3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
14 #include "sqliteInt.h"
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
20 ** Deferred and Immediate FKs
21 ** --------------------------
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
40 ** * When a commit fails due to a deferred foreign key constraint,
41 ** there is no way to tell which foreign constraint is not satisfied,
42 ** or which row it is not satisfied for.
44 ** * If the database contains foreign key violations when the
45 ** transaction is opened, this may cause the mechanism to malfunction.
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
52 ** I.1) For each FK for which the table is the child table, search
53 ** the parent table for a match. If none is found increment the
54 ** constraint counter.
56 ** I.2) For each FK for which the table is the parent table,
57 ** search the child table for rows that correspond to the new
58 ** row in the parent table. Decrement the counter for each row
59 ** found (as the constraint is now satisfied).
63 ** D.1) For each FK for which the table is the child table,
64 ** search the parent table for a row that corresponds to the
65 ** deleted row in the child table. If such a row is not found,
66 ** decrement the counter.
68 ** D.2) For each FK for which the table is the parent table, search
69 ** the child table for rows that correspond to the deleted row
70 ** in the parent table. For each found increment the counter.
74 ** An UPDATE command requires that all 4 steps above are taken, but only
75 ** for FK constraints for which the affected columns are actually
76 ** modified (values must be compared at runtime).
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
98 ** TODO: How should dropping a table be handled? How should renaming a
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
114 ** sqlite3FkRequired() - Test to see if FK processing is required.
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
118 ** Externally accessible module functions
119 ** --------------------------------------
121 ** sqlite3FkCheck() - Check for foreign key violations.
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
123 ** sqlite3FkDelete() - Delete an FKey structure.
127 ** VDBE Calling Convention
128 ** -----------------------
132 ** For the following INSERT statement:
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 ** INSERT INTO t1 VALUES(1, 2, 3.1);
137 ** Register (x): 2 (type integer)
138 ** Register (x+1): 1 (type integer)
139 ** Register (x+2): NULL (type NULL)
140 ** Register (x+3): 3.1 (type real)
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
163 ** If the required index cannot be found, either because:
165 ** 1) The named parent key columns do not exist, or
167 ** 2) The named parent key columns do exist, but are not subject to a
168 ** UNIQUE or PRIMARY KEY constraint, or
170 ** 3) No parent key columns were provided explicitly as part of the
171 ** foreign key definition, and the parent table does not have a
174 ** 4) No parent key columns were provided explicitly as part of the
175 ** foreign key definition, and the PRIMARY KEY of the parent table
176 ** consists of a different number of columns to the child key in
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
183 int sqlite3FkLocateIndex(
184 Parse
*pParse
, /* Parse context to store any error in */
185 Table
*pParent
, /* Parent table of FK constraint pFKey */
186 FKey
*pFKey
, /* Foreign key to find index for */
187 Index
**ppIdx
, /* OUT: Unique index on parent table */
188 int **paiCol
/* OUT: Map of index columns in pFKey */
190 Index
*pIdx
= 0; /* Value to return via *ppIdx */
191 int *aiCol
= 0; /* Value to return via *paiCol */
192 int nCol
= pFKey
->nCol
; /* Number of columns in parent key */
193 char *zKey
= pFKey
->aCol
[0].zCol
; /* Name of left-most parent key column */
195 /* The caller is responsible for zeroing output parameters. */
196 assert( ppIdx
&& *ppIdx
==0 );
197 assert( !paiCol
|| *paiCol
==0 );
200 /* If this is a non-composite (single column) foreign key, check if it
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202 ** and *paiCol set to zero and return early.
204 ** Otherwise, for a composite foreign key (more than one column), allocate
205 ** space for the aiCol array (returned via output parameter *paiCol).
206 ** Non-composite foreign keys do not require the aiCol array.
209 /* The FK maps to the IPK if any of the following are true:
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212 ** mapped to the primary key of table pParent, or
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER
216 if( pParent
->iPKey
>=0 ){
217 if( !zKey
) return 0;
218 if( !sqlite3StrICmp(pParent
->aCol
[pParent
->iPKey
].zName
, zKey
) ) return 0;
222 aiCol
= (int *)sqlite3DbMallocRawNN(pParse
->db
, nCol
*sizeof(int));
223 if( !aiCol
) return 1;
227 for(pIdx
=pParent
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
228 if( pIdx
->nKeyCol
==nCol
&& IsUniqueIndex(pIdx
) && pIdx
->pPartIdxWhere
==0 ){
229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230 ** of columns. If each indexed column corresponds to a foreign key
231 ** column of pFKey, then this index is a winner. */
234 /* If zKey is NULL, then this foreign key is implicitly mapped to
235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236 ** identified by the test. */
237 if( IsPrimaryKeyIndex(pIdx
) ){
240 for(i
=0; i
<nCol
; i
++) aiCol
[i
] = pFKey
->aCol
[i
].iFrom
;
245 /* If zKey is non-NULL, then this foreign key was declared to
246 ** map to an explicit list of columns in table pParent. Check if this
247 ** index matches those columns. Also, check that the index uses
248 ** the default collation sequences for each column. */
250 for(i
=0; i
<nCol
; i
++){
251 i16 iCol
= pIdx
->aiColumn
[i
]; /* Index of column in parent tbl */
252 const char *zDfltColl
; /* Def. collation for column */
253 char *zIdxCol
; /* Name of indexed column */
255 if( iCol
<0 ) break; /* No foreign keys against expression indexes */
257 /* If the index uses a collation sequence that is different from
258 ** the default collation sequence for the column, this index is
259 ** unusable. Bail out early in this case. */
260 zDfltColl
= pParent
->aCol
[iCol
].zColl
;
261 if( !zDfltColl
) zDfltColl
= sqlite3StrBINARY
;
262 if( sqlite3StrICmp(pIdx
->azColl
[i
], zDfltColl
) ) break;
264 zIdxCol
= pParent
->aCol
[iCol
].zName
;
265 for(j
=0; j
<nCol
; j
++){
266 if( sqlite3StrICmp(pFKey
->aCol
[j
].zCol
, zIdxCol
)==0 ){
267 if( aiCol
) aiCol
[i
] = pFKey
->aCol
[j
].iFrom
;
273 if( i
==nCol
) break; /* pIdx is usable */
279 if( !pParse
->disableTriggers
){
280 sqlite3ErrorMsg(pParse
,
281 "foreign key mismatch - \"%w\" referencing \"%w\"",
282 pFKey
->pFrom
->zName
, pFKey
->zTo
);
284 sqlite3DbFree(pParse
->db
, aiCol
);
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
305 ** Operation | FK type | Action taken
306 ** --------------------------------------------------------------------------
307 ** INSERT immediate Increment the "immediate constraint counter".
309 ** DELETE immediate Decrement the "immediate constraint counter".
311 ** INSERT deferred Increment the "deferred constraint counter".
313 ** DELETE deferred Decrement the "deferred constraint counter".
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
318 static void fkLookupParent(
319 Parse
*pParse
, /* Parse context */
320 int iDb
, /* Index of database housing pTab */
321 Table
*pTab
, /* Parent table of FK pFKey */
322 Index
*pIdx
, /* Unique index on parent key columns in pTab */
323 FKey
*pFKey
, /* Foreign key constraint */
324 int *aiCol
, /* Map from parent key columns to child table columns */
325 int regData
, /* Address of array containing child table row */
326 int nIncr
, /* Increment constraint counter by this */
327 int isIgnore
/* If true, pretend pTab contains all NULL values */
329 int i
; /* Iterator variable */
330 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Vdbe to add code to */
331 int iCur
= pParse
->nTab
- 1; /* Cursor number to use */
332 int iOk
= sqlite3VdbeMakeLabel(v
); /* jump here if parent key found */
334 sqlite3VdbeVerifyAbortable(v
,
336 && !(pParse
->db
->flags
& SQLITE_DeferFKs
)
337 && !pParse
->pToplevel
338 && !pParse
->isMultiWrite
) ? OE_Abort
: OE_Ignore
);
340 /* If nIncr is less than zero, then check at runtime if there are any
341 ** outstanding constraints to resolve. If there are not, there is no need
342 ** to check if deleting this row resolves any outstanding violations.
344 ** Check if any of the key columns in the child table row are NULL. If
345 ** any are, then the constraint is considered satisfied. No need to
346 ** search for a matching row in the parent table. */
348 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, pFKey
->isDeferred
, iOk
);
351 for(i
=0; i
<pFKey
->nCol
; i
++){
352 int iReg
= aiCol
[i
] + regData
+ 1;
353 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, iOk
); VdbeCoverage(v
);
358 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
359 ** column of the parent table (table pTab). */
360 int iMustBeInt
; /* Address of MustBeInt instruction */
361 int regTemp
= sqlite3GetTempReg(pParse
);
363 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
364 ** apply the affinity of the parent key). If this fails, then there
365 ** is no matching parent key. Before using MustBeInt, make a copy of
366 ** the value. Otherwise, the value inserted into the child key column
367 ** will have INTEGER affinity applied to it, which may not be correct. */
368 sqlite3VdbeAddOp2(v
, OP_SCopy
, aiCol
[0]+1+regData
, regTemp
);
369 iMustBeInt
= sqlite3VdbeAddOp2(v
, OP_MustBeInt
, regTemp
, 0);
372 /* If the parent table is the same as the child table, and we are about
373 ** to increment the constraint-counter (i.e. this is an INSERT operation),
374 ** then check if the row being inserted matches itself. If so, do not
375 ** increment the constraint-counter. */
376 if( pTab
==pFKey
->pFrom
&& nIncr
==1 ){
377 sqlite3VdbeAddOp3(v
, OP_Eq
, regData
, iOk
, regTemp
); VdbeCoverage(v
);
378 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
381 sqlite3OpenTable(pParse
, iCur
, iDb
, pTab
, OP_OpenRead
);
382 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, 0, regTemp
); VdbeCoverage(v
);
383 sqlite3VdbeGoto(v
, iOk
);
384 sqlite3VdbeJumpHere(v
, sqlite3VdbeCurrentAddr(v
)-2);
385 sqlite3VdbeJumpHere(v
, iMustBeInt
);
386 sqlite3ReleaseTempReg(pParse
, regTemp
);
388 int nCol
= pFKey
->nCol
;
389 int regTemp
= sqlite3GetTempRange(pParse
, nCol
);
390 int regRec
= sqlite3GetTempReg(pParse
);
392 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iCur
, pIdx
->tnum
, iDb
);
393 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
394 for(i
=0; i
<nCol
; i
++){
395 sqlite3VdbeAddOp2(v
, OP_Copy
, aiCol
[i
]+1+regData
, regTemp
+i
);
398 /* If the parent table is the same as the child table, and we are about
399 ** to increment the constraint-counter (i.e. this is an INSERT operation),
400 ** then check if the row being inserted matches itself. If so, do not
401 ** increment the constraint-counter.
403 ** If any of the parent-key values are NULL, then the row cannot match
404 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
405 ** of the parent-key values are NULL (at this point it is known that
406 ** none of the child key values are).
408 if( pTab
==pFKey
->pFrom
&& nIncr
==1 ){
409 int iJump
= sqlite3VdbeCurrentAddr(v
) + nCol
+ 1;
410 for(i
=0; i
<nCol
; i
++){
411 int iChild
= aiCol
[i
]+1+regData
;
412 int iParent
= pIdx
->aiColumn
[i
]+1+regData
;
413 assert( pIdx
->aiColumn
[i
]>=0 );
414 assert( aiCol
[i
]!=pTab
->iPKey
);
415 if( pIdx
->aiColumn
[i
]==pTab
->iPKey
){
416 /* The parent key is a composite key that includes the IPK column */
419 sqlite3VdbeAddOp3(v
, OP_Ne
, iChild
, iJump
, iParent
); VdbeCoverage(v
);
420 sqlite3VdbeChangeP5(v
, SQLITE_JUMPIFNULL
);
422 sqlite3VdbeGoto(v
, iOk
);
425 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regTemp
, nCol
, regRec
,
426 sqlite3IndexAffinityStr(pParse
->db
,pIdx
), nCol
);
427 sqlite3VdbeAddOp4Int(v
, OP_Found
, iCur
, iOk
, regRec
, 0); VdbeCoverage(v
);
429 sqlite3ReleaseTempReg(pParse
, regRec
);
430 sqlite3ReleaseTempRange(pParse
, regTemp
, nCol
);
434 if( !pFKey
->isDeferred
&& !(pParse
->db
->flags
& SQLITE_DeferFKs
)
435 && !pParse
->pToplevel
436 && !pParse
->isMultiWrite
438 /* Special case: If this is an INSERT statement that will insert exactly
439 ** one row into the table, raise a constraint immediately instead of
440 ** incrementing a counter. This is necessary as the VM code is being
441 ** generated for will not open a statement transaction. */
443 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_FOREIGNKEY
,
444 OE_Abort
, 0, P4_STATIC
, P5_ConstraintFK
);
446 if( nIncr
>0 && pFKey
->isDeferred
==0 ){
447 sqlite3MayAbort(pParse
);
449 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, nIncr
);
452 sqlite3VdbeResolveLabel(v
, iOk
);
453 sqlite3VdbeAddOp1(v
, OP_Close
, iCur
);
458 ** Return an Expr object that refers to a memory register corresponding
459 ** to column iCol of table pTab.
461 ** regBase is the first of an array of register that contains the data
462 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first
463 ** column. regBase+2 holds the second column, and so forth.
465 static Expr
*exprTableRegister(
466 Parse
*pParse
, /* Parsing and code generating context */
467 Table
*pTab
, /* The table whose content is at r[regBase]... */
468 int regBase
, /* Contents of table pTab */
469 i16 iCol
/* Which column of pTab is desired */
474 sqlite3
*db
= pParse
->db
;
476 pExpr
= sqlite3Expr(db
, TK_REGISTER
, 0);
478 if( iCol
>=0 && iCol
!=pTab
->iPKey
){
479 pCol
= &pTab
->aCol
[iCol
];
480 pExpr
->iTable
= regBase
+ iCol
+ 1;
481 pExpr
->affinity
= pCol
->affinity
;
483 if( zColl
==0 ) zColl
= db
->pDfltColl
->zName
;
484 pExpr
= sqlite3ExprAddCollateString(pParse
, pExpr
, zColl
);
486 pExpr
->iTable
= regBase
;
487 pExpr
->affinity
= SQLITE_AFF_INTEGER
;
494 ** Return an Expr object that refers to column iCol of table pTab which
497 static Expr
*exprTableColumn(
498 sqlite3
*db
, /* The database connection */
499 Table
*pTab
, /* The table whose column is desired */
500 int iCursor
, /* The open cursor on the table */
501 i16 iCol
/* The column that is wanted */
503 Expr
*pExpr
= sqlite3Expr(db
, TK_COLUMN
, 0);
506 pExpr
->iTable
= iCursor
;
507 pExpr
->iColumn
= iCol
;
513 ** This function is called to generate code executed when a row is deleted
514 ** from the parent table of foreign key constraint pFKey and, if pFKey is
515 ** deferred, when a row is inserted into the same table. When generating
516 ** code for an SQL UPDATE operation, this function may be called twice -
517 ** once to "delete" the old row and once to "insert" the new row.
519 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
520 ** the number of FK violations in the db) or +1 when deleting one (as this
521 ** may increase the number of FK constraint problems).
523 ** The code generated by this function scans through the rows in the child
524 ** table that correspond to the parent table row being deleted or inserted.
525 ** For each child row found, one of the following actions is taken:
527 ** Operation | FK type | Action taken
528 ** --------------------------------------------------------------------------
529 ** DELETE immediate Increment the "immediate constraint counter".
530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
531 ** throw a "FOREIGN KEY constraint failed" exception.
533 ** INSERT immediate Decrement the "immediate constraint counter".
535 ** DELETE deferred Increment the "deferred constraint counter".
536 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
537 ** throw a "FOREIGN KEY constraint failed" exception.
539 ** INSERT deferred Decrement the "deferred constraint counter".
541 ** These operations are identified in the comment at the top of this file
542 ** (fkey.c) as "I.2" and "D.2".
544 static void fkScanChildren(
545 Parse
*pParse
, /* Parse context */
546 SrcList
*pSrc
, /* The child table to be scanned */
547 Table
*pTab
, /* The parent table */
548 Index
*pIdx
, /* Index on parent covering the foreign key */
549 FKey
*pFKey
, /* The foreign key linking pSrc to pTab */
550 int *aiCol
, /* Map from pIdx cols to child table cols */
551 int regData
, /* Parent row data starts here */
552 int nIncr
/* Amount to increment deferred counter by */
554 sqlite3
*db
= pParse
->db
; /* Database handle */
555 int i
; /* Iterator variable */
556 Expr
*pWhere
= 0; /* WHERE clause to scan with */
557 NameContext sNameContext
; /* Context used to resolve WHERE clause */
558 WhereInfo
*pWInfo
; /* Context used by sqlite3WhereXXX() */
559 int iFkIfZero
= 0; /* Address of OP_FkIfZero */
560 Vdbe
*v
= sqlite3GetVdbe(pParse
);
562 assert( pIdx
==0 || pIdx
->pTable
==pTab
);
563 assert( pIdx
==0 || pIdx
->nKeyCol
==pFKey
->nCol
);
564 assert( pIdx
!=0 || pFKey
->nCol
==1 );
565 assert( pIdx
!=0 || HasRowid(pTab
) );
568 iFkIfZero
= sqlite3VdbeAddOp2(v
, OP_FkIfZero
, pFKey
->isDeferred
, 0);
572 /* Create an Expr object representing an SQL expression like:
574 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
576 ** The collation sequence used for the comparison should be that of
577 ** the parent key columns. The affinity of the parent key column should
578 ** be applied to each child key value before the comparison takes place.
580 for(i
=0; i
<pFKey
->nCol
; i
++){
581 Expr
*pLeft
; /* Value from parent table row */
582 Expr
*pRight
; /* Column ref to child table */
583 Expr
*pEq
; /* Expression (pLeft = pRight) */
584 i16 iCol
; /* Index of column in child table */
585 const char *zCol
; /* Name of column in child table */
587 iCol
= pIdx
? pIdx
->aiColumn
[i
] : -1;
588 pLeft
= exprTableRegister(pParse
, pTab
, regData
, iCol
);
589 iCol
= aiCol
? aiCol
[i
] : pFKey
->aCol
[0].iFrom
;
591 zCol
= pFKey
->pFrom
->aCol
[iCol
].zName
;
592 pRight
= sqlite3Expr(db
, TK_ID
, zCol
);
593 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pLeft
, pRight
);
594 pWhere
= sqlite3ExprAnd(db
, pWhere
, pEq
);
597 /* If the child table is the same as the parent table, then add terms
598 ** to the WHERE clause that prevent this entry from being scanned.
599 ** The added WHERE clause terms are like this:
601 ** $current_rowid!=rowid
602 ** NOT( $current_a==a AND $current_b==b AND ... )
604 ** The first form is used for rowid tables. The second form is used
605 ** for WITHOUT ROWID tables. In the second form, the primary key is
608 if( pTab
==pFKey
->pFrom
&& nIncr
>0 ){
609 Expr
*pNe
; /* Expression (pLeft != pRight) */
610 Expr
*pLeft
; /* Value from parent table row */
611 Expr
*pRight
; /* Column ref to child table */
612 if( HasRowid(pTab
) ){
613 pLeft
= exprTableRegister(pParse
, pTab
, regData
, -1);
614 pRight
= exprTableColumn(db
, pTab
, pSrc
->a
[0].iCursor
, -1);
615 pNe
= sqlite3PExpr(pParse
, TK_NE
, pLeft
, pRight
);
617 Expr
*pEq
, *pAll
= 0;
618 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
620 for(i
=0; i
<pPk
->nKeyCol
; i
++){
621 i16 iCol
= pIdx
->aiColumn
[i
];
623 pLeft
= exprTableRegister(pParse
, pTab
, regData
, iCol
);
624 pRight
= exprTableColumn(db
, pTab
, pSrc
->a
[0].iCursor
, iCol
);
625 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pLeft
, pRight
);
626 pAll
= sqlite3ExprAnd(db
, pAll
, pEq
);
628 pNe
= sqlite3PExpr(pParse
, TK_NOT
, pAll
, 0);
630 pWhere
= sqlite3ExprAnd(db
, pWhere
, pNe
);
633 /* Resolve the references in the WHERE clause. */
634 memset(&sNameContext
, 0, sizeof(NameContext
));
635 sNameContext
.pSrcList
= pSrc
;
636 sNameContext
.pParse
= pParse
;
637 sqlite3ResolveExprNames(&sNameContext
, pWhere
);
639 /* Create VDBE to loop through the entries in pSrc that match the WHERE
640 ** clause. For each row found, increment either the deferred or immediate
641 ** foreign key constraint counter. */
642 if( pParse
->nErr
==0 ){
643 pWInfo
= sqlite3WhereBegin(pParse
, pSrc
, pWhere
, 0, 0, 0, 0);
644 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, nIncr
);
646 sqlite3WhereEnd(pWInfo
);
650 /* Clean up the WHERE clause constructed above. */
651 sqlite3ExprDelete(db
, pWhere
);
653 sqlite3VdbeJumpHere(v
, iFkIfZero
);
658 ** This function returns a linked list of FKey objects (connected by
659 ** FKey.pNextTo) holding all children of table pTab. For example,
660 ** given the following schema:
662 ** CREATE TABLE t1(a PRIMARY KEY);
663 ** CREATE TABLE t2(b REFERENCES t1(a);
665 ** Calling this function with table "t1" as an argument returns a pointer
666 ** to the FKey structure representing the foreign key constraint on table
667 ** "t2". Calling this function with "t2" as the argument would return a
668 ** NULL pointer (as there are no FK constraints for which t2 is the parent
671 FKey
*sqlite3FkReferences(Table
*pTab
){
672 return (FKey
*)sqlite3HashFind(&pTab
->pSchema
->fkeyHash
, pTab
->zName
);
676 ** The second argument is a Trigger structure allocated by the
677 ** fkActionTrigger() routine. This function deletes the Trigger structure
678 ** and all of its sub-components.
680 ** The Trigger structure or any of its sub-components may be allocated from
681 ** the lookaside buffer belonging to database handle dbMem.
683 static void fkTriggerDelete(sqlite3
*dbMem
, Trigger
*p
){
685 TriggerStep
*pStep
= p
->step_list
;
686 sqlite3ExprDelete(dbMem
, pStep
->pWhere
);
687 sqlite3ExprListDelete(dbMem
, pStep
->pExprList
);
688 sqlite3SelectDelete(dbMem
, pStep
->pSelect
);
689 sqlite3ExprDelete(dbMem
, p
->pWhen
);
690 sqlite3DbFree(dbMem
, p
);
695 ** This function is called to generate code that runs when table pTab is
696 ** being dropped from the database. The SrcList passed as the second argument
697 ** to this function contains a single entry guaranteed to resolve to
700 ** Normally, no code is required. However, if either
702 ** (a) The table is the parent table of a FK constraint, or
703 ** (b) The table is the child table of a deferred FK constraint and it is
704 ** determined at runtime that there are outstanding deferred FK
705 ** constraint violations in the database,
707 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
708 ** the table from the database. Triggers are disabled while running this
709 ** DELETE, but foreign key actions are not.
711 void sqlite3FkDropTable(Parse
*pParse
, SrcList
*pName
, Table
*pTab
){
712 sqlite3
*db
= pParse
->db
;
713 if( (db
->flags
&SQLITE_ForeignKeys
) && !IsVirtual(pTab
) && !pTab
->pSelect
){
715 Vdbe
*v
= sqlite3GetVdbe(pParse
);
717 assert( v
); /* VDBE has already been allocated */
718 if( sqlite3FkReferences(pTab
)==0 ){
719 /* Search for a deferred foreign key constraint for which this table
720 ** is the child table. If one cannot be found, return without
721 ** generating any VDBE code. If one can be found, then jump over
722 ** the entire DELETE if there are no outstanding deferred constraints
723 ** when this statement is run. */
725 for(p
=pTab
->pFKey
; p
; p
=p
->pNextFrom
){
726 if( p
->isDeferred
|| (db
->flags
& SQLITE_DeferFKs
) ) break;
729 iSkip
= sqlite3VdbeMakeLabel(v
);
730 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, 1, iSkip
); VdbeCoverage(v
);
733 pParse
->disableTriggers
= 1;
734 sqlite3DeleteFrom(pParse
, sqlite3SrcListDup(db
, pName
, 0), 0, 0, 0);
735 pParse
->disableTriggers
= 0;
737 /* If the DELETE has generated immediate foreign key constraint
738 ** violations, halt the VDBE and return an error at this point, before
739 ** any modifications to the schema are made. This is because statement
740 ** transactions are not able to rollback schema changes.
742 ** If the SQLITE_DeferFKs flag is set, then this is not required, as
743 ** the statement transaction will not be rolled back even if FK
744 ** constraints are violated.
746 if( (db
->flags
& SQLITE_DeferFKs
)==0 ){
747 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
748 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, 0, sqlite3VdbeCurrentAddr(v
)+2);
750 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_FOREIGNKEY
,
751 OE_Abort
, 0, P4_STATIC
, P5_ConstraintFK
);
755 sqlite3VdbeResolveLabel(v
, iSkip
);
762 ** The second argument points to an FKey object representing a foreign key
763 ** for which pTab is the child table. An UPDATE statement against pTab
764 ** is currently being processed. For each column of the table that is
765 ** actually updated, the corresponding element in the aChange[] array
766 ** is zero or greater (if a column is unmodified the corresponding element
767 ** is set to -1). If the rowid column is modified by the UPDATE statement
768 ** the bChngRowid argument is non-zero.
770 ** This function returns true if any of the columns that are part of the
771 ** child key for FK constraint *p are modified.
773 static int fkChildIsModified(
774 Table
*pTab
, /* Table being updated */
775 FKey
*p
, /* Foreign key for which pTab is the child */
776 int *aChange
, /* Array indicating modified columns */
777 int bChngRowid
/* True if rowid is modified by this update */
780 for(i
=0; i
<p
->nCol
; i
++){
781 int iChildKey
= p
->aCol
[i
].iFrom
;
782 if( aChange
[iChildKey
]>=0 ) return 1;
783 if( iChildKey
==pTab
->iPKey
&& bChngRowid
) return 1;
789 ** The second argument points to an FKey object representing a foreign key
790 ** for which pTab is the parent table. An UPDATE statement against pTab
791 ** is currently being processed. For each column of the table that is
792 ** actually updated, the corresponding element in the aChange[] array
793 ** is zero or greater (if a column is unmodified the corresponding element
794 ** is set to -1). If the rowid column is modified by the UPDATE statement
795 ** the bChngRowid argument is non-zero.
797 ** This function returns true if any of the columns that are part of the
798 ** parent key for FK constraint *p are modified.
800 static int fkParentIsModified(
807 for(i
=0; i
<p
->nCol
; i
++){
808 char *zKey
= p
->aCol
[i
].zCol
;
810 for(iKey
=0; iKey
<pTab
->nCol
; iKey
++){
811 if( aChange
[iKey
]>=0 || (iKey
==pTab
->iPKey
&& bChngRowid
) ){
812 Column
*pCol
= &pTab
->aCol
[iKey
];
814 if( 0==sqlite3StrICmp(pCol
->zName
, zKey
) ) return 1;
815 }else if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
825 ** Return true if the parser passed as the first argument is being
826 ** used to code a trigger that is really a "SET NULL" action belonging
829 static int isSetNullAction(Parse
*pParse
, FKey
*pFKey
){
830 Parse
*pTop
= sqlite3ParseToplevel(pParse
);
831 if( pTop
->pTriggerPrg
){
832 Trigger
*p
= pTop
->pTriggerPrg
->pTrigger
;
833 if( (p
==pFKey
->apTrigger
[0] && pFKey
->aAction
[0]==OE_SetNull
)
834 || (p
==pFKey
->apTrigger
[1] && pFKey
->aAction
[1]==OE_SetNull
)
843 ** This function is called when inserting, deleting or updating a row of
844 ** table pTab to generate VDBE code to perform foreign key constraint
845 ** processing for the operation.
847 ** For a DELETE operation, parameter regOld is passed the index of the
848 ** first register in an array of (pTab->nCol+1) registers containing the
849 ** rowid of the row being deleted, followed by each of the column values
850 ** of the row being deleted, from left to right. Parameter regNew is passed
851 ** zero in this case.
853 ** For an INSERT operation, regOld is passed zero and regNew is passed the
854 ** first register of an array of (pTab->nCol+1) registers containing the new
857 ** For an UPDATE operation, this function is called twice. Once before
858 ** the original record is deleted from the table using the calling convention
859 ** described for DELETE. Then again after the original record is deleted
860 ** but before the new record is inserted using the INSERT convention.
863 Parse
*pParse
, /* Parse context */
864 Table
*pTab
, /* Row is being deleted from this table */
865 int regOld
, /* Previous row data is stored here */
866 int regNew
, /* New row data is stored here */
867 int *aChange
, /* Array indicating UPDATEd columns (or 0) */
868 int bChngRowid
/* True if rowid is UPDATEd */
870 sqlite3
*db
= pParse
->db
; /* Database handle */
871 FKey
*pFKey
; /* Used to iterate through FKs */
872 int iDb
; /* Index of database containing pTab */
873 const char *zDb
; /* Name of database containing pTab */
874 int isIgnoreErrors
= pParse
->disableTriggers
;
876 /* Exactly one of regOld and regNew should be non-zero. */
877 assert( (regOld
==0)!=(regNew
==0) );
879 /* If foreign-keys are disabled, this function is a no-op. */
880 if( (db
->flags
&SQLITE_ForeignKeys
)==0 ) return;
882 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
883 zDb
= db
->aDb
[iDb
].zDbSName
;
885 /* Loop through all the foreign key constraints for which pTab is the
886 ** child table (the table that the foreign key definition is part of). */
887 for(pFKey
=pTab
->pFKey
; pFKey
; pFKey
=pFKey
->pNextFrom
){
888 Table
*pTo
; /* Parent table of foreign key pFKey */
889 Index
*pIdx
= 0; /* Index on key columns in pTo */
897 && sqlite3_stricmp(pTab
->zName
, pFKey
->zTo
)!=0
898 && fkChildIsModified(pTab
, pFKey
, aChange
, bChngRowid
)==0
903 /* Find the parent table of this foreign key. Also find a unique index
904 ** on the parent key columns in the parent table. If either of these
905 ** schema items cannot be located, set an error in pParse and return
907 if( pParse
->disableTriggers
){
908 pTo
= sqlite3FindTable(db
, pFKey
->zTo
, zDb
);
910 pTo
= sqlite3LocateTable(pParse
, 0, pFKey
->zTo
, zDb
);
912 if( !pTo
|| sqlite3FkLocateIndex(pParse
, pTo
, pFKey
, &pIdx
, &aiFree
) ){
913 assert( isIgnoreErrors
==0 || (regOld
!=0 && regNew
==0) );
914 if( !isIgnoreErrors
|| db
->mallocFailed
) return;
916 /* If isIgnoreErrors is true, then a table is being dropped. In this
917 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
918 ** before actually dropping it in order to check FK constraints.
919 ** If the parent table of an FK constraint on the current table is
920 ** missing, behave as if it is empty. i.e. decrement the relevant
921 ** FK counter for each row of the current table with non-NULL keys.
923 Vdbe
*v
= sqlite3GetVdbe(pParse
);
924 int iJump
= sqlite3VdbeCurrentAddr(v
) + pFKey
->nCol
+ 1;
925 for(i
=0; i
<pFKey
->nCol
; i
++){
926 int iReg
= pFKey
->aCol
[i
].iFrom
+ regOld
+ 1;
927 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, iJump
); VdbeCoverage(v
);
929 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, -1);
933 assert( pFKey
->nCol
==1 || (aiFree
&& pIdx
) );
938 iCol
= pFKey
->aCol
[0].iFrom
;
941 for(i
=0; i
<pFKey
->nCol
; i
++){
942 if( aiCol
[i
]==pTab
->iPKey
){
945 assert( pIdx
==0 || pIdx
->aiColumn
[i
]>=0 );
946 #ifndef SQLITE_OMIT_AUTHORIZATION
947 /* Request permission to read the parent key columns. If the
948 ** authorization callback returns SQLITE_IGNORE, behave as if any
949 ** values read from the parent table are NULL. */
952 char *zCol
= pTo
->aCol
[pIdx
? pIdx
->aiColumn
[i
] : pTo
->iPKey
].zName
;
953 rcauth
= sqlite3AuthReadCol(pParse
, pTo
->zName
, zCol
, iDb
);
954 bIgnore
= (rcauth
==SQLITE_IGNORE
);
959 /* Take a shared-cache advisory read-lock on the parent table. Allocate
960 ** a cursor to use to search the unique index on the parent key columns
961 ** in the parent table. */
962 sqlite3TableLock(pParse
, iDb
, pTo
->tnum
, 0, pTo
->zName
);
966 /* A row is being removed from the child table. Search for the parent.
967 ** If the parent does not exist, removing the child row resolves an
968 ** outstanding foreign key constraint violation. */
969 fkLookupParent(pParse
, iDb
, pTo
, pIdx
, pFKey
, aiCol
, regOld
, -1, bIgnore
);
971 if( regNew
!=0 && !isSetNullAction(pParse
, pFKey
) ){
972 /* A row is being added to the child table. If a parent row cannot
973 ** be found, adding the child row has violated the FK constraint.
975 ** If this operation is being performed as part of a trigger program
976 ** that is actually a "SET NULL" action belonging to this very
977 ** foreign key, then omit this scan altogether. As all child key
978 ** values are guaranteed to be NULL, it is not possible for adding
979 ** this row to cause an FK violation. */
980 fkLookupParent(pParse
, iDb
, pTo
, pIdx
, pFKey
, aiCol
, regNew
, +1, bIgnore
);
983 sqlite3DbFree(db
, aiFree
);
986 /* Loop through all the foreign key constraints that refer to this table.
987 ** (the "child" constraints) */
988 for(pFKey
= sqlite3FkReferences(pTab
); pFKey
; pFKey
=pFKey
->pNextTo
){
989 Index
*pIdx
= 0; /* Foreign key index for pFKey */
993 if( aChange
&& fkParentIsModified(pTab
, pFKey
, aChange
, bChngRowid
)==0 ){
997 if( !pFKey
->isDeferred
&& !(db
->flags
& SQLITE_DeferFKs
)
998 && !pParse
->pToplevel
&& !pParse
->isMultiWrite
1000 assert( regOld
==0 && regNew
!=0 );
1001 /* Inserting a single row into a parent table cannot cause (or fix)
1002 ** an immediate foreign key violation. So do nothing in this case. */
1006 if( sqlite3FkLocateIndex(pParse
, pTab
, pFKey
, &pIdx
, &aiCol
) ){
1007 if( !isIgnoreErrors
|| db
->mallocFailed
) return;
1010 assert( aiCol
|| pFKey
->nCol
==1 );
1012 /* Create a SrcList structure containing the child table. We need the
1013 ** child table as a SrcList for sqlite3WhereBegin() */
1014 pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
1016 struct SrcList_item
*pItem
= pSrc
->a
;
1017 pItem
->pTab
= pFKey
->pFrom
;
1018 pItem
->zName
= pFKey
->pFrom
->zName
;
1019 pItem
->pTab
->nTabRef
++;
1020 pItem
->iCursor
= pParse
->nTab
++;
1023 fkScanChildren(pParse
, pSrc
, pTab
, pIdx
, pFKey
, aiCol
, regNew
, -1);
1026 int eAction
= pFKey
->aAction
[aChange
!=0];
1027 fkScanChildren(pParse
, pSrc
, pTab
, pIdx
, pFKey
, aiCol
, regOld
, 1);
1028 /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1029 ** action applies, then any foreign key violations caused by
1030 ** removing the parent key will be rectified by the action trigger.
1031 ** So do not set the "may-abort" flag in this case.
1033 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1034 ** may-abort flag will eventually be set on this statement anyway
1035 ** (when this function is called as part of processing the UPDATE
1036 ** within the action trigger).
1038 ** Note 2: At first glance it may seem like SQLite could simply omit
1039 ** all OP_FkCounter related scans when either CASCADE or SET NULL
1040 ** applies. The trouble starts if the CASCADE or SET NULL action
1041 ** trigger causes other triggers or action rules attached to the
1042 ** child table to fire. In these cases the fk constraint counters
1043 ** might be set incorrectly if any OP_FkCounter related scans are
1045 if( !pFKey
->isDeferred
&& eAction
!=OE_Cascade
&& eAction
!=OE_SetNull
){
1046 sqlite3MayAbort(pParse
);
1050 sqlite3SrcListDelete(db
, pSrc
);
1052 sqlite3DbFree(db
, aiCol
);
1056 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1059 ** This function is called before generating code to update or delete a
1060 ** row contained in table pTab.
1062 u32
sqlite3FkOldmask(
1063 Parse
*pParse
, /* Parse context */
1064 Table
*pTab
/* Table being modified */
1067 if( pParse
->db
->flags
&SQLITE_ForeignKeys
){
1070 for(p
=pTab
->pFKey
; p
; p
=p
->pNextFrom
){
1071 for(i
=0; i
<p
->nCol
; i
++) mask
|= COLUMN_MASK(p
->aCol
[i
].iFrom
);
1073 for(p
=sqlite3FkReferences(pTab
); p
; p
=p
->pNextTo
){
1075 sqlite3FkLocateIndex(pParse
, pTab
, p
, &pIdx
, 0);
1077 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
1078 assert( pIdx
->aiColumn
[i
]>=0 );
1079 mask
|= COLUMN_MASK(pIdx
->aiColumn
[i
]);
1089 ** This function is called before generating code to update or delete a
1090 ** row contained in table pTab. If the operation is a DELETE, then
1091 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1092 ** to an array of size N, where N is the number of columns in table pTab.
1093 ** If the i'th column is not modified by the UPDATE, then the corresponding
1094 ** entry in the aChange[] array is set to -1. If the column is modified,
1095 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1096 ** UPDATE statement modifies the rowid fields of the table.
1098 ** If any foreign key processing will be required, this function returns
1099 ** non-zero. If there is no foreign key related processing, this function
1102 ** For an UPDATE, this function returns 2 if:
1104 ** * There are any FKs for which pTab is the child and the parent table, or
1105 ** * the UPDATE modifies one or more parent keys for which the action is
1106 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1108 ** Or, assuming some other foreign key processing is required, 1.
1110 int sqlite3FkRequired(
1111 Parse
*pParse
, /* Parse context */
1112 Table
*pTab
, /* Table being modified */
1113 int *aChange
, /* Non-NULL for UPDATE operations */
1114 int chngRowid
/* True for UPDATE that affects rowid */
1117 if( pParse
->db
->flags
&SQLITE_ForeignKeys
){
1119 /* A DELETE operation. Foreign key processing is required if the
1120 ** table in question is either the child or parent table for any
1121 ** foreign key constraint. */
1122 eRet
= (sqlite3FkReferences(pTab
) || pTab
->pFKey
);
1124 /* This is an UPDATE. Foreign key processing is only required if the
1125 ** operation modifies one or more child or parent key columns. */
1128 /* Check if any child key columns are being modified. */
1129 for(p
=pTab
->pFKey
; p
; p
=p
->pNextFrom
){
1130 if( 0==sqlite3_stricmp(pTab
->zName
, p
->zTo
) ) return 2;
1131 if( fkChildIsModified(pTab
, p
, aChange
, chngRowid
) ){
1136 /* Check if any parent key columns are being modified. */
1137 for(p
=sqlite3FkReferences(pTab
); p
; p
=p
->pNextTo
){
1138 if( fkParentIsModified(pTab
, p
, aChange
, chngRowid
) ){
1139 if( p
->aAction
[1]!=OE_None
) return 2;
1149 ** This function is called when an UPDATE or DELETE operation is being
1150 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1151 ** If the current operation is an UPDATE, then the pChanges parameter is
1152 ** passed a pointer to the list of columns being modified. If it is a
1153 ** DELETE, pChanges is passed a NULL pointer.
1155 ** It returns a pointer to a Trigger structure containing a trigger
1156 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1157 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1158 ** returned (these actions require no special handling by the triggers
1159 ** sub-system, code for them is created by fkScanChildren()).
1161 ** For example, if pFKey is the foreign key and pTab is table "p" in
1162 ** the following schema:
1164 ** CREATE TABLE p(pk PRIMARY KEY);
1165 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1167 ** then the returned trigger structure is equivalent to:
1169 ** CREATE TRIGGER ... DELETE ON p BEGIN
1170 ** DELETE FROM c WHERE ck = old.pk;
1173 ** The returned pointer is cached as part of the foreign key object. It
1174 ** is eventually freed along with the rest of the foreign key object by
1175 ** sqlite3FkDelete().
1177 static Trigger
*fkActionTrigger(
1178 Parse
*pParse
, /* Parse context */
1179 Table
*pTab
, /* Table being updated or deleted from */
1180 FKey
*pFKey
, /* Foreign key to get action for */
1181 ExprList
*pChanges
/* Change-list for UPDATE, NULL for DELETE */
1183 sqlite3
*db
= pParse
->db
; /* Database handle */
1184 int action
; /* One of OE_None, OE_Cascade etc. */
1185 Trigger
*pTrigger
; /* Trigger definition to return */
1186 int iAction
= (pChanges
!=0); /* 1 for UPDATE, 0 for DELETE */
1188 action
= pFKey
->aAction
[iAction
];
1189 if( action
==OE_Restrict
&& (db
->flags
& SQLITE_DeferFKs
) ){
1192 pTrigger
= pFKey
->apTrigger
[iAction
];
1194 if( action
!=OE_None
&& !pTrigger
){
1195 char const *zFrom
; /* Name of child table */
1196 int nFrom
; /* Length in bytes of zFrom */
1197 Index
*pIdx
= 0; /* Parent key index for this FK */
1198 int *aiCol
= 0; /* child table cols -> parent key cols */
1199 TriggerStep
*pStep
= 0; /* First (only) step of trigger program */
1200 Expr
*pWhere
= 0; /* WHERE clause of trigger step */
1201 ExprList
*pList
= 0; /* Changes list if ON UPDATE CASCADE */
1202 Select
*pSelect
= 0; /* If RESTRICT, "SELECT RAISE(...)" */
1203 int i
; /* Iterator variable */
1204 Expr
*pWhen
= 0; /* WHEN clause for the trigger */
1206 if( sqlite3FkLocateIndex(pParse
, pTab
, pFKey
, &pIdx
, &aiCol
) ) return 0;
1207 assert( aiCol
|| pFKey
->nCol
==1 );
1209 for(i
=0; i
<pFKey
->nCol
; i
++){
1210 Token tOld
= { "old", 3 }; /* Literal "old" token */
1211 Token tNew
= { "new", 3 }; /* Literal "new" token */
1212 Token tFromCol
; /* Name of column in child table */
1213 Token tToCol
; /* Name of column in parent table */
1214 int iFromCol
; /* Idx of column in child table */
1215 Expr
*pEq
; /* tFromCol = OLD.tToCol */
1217 iFromCol
= aiCol
? aiCol
[i
] : pFKey
->aCol
[0].iFrom
;
1218 assert( iFromCol
>=0 );
1219 assert( pIdx
!=0 || (pTab
->iPKey
>=0 && pTab
->iPKey
<pTab
->nCol
) );
1220 assert( pIdx
==0 || pIdx
->aiColumn
[i
]>=0 );
1221 sqlite3TokenInit(&tToCol
,
1222 pTab
->aCol
[pIdx
? pIdx
->aiColumn
[i
] : pTab
->iPKey
].zName
);
1223 sqlite3TokenInit(&tFromCol
, pFKey
->pFrom
->aCol
[iFromCol
].zName
);
1225 /* Create the expression "OLD.zToCol = zFromCol". It is important
1226 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1227 ** that the affinity and collation sequence associated with the
1228 ** parent table are used for the comparison. */
1229 pEq
= sqlite3PExpr(pParse
, TK_EQ
,
1230 sqlite3PExpr(pParse
, TK_DOT
,
1231 sqlite3ExprAlloc(db
, TK_ID
, &tOld
, 0),
1232 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0)),
1233 sqlite3ExprAlloc(db
, TK_ID
, &tFromCol
, 0)
1235 pWhere
= sqlite3ExprAnd(db
, pWhere
, pEq
);
1237 /* For ON UPDATE, construct the next term of the WHEN clause.
1238 ** The final WHEN clause will be like this:
1240 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1243 pEq
= sqlite3PExpr(pParse
, TK_IS
,
1244 sqlite3PExpr(pParse
, TK_DOT
,
1245 sqlite3ExprAlloc(db
, TK_ID
, &tOld
, 0),
1246 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0)),
1247 sqlite3PExpr(pParse
, TK_DOT
,
1248 sqlite3ExprAlloc(db
, TK_ID
, &tNew
, 0),
1249 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0))
1251 pWhen
= sqlite3ExprAnd(db
, pWhen
, pEq
);
1254 if( action
!=OE_Restrict
&& (action
!=OE_Cascade
|| pChanges
) ){
1256 if( action
==OE_Cascade
){
1257 pNew
= sqlite3PExpr(pParse
, TK_DOT
,
1258 sqlite3ExprAlloc(db
, TK_ID
, &tNew
, 0),
1259 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0));
1260 }else if( action
==OE_SetDflt
){
1261 Expr
*pDflt
= pFKey
->pFrom
->aCol
[iFromCol
].pDflt
;
1263 pNew
= sqlite3ExprDup(db
, pDflt
, 0);
1265 pNew
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
1268 pNew
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
1270 pList
= sqlite3ExprListAppend(pParse
, pList
, pNew
);
1271 sqlite3ExprListSetName(pParse
, pList
, &tFromCol
, 0);
1274 sqlite3DbFree(db
, aiCol
);
1276 zFrom
= pFKey
->pFrom
->zName
;
1277 nFrom
= sqlite3Strlen30(zFrom
);
1279 if( action
==OE_Restrict
){
1285 pRaise
= sqlite3Expr(db
, TK_RAISE
, "FOREIGN KEY constraint failed");
1287 pRaise
->affinity
= OE_Abort
;
1289 pSelect
= sqlite3SelectNew(pParse
,
1290 sqlite3ExprListAppend(pParse
, 0, pRaise
),
1291 sqlite3SrcListAppend(db
, 0, &tFrom
, 0),
1298 /* Disable lookaside memory allocation */
1299 db
->lookaside
.bDisable
++;
1301 pTrigger
= (Trigger
*)sqlite3DbMallocZero(db
,
1302 sizeof(Trigger
) + /* struct Trigger */
1303 sizeof(TriggerStep
) + /* Single step in trigger program */
1304 nFrom
+ 1 /* Space for pStep->zTarget */
1307 pStep
= pTrigger
->step_list
= (TriggerStep
*)&pTrigger
[1];
1308 pStep
->zTarget
= (char *)&pStep
[1];
1309 memcpy((char *)pStep
->zTarget
, zFrom
, nFrom
);
1311 pStep
->pWhere
= sqlite3ExprDup(db
, pWhere
, EXPRDUP_REDUCE
);
1312 pStep
->pExprList
= sqlite3ExprListDup(db
, pList
, EXPRDUP_REDUCE
);
1313 pStep
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
1315 pWhen
= sqlite3PExpr(pParse
, TK_NOT
, pWhen
, 0);
1316 pTrigger
->pWhen
= sqlite3ExprDup(db
, pWhen
, EXPRDUP_REDUCE
);
1320 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1321 db
->lookaside
.bDisable
--;
1323 sqlite3ExprDelete(db
, pWhere
);
1324 sqlite3ExprDelete(db
, pWhen
);
1325 sqlite3ExprListDelete(db
, pList
);
1326 sqlite3SelectDelete(db
, pSelect
);
1327 if( db
->mallocFailed
==1 ){
1328 fkTriggerDelete(db
, pTrigger
);
1335 pStep
->op
= TK_SELECT
;
1339 pStep
->op
= TK_DELETE
;
1343 pStep
->op
= TK_UPDATE
;
1345 pStep
->pTrig
= pTrigger
;
1346 pTrigger
->pSchema
= pTab
->pSchema
;
1347 pTrigger
->pTabSchema
= pTab
->pSchema
;
1348 pFKey
->apTrigger
[iAction
] = pTrigger
;
1349 pTrigger
->op
= (pChanges
? TK_UPDATE
: TK_DELETE
);
1356 ** This function is called when deleting or updating a row to implement
1357 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1359 void sqlite3FkActions(
1360 Parse
*pParse
, /* Parse context */
1361 Table
*pTab
, /* Table being updated or deleted from */
1362 ExprList
*pChanges
, /* Change-list for UPDATE, NULL for DELETE */
1363 int regOld
, /* Address of array containing old row */
1364 int *aChange
, /* Array indicating UPDATEd columns (or 0) */
1365 int bChngRowid
/* True if rowid is UPDATEd */
1367 /* If foreign-key support is enabled, iterate through all FKs that
1368 ** refer to table pTab. If there is an action associated with the FK
1369 ** for this operation (either update or delete), invoke the associated
1370 ** trigger sub-program. */
1371 if( pParse
->db
->flags
&SQLITE_ForeignKeys
){
1372 FKey
*pFKey
; /* Iterator variable */
1373 for(pFKey
= sqlite3FkReferences(pTab
); pFKey
; pFKey
=pFKey
->pNextTo
){
1374 if( aChange
==0 || fkParentIsModified(pTab
, pFKey
, aChange
, bChngRowid
) ){
1375 Trigger
*pAct
= fkActionTrigger(pParse
, pTab
, pFKey
, pChanges
);
1377 sqlite3CodeRowTriggerDirect(pParse
, pAct
, pTab
, regOld
, OE_Abort
, 0);
1384 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1387 ** Free all memory associated with foreign key definitions attached to
1388 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1391 void sqlite3FkDelete(sqlite3
*db
, Table
*pTab
){
1392 FKey
*pFKey
; /* Iterator variable */
1393 FKey
*pNext
; /* Copy of pFKey->pNextFrom */
1395 assert( db
==0 || IsVirtual(pTab
)
1396 || sqlite3SchemaMutexHeld(db
, 0, pTab
->pSchema
) );
1397 for(pFKey
=pTab
->pFKey
; pFKey
; pFKey
=pNext
){
1399 /* Remove the FK from the fkeyHash hash table. */
1400 if( !db
|| db
->pnBytesFreed
==0 ){
1401 if( pFKey
->pPrevTo
){
1402 pFKey
->pPrevTo
->pNextTo
= pFKey
->pNextTo
;
1404 void *p
= (void *)pFKey
->pNextTo
;
1405 const char *z
= (p
? pFKey
->pNextTo
->zTo
: pFKey
->zTo
);
1406 sqlite3HashInsert(&pTab
->pSchema
->fkeyHash
, z
, p
);
1408 if( pFKey
->pNextTo
){
1409 pFKey
->pNextTo
->pPrevTo
= pFKey
->pPrevTo
;
1413 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1414 ** classified as either immediate or deferred.
1416 assert( pFKey
->isDeferred
==0 || pFKey
->isDeferred
==1 );
1418 /* Delete any triggers created to implement actions for this FK. */
1419 #ifndef SQLITE_OMIT_TRIGGER
1420 fkTriggerDelete(db
, pFKey
->apTrigger
[0]);
1421 fkTriggerDelete(db
, pFKey
->apTrigger
[1]);
1424 pNext
= pFKey
->pNextFrom
;
1425 sqlite3DbFree(db
, pFKey
);
1428 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */