /* .flags = */ (u16)MEM_Null,
984 /* .enc = */ (u8)0,
985 /* .eSubtype = */ (u8)0,
986 /* .n = */ (int)0,
987 /* .z = */ (char*)0,
988 /* .zMalloc = */ (char*)0,
989 /* .szMalloc = */ (int)0,
990 /* .uTemp = */ (u32)0,
991 /* .db = */ (sqlite3*)0,
992 /* .xDel = */ (void(*)(void*))0,
993 #ifdef SQLITE_DEBUG
994 /* .pScopyFrom = */ (Mem*)0,
995 /* .pFiller = */ (void*)0,
996 #endif
998 return &nullMem;
1002 ** Check to see if column iCol of the given statement is valid. If
1003 ** it is, return a pointer to the Mem for the value of that column.
1004 ** If iCol is not valid, return a pointer to a Mem which has a value
1005 ** of NULL.
1007 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1008 Vdbe *pVm;
1009 Mem *pOut;
1011 pVm = (Vdbe *)pStmt;
1012 if( pVm==0 ) return (Mem*)columnNullValue();
1013 assert( pVm->db );
1014 sqlite3_mutex_enter(pVm->db->mutex);
1015 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1016 pOut = &pVm->pResultSet[i];
1017 }else{
1018 sqlite3Error(pVm->db, SQLITE_RANGE);
1019 pOut = (Mem*)columnNullValue();
1021 return pOut;
1025 ** This function is called after invoking an sqlite3_value_XXX function on a
1026 ** column value (i.e. a value returned by evaluating an SQL expression in the
1027 ** select list of a SELECT statement) that may cause a malloc() failure. If
1028 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1029 ** code of statement pStmt set to SQLITE_NOMEM.
1031 ** Specifically, this is called from within:
1033 ** sqlite3_column_int()
1034 ** sqlite3_column_int64()
1035 ** sqlite3_column_text()
1036 ** sqlite3_column_text16()
1037 ** sqlite3_column_real()
1038 ** sqlite3_column_bytes()
1039 ** sqlite3_column_bytes16()
1040 ** sqiite3_column_blob()
1042 static void columnMallocFailure(sqlite3_stmt *pStmt)
1044 /* If malloc() failed during an encoding conversion within an
1045 ** sqlite3_column_XXX API, then set the return code of the statement to
1046 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1047 ** and _finalize() will return NOMEM.
1049 Vdbe *p = (Vdbe *)pStmt;
1050 if( p ){
1051 assert( p->db!=0 );
1052 assert( sqlite3_mutex_held(p->db->mutex) );
1053 p->rc = sqlite3ApiExit(p->db, p->rc);
1054 sqlite3_mutex_leave(p->db->mutex);
1058 /**************************** sqlite3_column_ *******************************
1059 ** The following routines are used to access elements of the current row
1060 ** in the result set.
1062 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1063 const void *val;
1064 val = sqlite3_value_blob( columnMem(pStmt,i) );
1065 /* Even though there is no encoding conversion, value_blob() might
1066 ** need to call malloc() to expand the result of a zeroblob()
1067 ** expression.
1069 columnMallocFailure(pStmt);
1070 return val;
1072 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1073 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1074 columnMallocFailure(pStmt);
1075 return val;
1077 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1078 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1079 columnMallocFailure(pStmt);
1080 return val;
1082 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1083 double val = sqlite3_value_double( columnMem(pStmt,i) );
1084 columnMallocFailure(pStmt);
1085 return val;
1087 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1088 int val = sqlite3_value_int( columnMem(pStmt,i) );
1089 columnMallocFailure(pStmt);
1090 return val;
1092 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1093 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1094 columnMallocFailure(pStmt);
1095 return val;
1097 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1098 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1099 columnMallocFailure(pStmt);
1100 return val;
1102 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1103 Mem *pOut = columnMem(pStmt, i);
1104 if( pOut->flags&MEM_Static ){
1105 pOut->flags &= ~MEM_Static;
1106 pOut->flags |= MEM_Ephem;
1108 columnMallocFailure(pStmt);
1109 return (sqlite3_value *)pOut;
1111 #ifndef SQLITE_OMIT_UTF16
1112 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1113 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1114 columnMallocFailure(pStmt);
1115 return val;
1117 #endif /* SQLITE_OMIT_UTF16 */
1118 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1119 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1120 columnMallocFailure(pStmt);
1121 return iType;
1125 ** Convert the N-th element of pStmt->pColName[] into a string using
1126 ** xFunc() then return that string. If N is out of range, return 0.
1128 ** There are up to 5 names for each column. useType determines which
1129 ** name is returned. Here are the names:
1131 ** 0 The column name as it should be displayed for output
1132 ** 1 The datatype name for the column
1133 ** 2 The name of the database that the column derives from
1134 ** 3 The name of the table that the column derives from
1135 ** 4 The name of the table column that the result column derives from
1137 ** If the result is not a simple column reference (if it is an expression
1138 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1140 static const void *columnName(
1141 sqlite3_stmt *pStmt,
1142 int N,
1143 const void *(*xFunc)(Mem*),
1144 int useType
1146 const void *ret;
1147 Vdbe *p;
1148 int n;
1149 sqlite3 *db;
1150 #ifdef SQLITE_ENABLE_API_ARMOR
1151 if( pStmt==0 ){
1152 (void)SQLITE_MISUSE_BKPT;
1153 return 0;
1155 #endif
1156 ret = 0;
1157 p = (Vdbe *)pStmt;
1158 db = p->db;
1159 assert( db!=0 );
1160 n = sqlite3_column_count(pStmt);
1161 if( N<n && N>=0 ){
1162 N += useType*n;
1163 sqlite3_mutex_enter(db->mutex);
1164 assert( db->mallocFailed==0 );
1165 ret = xFunc(&p->aColName[N]);
1166 /* A malloc may have failed inside of the xFunc() call. If this
1167 ** is the case, clear the mallocFailed flag and return NULL.
1169 if( db->mallocFailed ){
1170 sqlite3OomClear(db);
1171 ret = 0;
1173 sqlite3_mutex_leave(db->mutex);
1175 return ret;
1179 ** Return the name of the Nth column of the result set returned by SQL
1180 ** statement pStmt.
1182 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1183 return columnName(
1184 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1186 #ifndef SQLITE_OMIT_UTF16
1187 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1188 return columnName(
1189 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1191 #endif
1194 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1195 ** not define OMIT_DECLTYPE.
1197 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1198 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1199 and SQLITE_ENABLE_COLUMN_METADATA"
1200 #endif
1202 #ifndef SQLITE_OMIT_DECLTYPE
1204 ** Return the column declaration type (if applicable) of the 'i'th column
1205 ** of the result set of SQL statement pStmt.
1207 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1208 return columnName(
1209 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1211 #ifndef SQLITE_OMIT_UTF16
1212 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1213 return columnName(
1214 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1216 #endif /* SQLITE_OMIT_UTF16 */
1217 #endif /* SQLITE_OMIT_DECLTYPE */
1219 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1221 ** Return the name of the database from which a result column derives.
1222 ** NULL is returned if the result column is an expression or constant or
1223 ** anything else which is not an unambiguous reference to a database column.
1225 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1226 return columnName(
1227 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1229 #ifndef SQLITE_OMIT_UTF16
1230 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1231 return columnName(
1232 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1234 #endif /* SQLITE_OMIT_UTF16 */
1237 ** Return the name of the table from which a result column derives.
1238 ** NULL is returned if the result column is an expression or constant or
1239 ** anything else which is not an unambiguous reference to a database column.
1241 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1242 return columnName(
1243 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1245 #ifndef SQLITE_OMIT_UTF16
1246 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1247 return columnName(
1248 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1250 #endif /* SQLITE_OMIT_UTF16 */
1253 ** Return the name of the table column from which a result column derives.
1254 ** NULL is returned if the result column is an expression or constant or
1255 ** anything else which is not an unambiguous reference to a database column.
1257 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1258 return columnName(
1259 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1261 #ifndef SQLITE_OMIT_UTF16
1262 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1263 return columnName(
1264 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1266 #endif /* SQLITE_OMIT_UTF16 */
1267 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1270 /******************************* sqlite3_bind_ ***************************
1272 ** Routines used to attach values to wildcards in a compiled SQL statement.
1275 ** Unbind the value bound to variable i in virtual machine p. This is the
1276 ** the same as binding a NULL value to the column. If the "i" parameter is
1277 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1279 ** A successful evaluation of this routine acquires the mutex on p.
1280 ** the mutex is released if any kind of error occurs.
1282 ** The error code stored in database p->db is overwritten with the return
1283 ** value in any case.
1285 static int vdbeUnbind(Vdbe *p, int i){
1286 Mem *pVar;
1287 if( vdbeSafetyNotNull(p) ){
1288 return SQLITE_MISUSE_BKPT;
1290 sqlite3_mutex_enter(p->db->mutex);
1291 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1292 sqlite3Error(p->db, SQLITE_MISUSE);
1293 sqlite3_mutex_leave(p->db->mutex);
1294 sqlite3_log(SQLITE_MISUSE,
1295 "bind on a busy prepared statement: [%s]", p->zSql);
1296 return SQLITE_MISUSE_BKPT;
1298 if( i<1 || i>p->nVar ){
1299 sqlite3Error(p->db, SQLITE_RANGE);
1300 sqlite3_mutex_leave(p->db->mutex);
1301 return SQLITE_RANGE;
1303 i--;
1304 pVar = &p->aVar[i];
1305 sqlite3VdbeMemRelease(pVar);
1306 pVar->flags = MEM_Null;
1307 sqlite3Error(p->db, SQLITE_OK);
1309 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1310 ** binding a new value to this variable invalidates the current query plan.
1312 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1313 ** parameter in the WHERE clause might influence the choice of query plan
1314 ** for a statement, then the statement will be automatically recompiled,
1315 ** as if there had been a schema change, on the first sqlite3_step() call
1316 ** following any change to the bindings of that parameter.
1318 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1319 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1320 p->expired = 1;
1322 return SQLITE_OK;
1326 ** Bind a text or BLOB value.
1328 static int bindText(
1329 sqlite3_stmt *pStmt, /* The statement to bind against */
1330 int i, /* Index of the parameter to bind */
1331 const void *zData, /* Pointer to the data to be bound */
1332 int nData, /* Number of bytes of data to be bound */
1333 void (*xDel)(void*), /* Destructor for the data */
1334 u8 encoding /* Encoding for the data */
1336 Vdbe *p = (Vdbe *)pStmt;
1337 Mem *pVar;
1338 int rc;
1340 rc = vdbeUnbind(p, i);
1341 if( rc==SQLITE_OK ){
1342 if( zData!=0 ){
1343 pVar = &p->aVar[i-1];
1344 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1345 if( rc==SQLITE_OK && encoding!=0 ){
1346 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1348 if( rc ){
1349 sqlite3Error(p->db, rc);
1350 rc = sqlite3ApiExit(p->db, rc);
1353 sqlite3_mutex_leave(p->db->mutex);
1354 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1355 xDel((void*)zData);
1357 return rc;
1362 ** Bind a blob value to an SQL statement variable.
1364 int sqlite3_bind_blob(
1365 sqlite3_stmt *pStmt,
1366 int i,
1367 const void *zData,
1368 int nData,
1369 void (*xDel)(void*)
1371 #ifdef SQLITE_ENABLE_API_ARMOR
1372 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1373 #endif
1374 return bindText(pStmt, i, zData, nData, xDel, 0);
1376 int sqlite3_bind_blob64(
1377 sqlite3_stmt *pStmt,
1378 int i,
1379 const void *zData,
1380 sqlite3_uint64 nData,
1381 void (*xDel)(void*)
1383 assert( xDel!=SQLITE_DYNAMIC );
1384 if( nData>0x7fffffff ){
1385 return invokeValueDestructor(zData, xDel, 0);
1386 }else{
1387 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1390 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1391 int rc;
1392 Vdbe *p = (Vdbe *)pStmt;
1393 rc = vdbeUnbind(p, i);
1394 if( rc==SQLITE_OK ){
1395 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1396 sqlite3_mutex_leave(p->db->mutex);
1398 return rc;
1400 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1401 return sqlite3_bind_int64(p, i, (i64)iValue);
1403 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1404 int rc;
1405 Vdbe *p = (Vdbe *)pStmt;
1406 rc = vdbeUnbind(p, i);
1407 if( rc==SQLITE_OK ){
1408 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1409 sqlite3_mutex_leave(p->db->mutex);
1411 return rc;
1413 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1414 int rc;
1415 Vdbe *p = (Vdbe*)pStmt;
1416 rc = vdbeUnbind(p, i);
1417 if( rc==SQLITE_OK ){
1418 sqlite3_mutex_leave(p->db->mutex);
1420 return rc;
1422 int sqlite3_bind_pointer(
1423 sqlite3_stmt *pStmt,
1424 int i,
1425 void *pPtr,
1426 const char *zPTtype,
1427 void (*xDestructor)(void*)
1429 int rc;
1430 Vdbe *p = (Vdbe*)pStmt;
1431 rc = vdbeUnbind(p, i);
1432 if( rc==SQLITE_OK ){
1433 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1434 sqlite3_mutex_leave(p->db->mutex);
1435 }else if( xDestructor ){
1436 xDestructor(pPtr);
1438 return rc;
1440 int sqlite3_bind_text(
1441 sqlite3_stmt *pStmt,
1442 int i,
1443 const char *zData,
1444 int nData,
1445 void (*xDel)(void*)
1447 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1449 int sqlite3_bind_text64(
1450 sqlite3_stmt *pStmt,
1451 int i,
1452 const char *zData,
1453 sqlite3_uint64 nData,
1454 void (*xDel)(void*),
1455 unsigned char enc
1457 assert( xDel!=SQLITE_DYNAMIC );
1458 if( nData>0x7fffffff ){
1459 return invokeValueDestructor(zData, xDel, 0);
1460 }else{
1461 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1462 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1465 #ifndef SQLITE_OMIT_UTF16
1466 int sqlite3_bind_text16(
1467 sqlite3_stmt *pStmt,
1468 int i,
1469 const void *zData,
1470 int nData,
1471 void (*xDel)(void*)
1473 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1475 #endif /* SQLITE_OMIT_UTF16 */
1476 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1477 int rc;
1478 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1479 case SQLITE_INTEGER: {
1480 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1481 break;
1483 case SQLITE_FLOAT: {
1484 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1485 break;
1487 case SQLITE_BLOB: {
1488 if( pValue->flags & MEM_Zero ){
1489 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1490 }else{
1491 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1493 break;
1495 case SQLITE_TEXT: {
1496 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1497 pValue->enc);
1498 break;
1500 default: {
1501 rc = sqlite3_bind_null(pStmt, i);
1502 break;
1505 return rc;
1507 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1508 int rc;
1509 Vdbe *p = (Vdbe *)pStmt;
1510 rc = vdbeUnbind(p, i);
1511 if( rc==SQLITE_OK ){
1512 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1513 sqlite3_mutex_leave(p->db->mutex);
1515 return rc;
1517 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1518 int rc;
1519 Vdbe *p = (Vdbe *)pStmt;
1520 sqlite3_mutex_enter(p->db->mutex);
1521 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1522 rc = SQLITE_TOOBIG;
1523 }else{
1524 assert( (n & 0x7FFFFFFF)==n );
1525 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1527 rc = sqlite3ApiExit(p->db, rc);
1528 sqlite3_mutex_leave(p->db->mutex);
1529 return rc;
1533 ** Return the number of wildcards that can be potentially bound to.
1534 ** This routine is added to support DBD::SQLite.
1536 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1537 Vdbe *p = (Vdbe*)pStmt;
1538 return p ? p->nVar : 0;
1542 ** Return the name of a wildcard parameter. Return NULL if the index
1543 ** is out of range or if the wildcard is unnamed.
1545 ** The result is always UTF-8.
1547 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1548 Vdbe *p = (Vdbe*)pStmt;
1549 if( p==0 ) return 0;
1550 return sqlite3VListNumToName(p->pVList, i);
1554 ** Given a wildcard parameter name, return the index of the variable
1555 ** with that name. If there is no variable with the given name,
1556 ** return 0.
1558 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1559 if( p==0 || zName==0 ) return 0;
1560 return sqlite3VListNameToNum(p->pVList, zName, nName);
1562 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1563 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1567 ** Transfer all bindings from the first statement over to the second.
1569 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1570 Vdbe *pFrom = (Vdbe*)pFromStmt;
1571 Vdbe *pTo = (Vdbe*)pToStmt;
1572 int i;
1573 assert( pTo->db==pFrom->db );
1574 assert( pTo->nVar==pFrom->nVar );
1575 sqlite3_mutex_enter(pTo->db->mutex);
1576 for(i=0; i<pFrom->nVar; i++){
1577 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1579 sqlite3_mutex_leave(pTo->db->mutex);
1580 return SQLITE_OK;
1583 #ifndef SQLITE_OMIT_DEPRECATED
1585 ** Deprecated external interface. Internal/core SQLite code
1586 ** should call sqlite3TransferBindings.
1588 ** It is misuse to call this routine with statements from different
1589 ** database connections. But as this is a deprecated interface, we
1590 ** will not bother to check for that condition.
1592 ** If the two statements contain a different number of bindings, then
1593 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1594 ** SQLITE_OK is returned.
1596 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1597 Vdbe *pFrom = (Vdbe*)pFromStmt;
1598 Vdbe *pTo = (Vdbe*)pToStmt;
1599 if( pFrom->nVar!=pTo->nVar ){
1600 return SQLITE_ERROR;
1602 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1603 if( pTo->expmask ){
1604 pTo->expired = 1;
1606 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1607 if( pFrom->expmask ){
1608 pFrom->expired = 1;
1610 return sqlite3TransferBindings(pFromStmt, pToStmt);
1612 #endif
1615 ** Return the sqlite3* database handle to which the prepared statement given
1616 ** in the argument belongs. This is the same database handle that was
1617 ** the first argument to the sqlite3_prepare() that was used to create
1618 ** the statement in the first place.
1620 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1621 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1625 ** Return true if the prepared statement is guaranteed to not modify the
1626 ** database.
1628 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1629 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1633 ** Return true if the prepared statement is in need of being reset.
1635 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1636 Vdbe *v = (Vdbe*)pStmt;
1637 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1641 ** Return a pointer to the next prepared statement after pStmt associated
1642 ** with database connection pDb. If pStmt is NULL, return the first
1643 ** prepared statement for the database connection. Return NULL if there
1644 ** are no more.
1646 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1647 sqlite3_stmt *pNext;
1648 #ifdef SQLITE_ENABLE_API_ARMOR
1649 if( !sqlite3SafetyCheckOk(pDb) ){
1650 (void)SQLITE_MISUSE_BKPT;
1651 return 0;
1653 #endif
1654 sqlite3_mutex_enter(pDb->mutex);
1655 if( pStmt==0 ){
1656 pNext = (sqlite3_stmt*)pDb->pVdbe;
1657 }else{
1658 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1660 sqlite3_mutex_leave(pDb->mutex);
1661 return pNext;
1665 ** Return the value of a status counter for a prepared statement
1667 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1668 Vdbe *pVdbe = (Vdbe*)pStmt;
1669 u32 v;
1670 #ifdef SQLITE_ENABLE_API_ARMOR
1671 if( !pStmt
1672 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1674 (void)SQLITE_MISUSE_BKPT;
1675 return 0;
1677 #endif
1678 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1679 sqlite3 *db = pVdbe->db;
1680 sqlite3_mutex_enter(db->mutex);
1681 v = 0;
1682 db->pnBytesFreed = (int*)&v;
1683 sqlite3VdbeClearObject(db, pVdbe);
1684 sqlite3DbFree(db, pVdbe);
1685 db->pnBytesFreed = 0;
1686 sqlite3_mutex_leave(db->mutex);
1687 }else{
1688 v = pVdbe->aCounter[op];
1689 if( resetFlag ) pVdbe->aCounter[op] = 0;
1691 return (int)v;
1695 ** Return the SQL associated with a prepared statement
1697 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1698 Vdbe *p = (Vdbe *)pStmt;
1699 return p ? p->zSql : 0;
1703 ** Return the SQL associated with a prepared statement with
1704 ** bound parameters expanded. Space to hold the returned string is
1705 ** obtained from sqlite3_malloc(). The caller is responsible for
1706 ** freeing the returned string by passing it to sqlite3_free().
1708 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1709 ** expanded bound parameters.
1711 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1712 #ifdef SQLITE_OMIT_TRACE
1713 return 0;
1714 #else
1715 char *z = 0;
1716 const char *zSql = sqlite3_sql(pStmt);
1717 if( zSql ){
1718 Vdbe *p = (Vdbe *)pStmt;
1719 sqlite3_mutex_enter(p->db->mutex);
1720 z = sqlite3VdbeExpandSql(p, zSql);
1721 sqlite3_mutex_leave(p->db->mutex);
1723 return z;
1724 #endif
1727 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1729 ** Allocate and populate an UnpackedRecord structure based on the serialized
1730 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1731 ** if successful, or a NULL pointer if an OOM error is encountered.
1733 static UnpackedRecord *vdbeUnpackRecord(
1734 KeyInfo *pKeyInfo,
1735 int nKey,
1736 const void *pKey
1738 UnpackedRecord *pRet; /* Return value */
1740 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1741 if( pRet ){
1742 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1743 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1745 return pRet;
1749 ** This function is called from within a pre-update callback to retrieve
1750 ** a field of the row currently being updated or deleted.
1752 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1753 PreUpdate *p = db->pPreUpdate;
1754 Mem *pMem;
1755 int rc = SQLITE_OK;
1757 /* Test that this call is being made from within an SQLITE_DELETE or
1758 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1759 if( !p || p->op==SQLITE_INSERT ){
1760 rc = SQLITE_MISUSE_BKPT;
1761 goto preupdate_old_out;
1763 if( p->pPk ){
1764 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1766 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1767 rc = SQLITE_RANGE;
1768 goto preupdate_old_out;
1771 /* If the old.* record has not yet been loaded into memory, do so now. */
1772 if( p->pUnpacked==0 ){
1773 u32 nRec;
1774 u8 *aRec;
1776 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1777 aRec = sqlite3DbMallocRaw(db, nRec);
1778 if( !aRec ) goto preupdate_old_out;
1779 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1780 if( rc==SQLITE_OK ){
1781 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1782 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1784 if( rc!=SQLITE_OK ){
1785 sqlite3DbFree(db, aRec);
1786 goto preupdate_old_out;
1788 p->aRecord = aRec;
1791 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1792 if( iIdx==p->pTab->iPKey ){
1793 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1794 }else if( iIdx>=p->pUnpacked->nField ){
1795 *ppValue = (sqlite3_value *)columnNullValue();
1796 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1797 if( pMem->flags & MEM_Int ){
1798 sqlite3VdbeMemRealify(pMem);
1802 preupdate_old_out:
1803 sqlite3Error(db, rc);
1804 return sqlite3ApiExit(db, rc);
1806 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1808 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1810 ** This function is called from within a pre-update callback to retrieve
1811 ** the number of columns in the row being updated, deleted or inserted.
1813 int sqlite3_preupdate_count(sqlite3 *db){
1814 PreUpdate *p = db->pPreUpdate;
1815 return (p ? p->keyinfo.nKeyField : 0);
1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1821 ** This function is designed to be called from within a pre-update callback
1822 ** only. It returns zero if the change that caused the callback was made
1823 ** immediately by a user SQL statement. Or, if the change was made by a
1824 ** trigger program, it returns the number of trigger programs currently
1825 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1826 ** top-level trigger etc.).
1828 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1829 ** or SET DEFAULT action is considered a trigger.
1831 int sqlite3_preupdate_depth(sqlite3 *db){
1832 PreUpdate *p = db->pPreUpdate;
1833 return (p ? p->v->nFrame : 0);
1835 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1837 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1839 ** This function is called from within a pre-update callback to retrieve
1840 ** a field of the row currently being updated or inserted.
1842 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1843 PreUpdate *p = db->pPreUpdate;
1844 int rc = SQLITE_OK;
1845 Mem *pMem;
1847 if( !p || p->op==SQLITE_DELETE ){
1848 rc = SQLITE_MISUSE_BKPT;
1849 goto preupdate_new_out;
1851 if( p->pPk && p->op!=SQLITE_UPDATE ){
1852 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1854 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1855 rc = SQLITE_RANGE;
1856 goto preupdate_new_out;
1859 if( p->op==SQLITE_INSERT ){
1860 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1861 ** that is being inserted. Deserialize it. */
1862 UnpackedRecord *pUnpack = p->pNewUnpacked;
1863 if( !pUnpack ){
1864 Mem *pData = &p->v->aMem[p->iNewReg];
1865 rc = ExpandBlob(pData);
1866 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1867 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1868 if( !pUnpack ){
1869 rc = SQLITE_NOMEM;
1870 goto preupdate_new_out;
1872 p->pNewUnpacked = pUnpack;
1874 pMem = &pUnpack->aMem[iIdx];
1875 if( iIdx==p->pTab->iPKey ){
1876 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1877 }else if( iIdx>=pUnpack->nField ){
1878 pMem = (sqlite3_value *)columnNullValue();
1880 }else{
1881 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1882 ** value. Make a copy of the cell contents and return a pointer to it.
1883 ** It is not safe to return a pointer to the memory cell itself as the
1884 ** caller may modify the value text encoding.
1886 assert( p->op==SQLITE_UPDATE );
1887 if( !p->aNew ){
1888 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1889 if( !p->aNew ){
1890 rc = SQLITE_NOMEM;
1891 goto preupdate_new_out;
1894 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1895 pMem = &p->aNew[iIdx];
1896 if( pMem->flags==0 ){
1897 if( iIdx==p->pTab->iPKey ){
1898 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1899 }else{
1900 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1901 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1905 *ppValue = pMem;
1907 preupdate_new_out:
1908 sqlite3Error(db, rc);
1909 return sqlite3ApiExit(db, rc);
1911 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1913 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1915 ** Return status data for a single loop within query pStmt.
1917 int sqlite3_stmt_scanstatus(
1918 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1919 int idx, /* Index of loop to report on */
1920 int iScanStatusOp, /* Which metric to return */
1921 void *pOut /* OUT: Write the answer here */
1923 Vdbe *p = (Vdbe*)pStmt;
1924 ScanStatus *pScan;
1925 if( idx<0 || idx>=p->nScan ) return 1;
1926 pScan = &p->aScan[idx];
1927 switch( iScanStatusOp ){
1928 case SQLITE_SCANSTAT_NLOOP: {
1929 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1930 break;
1932 case SQLITE_SCANSTAT_NVISIT: {
1933 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1934 break;
1936 case SQLITE_SCANSTAT_EST: {
1937 double r = 1.0;
1938 LogEst x = pScan->nEst;
1939 while( x<100 ){
1940 x += 10;
1941 r *= 0.5;
1943 *(double*)pOut = r*sqlite3LogEstToInt(x);
1944 break;
1946 case SQLITE_SCANSTAT_NAME: {
1947 *(const char**)pOut = pScan->zName;
1948 break;
1950 case SQLITE_SCANSTAT_EXPLAIN: {
1951 if( pScan->addrExplain ){
1952 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1953 }else{
1954 *(const char**)pOut = 0;
1956 break;
1958 case SQLITE_SCANSTAT_SELECTID: {
1959 if( pScan->addrExplain ){
1960 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1961 }else{
1962 *(int*)pOut = -1;
1964 break;
1966 default: {
1967 return 1;
1970 return 0;
1974 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1976 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1977 Vdbe *p = (Vdbe*)pStmt;
1978 memset(p->anExec, 0, p->nOp * sizeof(i64));
1980 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */