4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
125 int corruptPageError(int lineno
, MemPage
*p
){
127 sqlite3BeginBenignMalloc();
128 zMsg
= sqlite3_mprintf("database corruption page %d of %s",
129 (int)p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
131 sqlite3EndBenignMalloc();
133 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
136 return SQLITE_CORRUPT_BKPT
;
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
143 #ifndef SQLITE_OMIT_SHARED_CACHE
147 **** This function is only used as part of an assert() statement. ***
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot. Return 1 if it does and 0 if not.
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
168 static int hasSharedCacheTableLock(
169 Btree
*pBtree
, /* Handle that must hold lock */
170 Pgno iRoot
, /* Root page of b-tree */
171 int isIndex
, /* True if iRoot is the root of an index b-tree */
172 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
174 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
178 /* If this database is not shareable, or if the client is reading
179 ** and has the read-uncommitted flag set, then no lock is required.
180 ** Return true immediately.
182 if( (pBtree
->sharable
==0)
183 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
193 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
203 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
204 Index
*pIdx
= (Index
*)sqliteHashData(p
);
205 if( pIdx
->tnum
==(int)iRoot
){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
212 iTab
= pIdx
->pTable
->tnum
;
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
223 if( pLock
->pBtree
==pBtree
224 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
225 && pLock
->eLock
>=eLockType
231 /* Failed to find the required lock. */
234 #endif /* SQLITE_DEBUG */
238 **** This function may be used as part of assert() statements only. ****
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table. Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
253 ** assert( !hasReadConflicts(pBtree, iRoot) );
255 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
257 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
258 if( p
->pgnoRoot
==iRoot
260 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
267 #endif /* #ifdef SQLITE_DEBUG */
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
275 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
276 BtShared
*pBt
= p
->pBt
;
279 assert( sqlite3BtreeHoldsMutex(p
) );
280 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
282 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
288 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
289 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
291 /* This routine is a no-op if the shared-cache is not enabled */
296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
299 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
300 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
301 return SQLITE_LOCKED_SHAREDCACHE
;
304 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
314 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
315 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
316 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
317 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
318 if( eLock
==WRITE_LOCK
){
319 assert( p
==pBt
->pWriter
);
320 pBt
->btsFlags
|= BTS_PENDING
;
322 return SQLITE_LOCKED_SHAREDCACHE
;
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
329 #ifndef SQLITE_OMIT_SHARED_CACHE
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
335 ** This function assumes the following:
337 ** (a) The specified Btree object p is connected to a sharable
338 ** database (one with the BtShared.sharable flag set), and
340 ** (b) No other Btree objects hold a lock that conflicts
341 ** with the requested lock (i.e. querySharedCacheTableLock() has
342 ** already been called and returned SQLITE_OK).
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
347 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
348 BtShared
*pBt
= p
->pBt
;
352 assert( sqlite3BtreeHoldsMutex(p
) );
353 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
360 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p
->sharable
);
365 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
367 /* First search the list for an existing lock on this table. */
368 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
369 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
379 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
381 return SQLITE_NOMEM_BKPT
;
383 pLock
->iTable
= iTable
;
385 pLock
->pNext
= pBt
->pLock
;
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
393 assert( WRITE_LOCK
>READ_LOCK
);
394 if( eLock
>pLock
->eLock
){
395 pLock
->eLock
= eLock
;
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
402 #ifndef SQLITE_OMIT_SHARED_CACHE
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
411 static void clearAllSharedCacheTableLocks(Btree
*p
){
412 BtShared
*pBt
= p
->pBt
;
413 BtLock
**ppIter
= &pBt
->pLock
;
415 assert( sqlite3BtreeHoldsMutex(p
) );
416 assert( p
->sharable
|| 0==*ppIter
);
417 assert( p
->inTrans
>0 );
420 BtLock
*pLock
= *ppIter
;
421 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
422 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
423 if( pLock
->pBtree
==p
){
424 *ppIter
= pLock
->pNext
;
425 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
426 if( pLock
->iTable
!=1 ){
430 ppIter
= &pLock
->pNext
;
434 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
435 if( pBt
->pWriter
==p
){
437 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
438 }else if( pBt
->nTransaction
==2 ){
439 /* This function is called when Btree p is concluding its
440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
443 ** set the BTS_PENDING flag to 0.
445 ** If there is not currently a writer, then BTS_PENDING must
446 ** be zero already. So this next line is harmless in that case.
448 pBt
->btsFlags
&= ~BTS_PENDING
;
453 ** This function changes all write-locks held by Btree p into read-locks.
455 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
456 BtShared
*pBt
= p
->pBt
;
457 if( pBt
->pWriter
==p
){
460 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
461 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
462 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
463 pLock
->eLock
= READ_LOCK
;
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
470 static void releasePage(MemPage
*pPage
); /* Forward reference */
471 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
472 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
475 ***** This routine is used inside of assert() only ****
477 ** Verify that the cursor holds the mutex on its BtShared
480 static int cursorHoldsMutex(BtCursor
*p
){
481 return sqlite3_mutex_held(p
->pBt
->mutex
);
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed. This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
492 static int cursorOwnsBtShared(BtCursor
*p
){
493 assert( cursorHoldsMutex(p
) );
494 return (p
->pBtree
->db
==p
->pBt
->db
);
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
508 static void invalidateAllOverflowCache(BtShared
*pBt
){
510 assert( sqlite3_mutex_held(pBt
->mutex
) );
511 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
512 invalidateOverflowCache(p
);
516 #ifndef SQLITE_OMIT_INCRBLOB
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
530 static void invalidateIncrblobCursors(
531 Btree
*pBtree
, /* The database file to check */
532 Pgno pgnoRoot
, /* The table that might be changing */
533 i64 iRow
, /* The rowid that might be changing */
534 int isClearTable
/* True if all rows are being deleted */
537 if( pBtree
->hasIncrblobCur
==0 ) return;
538 assert( sqlite3BtreeHoldsMutex(pBtree
) );
539 pBtree
->hasIncrblobCur
= 0;
540 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
541 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
542 pBtree
->hasIncrblobCur
= 1;
543 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
544 p
->eState
= CURSOR_INVALID
;
551 /* Stub function when INCRBLOB is omitted */
552 #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
564 ** 1) When all data is deleted from a page and the page becomes
565 ** a free-list leaf page, the page is not written to the database
566 ** (as free-list leaf pages contain no meaningful data). Sometimes
567 ** such a page is not even journalled (as it will not be modified,
568 ** why bother journalling it?).
570 ** 2) When a free-list leaf page is reused, its content is not read
571 ** from the database or written to the journal file (why should it
572 ** be, if it is not at all meaningful?).
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
590 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
592 if( !pBt
->pHasContent
){
593 assert( pgno
<=pBt
->nPage
);
594 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
595 if( !pBt
->pHasContent
){
596 rc
= SQLITE_NOMEM_BKPT
;
599 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
600 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
606 ** Query the BtShared.pHasContent vector.
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
612 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
613 Bitvec
*p
= pBt
->pHasContent
;
614 return (p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTest(p
, pgno
)));
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
621 static void btreeClearHasContent(BtShared
*pBt
){
622 sqlite3BitvecDestroy(pBt
->pHasContent
);
623 pBt
->pHasContent
= 0;
627 ** Release all of the apPage[] pages for a cursor.
629 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
631 if( pCur
->iPage
>=0 ){
632 for(i
=0; i
<pCur
->iPage
; i
++){
633 releasePageNotNull(pCur
->apPage
[i
]);
635 releasePageNotNull(pCur
->pPage
);
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
653 static int saveCursorKey(BtCursor
*pCur
){
655 assert( CURSOR_VALID
==pCur
->eState
);
656 assert( 0==pCur
->pKey
);
657 assert( cursorHoldsMutex(pCur
) );
659 if( pCur
->curIntKey
){
660 /* Only the rowid is required for a table btree */
661 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
663 /* For an index btree, save the complete key content */
665 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
666 pKey
= sqlite3Malloc( pCur
->nKey
);
668 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
675 rc
= SQLITE_NOMEM_BKPT
;
678 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
683 ** Save the current cursor position in the variables BtCursor.nKey
684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687 ** prior to calling this routine.
689 static int saveCursorPosition(BtCursor
*pCur
){
692 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
693 assert( 0==pCur
->pKey
);
694 assert( cursorHoldsMutex(pCur
) );
696 if( pCur
->eState
==CURSOR_SKIPNEXT
){
697 pCur
->eState
= CURSOR_VALID
;
702 rc
= saveCursorKey(pCur
);
704 btreeReleaseAllCursorPages(pCur
);
705 pCur
->eState
= CURSOR_REQUIRESEEK
;
708 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
712 /* Forward reference */
713 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
716 ** Save the positions of all cursors (except pExcept) that are open on
717 ** the table with root-page iRoot. "Saving the cursor position" means that
718 ** the location in the btree is remembered in such a way that it can be
719 ** moved back to the same spot after the btree has been modified. This
720 ** routine is called just before cursor pExcept is used to modify the
721 ** table, for example in BtreeDelete() or BtreeInsert().
723 ** If there are two or more cursors on the same btree, then all such
724 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
725 ** routine enforces that rule. This routine only needs to be called in
726 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
728 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730 ** pointless call to this routine.
732 ** Implementation note: This routine merely checks to see if any cursors
733 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
734 ** event that cursors are in need to being saved.
736 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
738 assert( sqlite3_mutex_held(pBt
->mutex
) );
739 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
740 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
741 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
743 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
744 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
748 /* This helper routine to saveAllCursors does the actual work of saving
749 ** the cursors if and when a cursor is found that actually requires saving.
750 ** The common case is that no cursors need to be saved, so this routine is
751 ** broken out from its caller to avoid unnecessary stack pointer movement.
753 static int SQLITE_NOINLINE
saveCursorsOnList(
754 BtCursor
*p
, /* The first cursor that needs saving */
755 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
756 BtCursor
*pExcept
/* Do not save this cursor */
759 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
760 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
761 int rc
= saveCursorPosition(p
);
766 testcase( p
->iPage
>=0 );
767 btreeReleaseAllCursorPages(p
);
776 ** Clear the current cursor position.
778 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
779 assert( cursorHoldsMutex(pCur
) );
780 sqlite3_free(pCur
->pKey
);
782 pCur
->eState
= CURSOR_INVALID
;
786 ** In this version of BtreeMoveto, pKey is a packed index record
787 ** such as is generated by the OP_MakeRecord opcode. Unpack the
788 ** record and then call BtreeMovetoUnpacked() to do the work.
790 static int btreeMoveto(
791 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
792 const void *pKey
, /* Packed key if the btree is an index */
793 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
794 int bias
, /* Bias search to the high end */
795 int *pRes
/* Write search results here */
797 int rc
; /* Status code */
798 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
801 assert( nKey
==(i64
)(int)nKey
);
802 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pCur
->pKeyInfo
);
803 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
804 sqlite3VdbeRecordUnpack(pCur
->pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
805 if( pIdxKey
->nField
==0 ){
806 rc
= SQLITE_CORRUPT_BKPT
;
812 rc
= sqlite3BtreeMovetoUnpacked(pCur
, pIdxKey
, nKey
, bias
, pRes
);
815 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
821 ** Restore the cursor to the position it was in (or as close to as possible)
822 ** when saveCursorPosition() was called. Note that this call deletes the
823 ** saved position info stored by saveCursorPosition(), so there can be
824 ** at most one effective restoreCursorPosition() call after each
825 ** saveCursorPosition().
827 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
830 assert( cursorOwnsBtShared(pCur
) );
831 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
832 if( pCur
->eState
==CURSOR_FAULT
){
833 return pCur
->skipNext
;
835 pCur
->eState
= CURSOR_INVALID
;
836 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
838 sqlite3_free(pCur
->pKey
);
840 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
841 pCur
->skipNext
|= skipNext
;
842 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
843 pCur
->eState
= CURSOR_SKIPNEXT
;
849 #define restoreCursorPosition(p) \
850 (p->eState>=CURSOR_REQUIRESEEK ? \
851 btreeRestoreCursorPosition(p) : \
855 ** Determine whether or not a cursor has moved from the position where
856 ** it was last placed, or has been invalidated for any other reason.
857 ** Cursors can move when the row they are pointing at is deleted out
858 ** from under them, for example. Cursor might also move if a btree
861 ** Calling this routine with a NULL cursor pointer returns false.
863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864 ** back to where it ought to be if this routine returns true.
866 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
867 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
868 || pCur
==sqlite3BtreeFakeValidCursor() );
869 assert( offsetof(BtCursor
, eState
)==0 );
870 assert( sizeof(pCur
->eState
)==1 );
871 return CURSOR_VALID
!= *(u8
*)pCur
;
875 ** Return a pointer to a fake BtCursor object that will always answer
876 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
877 ** cursor returned must not be used with any other Btree interface.
879 BtCursor
*sqlite3BtreeFakeValidCursor(void){
880 static u8 fakeCursor
= CURSOR_VALID
;
881 assert( offsetof(BtCursor
, eState
)==0 );
882 return (BtCursor
*)&fakeCursor
;
886 ** This routine restores a cursor back to its original position after it
887 ** has been moved by some outside activity (such as a btree rebalance or
888 ** a row having been deleted out from under the cursor).
890 ** On success, the *pDifferentRow parameter is false if the cursor is left
891 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
892 ** was pointing to has been deleted, forcing the cursor to point to some
895 ** This routine should only be called for a cursor that just returned
896 ** TRUE from sqlite3BtreeCursorHasMoved().
898 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
902 assert( pCur
->eState
!=CURSOR_VALID
);
903 rc
= restoreCursorPosition(pCur
);
908 if( pCur
->eState
!=CURSOR_VALID
){
911 assert( pCur
->skipNext
==0 );
917 #ifdef SQLITE_ENABLE_CURSOR_HINTS
919 ** Provide hints to the cursor. The particular hint given (and the type
920 ** and number of the varargs parameters) is determined by the eHintType
921 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
923 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
924 /* Used only by system that substitute their own storage engine */
929 ** Provide flag hints to the cursor.
931 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
932 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
937 #ifndef SQLITE_OMIT_AUTOVACUUM
939 ** Given a page number of a regular database page, return the page
940 ** number for the pointer-map page that contains the entry for the
941 ** input page number.
943 ** Return 0 (not a valid page) for pgno==1 since there is
944 ** no pointer map associated with page 1. The integrity_check logic
945 ** requires that ptrmapPageno(*,1)!=1.
947 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
948 int nPagesPerMapPage
;
950 assert( sqlite3_mutex_held(pBt
->mutex
) );
951 if( pgno
<2 ) return 0;
952 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
953 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
954 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
955 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
962 ** Write an entry into the pointer map.
964 ** This routine updates the pointer map entry for page number 'key'
965 ** so that it maps to type 'eType' and parent page number 'pgno'.
967 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
968 ** a no-op. If an error occurs, the appropriate error code is written
971 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
972 DbPage
*pDbPage
; /* The pointer map page */
973 u8
*pPtrmap
; /* The pointer map data */
974 Pgno iPtrmap
; /* The pointer map page number */
975 int offset
; /* Offset in pointer map page */
976 int rc
; /* Return code from subfunctions */
980 assert( sqlite3_mutex_held(pBt
->mutex
) );
981 /* The master-journal page number must never be used as a pointer map page */
982 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
984 assert( pBt
->autoVacuum
);
986 *pRC
= SQLITE_CORRUPT_BKPT
;
989 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
990 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
995 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
997 *pRC
= SQLITE_CORRUPT_BKPT
;
1000 assert( offset
<= (int)pBt
->usableSize
-5 );
1001 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1003 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1004 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
1005 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1006 if( rc
==SQLITE_OK
){
1007 pPtrmap
[offset
] = eType
;
1008 put4byte(&pPtrmap
[offset
+1], parent
);
1013 sqlite3PagerUnref(pDbPage
);
1017 ** Read an entry from the pointer map.
1019 ** This routine retrieves the pointer map entry for page 'key', writing
1020 ** the type and parent page number to *pEType and *pPgno respectively.
1021 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1023 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1024 DbPage
*pDbPage
; /* The pointer map page */
1025 int iPtrmap
; /* Pointer map page index */
1026 u8
*pPtrmap
; /* Pointer map page data */
1027 int offset
; /* Offset of entry in pointer map */
1030 assert( sqlite3_mutex_held(pBt
->mutex
) );
1032 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1033 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1037 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1039 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1041 sqlite3PagerUnref(pDbPage
);
1042 return SQLITE_CORRUPT_BKPT
;
1044 assert( offset
<= (int)pBt
->usableSize
-5 );
1045 assert( pEType
!=0 );
1046 *pEType
= pPtrmap
[offset
];
1047 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1049 sqlite3PagerUnref(pDbPage
);
1050 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1054 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1055 #define ptrmapPut(w,x,y,z,rc)
1056 #define ptrmapGet(w,x,y,z) SQLITE_OK
1057 #define ptrmapPutOvflPtr(x, y, rc)
1061 ** Given a btree page and a cell index (0 means the first cell on
1062 ** the page, 1 means the second cell, and so forth) return a pointer
1063 ** to the cell content.
1065 ** findCellPastPtr() does the same except it skips past the initial
1066 ** 4-byte child pointer found on interior pages, if there is one.
1068 ** This routine works only for pages that do not contain overflow cells.
1070 #define findCell(P,I) \
1071 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1072 #define findCellPastPtr(P,I) \
1073 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1077 ** This is common tail processing for btreeParseCellPtr() and
1078 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1079 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1082 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1083 MemPage
*pPage
, /* Page containing the cell */
1084 u8
*pCell
, /* Pointer to the cell text. */
1085 CellInfo
*pInfo
/* Fill in this structure */
1087 /* If the payload will not fit completely on the local page, we have
1088 ** to decide how much to store locally and how much to spill onto
1089 ** overflow pages. The strategy is to minimize the amount of unused
1090 ** space on overflow pages while keeping the amount of local storage
1091 ** in between minLocal and maxLocal.
1093 ** Warning: changing the way overflow payload is distributed in any
1094 ** way will result in an incompatible file format.
1096 int minLocal
; /* Minimum amount of payload held locally */
1097 int maxLocal
; /* Maximum amount of payload held locally */
1098 int surplus
; /* Overflow payload available for local storage */
1100 minLocal
= pPage
->minLocal
;
1101 maxLocal
= pPage
->maxLocal
;
1102 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1103 testcase( surplus
==maxLocal
);
1104 testcase( surplus
==maxLocal
+1 );
1105 if( surplus
<= maxLocal
){
1106 pInfo
->nLocal
= (u16
)surplus
;
1108 pInfo
->nLocal
= (u16
)minLocal
;
1110 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1114 ** The following routines are implementations of the MemPage.xParseCell()
1117 ** Parse a cell content block and fill in the CellInfo structure.
1119 ** btreeParseCellPtr() => table btree leaf nodes
1120 ** btreeParseCellNoPayload() => table btree internal nodes
1121 ** btreeParseCellPtrIndex() => index btree nodes
1123 ** There is also a wrapper function btreeParseCell() that works for
1124 ** all MemPage types and that references the cell by index rather than
1127 static void btreeParseCellPtrNoPayload(
1128 MemPage
*pPage
, /* Page containing the cell */
1129 u8
*pCell
, /* Pointer to the cell text. */
1130 CellInfo
*pInfo
/* Fill in this structure */
1132 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1133 assert( pPage
->leaf
==0 );
1134 assert( pPage
->childPtrSize
==4 );
1135 #ifndef SQLITE_DEBUG
1136 UNUSED_PARAMETER(pPage
);
1138 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1139 pInfo
->nPayload
= 0;
1141 pInfo
->pPayload
= 0;
1144 static void btreeParseCellPtr(
1145 MemPage
*pPage
, /* Page containing the cell */
1146 u8
*pCell
, /* Pointer to the cell text. */
1147 CellInfo
*pInfo
/* Fill in this structure */
1149 u8
*pIter
; /* For scanning through pCell */
1150 u32 nPayload
; /* Number of bytes of cell payload */
1151 u64 iKey
; /* Extracted Key value */
1153 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1154 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1155 assert( pPage
->intKeyLeaf
);
1156 assert( pPage
->childPtrSize
==0 );
1159 /* The next block of code is equivalent to:
1161 ** pIter += getVarint32(pIter, nPayload);
1163 ** The code is inlined to avoid a function call.
1166 if( nPayload
>=0x80 ){
1167 u8
*pEnd
= &pIter
[8];
1170 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1171 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1175 /* The next block of code is equivalent to:
1177 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1179 ** The code is inlined to avoid a function call.
1183 u8
*pEnd
= &pIter
[7];
1186 iKey
= (iKey
<<7) | (*++pIter
& 0x7f);
1187 if( (*pIter
)<0x80 ) break;
1189 iKey
= (iKey
<<8) | *++pIter
;
1196 pInfo
->nKey
= *(i64
*)&iKey
;
1197 pInfo
->nPayload
= nPayload
;
1198 pInfo
->pPayload
= pIter
;
1199 testcase( nPayload
==pPage
->maxLocal
);
1200 testcase( nPayload
==pPage
->maxLocal
+1 );
1201 if( nPayload
<=pPage
->maxLocal
){
1202 /* This is the (easy) common case where the entire payload fits
1203 ** on the local page. No overflow is required.
1205 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1206 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1207 pInfo
->nLocal
= (u16
)nPayload
;
1209 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1212 static void btreeParseCellPtrIndex(
1213 MemPage
*pPage
, /* Page containing the cell */
1214 u8
*pCell
, /* Pointer to the cell text. */
1215 CellInfo
*pInfo
/* Fill in this structure */
1217 u8
*pIter
; /* For scanning through pCell */
1218 u32 nPayload
; /* Number of bytes of cell payload */
1220 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1221 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1222 assert( pPage
->intKeyLeaf
==0 );
1223 pIter
= pCell
+ pPage
->childPtrSize
;
1225 if( nPayload
>=0x80 ){
1226 u8
*pEnd
= &pIter
[8];
1229 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1230 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1233 pInfo
->nKey
= nPayload
;
1234 pInfo
->nPayload
= nPayload
;
1235 pInfo
->pPayload
= pIter
;
1236 testcase( nPayload
==pPage
->maxLocal
);
1237 testcase( nPayload
==pPage
->maxLocal
+1 );
1238 if( nPayload
<=pPage
->maxLocal
){
1239 /* This is the (easy) common case where the entire payload fits
1240 ** on the local page. No overflow is required.
1242 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1243 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1244 pInfo
->nLocal
= (u16
)nPayload
;
1246 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1249 static void btreeParseCell(
1250 MemPage
*pPage
, /* Page containing the cell */
1251 int iCell
, /* The cell index. First cell is 0 */
1252 CellInfo
*pInfo
/* Fill in this structure */
1254 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1258 ** The following routines are implementations of the MemPage.xCellSize
1261 ** Compute the total number of bytes that a Cell needs in the cell
1262 ** data area of the btree-page. The return number includes the cell
1263 ** data header and the local payload, but not any overflow page or
1264 ** the space used by the cell pointer.
1266 ** cellSizePtrNoPayload() => table internal nodes
1267 ** cellSizePtr() => all index nodes & table leaf nodes
1269 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1270 u8
*pIter
= pCell
+ pPage
->childPtrSize
; /* For looping over bytes of pCell */
1271 u8
*pEnd
; /* End mark for a varint */
1272 u32 nSize
; /* Size value to return */
1275 /* The value returned by this function should always be the same as
1276 ** the (CellInfo.nSize) value found by doing a full parse of the
1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278 ** this function verifies that this invariant is not violated. */
1280 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1288 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1289 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1292 if( pPage
->intKey
){
1293 /* pIter now points at the 64-bit integer key value, a variable length
1294 ** integer. The following block moves pIter to point at the first byte
1295 ** past the end of the key value. */
1297 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1299 testcase( nSize
==pPage
->maxLocal
);
1300 testcase( nSize
==pPage
->maxLocal
+1 );
1301 if( nSize
<=pPage
->maxLocal
){
1302 nSize
+= (u32
)(pIter
- pCell
);
1303 if( nSize
<4 ) nSize
= 4;
1305 int minLocal
= pPage
->minLocal
;
1306 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1307 testcase( nSize
==pPage
->maxLocal
);
1308 testcase( nSize
==pPage
->maxLocal
+1 );
1309 if( nSize
>pPage
->maxLocal
){
1312 nSize
+= 4 + (u16
)(pIter
- pCell
);
1314 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1317 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1318 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1319 u8
*pEnd
; /* End mark for a varint */
1322 /* The value returned by this function should always be the same as
1323 ** the (CellInfo.nSize) value found by doing a full parse of the
1324 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1325 ** this function verifies that this invariant is not violated. */
1327 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1329 UNUSED_PARAMETER(pPage
);
1332 assert( pPage
->childPtrSize
==4 );
1334 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1335 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1336 return (u16
)(pIter
- pCell
);
1341 /* This variation on cellSizePtr() is used inside of assert() statements
1343 static u16
cellSize(MemPage
*pPage
, int iCell
){
1344 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1348 #ifndef SQLITE_OMIT_AUTOVACUUM
1350 ** If the cell pCell, part of page pPage contains a pointer
1351 ** to an overflow page, insert an entry into the pointer-map
1352 ** for the overflow page.
1354 static void ptrmapPutOvflPtr(MemPage
*pPage
, u8
*pCell
, int *pRC
){
1358 pPage
->xParseCell(pPage
, pCell
, &info
);
1359 if( info
.nLocal
<info
.nPayload
){
1360 Pgno ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1361 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1368 ** Defragment the page given. This routine reorganizes cells within the
1369 ** page so that there are no free-blocks on the free-block list.
1371 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1372 ** present in the page after this routine returns.
1374 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1375 ** b-tree page so that there are no freeblocks or fragment bytes, all
1376 ** unused bytes are contained in the unallocated space region, and all
1377 ** cells are packed tightly at the end of the page.
1379 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1380 int i
; /* Loop counter */
1381 int pc
; /* Address of the i-th cell */
1382 int hdr
; /* Offset to the page header */
1383 int size
; /* Size of a cell */
1384 int usableSize
; /* Number of usable bytes on a page */
1385 int cellOffset
; /* Offset to the cell pointer array */
1386 int cbrk
; /* Offset to the cell content area */
1387 int nCell
; /* Number of cells on the page */
1388 unsigned char *data
; /* The page data */
1389 unsigned char *temp
; /* Temp area for cell content */
1390 unsigned char *src
; /* Source of content */
1391 int iCellFirst
; /* First allowable cell index */
1392 int iCellLast
; /* Last possible cell index */
1394 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1395 assert( pPage
->pBt
!=0 );
1396 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1397 assert( pPage
->nOverflow
==0 );
1398 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1400 src
= data
= pPage
->aData
;
1401 hdr
= pPage
->hdrOffset
;
1402 cellOffset
= pPage
->cellOffset
;
1403 nCell
= pPage
->nCell
;
1404 assert( nCell
==get2byte(&data
[hdr
+3]) );
1405 iCellFirst
= cellOffset
+ 2*nCell
;
1406 usableSize
= pPage
->pBt
->usableSize
;
1408 /* This block handles pages with two or fewer free blocks and nMaxFrag
1409 ** or fewer fragmented bytes. In this case it is faster to move the
1410 ** two (or one) blocks of cells using memmove() and add the required
1411 ** offsets to each pointer in the cell-pointer array than it is to
1412 ** reconstruct the entire page. */
1413 if( (int)data
[hdr
+7]<=nMaxFrag
){
1414 int iFree
= get2byte(&data
[hdr
+1]);
1416 int iFree2
= get2byte(&data
[iFree
]);
1418 /* pageFindSlot() has already verified that free blocks are sorted
1419 ** in order of offset within the page, and that no block extends
1420 ** past the end of the page. Provided the two free slots do not
1421 ** overlap, this guarantees that the memmove() calls below will not
1422 ** overwrite the usableSize byte buffer, even if the database page
1424 assert( iFree2
==0 || iFree2
>iFree
);
1425 assert( iFree
+get2byte(&data
[iFree
+2]) <= usableSize
);
1426 assert( iFree2
==0 || iFree2
+get2byte(&data
[iFree2
+2]) <= usableSize
);
1428 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1429 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1432 int sz
= get2byte(&data
[iFree
+2]);
1433 int top
= get2byte(&data
[hdr
+5]);
1435 return SQLITE_CORRUPT_PAGE(pPage
);
1438 assert( iFree
+sz
<=iFree2
); /* Verified by pageFindSlot() */
1439 sz2
= get2byte(&data
[iFree2
+2]);
1440 assert( iFree
+sz
+sz2
+iFree2
-(iFree
+sz
) <= usableSize
);
1441 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1445 assert( cbrk
+(iFree
-top
) <= usableSize
);
1446 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1447 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1448 pc
= get2byte(pAddr
);
1449 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1450 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1452 goto defragment_out
;
1458 iCellLast
= usableSize
- 4;
1459 for(i
=0; i
<nCell
; i
++){
1460 u8
*pAddr
; /* The i-th cell pointer */
1461 pAddr
= &data
[cellOffset
+ i
*2];
1462 pc
= get2byte(pAddr
);
1463 testcase( pc
==iCellFirst
);
1464 testcase( pc
==iCellLast
);
1465 /* These conditions have already been verified in btreeInitPage()
1466 ** if PRAGMA cell_size_check=ON.
1468 if( pc
<iCellFirst
|| pc
>iCellLast
){
1469 return SQLITE_CORRUPT_PAGE(pPage
);
1471 assert( pc
>=iCellFirst
&& pc
<=iCellLast
);
1472 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1474 if( cbrk
<iCellFirst
|| pc
+size
>usableSize
){
1475 return SQLITE_CORRUPT_PAGE(pPage
);
1477 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellFirst
);
1478 testcase( cbrk
+size
==usableSize
);
1479 testcase( pc
+size
==usableSize
);
1480 put2byte(pAddr
, cbrk
);
1483 if( cbrk
==pc
) continue;
1484 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1485 x
= get2byte(&data
[hdr
+5]);
1486 memcpy(&temp
[x
], &data
[x
], (cbrk
+size
) - x
);
1489 memcpy(&data
[cbrk
], &src
[pc
], size
);
1494 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1495 return SQLITE_CORRUPT_PAGE(pPage
);
1497 assert( cbrk
>=iCellFirst
);
1498 put2byte(&data
[hdr
+5], cbrk
);
1501 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1502 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1507 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1508 ** size. If one can be found, return a pointer to the space and remove it
1509 ** from the free-list.
1511 ** If no suitable space can be found on the free-list, return NULL.
1513 ** This function may detect corruption within pPg. If corruption is
1514 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1516 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1517 ** will be ignored if adding the extra space to the fragmentation count
1518 ** causes the fragmentation count to exceed 60.
1520 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1521 const int hdr
= pPg
->hdrOffset
;
1522 u8
* const aData
= pPg
->aData
;
1523 int iAddr
= hdr
+ 1;
1524 int pc
= get2byte(&aData
[iAddr
]);
1526 int usableSize
= pPg
->pBt
->usableSize
;
1527 int size
; /* Size of the free slot */
1530 while( pc
<=usableSize
-4 ){
1531 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1532 ** freeblock form a big-endian integer which is the size of the freeblock
1533 ** in bytes, including the 4-byte header. */
1534 size
= get2byte(&aData
[pc
+2]);
1535 if( (x
= size
- nByte
)>=0 ){
1538 if( size
+pc
> usableSize
){
1539 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1542 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1543 ** number of bytes in fragments may not exceed 60. */
1544 if( aData
[hdr
+7]>57 ) return 0;
1546 /* Remove the slot from the free-list. Update the number of
1547 ** fragmented bytes within the page. */
1548 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1549 aData
[hdr
+7] += (u8
)x
;
1551 /* The slot remains on the free-list. Reduce its size to account
1552 ** for the portion used by the new allocation. */
1553 put2byte(&aData
[pc
+2], x
);
1555 return &aData
[pc
+ x
];
1558 pc
= get2byte(&aData
[pc
]);
1559 if( pc
<iAddr
+size
) break;
1562 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1569 ** Allocate nByte bytes of space from within the B-Tree page passed
1570 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1571 ** of the first byte of allocated space. Return either SQLITE_OK or
1572 ** an error code (usually SQLITE_CORRUPT).
1574 ** The caller guarantees that there is sufficient space to make the
1575 ** allocation. This routine might need to defragment in order to bring
1576 ** all the space together, however. This routine will avoid using
1577 ** the first two bytes past the cell pointer area since presumably this
1578 ** allocation is being made in order to insert a new cell, so we will
1579 ** also end up needing a new cell pointer.
1581 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1582 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1583 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1584 int top
; /* First byte of cell content area */
1585 int rc
= SQLITE_OK
; /* Integer return code */
1586 int gap
; /* First byte of gap between cell pointers and cell content */
1588 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1589 assert( pPage
->pBt
);
1590 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1591 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1592 assert( pPage
->nFree
>=nByte
);
1593 assert( pPage
->nOverflow
==0 );
1594 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1596 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1597 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1598 assert( gap
<=65536 );
1599 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1600 ** and the reserved space is zero (the usual value for reserved space)
1601 ** then the cell content offset of an empty page wants to be 65536.
1602 ** However, that integer is too large to be stored in a 2-byte unsigned
1603 ** integer, so a value of 0 is used in its place. */
1604 top
= get2byte(&data
[hdr
+5]);
1605 assert( top
<=(int)pPage
->pBt
->usableSize
); /* Prevent by getAndInitPage() */
1607 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1610 return SQLITE_CORRUPT_PAGE(pPage
);
1614 /* If there is enough space between gap and top for one more cell pointer
1615 ** array entry offset, and if the freelist is not empty, then search the
1616 ** freelist looking for a free slot big enough to satisfy the request.
1618 testcase( gap
+2==top
);
1619 testcase( gap
+1==top
);
1620 testcase( gap
==top
);
1621 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1622 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1624 assert( pSpace
>=data
&& (pSpace
- data
)<65536 );
1625 *pIdx
= (int)(pSpace
- data
);
1632 /* The request could not be fulfilled using a freelist slot. Check
1633 ** to see if defragmentation is necessary.
1635 testcase( gap
+2+nByte
==top
);
1636 if( gap
+2+nByte
>top
){
1637 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1638 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1640 top
= get2byteNotZero(&data
[hdr
+5]);
1641 assert( gap
+2+nByte
<=top
);
1645 /* Allocate memory from the gap in between the cell pointer array
1646 ** and the cell content area. The btreeInitPage() call has already
1647 ** validated the freelist. Given that the freelist is valid, there
1648 ** is no way that the allocation can extend off the end of the page.
1649 ** The assert() below verifies the previous sentence.
1652 put2byte(&data
[hdr
+5], top
);
1653 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1659 ** Return a section of the pPage->aData to the freelist.
1660 ** The first byte of the new free block is pPage->aData[iStart]
1661 ** and the size of the block is iSize bytes.
1663 ** Adjacent freeblocks are coalesced.
1665 ** Note that even though the freeblock list was checked by btreeInitPage(),
1666 ** that routine will not detect overlap between cells or freeblocks. Nor
1667 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1668 ** at the end of the page. So do additional corruption checks inside this
1669 ** routine and return SQLITE_CORRUPT if any problems are found.
1671 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1672 u16 iPtr
; /* Address of ptr to next freeblock */
1673 u16 iFreeBlk
; /* Address of the next freeblock */
1674 u8 hdr
; /* Page header size. 0 or 100 */
1675 u8 nFrag
= 0; /* Reduction in fragmentation */
1676 u16 iOrigSize
= iSize
; /* Original value of iSize */
1677 u16 x
; /* Offset to cell content area */
1678 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1679 unsigned char *data
= pPage
->aData
; /* Page content */
1681 assert( pPage
->pBt
!=0 );
1682 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1683 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1684 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1685 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1686 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1687 assert( iStart
<=pPage
->pBt
->usableSize
-4 );
1689 /* The list of freeblocks must be in ascending order. Find the
1690 ** spot on the list where iStart should be inserted.
1692 hdr
= pPage
->hdrOffset
;
1694 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1695 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1697 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1698 if( iFreeBlk
<iPtr
+4 ){
1699 if( iFreeBlk
==0 ) break;
1700 return SQLITE_CORRUPT_PAGE(pPage
);
1704 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){
1705 return SQLITE_CORRUPT_PAGE(pPage
);
1707 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 );
1710 ** iFreeBlk: First freeblock after iStart, or zero if none
1711 ** iPtr: The address of a pointer to iFreeBlk
1713 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1715 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1716 nFrag
= iFreeBlk
- iEnd
;
1717 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1718 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1719 if( iEnd
> pPage
->pBt
->usableSize
){
1720 return SQLITE_CORRUPT_PAGE(pPage
);
1722 iSize
= iEnd
- iStart
;
1723 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1726 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1727 ** pointer in the page header) then check to see if iStart should be
1728 ** coalesced onto the end of iPtr.
1731 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1732 if( iPtrEnd
+3>=iStart
){
1733 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1734 nFrag
+= iStart
- iPtrEnd
;
1735 iSize
= iEnd
- iPtr
;
1739 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1740 data
[hdr
+7] -= nFrag
;
1742 x
= get2byte(&data
[hdr
+5]);
1744 /* The new freeblock is at the beginning of the cell content area,
1745 ** so just extend the cell content area rather than create another
1746 ** freelist entry */
1747 if( iStart
<x
|| iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1748 put2byte(&data
[hdr
+1], iFreeBlk
);
1749 put2byte(&data
[hdr
+5], iEnd
);
1751 /* Insert the new freeblock into the freelist */
1752 put2byte(&data
[iPtr
], iStart
);
1754 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1755 /* Overwrite deleted information with zeros when the secure_delete
1756 ** option is enabled */
1757 memset(&data
[iStart
], 0, iSize
);
1759 put2byte(&data
[iStart
], iFreeBlk
);
1760 put2byte(&data
[iStart
+2], iSize
);
1761 pPage
->nFree
+= iOrigSize
;
1766 ** Decode the flags byte (the first byte of the header) for a page
1767 ** and initialize fields of the MemPage structure accordingly.
1769 ** Only the following combinations are supported. Anything different
1770 ** indicates a corrupt database files:
1773 ** PTF_ZERODATA | PTF_LEAF
1774 ** PTF_LEAFDATA | PTF_INTKEY
1775 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1777 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1778 BtShared
*pBt
; /* A copy of pPage->pBt */
1780 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1781 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1782 pPage
->leaf
= (u8
)(flagByte
>>3); assert( PTF_LEAF
== 1<<3 );
1783 flagByte
&= ~PTF_LEAF
;
1784 pPage
->childPtrSize
= 4-4*pPage
->leaf
;
1785 pPage
->xCellSize
= cellSizePtr
;
1787 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1788 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1789 ** interior table b-tree page. */
1790 assert( (PTF_LEAFDATA
|PTF_INTKEY
)==5 );
1791 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1792 ** leaf table b-tree page. */
1793 assert( (PTF_LEAFDATA
|PTF_INTKEY
|PTF_LEAF
)==13 );
1796 pPage
->intKeyLeaf
= 1;
1797 pPage
->xParseCell
= btreeParseCellPtr
;
1799 pPage
->intKeyLeaf
= 0;
1800 pPage
->xCellSize
= cellSizePtrNoPayload
;
1801 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
1803 pPage
->maxLocal
= pBt
->maxLeaf
;
1804 pPage
->minLocal
= pBt
->minLeaf
;
1805 }else if( flagByte
==PTF_ZERODATA
){
1806 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1807 ** interior index b-tree page. */
1808 assert( (PTF_ZERODATA
)==2 );
1809 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1810 ** leaf index b-tree page. */
1811 assert( (PTF_ZERODATA
|PTF_LEAF
)==10 );
1813 pPage
->intKeyLeaf
= 0;
1814 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1815 pPage
->maxLocal
= pBt
->maxLocal
;
1816 pPage
->minLocal
= pBt
->minLocal
;
1818 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1820 return SQLITE_CORRUPT_PAGE(pPage
);
1822 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1827 ** Initialize the auxiliary information for a disk block.
1829 ** Return SQLITE_OK on success. If we see that the page does
1830 ** not contain a well-formed database page, then return
1831 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1832 ** guarantee that the page is well-formed. It only shows that
1833 ** we failed to detect any corruption.
1835 static int btreeInitPage(MemPage
*pPage
){
1836 int pc
; /* Address of a freeblock within pPage->aData[] */
1837 u8 hdr
; /* Offset to beginning of page header */
1838 u8
*data
; /* Equal to pPage->aData */
1839 BtShared
*pBt
; /* The main btree structure */
1840 int usableSize
; /* Amount of usable space on each page */
1841 u16 cellOffset
; /* Offset from start of page to first cell pointer */
1842 int nFree
; /* Number of unused bytes on the page */
1843 int top
; /* First byte of the cell content area */
1844 int iCellFirst
; /* First allowable cell or freeblock offset */
1845 int iCellLast
; /* Last possible cell or freeblock offset */
1847 assert( pPage
->pBt
!=0 );
1848 assert( pPage
->pBt
->db
!=0 );
1849 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1850 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1851 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1852 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1853 assert( pPage
->isInit
==0 );
1856 hdr
= pPage
->hdrOffset
;
1857 data
= pPage
->aData
;
1858 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1859 ** the b-tree page type. */
1860 if( decodeFlags(pPage
, data
[hdr
]) ){
1861 return SQLITE_CORRUPT_PAGE(pPage
);
1863 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
1864 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
1865 pPage
->nOverflow
= 0;
1866 usableSize
= pBt
->usableSize
;
1867 pPage
->cellOffset
= cellOffset
= hdr
+ 8 + pPage
->childPtrSize
;
1868 pPage
->aDataEnd
= &data
[usableSize
];
1869 pPage
->aCellIdx
= &data
[cellOffset
];
1870 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
1871 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1872 ** the start of the cell content area. A zero value for this integer is
1873 ** interpreted as 65536. */
1874 top
= get2byteNotZero(&data
[hdr
+5]);
1875 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1876 ** number of cells on the page. */
1877 pPage
->nCell
= get2byte(&data
[hdr
+3]);
1878 if( pPage
->nCell
>MX_CELL(pBt
) ){
1879 /* To many cells for a single page. The page must be corrupt */
1880 return SQLITE_CORRUPT_PAGE(pPage
);
1882 testcase( pPage
->nCell
==MX_CELL(pBt
) );
1883 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1884 ** possible for a root page of a table that contains no rows) then the
1885 ** offset to the cell content area will equal the page size minus the
1886 ** bytes of reserved space. */
1887 assert( pPage
->nCell
>0 || top
==usableSize
|| CORRUPT_DB
);
1889 /* A malformed database page might cause us to read past the end
1890 ** of page when parsing a cell.
1892 ** The following block of code checks early to see if a cell extends
1893 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1894 ** returned if it does.
1896 iCellFirst
= cellOffset
+ 2*pPage
->nCell
;
1897 iCellLast
= usableSize
- 4;
1898 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
1899 int i
; /* Index into the cell pointer array */
1900 int sz
; /* Size of a cell */
1902 if( !pPage
->leaf
) iCellLast
--;
1903 for(i
=0; i
<pPage
->nCell
; i
++){
1904 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
1905 testcase( pc
==iCellFirst
);
1906 testcase( pc
==iCellLast
);
1907 if( pc
<iCellFirst
|| pc
>iCellLast
){
1908 return SQLITE_CORRUPT_PAGE(pPage
);
1910 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
1911 testcase( pc
+sz
==usableSize
);
1912 if( pc
+sz
>usableSize
){
1913 return SQLITE_CORRUPT_PAGE(pPage
);
1916 if( !pPage
->leaf
) iCellLast
++;
1919 /* Compute the total free space on the page
1920 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1921 ** start of the first freeblock on the page, or is zero if there are no
1923 pc
= get2byte(&data
[hdr
+1]);
1924 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
1927 if( pc
<iCellFirst
){
1928 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1929 ** always be at least one cell before the first freeblock.
1931 return SQLITE_CORRUPT_PAGE(pPage
);
1935 /* Freeblock off the end of the page */
1936 return SQLITE_CORRUPT_PAGE(pPage
);
1938 next
= get2byte(&data
[pc
]);
1939 size
= get2byte(&data
[pc
+2]);
1940 nFree
= nFree
+ size
;
1941 if( next
<=pc
+size
+3 ) break;
1945 /* Freeblock not in ascending order */
1946 return SQLITE_CORRUPT_PAGE(pPage
);
1948 if( pc
+size
>(unsigned int)usableSize
){
1949 /* Last freeblock extends past page end */
1950 return SQLITE_CORRUPT_PAGE(pPage
);
1954 /* At this point, nFree contains the sum of the offset to the start
1955 ** of the cell-content area plus the number of free bytes within
1956 ** the cell-content area. If this is greater than the usable-size
1957 ** of the page, then the page must be corrupted. This check also
1958 ** serves to verify that the offset to the start of the cell-content
1959 ** area, according to the page header, lies within the page.
1961 if( nFree
>usableSize
){
1962 return SQLITE_CORRUPT_PAGE(pPage
);
1964 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
1970 ** Set up a raw page so that it looks like a database page holding
1973 static void zeroPage(MemPage
*pPage
, int flags
){
1974 unsigned char *data
= pPage
->aData
;
1975 BtShared
*pBt
= pPage
->pBt
;
1976 u8 hdr
= pPage
->hdrOffset
;
1979 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
);
1980 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
1981 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
1982 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1983 assert( sqlite3_mutex_held(pBt
->mutex
) );
1984 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
1985 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
1987 data
[hdr
] = (char)flags
;
1988 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
1989 memset(&data
[hdr
+1], 0, 4);
1991 put2byte(&data
[hdr
+5], pBt
->usableSize
);
1992 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
1993 decodeFlags(pPage
, flags
);
1994 pPage
->cellOffset
= first
;
1995 pPage
->aDataEnd
= &data
[pBt
->usableSize
];
1996 pPage
->aCellIdx
= &data
[first
];
1997 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
1998 pPage
->nOverflow
= 0;
1999 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2000 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2007 ** Convert a DbPage obtained from the pager into a MemPage used by
2010 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2011 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2012 if( pgno
!=pPage
->pgno
){
2013 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2014 pPage
->pDbPage
= pDbPage
;
2017 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2019 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2024 ** Get a page from the pager. Initialize the MemPage.pBt and
2025 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2027 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2028 ** about the content of the page at this time. So do not go to the disk
2029 ** to fetch the content. Just fill in the content with zeros for now.
2030 ** If in the future we call sqlite3PagerWrite() on this page, that
2031 ** means we have started to be concerned about content and the disk
2032 ** read should occur at that point.
2034 static int btreeGetPage(
2035 BtShared
*pBt
, /* The btree */
2036 Pgno pgno
, /* Number of the page to fetch */
2037 MemPage
**ppPage
, /* Return the page in this parameter */
2038 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2043 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2044 assert( sqlite3_mutex_held(pBt
->mutex
) );
2045 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2047 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2052 ** Retrieve a page from the pager cache. If the requested page is not
2053 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2054 ** MemPage.aData elements if needed.
2056 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2058 assert( sqlite3_mutex_held(pBt
->mutex
) );
2059 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2061 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2067 ** Return the size of the database file in pages. If there is any kind of
2068 ** error, return ((unsigned int)-1).
2070 static Pgno
btreePagecount(BtShared
*pBt
){
2073 u32
sqlite3BtreeLastPage(Btree
*p
){
2074 assert( sqlite3BtreeHoldsMutex(p
) );
2075 assert( ((p
->pBt
->nPage
)&0x80000000)==0 );
2076 return btreePagecount(p
->pBt
);
2080 ** Get a page from the pager and initialize it.
2082 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2083 ** call. Do additional sanity checking on the page in this case.
2084 ** And if the fetch fails, this routine must decrement pCur->iPage.
2086 ** The page is fetched as read-write unless pCur is not NULL and is
2087 ** a read-only cursor.
2089 ** If an error occurs, then *ppPage is undefined. It
2090 ** may remain unchanged, or it may be set to an invalid value.
2092 static int getAndInitPage(
2093 BtShared
*pBt
, /* The database file */
2094 Pgno pgno
, /* Number of the page to get */
2095 MemPage
**ppPage
, /* Write the page pointer here */
2096 BtCursor
*pCur
, /* Cursor to receive the page, or NULL */
2097 int bReadOnly
/* True for a read-only page */
2101 assert( sqlite3_mutex_held(pBt
->mutex
) );
2102 assert( pCur
==0 || ppPage
==&pCur
->pPage
);
2103 assert( pCur
==0 || bReadOnly
==pCur
->curPagerFlags
);
2104 assert( pCur
==0 || pCur
->iPage
>0 );
2106 if( pgno
>btreePagecount(pBt
) ){
2107 rc
= SQLITE_CORRUPT_BKPT
;
2108 goto getAndInitPage_error
;
2110 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2112 goto getAndInitPage_error
;
2114 *ppPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2115 if( (*ppPage
)->isInit
==0 ){
2116 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2117 rc
= btreeInitPage(*ppPage
);
2118 if( rc
!=SQLITE_OK
){
2119 releasePage(*ppPage
);
2120 goto getAndInitPage_error
;
2123 assert( (*ppPage
)->pgno
==pgno
);
2124 assert( (*ppPage
)->aData
==sqlite3PagerGetData(pDbPage
) );
2126 /* If obtaining a child page for a cursor, we must verify that the page is
2127 ** compatible with the root page. */
2128 if( pCur
&& ((*ppPage
)->nCell
<1 || (*ppPage
)->intKey
!=pCur
->curIntKey
) ){
2129 rc
= SQLITE_CORRUPT_PGNO(pgno
);
2130 releasePage(*ppPage
);
2131 goto getAndInitPage_error
;
2135 getAndInitPage_error
:
2138 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
2140 testcase( pgno
==0 );
2141 assert( pgno
!=0 || rc
==SQLITE_CORRUPT
);
2146 ** Release a MemPage. This should be called once for each prior
2147 ** call to btreeGetPage.
2149 ** Page1 is a special case and must be released using releasePageOne().
2151 static void releasePageNotNull(MemPage
*pPage
){
2152 assert( pPage
->aData
);
2153 assert( pPage
->pBt
);
2154 assert( pPage
->pDbPage
!=0 );
2155 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2156 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2157 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2158 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2160 static void releasePage(MemPage
*pPage
){
2161 if( pPage
) releasePageNotNull(pPage
);
2163 static void releasePageOne(MemPage
*pPage
){
2165 assert( pPage
->aData
);
2166 assert( pPage
->pBt
);
2167 assert( pPage
->pDbPage
!=0 );
2168 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2169 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2170 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2171 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2175 ** Get an unused page.
2177 ** This works just like btreeGetPage() with the addition:
2179 ** * If the page is already in use for some other purpose, immediately
2180 ** release it and return an SQLITE_CURRUPT error.
2181 ** * Make sure the isInit flag is clear
2183 static int btreeGetUnusedPage(
2184 BtShared
*pBt
, /* The btree */
2185 Pgno pgno
, /* Number of the page to fetch */
2186 MemPage
**ppPage
, /* Return the page in this parameter */
2187 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2189 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2190 if( rc
==SQLITE_OK
){
2191 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2192 releasePage(*ppPage
);
2194 return SQLITE_CORRUPT_BKPT
;
2196 (*ppPage
)->isInit
= 0;
2205 ** During a rollback, when the pager reloads information into the cache
2206 ** so that the cache is restored to its original state at the start of
2207 ** the transaction, for each page restored this routine is called.
2209 ** This routine needs to reset the extra data section at the end of the
2210 ** page to agree with the restored data.
2212 static void pageReinit(DbPage
*pData
){
2214 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2215 assert( sqlite3PagerPageRefcount(pData
)>0 );
2216 if( pPage
->isInit
){
2217 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2219 if( sqlite3PagerPageRefcount(pData
)>1 ){
2220 /* pPage might not be a btree page; it might be an overflow page
2221 ** or ptrmap page or a free page. In those cases, the following
2222 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2223 ** But no harm is done by this. And it is very important that
2224 ** btreeInitPage() be called on every btree page so we make
2225 ** the call for every page that comes in for re-initing. */
2226 btreeInitPage(pPage
);
2232 ** Invoke the busy handler for a btree.
2234 static int btreeInvokeBusyHandler(void *pArg
){
2235 BtShared
*pBt
= (BtShared
*)pArg
;
2237 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2238 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
,
2239 sqlite3PagerFile(pBt
->pPager
));
2243 ** Open a database file.
2245 ** zFilename is the name of the database file. If zFilename is NULL
2246 ** then an ephemeral database is created. The ephemeral database might
2247 ** be exclusively in memory, or it might use a disk-based memory cache.
2248 ** Either way, the ephemeral database will be automatically deleted
2249 ** when sqlite3BtreeClose() is called.
2251 ** If zFilename is ":memory:" then an in-memory database is created
2252 ** that is automatically destroyed when it is closed.
2254 ** The "flags" parameter is a bitmask that might contain bits like
2255 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2257 ** If the database is already opened in the same database connection
2258 ** and we are in shared cache mode, then the open will fail with an
2259 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2260 ** objects in the same database connection since doing so will lead
2261 ** to problems with locking.
2263 int sqlite3BtreeOpen(
2264 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2265 const char *zFilename
, /* Name of the file containing the BTree database */
2266 sqlite3
*db
, /* Associated database handle */
2267 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2268 int flags
, /* Options */
2269 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2271 BtShared
*pBt
= 0; /* Shared part of btree structure */
2272 Btree
*p
; /* Handle to return */
2273 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2274 int rc
= SQLITE_OK
; /* Result code from this function */
2275 u8 nReserve
; /* Byte of unused space on each page */
2276 unsigned char zDbHeader
[100]; /* Database header content */
2278 /* True if opening an ephemeral, temporary database */
2279 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2281 /* Set the variable isMemdb to true for an in-memory database, or
2282 ** false for a file-based database.
2284 #ifdef SQLITE_OMIT_MEMORYDB
2285 const int isMemdb
= 0;
2287 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2288 || (isTempDb
&& sqlite3TempInMemory(db
))
2289 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2294 assert( sqlite3_mutex_held(db
->mutex
) );
2295 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2297 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2298 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2300 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2301 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2304 flags
|= BTREE_MEMORY
;
2306 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2307 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2309 p
= sqlite3MallocZero(sizeof(Btree
));
2311 return SQLITE_NOMEM_BKPT
;
2313 p
->inTrans
= TRANS_NONE
;
2315 #ifndef SQLITE_OMIT_SHARED_CACHE
2320 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2322 ** If this Btree is a candidate for shared cache, try to find an
2323 ** existing BtShared object that we can share with
2325 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2326 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2327 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2328 int nFullPathname
= pVfs
->mxPathname
+1;
2329 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2330 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2333 if( !zFullPathname
){
2335 return SQLITE_NOMEM_BKPT
;
2338 memcpy(zFullPathname
, zFilename
, nFilename
);
2340 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2341 nFullPathname
, zFullPathname
);
2343 sqlite3_free(zFullPathname
);
2348 #if SQLITE_THREADSAFE
2349 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2350 sqlite3_mutex_enter(mutexOpen
);
2351 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);
2352 sqlite3_mutex_enter(mutexShared
);
2354 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2355 assert( pBt
->nRef
>0 );
2356 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2357 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2359 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2360 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2361 if( pExisting
&& pExisting
->pBt
==pBt
){
2362 sqlite3_mutex_leave(mutexShared
);
2363 sqlite3_mutex_leave(mutexOpen
);
2364 sqlite3_free(zFullPathname
);
2366 return SQLITE_CONSTRAINT
;
2374 sqlite3_mutex_leave(mutexShared
);
2375 sqlite3_free(zFullPathname
);
2379 /* In debug mode, we mark all persistent databases as sharable
2380 ** even when they are not. This exercises the locking code and
2381 ** gives more opportunity for asserts(sqlite3_mutex_held())
2382 ** statements to find locking problems.
2391 ** The following asserts make sure that structures used by the btree are
2392 ** the right size. This is to guard against size changes that result
2393 ** when compiling on a different architecture.
2395 assert( sizeof(i64
)==8 );
2396 assert( sizeof(u64
)==8 );
2397 assert( sizeof(u32
)==4 );
2398 assert( sizeof(u16
)==2 );
2399 assert( sizeof(Pgno
)==4 );
2401 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2403 rc
= SQLITE_NOMEM_BKPT
;
2404 goto btree_open_out
;
2406 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2407 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2408 if( rc
==SQLITE_OK
){
2409 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2410 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2412 if( rc
!=SQLITE_OK
){
2413 goto btree_open_out
;
2415 pBt
->openFlags
= (u8
)flags
;
2417 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2422 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2423 #if defined(SQLITE_SECURE_DELETE)
2424 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2425 #elif defined(SQLITE_FAST_SECURE_DELETE)
2426 pBt
->btsFlags
|= BTS_OVERWRITE
;
2428 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2429 ** determined by the 2-byte integer located at an offset of 16 bytes from
2430 ** the beginning of the database file. */
2431 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2432 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2433 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2435 #ifndef SQLITE_OMIT_AUTOVACUUM
2436 /* If the magic name ":memory:" will create an in-memory database, then
2437 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2438 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2439 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2440 ** regular file-name. In this case the auto-vacuum applies as per normal.
2442 if( zFilename
&& !isMemdb
){
2443 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2444 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2449 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2450 ** determined by the one-byte unsigned integer found at an offset of 20
2451 ** into the database file header. */
2452 nReserve
= zDbHeader
[20];
2453 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2454 #ifndef SQLITE_OMIT_AUTOVACUUM
2455 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2456 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2459 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2460 if( rc
) goto btree_open_out
;
2461 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2462 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2464 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2465 /* Add the new BtShared object to the linked list sharable BtShareds.
2469 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2470 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);)
2471 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2472 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2473 if( pBt
->mutex
==0 ){
2474 rc
= SQLITE_NOMEM_BKPT
;
2475 goto btree_open_out
;
2478 sqlite3_mutex_enter(mutexShared
);
2479 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2480 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2481 sqlite3_mutex_leave(mutexShared
);
2486 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2487 /* If the new Btree uses a sharable pBtShared, then link the new
2488 ** Btree into the list of all sharable Btrees for the same connection.
2489 ** The list is kept in ascending order by pBt address.
2494 for(i
=0; i
<db
->nDb
; i
++){
2495 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2496 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2497 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2502 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2505 p
->pNext
= pSib
->pNext
;
2508 p
->pNext
->pPrev
= p
;
2520 if( rc
!=SQLITE_OK
){
2521 if( pBt
&& pBt
->pPager
){
2522 sqlite3PagerClose(pBt
->pPager
, 0);
2528 sqlite3_file
*pFile
;
2530 /* If the B-Tree was successfully opened, set the pager-cache size to the
2531 ** default value. Except, when opening on an existing shared pager-cache,
2532 ** do not change the pager-cache size.
2534 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2535 sqlite3PagerSetCachesize(p
->pBt
->pPager
, SQLITE_DEFAULT_CACHE_SIZE
);
2538 pFile
= sqlite3PagerFile(pBt
->pPager
);
2539 if( pFile
->pMethods
){
2540 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2544 assert( sqlite3_mutex_held(mutexOpen
) );
2545 sqlite3_mutex_leave(mutexOpen
);
2547 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2552 ** Decrement the BtShared.nRef counter. When it reaches zero,
2553 ** remove the BtShared structure from the sharing list. Return
2554 ** true if the BtShared.nRef counter reaches zero and return
2555 ** false if it is still positive.
2557 static int removeFromSharingList(BtShared
*pBt
){
2558 #ifndef SQLITE_OMIT_SHARED_CACHE
2559 MUTEX_LOGIC( sqlite3_mutex
*pMaster
; )
2563 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2564 MUTEX_LOGIC( pMaster
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
); )
2565 sqlite3_mutex_enter(pMaster
);
2568 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2569 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2571 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2572 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2575 if( ALWAYS(pList
) ){
2576 pList
->pNext
= pBt
->pNext
;
2579 if( SQLITE_THREADSAFE
){
2580 sqlite3_mutex_free(pBt
->mutex
);
2584 sqlite3_mutex_leave(pMaster
);
2592 ** Make sure pBt->pTmpSpace points to an allocation of
2593 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2596 static void allocateTempSpace(BtShared
*pBt
){
2597 if( !pBt
->pTmpSpace
){
2598 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2600 /* One of the uses of pBt->pTmpSpace is to format cells before
2601 ** inserting them into a leaf page (function fillInCell()). If
2602 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2603 ** by the various routines that manipulate binary cells. Which
2604 ** can mean that fillInCell() only initializes the first 2 or 3
2605 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2606 ** it into a database page. This is not actually a problem, but it
2607 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2608 ** data is passed to system call write(). So to avoid this error,
2609 ** zero the first 4 bytes of temp space here.
2611 ** Also: Provide four bytes of initialized space before the
2612 ** beginning of pTmpSpace as an area available to prepend the
2613 ** left-child pointer to the beginning of a cell.
2615 if( pBt
->pTmpSpace
){
2616 memset(pBt
->pTmpSpace
, 0, 8);
2617 pBt
->pTmpSpace
+= 4;
2623 ** Free the pBt->pTmpSpace allocation
2625 static void freeTempSpace(BtShared
*pBt
){
2626 if( pBt
->pTmpSpace
){
2627 pBt
->pTmpSpace
-= 4;
2628 sqlite3PageFree(pBt
->pTmpSpace
);
2634 ** Close an open database and invalidate all cursors.
2636 int sqlite3BtreeClose(Btree
*p
){
2637 BtShared
*pBt
= p
->pBt
;
2640 /* Close all cursors opened via this handle. */
2641 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2642 sqlite3BtreeEnter(p
);
2643 pCur
= pBt
->pCursor
;
2645 BtCursor
*pTmp
= pCur
;
2647 if( pTmp
->pBtree
==p
){
2648 sqlite3BtreeCloseCursor(pTmp
);
2652 /* Rollback any active transaction and free the handle structure.
2653 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2656 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2657 sqlite3BtreeLeave(p
);
2659 /* If there are still other outstanding references to the shared-btree
2660 ** structure, return now. The remainder of this procedure cleans
2661 ** up the shared-btree.
2663 assert( p
->wantToLock
==0 && p
->locked
==0 );
2664 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2665 /* The pBt is no longer on the sharing list, so we can access
2666 ** it without having to hold the mutex.
2668 ** Clean out and delete the BtShared object.
2670 assert( !pBt
->pCursor
);
2671 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2672 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2673 pBt
->xFreeSchema(pBt
->pSchema
);
2675 sqlite3DbFree(0, pBt
->pSchema
);
2680 #ifndef SQLITE_OMIT_SHARED_CACHE
2681 assert( p
->wantToLock
==0 );
2682 assert( p
->locked
==0 );
2683 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2684 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2692 ** Change the "soft" limit on the number of pages in the cache.
2693 ** Unused and unmodified pages will be recycled when the number of
2694 ** pages in the cache exceeds this soft limit. But the size of the
2695 ** cache is allowed to grow larger than this limit if it contains
2696 ** dirty pages or pages still in active use.
2698 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2699 BtShared
*pBt
= p
->pBt
;
2700 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2701 sqlite3BtreeEnter(p
);
2702 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2703 sqlite3BtreeLeave(p
);
2708 ** Change the "spill" limit on the number of pages in the cache.
2709 ** If the number of pages exceeds this limit during a write transaction,
2710 ** the pager might attempt to "spill" pages to the journal early in
2711 ** order to free up memory.
2713 ** The value returned is the current spill size. If zero is passed
2714 ** as an argument, no changes are made to the spill size setting, so
2715 ** using mxPage of 0 is a way to query the current spill size.
2717 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2718 BtShared
*pBt
= p
->pBt
;
2720 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2721 sqlite3BtreeEnter(p
);
2722 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2723 sqlite3BtreeLeave(p
);
2727 #if SQLITE_MAX_MMAP_SIZE>0
2729 ** Change the limit on the amount of the database file that may be
2732 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2733 BtShared
*pBt
= p
->pBt
;
2734 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2735 sqlite3BtreeEnter(p
);
2736 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2737 sqlite3BtreeLeave(p
);
2740 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2743 ** Change the way data is synced to disk in order to increase or decrease
2744 ** how well the database resists damage due to OS crashes and power
2745 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2746 ** there is a high probability of damage) Level 2 is the default. There
2747 ** is a very low but non-zero probability of damage. Level 3 reduces the
2748 ** probability of damage to near zero but with a write performance reduction.
2750 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2751 int sqlite3BtreeSetPagerFlags(
2752 Btree
*p
, /* The btree to set the safety level on */
2753 unsigned pgFlags
/* Various PAGER_* flags */
2755 BtShared
*pBt
= p
->pBt
;
2756 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2757 sqlite3BtreeEnter(p
);
2758 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2759 sqlite3BtreeLeave(p
);
2765 ** Change the default pages size and the number of reserved bytes per page.
2766 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2767 ** without changing anything.
2769 ** The page size must be a power of 2 between 512 and 65536. If the page
2770 ** size supplied does not meet this constraint then the page size is not
2773 ** Page sizes are constrained to be a power of two so that the region
2774 ** of the database file used for locking (beginning at PENDING_BYTE,
2775 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2776 ** at the beginning of a page.
2778 ** If parameter nReserve is less than zero, then the number of reserved
2779 ** bytes per page is left unchanged.
2781 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2782 ** and autovacuum mode can no longer be changed.
2784 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2786 BtShared
*pBt
= p
->pBt
;
2787 assert( nReserve
>=-1 && nReserve
<=255 );
2788 sqlite3BtreeEnter(p
);
2789 #if SQLITE_HAS_CODEC
2790 if( nReserve
>pBt
->optimalReserve
) pBt
->optimalReserve
= (u8
)nReserve
;
2792 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2793 sqlite3BtreeLeave(p
);
2794 return SQLITE_READONLY
;
2797 nReserve
= pBt
->pageSize
- pBt
->usableSize
;
2799 assert( nReserve
>=0 && nReserve
<=255 );
2800 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2801 ((pageSize
-1)&pageSize
)==0 ){
2802 assert( (pageSize
& 7)==0 );
2803 assert( !pBt
->pCursor
);
2804 pBt
->pageSize
= (u32
)pageSize
;
2807 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2808 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2809 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2810 sqlite3BtreeLeave(p
);
2815 ** Return the currently defined page size
2817 int sqlite3BtreeGetPageSize(Btree
*p
){
2818 return p
->pBt
->pageSize
;
2822 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2823 ** may only be called if it is guaranteed that the b-tree mutex is already
2826 ** This is useful in one special case in the backup API code where it is
2827 ** known that the shared b-tree mutex is held, but the mutex on the
2828 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2829 ** were to be called, it might collide with some other operation on the
2830 ** database handle that owns *p, causing undefined behavior.
2832 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
2834 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
2835 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2840 ** Return the number of bytes of space at the end of every page that
2841 ** are intentually left unused. This is the "reserved" space that is
2842 ** sometimes used by extensions.
2844 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2845 ** greater of the current reserved space and the maximum requested
2848 int sqlite3BtreeGetOptimalReserve(Btree
*p
){
2850 sqlite3BtreeEnter(p
);
2851 n
= sqlite3BtreeGetReserveNoMutex(p
);
2852 #ifdef SQLITE_HAS_CODEC
2853 if( n
<p
->pBt
->optimalReserve
) n
= p
->pBt
->optimalReserve
;
2855 sqlite3BtreeLeave(p
);
2861 ** Set the maximum page count for a database if mxPage is positive.
2862 ** No changes are made if mxPage is 0 or negative.
2863 ** Regardless of the value of mxPage, return the maximum page count.
2865 int sqlite3BtreeMaxPageCount(Btree
*p
, int mxPage
){
2867 sqlite3BtreeEnter(p
);
2868 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
2869 sqlite3BtreeLeave(p
);
2874 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2876 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2877 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2878 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2879 ** newFlag==(-1) No changes
2881 ** This routine acts as a query if newFlag is less than zero
2883 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2884 ** freelist leaf pages are not written back to the database. Thus in-page
2885 ** deleted content is cleared, but freelist deleted content is not.
2887 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2888 ** that freelist leaf pages are written back into the database, increasing
2889 ** the amount of disk I/O.
2891 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
2893 if( p
==0 ) return 0;
2894 sqlite3BtreeEnter(p
);
2895 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
2896 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
2898 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
2899 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
2901 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
2902 sqlite3BtreeLeave(p
);
2907 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2908 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2909 ** is disabled. The default value for the auto-vacuum property is
2910 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2912 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
2913 #ifdef SQLITE_OMIT_AUTOVACUUM
2914 return SQLITE_READONLY
;
2916 BtShared
*pBt
= p
->pBt
;
2918 u8 av
= (u8
)autoVacuum
;
2920 sqlite3BtreeEnter(p
);
2921 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
2922 rc
= SQLITE_READONLY
;
2924 pBt
->autoVacuum
= av
?1:0;
2925 pBt
->incrVacuum
= av
==2 ?1:0;
2927 sqlite3BtreeLeave(p
);
2933 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2934 ** enabled 1 is returned. Otherwise 0.
2936 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
2937 #ifdef SQLITE_OMIT_AUTOVACUUM
2938 return BTREE_AUTOVACUUM_NONE
;
2941 sqlite3BtreeEnter(p
);
2943 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
2944 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
2945 BTREE_AUTOVACUUM_INCR
2947 sqlite3BtreeLeave(p
);
2953 ** If the user has not set the safety-level for this database connection
2954 ** using "PRAGMA synchronous", and if the safety-level is not already
2955 ** set to the value passed to this function as the second parameter,
2958 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2959 && !defined(SQLITE_OMIT_WAL)
2960 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
2963 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
2964 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
2965 if( pDb
->bSyncSet
==0
2966 && pDb
->safety_level
!=safety_level
2969 pDb
->safety_level
= safety_level
;
2970 sqlite3PagerSetFlags(pBt
->pPager
,
2971 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
2976 # define setDefaultSyncFlag(pBt,safety_level)
2979 /* Forward declaration */
2980 static int newDatabase(BtShared
*);
2984 ** Get a reference to pPage1 of the database file. This will
2985 ** also acquire a readlock on that file.
2987 ** SQLITE_OK is returned on success. If the file is not a
2988 ** well-formed database file, then SQLITE_CORRUPT is returned.
2989 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2990 ** is returned if we run out of memory.
2992 static int lockBtree(BtShared
*pBt
){
2993 int rc
; /* Result code from subfunctions */
2994 MemPage
*pPage1
; /* Page 1 of the database file */
2995 int nPage
; /* Number of pages in the database */
2996 int nPageFile
= 0; /* Number of pages in the database file */
2997 int nPageHeader
; /* Number of pages in the database according to hdr */
2999 assert( sqlite3_mutex_held(pBt
->mutex
) );
3000 assert( pBt
->pPage1
==0 );
3001 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3002 if( rc
!=SQLITE_OK
) return rc
;
3003 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3004 if( rc
!=SQLITE_OK
) return rc
;
3006 /* Do some checking to help insure the file we opened really is
3007 ** a valid database file.
3009 nPage
= nPageHeader
= get4byte(28+(u8
*)pPage1
->aData
);
3010 sqlite3PagerPagecount(pBt
->pPager
, &nPageFile
);
3011 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3014 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3020 u8
*page1
= pPage1
->aData
;
3022 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3023 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3024 ** 61 74 20 33 00. */
3025 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3026 goto page1_init_failed
;
3029 #ifdef SQLITE_OMIT_WAL
3031 pBt
->btsFlags
|= BTS_READ_ONLY
;
3034 goto page1_init_failed
;
3038 pBt
->btsFlags
|= BTS_READ_ONLY
;
3041 goto page1_init_failed
;
3044 /* If the write version is set to 2, this database should be accessed
3045 ** in WAL mode. If the log is not already open, open it now. Then
3046 ** return SQLITE_OK and return without populating BtShared.pPage1.
3047 ** The caller detects this and calls this function again. This is
3048 ** required as the version of page 1 currently in the page1 buffer
3049 ** may not be the latest version - there may be a newer one in the log
3052 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3054 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3055 if( rc
!=SQLITE_OK
){
3056 goto page1_init_failed
;
3058 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3060 releasePageOne(pPage1
);
3066 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3070 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3071 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3073 ** The original design allowed these amounts to vary, but as of
3074 ** version 3.6.0, we require them to be fixed.
3076 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3077 goto page1_init_failed
;
3079 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3080 ** determined by the 2-byte integer located at an offset of 16 bytes from
3081 ** the beginning of the database file. */
3082 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3083 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3084 ** between 512 and 65536 inclusive. */
3085 if( ((pageSize
-1)&pageSize
)!=0
3086 || pageSize
>SQLITE_MAX_PAGE_SIZE
3089 goto page1_init_failed
;
3091 assert( (pageSize
& 7)==0 );
3092 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3093 ** integer at offset 20 is the number of bytes of space at the end of
3094 ** each page to reserve for extensions.
3096 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3097 ** determined by the one-byte unsigned integer found at an offset of 20
3098 ** into the database file header. */
3099 usableSize
= pageSize
- page1
[20];
3100 if( (u32
)pageSize
!=pBt
->pageSize
){
3101 /* After reading the first page of the database assuming a page size
3102 ** of BtShared.pageSize, we have discovered that the page-size is
3103 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3104 ** zero and return SQLITE_OK. The caller will call this function
3105 ** again with the correct page-size.
3107 releasePageOne(pPage1
);
3108 pBt
->usableSize
= usableSize
;
3109 pBt
->pageSize
= pageSize
;
3111 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3112 pageSize
-usableSize
);
3115 if( (pBt
->db
->flags
& SQLITE_WriteSchema
)==0 && nPage
>nPageFile
){
3116 rc
= SQLITE_CORRUPT_BKPT
;
3117 goto page1_init_failed
;
3119 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3120 ** be less than 480. In other words, if the page size is 512, then the
3121 ** reserved space size cannot exceed 32. */
3122 if( usableSize
<480 ){
3123 goto page1_init_failed
;
3125 pBt
->pageSize
= pageSize
;
3126 pBt
->usableSize
= usableSize
;
3127 #ifndef SQLITE_OMIT_AUTOVACUUM
3128 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3129 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3133 /* maxLocal is the maximum amount of payload to store locally for
3134 ** a cell. Make sure it is small enough so that at least minFanout
3135 ** cells can will fit on one page. We assume a 10-byte page header.
3136 ** Besides the payload, the cell must store:
3137 ** 2-byte pointer to the cell
3138 ** 4-byte child pointer
3139 ** 9-byte nKey value
3140 ** 4-byte nData value
3141 ** 4-byte overflow page pointer
3142 ** So a cell consists of a 2-byte pointer, a header which is as much as
3143 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3146 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3147 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3148 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3149 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3150 if( pBt
->maxLocal
>127 ){
3151 pBt
->max1bytePayload
= 127;
3153 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3155 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3156 pBt
->pPage1
= pPage1
;
3161 releasePageOne(pPage1
);
3168 ** Return the number of cursors open on pBt. This is for use
3169 ** in assert() expressions, so it is only compiled if NDEBUG is not
3172 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3173 ** false then all cursors are counted.
3175 ** For the purposes of this routine, a cursor is any cursor that
3176 ** is capable of reading or writing to the database. Cursors that
3177 ** have been tripped into the CURSOR_FAULT state are not counted.
3179 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3182 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3183 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3184 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3191 ** If there are no outstanding cursors and we are not in the middle
3192 ** of a transaction but there is a read lock on the database, then
3193 ** this routine unrefs the first page of the database file which
3194 ** has the effect of releasing the read lock.
3196 ** If there is a transaction in progress, this routine is a no-op.
3198 static void unlockBtreeIfUnused(BtShared
*pBt
){
3199 assert( sqlite3_mutex_held(pBt
->mutex
) );
3200 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3201 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3202 MemPage
*pPage1
= pBt
->pPage1
;
3203 assert( pPage1
->aData
);
3204 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3206 releasePageOne(pPage1
);
3211 ** If pBt points to an empty file then convert that empty file
3212 ** into a new empty database by initializing the first page of
3215 static int newDatabase(BtShared
*pBt
){
3217 unsigned char *data
;
3220 assert( sqlite3_mutex_held(pBt
->mutex
) );
3227 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3229 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3230 assert( sizeof(zMagicHeader
)==16 );
3231 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3232 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3235 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3236 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3240 memset(&data
[24], 0, 100-24);
3241 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3242 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3243 #ifndef SQLITE_OMIT_AUTOVACUUM
3244 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3245 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3246 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3247 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3255 ** Initialize the first page of the database file (creating a database
3256 ** consisting of a single page and no schema objects). Return SQLITE_OK
3257 ** if successful, or an SQLite error code otherwise.
3259 int sqlite3BtreeNewDb(Btree
*p
){
3261 sqlite3BtreeEnter(p
);
3263 rc
= newDatabase(p
->pBt
);
3264 sqlite3BtreeLeave(p
);
3269 ** Attempt to start a new transaction. A write-transaction
3270 ** is started if the second argument is nonzero, otherwise a read-
3271 ** transaction. If the second argument is 2 or more and exclusive
3272 ** transaction is started, meaning that no other process is allowed
3273 ** to access the database. A preexisting transaction may not be
3274 ** upgraded to exclusive by calling this routine a second time - the
3275 ** exclusivity flag only works for a new transaction.
3277 ** A write-transaction must be started before attempting any
3278 ** changes to the database. None of the following routines
3279 ** will work unless a transaction is started first:
3281 ** sqlite3BtreeCreateTable()
3282 ** sqlite3BtreeCreateIndex()
3283 ** sqlite3BtreeClearTable()
3284 ** sqlite3BtreeDropTable()
3285 ** sqlite3BtreeInsert()
3286 ** sqlite3BtreeDelete()
3287 ** sqlite3BtreeUpdateMeta()
3289 ** If an initial attempt to acquire the lock fails because of lock contention
3290 ** and the database was previously unlocked, then invoke the busy handler
3291 ** if there is one. But if there was previously a read-lock, do not
3292 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3293 ** returned when there is already a read-lock in order to avoid a deadlock.
3295 ** Suppose there are two processes A and B. A has a read lock and B has
3296 ** a reserved lock. B tries to promote to exclusive but is blocked because
3297 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3298 ** One or the other of the two processes must give way or there can be
3299 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3300 ** when A already has a read lock, we encourage A to give up and let B
3303 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3304 BtShared
*pBt
= p
->pBt
;
3307 sqlite3BtreeEnter(p
);
3310 /* If the btree is already in a write-transaction, or it
3311 ** is already in a read-transaction and a read-transaction
3312 ** is requested, this is a no-op.
3314 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3317 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3319 /* Write transactions are not possible on a read-only database */
3320 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3321 rc
= SQLITE_READONLY
;
3325 #ifndef SQLITE_OMIT_SHARED_CACHE
3327 sqlite3
*pBlock
= 0;
3328 /* If another database handle has already opened a write transaction
3329 ** on this shared-btree structure and a second write transaction is
3330 ** requested, return SQLITE_LOCKED.
3332 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3333 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3335 pBlock
= pBt
->pWriter
->db
;
3336 }else if( wrflag
>1 ){
3338 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3339 if( pIter
->pBtree
!=p
){
3340 pBlock
= pIter
->pBtree
->db
;
3346 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3347 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3353 /* Any read-only or read-write transaction implies a read-lock on
3354 ** page 1. So if some other shared-cache client already has a write-lock
3355 ** on page 1, the transaction cannot be opened. */
3356 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
3357 if( SQLITE_OK
!=rc
) goto trans_begun
;
3359 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3360 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3362 /* Call lockBtree() until either pBt->pPage1 is populated or
3363 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3364 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3365 ** reading page 1 it discovers that the page-size of the database
3366 ** file is not pBt->pageSize. In this case lockBtree() will update
3367 ** pBt->pageSize to the page-size of the file on disk.
3369 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3371 if( rc
==SQLITE_OK
&& wrflag
){
3372 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3373 rc
= SQLITE_READONLY
;
3375 rc
= sqlite3PagerBegin(pBt
->pPager
,wrflag
>1,sqlite3TempInMemory(p
->db
));
3376 if( rc
==SQLITE_OK
){
3377 rc
= newDatabase(pBt
);
3378 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3379 /* if there was no transaction opened when this function was
3380 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3381 ** code to SQLITE_BUSY. */
3387 if( rc
!=SQLITE_OK
){
3388 unlockBtreeIfUnused(pBt
);
3390 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3391 btreeInvokeBusyHandler(pBt
) );
3392 sqlite3PagerResetLockTimeout(pBt
->pPager
);
3394 if( rc
==SQLITE_OK
){
3395 if( p
->inTrans
==TRANS_NONE
){
3396 pBt
->nTransaction
++;
3397 #ifndef SQLITE_OMIT_SHARED_CACHE
3399 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3400 p
->lock
.eLock
= READ_LOCK
;
3401 p
->lock
.pNext
= pBt
->pLock
;
3402 pBt
->pLock
= &p
->lock
;
3406 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3407 if( p
->inTrans
>pBt
->inTransaction
){
3408 pBt
->inTransaction
= p
->inTrans
;
3411 MemPage
*pPage1
= pBt
->pPage1
;
3412 #ifndef SQLITE_OMIT_SHARED_CACHE
3413 assert( !pBt
->pWriter
);
3415 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3416 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3419 /* If the db-size header field is incorrect (as it may be if an old
3420 ** client has been writing the database file), update it now. Doing
3421 ** this sooner rather than later means the database size can safely
3422 ** re-read the database size from page 1 if a savepoint or transaction
3423 ** rollback occurs within the transaction.
3425 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3426 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3427 if( rc
==SQLITE_OK
){
3428 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3435 if( rc
==SQLITE_OK
){
3436 if( pSchemaVersion
){
3437 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3440 /* This call makes sure that the pager has the correct number of
3441 ** open savepoints. If the second parameter is greater than 0 and
3442 ** the sub-journal is not already open, then it will be opened here.
3444 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, p
->db
->nSavepoint
);
3449 sqlite3BtreeLeave(p
);
3453 #ifndef SQLITE_OMIT_AUTOVACUUM
3456 ** Set the pointer-map entries for all children of page pPage. Also, if
3457 ** pPage contains cells that point to overflow pages, set the pointer
3458 ** map entries for the overflow pages as well.
3460 static int setChildPtrmaps(MemPage
*pPage
){
3461 int i
; /* Counter variable */
3462 int nCell
; /* Number of cells in page pPage */
3463 int rc
; /* Return code */
3464 BtShared
*pBt
= pPage
->pBt
;
3465 Pgno pgno
= pPage
->pgno
;
3467 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3468 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3469 if( rc
!=SQLITE_OK
) return rc
;
3470 nCell
= pPage
->nCell
;
3472 for(i
=0; i
<nCell
; i
++){
3473 u8
*pCell
= findCell(pPage
, i
);
3475 ptrmapPutOvflPtr(pPage
, pCell
, &rc
);
3478 Pgno childPgno
= get4byte(pCell
);
3479 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3484 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3485 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3492 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3493 ** that it points to iTo. Parameter eType describes the type of pointer to
3494 ** be modified, as follows:
3496 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3499 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3500 ** page pointed to by one of the cells on pPage.
3502 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3503 ** overflow page in the list.
3505 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3506 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3507 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3508 if( eType
==PTRMAP_OVERFLOW2
){
3509 /* The pointer is always the first 4 bytes of the page in this case. */
3510 if( get4byte(pPage
->aData
)!=iFrom
){
3511 return SQLITE_CORRUPT_PAGE(pPage
);
3513 put4byte(pPage
->aData
, iTo
);
3519 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3521 nCell
= pPage
->nCell
;
3523 for(i
=0; i
<nCell
; i
++){
3524 u8
*pCell
= findCell(pPage
, i
);
3525 if( eType
==PTRMAP_OVERFLOW1
){
3527 pPage
->xParseCell(pPage
, pCell
, &info
);
3528 if( info
.nLocal
<info
.nPayload
){
3529 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3530 return SQLITE_CORRUPT_PAGE(pPage
);
3532 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3533 put4byte(pCell
+info
.nSize
-4, iTo
);
3538 if( get4byte(pCell
)==iFrom
){
3539 put4byte(pCell
, iTo
);
3546 if( eType
!=PTRMAP_BTREE
||
3547 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3548 return SQLITE_CORRUPT_PAGE(pPage
);
3550 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3558 ** Move the open database page pDbPage to location iFreePage in the
3559 ** database. The pDbPage reference remains valid.
3561 ** The isCommit flag indicates that there is no need to remember that
3562 ** the journal needs to be sync()ed before database page pDbPage->pgno
3563 ** can be written to. The caller has already promised not to write to that
3566 static int relocatePage(
3567 BtShared
*pBt
, /* Btree */
3568 MemPage
*pDbPage
, /* Open page to move */
3569 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3570 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3571 Pgno iFreePage
, /* The location to move pDbPage to */
3572 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3574 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3575 Pgno iDbPage
= pDbPage
->pgno
;
3576 Pager
*pPager
= pBt
->pPager
;
3579 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3580 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3581 assert( sqlite3_mutex_held(pBt
->mutex
) );
3582 assert( pDbPage
->pBt
==pBt
);
3584 /* Move page iDbPage from its current location to page number iFreePage */
3585 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3586 iDbPage
, iFreePage
, iPtrPage
, eType
));
3587 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3588 if( rc
!=SQLITE_OK
){
3591 pDbPage
->pgno
= iFreePage
;
3593 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3594 ** that point to overflow pages. The pointer map entries for all these
3595 ** pages need to be changed.
3597 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3598 ** pointer to a subsequent overflow page. If this is the case, then
3599 ** the pointer map needs to be updated for the subsequent overflow page.
3601 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3602 rc
= setChildPtrmaps(pDbPage
);
3603 if( rc
!=SQLITE_OK
){
3607 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3609 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3610 if( rc
!=SQLITE_OK
){
3616 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3617 ** that it points at iFreePage. Also fix the pointer map entry for
3620 if( eType
!=PTRMAP_ROOTPAGE
){
3621 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3622 if( rc
!=SQLITE_OK
){
3625 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3626 if( rc
!=SQLITE_OK
){
3627 releasePage(pPtrPage
);
3630 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3631 releasePage(pPtrPage
);
3632 if( rc
==SQLITE_OK
){
3633 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3639 /* Forward declaration required by incrVacuumStep(). */
3640 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3643 ** Perform a single step of an incremental-vacuum. If successful, return
3644 ** SQLITE_OK. If there is no work to do (and therefore no point in
3645 ** calling this function again), return SQLITE_DONE. Or, if an error
3646 ** occurs, return some other error code.
3648 ** More specifically, this function attempts to re-organize the database so
3649 ** that the last page of the file currently in use is no longer in use.
3651 ** Parameter nFin is the number of pages that this database would contain
3652 ** were this function called until it returns SQLITE_DONE.
3654 ** If the bCommit parameter is non-zero, this function assumes that the
3655 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3656 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3657 ** operation, or false for an incremental vacuum.
3659 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3660 Pgno nFreeList
; /* Number of pages still on the free-list */
3663 assert( sqlite3_mutex_held(pBt
->mutex
) );
3664 assert( iLastPg
>nFin
);
3666 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3670 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3675 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3676 if( rc
!=SQLITE_OK
){
3679 if( eType
==PTRMAP_ROOTPAGE
){
3680 return SQLITE_CORRUPT_BKPT
;
3683 if( eType
==PTRMAP_FREEPAGE
){
3685 /* Remove the page from the files free-list. This is not required
3686 ** if bCommit is non-zero. In that case, the free-list will be
3687 ** truncated to zero after this function returns, so it doesn't
3688 ** matter if it still contains some garbage entries.
3692 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3693 if( rc
!=SQLITE_OK
){
3696 assert( iFreePg
==iLastPg
);
3697 releasePage(pFreePg
);
3700 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3702 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3703 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3705 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3706 if( rc
!=SQLITE_OK
){
3710 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3711 ** is swapped with the first free page pulled off the free list.
3713 ** On the other hand, if bCommit is greater than zero, then keep
3714 ** looping until a free-page located within the first nFin pages
3715 ** of the file is found.
3723 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3724 if( rc
!=SQLITE_OK
){
3725 releasePage(pLastPg
);
3728 releasePage(pFreePg
);
3729 }while( bCommit
&& iFreePg
>nFin
);
3730 assert( iFreePg
<iLastPg
);
3732 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3733 releasePage(pLastPg
);
3734 if( rc
!=SQLITE_OK
){
3743 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3744 pBt
->bDoTruncate
= 1;
3745 pBt
->nPage
= iLastPg
;
3751 ** The database opened by the first argument is an auto-vacuum database
3752 ** nOrig pages in size containing nFree free pages. Return the expected
3753 ** size of the database in pages following an auto-vacuum operation.
3755 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3756 int nEntry
; /* Number of entries on one ptrmap page */
3757 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3758 Pgno nFin
; /* Return value */
3760 nEntry
= pBt
->usableSize
/5;
3761 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3762 nFin
= nOrig
- nFree
- nPtrmap
;
3763 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3766 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3774 ** A write-transaction must be opened before calling this function.
3775 ** It performs a single unit of work towards an incremental vacuum.
3777 ** If the incremental vacuum is finished after this function has run,
3778 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3779 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3781 int sqlite3BtreeIncrVacuum(Btree
*p
){
3783 BtShared
*pBt
= p
->pBt
;
3785 sqlite3BtreeEnter(p
);
3786 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
3787 if( !pBt
->autoVacuum
){
3790 Pgno nOrig
= btreePagecount(pBt
);
3791 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3792 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3795 rc
= SQLITE_CORRUPT_BKPT
;
3796 }else if( nFree
>0 ){
3797 rc
= saveAllCursors(pBt
, 0, 0);
3798 if( rc
==SQLITE_OK
){
3799 invalidateAllOverflowCache(pBt
);
3800 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
3802 if( rc
==SQLITE_OK
){
3803 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3804 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
3810 sqlite3BtreeLeave(p
);
3815 ** This routine is called prior to sqlite3PagerCommit when a transaction
3816 ** is committed for an auto-vacuum database.
3818 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3819 ** the database file should be truncated to during the commit process.
3820 ** i.e. the database has been reorganized so that only the first *pnTrunc
3821 ** pages are in use.
3823 static int autoVacuumCommit(BtShared
*pBt
){
3825 Pager
*pPager
= pBt
->pPager
;
3826 VVA_ONLY( int nRef
= sqlite3PagerRefcount(pPager
); )
3828 assert( sqlite3_mutex_held(pBt
->mutex
) );
3829 invalidateAllOverflowCache(pBt
);
3830 assert(pBt
->autoVacuum
);
3831 if( !pBt
->incrVacuum
){
3832 Pgno nFin
; /* Number of pages in database after autovacuuming */
3833 Pgno nFree
; /* Number of pages on the freelist initially */
3834 Pgno iFree
; /* The next page to be freed */
3835 Pgno nOrig
; /* Database size before freeing */
3837 nOrig
= btreePagecount(pBt
);
3838 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
3839 /* It is not possible to create a database for which the final page
3840 ** is either a pointer-map page or the pending-byte page. If one
3841 ** is encountered, this indicates corruption.
3843 return SQLITE_CORRUPT_BKPT
;
3846 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3847 nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3848 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
3850 rc
= saveAllCursors(pBt
, 0, 0);
3852 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
3853 rc
= incrVacuumStep(pBt
, nFin
, iFree
, 1);
3855 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
3856 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3857 put4byte(&pBt
->pPage1
->aData
[32], 0);
3858 put4byte(&pBt
->pPage1
->aData
[36], 0);
3859 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
3860 pBt
->bDoTruncate
= 1;
3863 if( rc
!=SQLITE_OK
){
3864 sqlite3PagerRollback(pPager
);
3868 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
3872 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3873 # define setChildPtrmaps(x) SQLITE_OK
3877 ** This routine does the first phase of a two-phase commit. This routine
3878 ** causes a rollback journal to be created (if it does not already exist)
3879 ** and populated with enough information so that if a power loss occurs
3880 ** the database can be restored to its original state by playing back
3881 ** the journal. Then the contents of the journal are flushed out to
3882 ** the disk. After the journal is safely on oxide, the changes to the
3883 ** database are written into the database file and flushed to oxide.
3884 ** At the end of this call, the rollback journal still exists on the
3885 ** disk and we are still holding all locks, so the transaction has not
3886 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3889 ** This call is a no-op if no write-transaction is currently active on pBt.
3891 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3892 ** the name of a master journal file that should be written into the
3893 ** individual journal file, or is NULL, indicating no master journal file
3894 ** (single database transaction).
3896 ** When this is called, the master journal should already have been
3897 ** created, populated with this journal pointer and synced to disk.
3899 ** Once this is routine has returned, the only thing required to commit
3900 ** the write-transaction for this database file is to delete the journal.
3902 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zMaster
){
3904 if( p
->inTrans
==TRANS_WRITE
){
3905 BtShared
*pBt
= p
->pBt
;
3906 sqlite3BtreeEnter(p
);
3907 #ifndef SQLITE_OMIT_AUTOVACUUM
3908 if( pBt
->autoVacuum
){
3909 rc
= autoVacuumCommit(pBt
);
3910 if( rc
!=SQLITE_OK
){
3911 sqlite3BtreeLeave(p
);
3915 if( pBt
->bDoTruncate
){
3916 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
3919 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zMaster
, 0);
3920 sqlite3BtreeLeave(p
);
3926 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3927 ** at the conclusion of a transaction.
3929 static void btreeEndTransaction(Btree
*p
){
3930 BtShared
*pBt
= p
->pBt
;
3931 sqlite3
*db
= p
->db
;
3932 assert( sqlite3BtreeHoldsMutex(p
) );
3934 #ifndef SQLITE_OMIT_AUTOVACUUM
3935 pBt
->bDoTruncate
= 0;
3937 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
3938 /* If there are other active statements that belong to this database
3939 ** handle, downgrade to a read-only transaction. The other statements
3940 ** may still be reading from the database. */
3941 downgradeAllSharedCacheTableLocks(p
);
3942 p
->inTrans
= TRANS_READ
;
3944 /* If the handle had any kind of transaction open, decrement the
3945 ** transaction count of the shared btree. If the transaction count
3946 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3947 ** call below will unlock the pager. */
3948 if( p
->inTrans
!=TRANS_NONE
){
3949 clearAllSharedCacheTableLocks(p
);
3950 pBt
->nTransaction
--;
3951 if( 0==pBt
->nTransaction
){
3952 pBt
->inTransaction
= TRANS_NONE
;
3956 /* Set the current transaction state to TRANS_NONE and unlock the
3957 ** pager if this call closed the only read or write transaction. */
3958 p
->inTrans
= TRANS_NONE
;
3959 unlockBtreeIfUnused(pBt
);
3966 ** Commit the transaction currently in progress.
3968 ** This routine implements the second phase of a 2-phase commit. The
3969 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3970 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3971 ** routine did all the work of writing information out to disk and flushing the
3972 ** contents so that they are written onto the disk platter. All this
3973 ** routine has to do is delete or truncate or zero the header in the
3974 ** the rollback journal (which causes the transaction to commit) and
3977 ** Normally, if an error occurs while the pager layer is attempting to
3978 ** finalize the underlying journal file, this function returns an error and
3979 ** the upper layer will attempt a rollback. However, if the second argument
3980 ** is non-zero then this b-tree transaction is part of a multi-file
3981 ** transaction. In this case, the transaction has already been committed
3982 ** (by deleting a master journal file) and the caller will ignore this
3983 ** functions return code. So, even if an error occurs in the pager layer,
3984 ** reset the b-tree objects internal state to indicate that the write
3985 ** transaction has been closed. This is quite safe, as the pager will have
3986 ** transitioned to the error state.
3988 ** This will release the write lock on the database file. If there
3989 ** are no active cursors, it also releases the read lock.
3991 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
3993 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
3994 sqlite3BtreeEnter(p
);
3997 /* If the handle has a write-transaction open, commit the shared-btrees
3998 ** transaction and set the shared state to TRANS_READ.
4000 if( p
->inTrans
==TRANS_WRITE
){
4002 BtShared
*pBt
= p
->pBt
;
4003 assert( pBt
->inTransaction
==TRANS_WRITE
);
4004 assert( pBt
->nTransaction
>0 );
4005 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4006 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4007 sqlite3BtreeLeave(p
);
4010 p
->iDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4011 pBt
->inTransaction
= TRANS_READ
;
4012 btreeClearHasContent(pBt
);
4015 btreeEndTransaction(p
);
4016 sqlite3BtreeLeave(p
);
4021 ** Do both phases of a commit.
4023 int sqlite3BtreeCommit(Btree
*p
){
4025 sqlite3BtreeEnter(p
);
4026 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4027 if( rc
==SQLITE_OK
){
4028 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4030 sqlite3BtreeLeave(p
);
4035 ** This routine sets the state to CURSOR_FAULT and the error
4036 ** code to errCode for every cursor on any BtShared that pBtree
4037 ** references. Or if the writeOnly flag is set to 1, then only
4038 ** trip write cursors and leave read cursors unchanged.
4040 ** Every cursor is a candidate to be tripped, including cursors
4041 ** that belong to other database connections that happen to be
4042 ** sharing the cache with pBtree.
4044 ** This routine gets called when a rollback occurs. If the writeOnly
4045 ** flag is true, then only write-cursors need be tripped - read-only
4046 ** cursors save their current positions so that they may continue
4047 ** following the rollback. Or, if writeOnly is false, all cursors are
4048 ** tripped. In general, writeOnly is false if the transaction being
4049 ** rolled back modified the database schema. In this case b-tree root
4050 ** pages may be moved or deleted from the database altogether, making
4051 ** it unsafe for read cursors to continue.
4053 ** If the writeOnly flag is true and an error is encountered while
4054 ** saving the current position of a read-only cursor, all cursors,
4055 ** including all read-cursors are tripped.
4057 ** SQLITE_OK is returned if successful, or if an error occurs while
4058 ** saving a cursor position, an SQLite error code.
4060 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4064 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4066 sqlite3BtreeEnter(pBtree
);
4067 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4068 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4069 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4070 rc
= saveCursorPosition(p
);
4071 if( rc
!=SQLITE_OK
){
4072 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4077 sqlite3BtreeClearCursor(p
);
4078 p
->eState
= CURSOR_FAULT
;
4079 p
->skipNext
= errCode
;
4081 btreeReleaseAllCursorPages(p
);
4083 sqlite3BtreeLeave(pBtree
);
4089 ** Rollback the transaction in progress.
4091 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4092 ** Only write cursors are tripped if writeOnly is true but all cursors are
4093 ** tripped if writeOnly is false. Any attempt to use
4094 ** a tripped cursor will result in an error.
4096 ** This will release the write lock on the database file. If there
4097 ** are no active cursors, it also releases the read lock.
4099 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4101 BtShared
*pBt
= p
->pBt
;
4104 assert( writeOnly
==1 || writeOnly
==0 );
4105 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4106 sqlite3BtreeEnter(p
);
4107 if( tripCode
==SQLITE_OK
){
4108 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4109 if( rc
) writeOnly
= 0;
4114 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4115 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4116 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4120 if( p
->inTrans
==TRANS_WRITE
){
4123 assert( TRANS_WRITE
==pBt
->inTransaction
);
4124 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4125 if( rc2
!=SQLITE_OK
){
4129 /* The rollback may have destroyed the pPage1->aData value. So
4130 ** call btreeGetPage() on page 1 again to make
4131 ** sure pPage1->aData is set correctly. */
4132 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4133 int nPage
= get4byte(28+(u8
*)pPage1
->aData
);
4134 testcase( nPage
==0 );
4135 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4136 testcase( pBt
->nPage
!=nPage
);
4138 releasePageOne(pPage1
);
4140 assert( countValidCursors(pBt
, 1)==0 );
4141 pBt
->inTransaction
= TRANS_READ
;
4142 btreeClearHasContent(pBt
);
4145 btreeEndTransaction(p
);
4146 sqlite3BtreeLeave(p
);
4151 ** Start a statement subtransaction. The subtransaction can be rolled
4152 ** back independently of the main transaction. You must start a transaction
4153 ** before starting a subtransaction. The subtransaction is ended automatically
4154 ** if the main transaction commits or rolls back.
4156 ** Statement subtransactions are used around individual SQL statements
4157 ** that are contained within a BEGIN...COMMIT block. If a constraint
4158 ** error occurs within the statement, the effect of that one statement
4159 ** can be rolled back without having to rollback the entire transaction.
4161 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4162 ** value passed as the second parameter is the total number of savepoints,
4163 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4164 ** are no active savepoints and no other statement-transactions open,
4165 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4166 ** using the sqlite3BtreeSavepoint() function.
4168 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4170 BtShared
*pBt
= p
->pBt
;
4171 sqlite3BtreeEnter(p
);
4172 assert( p
->inTrans
==TRANS_WRITE
);
4173 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4174 assert( iStatement
>0 );
4175 assert( iStatement
>p
->db
->nSavepoint
);
4176 assert( pBt
->inTransaction
==TRANS_WRITE
);
4177 /* At the pager level, a statement transaction is a savepoint with
4178 ** an index greater than all savepoints created explicitly using
4179 ** SQL statements. It is illegal to open, release or rollback any
4180 ** such savepoints while the statement transaction savepoint is active.
4182 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4183 sqlite3BtreeLeave(p
);
4188 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4189 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4190 ** savepoint identified by parameter iSavepoint, depending on the value
4193 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4194 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4195 ** contents of the entire transaction are rolled back. This is different
4196 ** from a normal transaction rollback, as no locks are released and the
4197 ** transaction remains open.
4199 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4201 if( p
&& p
->inTrans
==TRANS_WRITE
){
4202 BtShared
*pBt
= p
->pBt
;
4203 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4204 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4205 sqlite3BtreeEnter(p
);
4206 if( op
==SAVEPOINT_ROLLBACK
){
4207 rc
= saveAllCursors(pBt
, 0, 0);
4209 if( rc
==SQLITE_OK
){
4210 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4212 if( rc
==SQLITE_OK
){
4213 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4216 rc
= newDatabase(pBt
);
4217 pBt
->nPage
= get4byte(28 + pBt
->pPage1
->aData
);
4219 /* The database size was written into the offset 28 of the header
4220 ** when the transaction started, so we know that the value at offset
4221 ** 28 is nonzero. */
4222 assert( pBt
->nPage
>0 );
4224 sqlite3BtreeLeave(p
);
4230 ** Create a new cursor for the BTree whose root is on the page
4231 ** iTable. If a read-only cursor is requested, it is assumed that
4232 ** the caller already has at least a read-only transaction open
4233 ** on the database already. If a write-cursor is requested, then
4234 ** the caller is assumed to have an open write transaction.
4236 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4237 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4238 ** can be used for reading or for writing if other conditions for writing
4239 ** are also met. These are the conditions that must be met in order
4240 ** for writing to be allowed:
4242 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4244 ** 2: Other database connections that share the same pager cache
4245 ** but which are not in the READ_UNCOMMITTED state may not have
4246 ** cursors open with wrFlag==0 on the same table. Otherwise
4247 ** the changes made by this write cursor would be visible to
4248 ** the read cursors in the other database connection.
4250 ** 3: The database must be writable (not on read-only media)
4252 ** 4: There must be an active transaction.
4254 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4255 ** is set. If FORDELETE is set, that is a hint to the implementation that
4256 ** this cursor will only be used to seek to and delete entries of an index
4257 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4258 ** this implementation. But in a hypothetical alternative storage engine
4259 ** in which index entries are automatically deleted when corresponding table
4260 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4261 ** operations on this cursor can be no-ops and all READ operations can
4262 ** return a null row (2-bytes: 0x01 0x00).
4264 ** No checking is done to make sure that page iTable really is the
4265 ** root page of a b-tree. If it is not, then the cursor acquired
4266 ** will not work correctly.
4268 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4269 ** on pCur to initialize the memory space prior to invoking this routine.
4271 static int btreeCursor(
4272 Btree
*p
, /* The btree */
4273 int iTable
, /* Root page of table to open */
4274 int wrFlag
, /* 1 to write. 0 read-only */
4275 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4276 BtCursor
*pCur
/* Space for new cursor */
4278 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4279 BtCursor
*pX
; /* Looping over other all cursors */
4281 assert( sqlite3BtreeHoldsMutex(p
) );
4283 || wrFlag
==BTREE_WRCSR
4284 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4287 /* The following assert statements verify that if this is a sharable
4288 ** b-tree database, the connection is holding the required table locks,
4289 ** and that no other connection has any open cursor that conflicts with
4291 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1)) );
4292 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4294 /* Assert that the caller has opened the required transaction. */
4295 assert( p
->inTrans
>TRANS_NONE
);
4296 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4297 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4298 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4301 allocateTempSpace(pBt
);
4302 if( pBt
->pTmpSpace
==0 ) return SQLITE_NOMEM_BKPT
;
4304 if( iTable
==1 && btreePagecount(pBt
)==0 ){
4305 assert( wrFlag
==0 );
4309 /* Now that no other errors can occur, finish filling in the BtCursor
4310 ** variables and link the cursor into the BtShared list. */
4311 pCur
->pgnoRoot
= (Pgno
)iTable
;
4313 pCur
->pKeyInfo
= pKeyInfo
;
4316 pCur
->curFlags
= wrFlag
? BTCF_WriteFlag
: 0;
4317 pCur
->curPagerFlags
= wrFlag
? 0 : PAGER_GET_READONLY
;
4318 /* If there are two or more cursors on the same btree, then all such
4319 ** cursors *must* have the BTCF_Multiple flag set. */
4320 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4321 if( pX
->pgnoRoot
==(Pgno
)iTable
){
4322 pX
->curFlags
|= BTCF_Multiple
;
4323 pCur
->curFlags
|= BTCF_Multiple
;
4326 pCur
->pNext
= pBt
->pCursor
;
4327 pBt
->pCursor
= pCur
;
4328 pCur
->eState
= CURSOR_INVALID
;
4331 int sqlite3BtreeCursor(
4332 Btree
*p
, /* The btree */
4333 int iTable
, /* Root page of table to open */
4334 int wrFlag
, /* 1 to write. 0 read-only */
4335 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4336 BtCursor
*pCur
/* Write new cursor here */
4340 rc
= SQLITE_CORRUPT_BKPT
;
4342 sqlite3BtreeEnter(p
);
4343 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4344 sqlite3BtreeLeave(p
);
4350 ** Return the size of a BtCursor object in bytes.
4352 ** This interfaces is needed so that users of cursors can preallocate
4353 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4354 ** to users so they cannot do the sizeof() themselves - they must call
4357 int sqlite3BtreeCursorSize(void){
4358 return ROUND8(sizeof(BtCursor
));
4362 ** Initialize memory that will be converted into a BtCursor object.
4364 ** The simple approach here would be to memset() the entire object
4365 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4366 ** do not need to be zeroed and they are large, so we can save a lot
4367 ** of run-time by skipping the initialization of those elements.
4369 void sqlite3BtreeCursorZero(BtCursor
*p
){
4370 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4374 ** Close a cursor. The read lock on the database file is released
4375 ** when the last cursor is closed.
4377 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4378 Btree
*pBtree
= pCur
->pBtree
;
4380 BtShared
*pBt
= pCur
->pBt
;
4381 sqlite3BtreeEnter(pBtree
);
4382 assert( pBt
->pCursor
!=0 );
4383 if( pBt
->pCursor
==pCur
){
4384 pBt
->pCursor
= pCur
->pNext
;
4386 BtCursor
*pPrev
= pBt
->pCursor
;
4388 if( pPrev
->pNext
==pCur
){
4389 pPrev
->pNext
= pCur
->pNext
;
4392 pPrev
= pPrev
->pNext
;
4393 }while( ALWAYS(pPrev
) );
4395 btreeReleaseAllCursorPages(pCur
);
4396 unlockBtreeIfUnused(pBt
);
4397 sqlite3_free(pCur
->aOverflow
);
4398 sqlite3_free(pCur
->pKey
);
4399 sqlite3BtreeLeave(pBtree
);
4405 ** Make sure the BtCursor* given in the argument has a valid
4406 ** BtCursor.info structure. If it is not already valid, call
4407 ** btreeParseCell() to fill it in.
4409 ** BtCursor.info is a cache of the information in the current cell.
4410 ** Using this cache reduces the number of calls to btreeParseCell().
4413 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4414 if( a
->nKey
!=b
->nKey
) return 0;
4415 if( a
->pPayload
!=b
->pPayload
) return 0;
4416 if( a
->nPayload
!=b
->nPayload
) return 0;
4417 if( a
->nLocal
!=b
->nLocal
) return 0;
4418 if( a
->nSize
!=b
->nSize
) return 0;
4421 static void assertCellInfo(BtCursor
*pCur
){
4423 memset(&info
, 0, sizeof(info
));
4424 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4425 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4428 #define assertCellInfo(x)
4430 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4431 if( pCur
->info
.nSize
==0 ){
4432 pCur
->curFlags
|= BTCF_ValidNKey
;
4433 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4435 assertCellInfo(pCur
);
4439 #ifndef NDEBUG /* The next routine used only within assert() statements */
4441 ** Return true if the given BtCursor is valid. A valid cursor is one
4442 ** that is currently pointing to a row in a (non-empty) table.
4443 ** This is a verification routine is used only within assert() statements.
4445 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4446 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4449 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4451 return pCur
->eState
==CURSOR_VALID
;
4455 ** Return the value of the integer key or "rowid" for a table btree.
4456 ** This routine is only valid for a cursor that is pointing into a
4457 ** ordinary table btree. If the cursor points to an index btree or
4458 ** is invalid, the result of this routine is undefined.
4460 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4461 assert( cursorHoldsMutex(pCur
) );
4462 assert( pCur
->eState
==CURSOR_VALID
);
4463 assert( pCur
->curIntKey
);
4465 return pCur
->info
.nKey
;
4468 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4470 ** Return the offset into the database file for the start of the
4471 ** payload to which the cursor is pointing.
4473 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4474 assert( cursorHoldsMutex(pCur
) );
4475 assert( pCur
->eState
==CURSOR_VALID
);
4477 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4478 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4480 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4483 ** Return the number of bytes of payload for the entry that pCur is
4484 ** currently pointing to. For table btrees, this will be the amount
4485 ** of data. For index btrees, this will be the size of the key.
4487 ** The caller must guarantee that the cursor is pointing to a non-NULL
4488 ** valid entry. In other words, the calling procedure must guarantee
4489 ** that the cursor has Cursor.eState==CURSOR_VALID.
4491 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4492 assert( cursorHoldsMutex(pCur
) );
4493 assert( pCur
->eState
==CURSOR_VALID
);
4495 return pCur
->info
.nPayload
;
4499 ** Given the page number of an overflow page in the database (parameter
4500 ** ovfl), this function finds the page number of the next page in the
4501 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4502 ** pointer-map data instead of reading the content of page ovfl to do so.
4504 ** If an error occurs an SQLite error code is returned. Otherwise:
4506 ** The page number of the next overflow page in the linked list is
4507 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4508 ** list, *pPgnoNext is set to zero.
4510 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4511 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4512 ** reference. It is the responsibility of the caller to call releasePage()
4513 ** on *ppPage to free the reference. In no reference was obtained (because
4514 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4515 ** *ppPage is set to zero.
4517 static int getOverflowPage(
4518 BtShared
*pBt
, /* The database file */
4519 Pgno ovfl
, /* Current overflow page number */
4520 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4521 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4527 assert( sqlite3_mutex_held(pBt
->mutex
) );
4530 #ifndef SQLITE_OMIT_AUTOVACUUM
4531 /* Try to find the next page in the overflow list using the
4532 ** autovacuum pointer-map pages. Guess that the next page in
4533 ** the overflow list is page number (ovfl+1). If that guess turns
4534 ** out to be wrong, fall back to loading the data of page
4535 ** number ovfl to determine the next page number.
4537 if( pBt
->autoVacuum
){
4539 Pgno iGuess
= ovfl
+1;
4542 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4546 if( iGuess
<=btreePagecount(pBt
) ){
4547 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4548 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4556 assert( next
==0 || rc
==SQLITE_DONE
);
4557 if( rc
==SQLITE_OK
){
4558 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4559 assert( rc
==SQLITE_OK
|| pPage
==0 );
4560 if( rc
==SQLITE_OK
){
4561 next
= get4byte(pPage
->aData
);
4571 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4575 ** Copy data from a buffer to a page, or from a page to a buffer.
4577 ** pPayload is a pointer to data stored on database page pDbPage.
4578 ** If argument eOp is false, then nByte bytes of data are copied
4579 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4580 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4581 ** of data are copied from the buffer pBuf to pPayload.
4583 ** SQLITE_OK is returned on success, otherwise an error code.
4585 static int copyPayload(
4586 void *pPayload
, /* Pointer to page data */
4587 void *pBuf
, /* Pointer to buffer */
4588 int nByte
, /* Number of bytes to copy */
4589 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4590 DbPage
*pDbPage
/* Page containing pPayload */
4593 /* Copy data from buffer to page (a write operation) */
4594 int rc
= sqlite3PagerWrite(pDbPage
);
4595 if( rc
!=SQLITE_OK
){
4598 memcpy(pPayload
, pBuf
, nByte
);
4600 /* Copy data from page to buffer (a read operation) */
4601 memcpy(pBuf
, pPayload
, nByte
);
4607 ** This function is used to read or overwrite payload information
4608 ** for the entry that the pCur cursor is pointing to. The eOp
4609 ** argument is interpreted as follows:
4611 ** 0: The operation is a read. Populate the overflow cache.
4612 ** 1: The operation is a write. Populate the overflow cache.
4614 ** A total of "amt" bytes are read or written beginning at "offset".
4615 ** Data is read to or from the buffer pBuf.
4617 ** The content being read or written might appear on the main page
4618 ** or be scattered out on multiple overflow pages.
4620 ** If the current cursor entry uses one or more overflow pages
4621 ** this function may allocate space for and lazily populate
4622 ** the overflow page-list cache array (BtCursor.aOverflow).
4623 ** Subsequent calls use this cache to make seeking to the supplied offset
4626 ** Once an overflow page-list cache has been allocated, it must be
4627 ** invalidated if some other cursor writes to the same table, or if
4628 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4629 ** mode, the following events may invalidate an overflow page-list cache.
4631 ** * An incremental vacuum,
4632 ** * A commit in auto_vacuum="full" mode,
4633 ** * Creating a table (may require moving an overflow page).
4635 static int accessPayload(
4636 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4637 u32 offset
, /* Begin reading this far into payload */
4638 u32 amt
, /* Read this many bytes */
4639 unsigned char *pBuf
, /* Write the bytes into this buffer */
4640 int eOp
/* zero to read. non-zero to write. */
4642 unsigned char *aPayload
;
4645 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
4646 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
4647 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4648 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
4652 assert( eOp
==0 || eOp
==1 );
4653 assert( pCur
->eState
==CURSOR_VALID
);
4654 assert( pCur
->ix
<pPage
->nCell
);
4655 assert( cursorHoldsMutex(pCur
) );
4658 aPayload
= pCur
->info
.pPayload
;
4659 assert( offset
+amt
<= pCur
->info
.nPayload
);
4661 assert( aPayload
> pPage
->aData
);
4662 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
4663 /* Trying to read or write past the end of the data is an error. The
4664 ** conditional above is really:
4665 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4666 ** but is recast into its current form to avoid integer overflow problems
4668 return SQLITE_CORRUPT_PAGE(pPage
);
4671 /* Check if data must be read/written to/from the btree page itself. */
4672 if( offset
<pCur
->info
.nLocal
){
4674 if( a
+offset
>pCur
->info
.nLocal
){
4675 a
= pCur
->info
.nLocal
- offset
;
4677 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
4682 offset
-= pCur
->info
.nLocal
;
4686 if( rc
==SQLITE_OK
&& amt
>0 ){
4687 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
4690 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
4692 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4694 ** The aOverflow[] array is sized at one entry for each overflow page
4695 ** in the overflow chain. The page number of the first overflow page is
4696 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4697 ** means "not yet known" (the cache is lazily populated).
4699 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
4700 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
4701 if( pCur
->aOverflow
==0
4702 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
4704 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
4705 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
4708 return SQLITE_NOMEM_BKPT
;
4710 pCur
->aOverflow
= aNew
;
4713 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
4714 pCur
->curFlags
|= BTCF_ValidOvfl
;
4716 /* If the overflow page-list cache has been allocated and the
4717 ** entry for the first required overflow page is valid, skip
4720 if( pCur
->aOverflow
[offset
/ovflSize
] ){
4721 iIdx
= (offset
/ovflSize
);
4722 nextPage
= pCur
->aOverflow
[iIdx
];
4723 offset
= (offset
%ovflSize
);
4727 assert( rc
==SQLITE_OK
&& amt
>0 );
4729 /* If required, populate the overflow page-list cache. */
4730 assert( pCur
->aOverflow
[iIdx
]==0
4731 || pCur
->aOverflow
[iIdx
]==nextPage
4733 pCur
->aOverflow
[iIdx
] = nextPage
;
4735 if( offset
>=ovflSize
){
4736 /* The only reason to read this page is to obtain the page
4737 ** number for the next page in the overflow chain. The page
4738 ** data is not required. So first try to lookup the overflow
4739 ** page-list cache, if any, then fall back to the getOverflowPage()
4742 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
4743 assert( pCur
->pBtree
->db
==pBt
->db
);
4744 if( pCur
->aOverflow
[iIdx
+1] ){
4745 nextPage
= pCur
->aOverflow
[iIdx
+1];
4747 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
4751 /* Need to read this page properly. It contains some of the
4752 ** range of data that is being read (eOp==0) or written (eOp!=0).
4754 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4755 sqlite3_file
*fd
; /* File from which to do direct overflow read */
4758 if( a
+ offset
> ovflSize
){
4759 a
= ovflSize
- offset
;
4762 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4763 /* If all the following are true:
4765 ** 1) this is a read operation, and
4766 ** 2) data is required from the start of this overflow page, and
4767 ** 3) there is no open write-transaction, and
4768 ** 4) the database is file-backed, and
4769 ** 5) the page is not in the WAL file
4770 ** 6) at least 4 bytes have already been read into the output buffer
4772 ** then data can be read directly from the database file into the
4773 ** output buffer, bypassing the page-cache altogether. This speeds
4774 ** up loading large records that span many overflow pages.
4776 if( eOp
==0 /* (1) */
4777 && offset
==0 /* (2) */
4778 && pBt
->inTransaction
==TRANS_READ
/* (3) */
4779 && (fd
= sqlite3PagerFile(pBt
->pPager
))->pMethods
/* (4) */
4780 && 0==sqlite3PagerUseWal(pBt
->pPager
, nextPage
) /* (5) */
4781 && &pBuf
[-4]>=pBufStart
/* (6) */
4784 u8
*aWrite
= &pBuf
[-4];
4785 assert( aWrite
>=pBufStart
); /* due to (6) */
4786 memcpy(aSave
, aWrite
, 4);
4787 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
4788 nextPage
= get4byte(aWrite
);
4789 memcpy(aWrite
, aSave
, 4);
4795 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
4796 (eOp
==0 ? PAGER_GET_READONLY
: 0)
4798 if( rc
==SQLITE_OK
){
4799 aPayload
= sqlite3PagerGetData(pDbPage
);
4800 nextPage
= get4byte(aPayload
);
4801 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
4802 sqlite3PagerUnref(pDbPage
);
4807 if( amt
==0 ) return rc
;
4815 if( rc
==SQLITE_OK
&& amt
>0 ){
4816 /* Overflow chain ends prematurely */
4817 return SQLITE_CORRUPT_PAGE(pPage
);
4823 ** Read part of the payload for the row at which that cursor pCur is currently
4824 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
4825 ** begins at "offset".
4827 ** pCur can be pointing to either a table or an index b-tree.
4828 ** If pointing to a table btree, then the content section is read. If
4829 ** pCur is pointing to an index b-tree then the key section is read.
4831 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4832 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4833 ** cursor might be invalid or might need to be restored before being read.
4835 ** Return SQLITE_OK on success or an error code if anything goes
4836 ** wrong. An error is returned if "offset+amt" is larger than
4837 ** the available payload.
4839 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4840 assert( cursorHoldsMutex(pCur
) );
4841 assert( pCur
->eState
==CURSOR_VALID
);
4842 assert( pCur
->iPage
>=0 && pCur
->pPage
);
4843 assert( pCur
->ix
<pCur
->pPage
->nCell
);
4844 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
4848 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4849 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4852 #ifndef SQLITE_OMIT_INCRBLOB
4853 static SQLITE_NOINLINE
int accessPayloadChecked(
4860 if ( pCur
->eState
==CURSOR_INVALID
){
4861 return SQLITE_ABORT
;
4863 assert( cursorOwnsBtShared(pCur
) );
4864 rc
= btreeRestoreCursorPosition(pCur
);
4865 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
4867 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4868 if( pCur
->eState
==CURSOR_VALID
){
4869 assert( cursorOwnsBtShared(pCur
) );
4870 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
4872 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
4875 #endif /* SQLITE_OMIT_INCRBLOB */
4878 ** Return a pointer to payload information from the entry that the
4879 ** pCur cursor is pointing to. The pointer is to the beginning of
4880 ** the key if index btrees (pPage->intKey==0) and is the data for
4881 ** table btrees (pPage->intKey==1). The number of bytes of available
4882 ** key/data is written into *pAmt. If *pAmt==0, then the value
4883 ** returned will not be a valid pointer.
4885 ** This routine is an optimization. It is common for the entire key
4886 ** and data to fit on the local page and for there to be no overflow
4887 ** pages. When that is so, this routine can be used to access the
4888 ** key and data without making a copy. If the key and/or data spills
4889 ** onto overflow pages, then accessPayload() must be used to reassemble
4890 ** the key/data and copy it into a preallocated buffer.
4892 ** The pointer returned by this routine looks directly into the cached
4893 ** page of the database. The data might change or move the next time
4894 ** any btree routine is called.
4896 static const void *fetchPayload(
4897 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4898 u32
*pAmt
/* Write the number of available bytes here */
4901 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
4902 assert( pCur
->eState
==CURSOR_VALID
);
4903 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4904 assert( cursorOwnsBtShared(pCur
) );
4905 assert( pCur
->ix
<pCur
->pPage
->nCell
);
4906 assert( pCur
->info
.nSize
>0 );
4907 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
4908 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
4909 amt
= pCur
->info
.nLocal
;
4910 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
4911 /* There is too little space on the page for the expected amount
4912 ** of local content. Database must be corrupt. */
4913 assert( CORRUPT_DB
);
4914 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
4917 return (void*)pCur
->info
.pPayload
;
4922 ** For the entry that cursor pCur is point to, return as
4923 ** many bytes of the key or data as are available on the local
4924 ** b-tree page. Write the number of available bytes into *pAmt.
4926 ** The pointer returned is ephemeral. The key/data may move
4927 ** or be destroyed on the next call to any Btree routine,
4928 ** including calls from other threads against the same cache.
4929 ** Hence, a mutex on the BtShared should be held prior to calling
4932 ** These routines is used to get quick access to key and data
4933 ** in the common case where no overflow pages are used.
4935 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
4936 return fetchPayload(pCur
, pAmt
);
4941 ** Move the cursor down to a new child page. The newPgno argument is the
4942 ** page number of the child page to move to.
4944 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4945 ** the new child page does not match the flags field of the parent (i.e.
4946 ** if an intkey page appears to be the parent of a non-intkey page, or
4949 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
4950 BtShared
*pBt
= pCur
->pBt
;
4952 assert( cursorOwnsBtShared(pCur
) );
4953 assert( pCur
->eState
==CURSOR_VALID
);
4954 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
4955 assert( pCur
->iPage
>=0 );
4956 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
4957 return SQLITE_CORRUPT_BKPT
;
4959 pCur
->info
.nSize
= 0;
4960 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
4961 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
4962 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
4965 return getAndInitPage(pBt
, newPgno
, &pCur
->pPage
, pCur
, pCur
->curPagerFlags
);
4970 ** Page pParent is an internal (non-leaf) tree page. This function
4971 ** asserts that page number iChild is the left-child if the iIdx'th
4972 ** cell in page pParent. Or, if iIdx is equal to the total number of
4973 ** cells in pParent, that page number iChild is the right-child of
4976 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
4977 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
4978 ** in a corrupt database */
4979 assert( iIdx
<=pParent
->nCell
);
4980 if( iIdx
==pParent
->nCell
){
4981 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
4983 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
4987 # define assertParentIndex(x,y,z)
4991 ** Move the cursor up to the parent page.
4993 ** pCur->idx is set to the cell index that contains the pointer
4994 ** to the page we are coming from. If we are coming from the
4995 ** right-most child page then pCur->idx is set to one more than
4996 ** the largest cell index.
4998 static void moveToParent(BtCursor
*pCur
){
5000 assert( cursorOwnsBtShared(pCur
) );
5001 assert( pCur
->eState
==CURSOR_VALID
);
5002 assert( pCur
->iPage
>0 );
5003 assert( pCur
->pPage
);
5005 pCur
->apPage
[pCur
->iPage
-1],
5006 pCur
->aiIdx
[pCur
->iPage
-1],
5009 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5010 pCur
->info
.nSize
= 0;
5011 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5012 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5013 pLeaf
= pCur
->pPage
;
5014 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5015 releasePageNotNull(pLeaf
);
5019 ** Move the cursor to point to the root page of its b-tree structure.
5021 ** If the table has a virtual root page, then the cursor is moved to point
5022 ** to the virtual root page instead of the actual root page. A table has a
5023 ** virtual root page when the actual root page contains no cells and a
5024 ** single child page. This can only happen with the table rooted at page 1.
5026 ** If the b-tree structure is empty, the cursor state is set to
5027 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5028 ** the cursor is set to point to the first cell located on the root
5029 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5031 ** If this function returns successfully, it may be assumed that the
5032 ** page-header flags indicate that the [virtual] root-page is the expected
5033 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5034 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5035 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5036 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5039 static int moveToRoot(BtCursor
*pCur
){
5043 assert( cursorOwnsBtShared(pCur
) );
5044 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5045 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5046 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5047 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5048 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5050 if( pCur
->iPage
>=0 ){
5052 releasePageNotNull(pCur
->pPage
);
5053 while( --pCur
->iPage
){
5054 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5056 pCur
->pPage
= pCur
->apPage
[0];
5059 }else if( pCur
->pgnoRoot
==0 ){
5060 pCur
->eState
= CURSOR_INVALID
;
5061 return SQLITE_EMPTY
;
5063 assert( pCur
->iPage
==(-1) );
5064 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5065 if( pCur
->eState
==CURSOR_FAULT
){
5066 assert( pCur
->skipNext
!=SQLITE_OK
);
5067 return pCur
->skipNext
;
5069 sqlite3BtreeClearCursor(pCur
);
5071 rc
= getAndInitPage(pCur
->pBtree
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5072 0, pCur
->curPagerFlags
);
5073 if( rc
!=SQLITE_OK
){
5074 pCur
->eState
= CURSOR_INVALID
;
5078 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5080 pRoot
= pCur
->pPage
;
5081 assert( pRoot
->pgno
==pCur
->pgnoRoot
);
5083 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5084 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5085 ** NULL, the caller expects a table b-tree. If this is not the case,
5086 ** return an SQLITE_CORRUPT error.
5088 ** Earlier versions of SQLite assumed that this test could not fail
5089 ** if the root page was already loaded when this function was called (i.e.
5090 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5091 ** in such a way that page pRoot is linked into a second b-tree table
5092 ** (or the freelist). */
5093 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5094 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5095 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5100 pCur
->info
.nSize
= 0;
5101 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5103 pRoot
= pCur
->pPage
;
5104 if( pRoot
->nCell
>0 ){
5105 pCur
->eState
= CURSOR_VALID
;
5106 }else if( !pRoot
->leaf
){
5108 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5109 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5110 pCur
->eState
= CURSOR_VALID
;
5111 rc
= moveToChild(pCur
, subpage
);
5113 pCur
->eState
= CURSOR_INVALID
;
5120 ** Move the cursor down to the left-most leaf entry beneath the
5121 ** entry to which it is currently pointing.
5123 ** The left-most leaf is the one with the smallest key - the first
5124 ** in ascending order.
5126 static int moveToLeftmost(BtCursor
*pCur
){
5131 assert( cursorOwnsBtShared(pCur
) );
5132 assert( pCur
->eState
==CURSOR_VALID
);
5133 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5134 assert( pCur
->ix
<pPage
->nCell
);
5135 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5136 rc
= moveToChild(pCur
, pgno
);
5142 ** Move the cursor down to the right-most leaf entry beneath the
5143 ** page to which it is currently pointing. Notice the difference
5144 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5145 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5146 ** finds the right-most entry beneath the *page*.
5148 ** The right-most entry is the one with the largest key - the last
5149 ** key in ascending order.
5151 static int moveToRightmost(BtCursor
*pCur
){
5156 assert( cursorOwnsBtShared(pCur
) );
5157 assert( pCur
->eState
==CURSOR_VALID
);
5158 while( !(pPage
= pCur
->pPage
)->leaf
){
5159 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5160 pCur
->ix
= pPage
->nCell
;
5161 rc
= moveToChild(pCur
, pgno
);
5164 pCur
->ix
= pPage
->nCell
-1;
5165 assert( pCur
->info
.nSize
==0 );
5166 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5170 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5171 ** on success. Set *pRes to 0 if the cursor actually points to something
5172 ** or set *pRes to 1 if the table is empty.
5174 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5177 assert( cursorOwnsBtShared(pCur
) );
5178 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5179 rc
= moveToRoot(pCur
);
5180 if( rc
==SQLITE_OK
){
5181 assert( pCur
->pPage
->nCell
>0 );
5183 rc
= moveToLeftmost(pCur
);
5184 }else if( rc
==SQLITE_EMPTY
){
5185 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5193 ** This function is a no-op if cursor pCur does not point to a valid row.
5194 ** Otherwise, if pCur is valid, configure it so that the next call to
5195 ** sqlite3BtreeNext() is a no-op.
5197 #ifndef SQLITE_OMIT_WINDOWFUNC
5198 void sqlite3BtreeSkipNext(BtCursor
*pCur
){
5199 if( pCur
->eState
==CURSOR_VALID
){
5200 pCur
->eState
= CURSOR_SKIPNEXT
;
5204 #endif /* SQLITE_OMIT_WINDOWFUNC */
5206 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5207 ** on success. Set *pRes to 0 if the cursor actually points to something
5208 ** or set *pRes to 1 if the table is empty.
5210 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5213 assert( cursorOwnsBtShared(pCur
) );
5214 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5216 /* If the cursor already points to the last entry, this is a no-op. */
5217 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5219 /* This block serves to assert() that the cursor really does point
5220 ** to the last entry in the b-tree. */
5222 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5223 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5225 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 );
5226 assert( pCur
->pPage
->leaf
);
5231 rc
= moveToRoot(pCur
);
5232 if( rc
==SQLITE_OK
){
5233 assert( pCur
->eState
==CURSOR_VALID
);
5235 rc
= moveToRightmost(pCur
);
5236 if( rc
==SQLITE_OK
){
5237 pCur
->curFlags
|= BTCF_AtLast
;
5239 pCur
->curFlags
&= ~BTCF_AtLast
;
5241 }else if( rc
==SQLITE_EMPTY
){
5242 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5249 /* Move the cursor so that it points to an entry near the key
5250 ** specified by pIdxKey or intKey. Return a success code.
5252 ** For INTKEY tables, the intKey parameter is used. pIdxKey
5253 ** must be NULL. For index tables, pIdxKey is used and intKey
5256 ** If an exact match is not found, then the cursor is always
5257 ** left pointing at a leaf page which would hold the entry if it
5258 ** were present. The cursor might point to an entry that comes
5259 ** before or after the key.
5261 ** An integer is written into *pRes which is the result of
5262 ** comparing the key with the entry to which the cursor is
5263 ** pointing. The meaning of the integer written into
5264 ** *pRes is as follows:
5266 ** *pRes<0 The cursor is left pointing at an entry that
5267 ** is smaller than intKey/pIdxKey or if the table is empty
5268 ** and the cursor is therefore left point to nothing.
5270 ** *pRes==0 The cursor is left pointing at an entry that
5271 ** exactly matches intKey/pIdxKey.
5273 ** *pRes>0 The cursor is left pointing at an entry that
5274 ** is larger than intKey/pIdxKey.
5276 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5277 ** exists an entry in the table that exactly matches pIdxKey.
5279 int sqlite3BtreeMovetoUnpacked(
5280 BtCursor
*pCur
, /* The cursor to be moved */
5281 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5282 i64 intKey
, /* The table key */
5283 int biasRight
, /* If true, bias the search to the high end */
5284 int *pRes
/* Write search results here */
5287 RecordCompare xRecordCompare
;
5289 assert( cursorOwnsBtShared(pCur
) );
5290 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5292 assert( (pIdxKey
==0)==(pCur
->pKeyInfo
==0) );
5293 assert( pCur
->eState
!=CURSOR_VALID
|| (pIdxKey
==0)==(pCur
->curIntKey
!=0) );
5295 /* If the cursor is already positioned at the point we are trying
5296 ** to move to, then just return without doing any work */
5298 && pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0
5300 if( pCur
->info
.nKey
==intKey
){
5304 if( pCur
->info
.nKey
<intKey
){
5305 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5309 /* If the requested key is one more than the previous key, then
5310 ** try to get there using sqlite3BtreeNext() rather than a full
5311 ** binary search. This is an optimization only. The correct answer
5312 ** is still obtained without this case, only a little more slowely */
5313 if( pCur
->info
.nKey
+1==intKey
&& !pCur
->skipNext
){
5315 rc
= sqlite3BtreeNext(pCur
, 0);
5316 if( rc
==SQLITE_OK
){
5318 if( pCur
->info
.nKey
==intKey
){
5321 }else if( rc
==SQLITE_DONE
){
5331 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5332 pIdxKey
->errCode
= 0;
5333 assert( pIdxKey
->default_rc
==1
5334 || pIdxKey
->default_rc
==0
5335 || pIdxKey
->default_rc
==-1
5338 xRecordCompare
= 0; /* All keys are integers */
5341 rc
= moveToRoot(pCur
);
5343 if( rc
==SQLITE_EMPTY
){
5344 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5350 assert( pCur
->pPage
);
5351 assert( pCur
->pPage
->isInit
);
5352 assert( pCur
->eState
==CURSOR_VALID
);
5353 assert( pCur
->pPage
->nCell
> 0 );
5354 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5355 assert( pCur
->curIntKey
|| pIdxKey
);
5357 int lwr
, upr
, idx
, c
;
5359 MemPage
*pPage
= pCur
->pPage
;
5360 u8
*pCell
; /* Pointer to current cell in pPage */
5362 /* pPage->nCell must be greater than zero. If this is the root-page
5363 ** the cursor would have been INVALID above and this for(;;) loop
5364 ** not run. If this is not the root-page, then the moveToChild() routine
5365 ** would have already detected db corruption. Similarly, pPage must
5366 ** be the right kind (index or table) of b-tree page. Otherwise
5367 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5368 assert( pPage
->nCell
>0 );
5369 assert( pPage
->intKey
==(pIdxKey
==0) );
5371 upr
= pPage
->nCell
-1;
5372 assert( biasRight
==0 || biasRight
==1 );
5373 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5374 pCur
->ix
= (u16
)idx
;
5375 if( xRecordCompare
==0 ){
5378 pCell
= findCellPastPtr(pPage
, idx
);
5379 if( pPage
->intKeyLeaf
){
5380 while( 0x80 <= *(pCell
++) ){
5381 if( pCell
>=pPage
->aDataEnd
){
5382 return SQLITE_CORRUPT_PAGE(pPage
);
5386 getVarint(pCell
, (u64
*)&nCellKey
);
5387 if( nCellKey
<intKey
){
5389 if( lwr
>upr
){ c
= -1; break; }
5390 }else if( nCellKey
>intKey
){
5392 if( lwr
>upr
){ c
= +1; break; }
5394 assert( nCellKey
==intKey
);
5395 pCur
->ix
= (u16
)idx
;
5398 goto moveto_next_layer
;
5400 pCur
->curFlags
|= BTCF_ValidNKey
;
5401 pCur
->info
.nKey
= nCellKey
;
5402 pCur
->info
.nSize
= 0;
5407 assert( lwr
+upr
>=0 );
5408 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5412 int nCell
; /* Size of the pCell cell in bytes */
5413 pCell
= findCellPastPtr(pPage
, idx
);
5415 /* The maximum supported page-size is 65536 bytes. This means that
5416 ** the maximum number of record bytes stored on an index B-Tree
5417 ** page is less than 16384 bytes and may be stored as a 2-byte
5418 ** varint. This information is used to attempt to avoid parsing
5419 ** the entire cell by checking for the cases where the record is
5420 ** stored entirely within the b-tree page by inspecting the first
5421 ** 2 bytes of the cell.
5424 if( nCell
<=pPage
->max1bytePayload
){
5425 /* This branch runs if the record-size field of the cell is a
5426 ** single byte varint and the record fits entirely on the main
5428 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5429 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5430 }else if( !(pCell
[1] & 0x80)
5431 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5433 /* The record-size field is a 2 byte varint and the record
5434 ** fits entirely on the main b-tree page. */
5435 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5436 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5438 /* The record flows over onto one or more overflow pages. In
5439 ** this case the whole cell needs to be parsed, a buffer allocated
5440 ** and accessPayload() used to retrieve the record into the
5441 ** buffer before VdbeRecordCompare() can be called.
5443 ** If the record is corrupt, the xRecordCompare routine may read
5444 ** up to two varints past the end of the buffer. An extra 18
5445 ** bytes of padding is allocated at the end of the buffer in
5446 ** case this happens. */
5448 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
5449 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
5450 nCell
= (int)pCur
->info
.nKey
;
5451 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
5452 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5453 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5454 testcase( nCell
==2 ); /* Minimum legal index key size */
5456 rc
= SQLITE_CORRUPT_PAGE(pPage
);
5459 pCellKey
= sqlite3Malloc( nCell
+18 );
5461 rc
= SQLITE_NOMEM_BKPT
;
5464 pCur
->ix
= (u16
)idx
;
5465 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
5466 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5468 sqlite3_free(pCellKey
);
5471 c
= xRecordCompare(nCell
, pCellKey
, pIdxKey
);
5472 sqlite3_free(pCellKey
);
5475 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
5476 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
5486 pCur
->ix
= (u16
)idx
;
5487 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
5490 if( lwr
>upr
) break;
5491 assert( lwr
+upr
>=0 );
5492 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
5495 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
5496 assert( pPage
->isInit
);
5498 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5499 pCur
->ix
= (u16
)idx
;
5505 if( lwr
>=pPage
->nCell
){
5506 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5508 chldPg
= get4byte(findCell(pPage
, lwr
));
5510 pCur
->ix
= (u16
)lwr
;
5511 rc
= moveToChild(pCur
, chldPg
);
5515 pCur
->info
.nSize
= 0;
5516 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5522 ** Return TRUE if the cursor is not pointing at an entry of the table.
5524 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5525 ** past the last entry in the table or sqlite3BtreePrev() moves past
5526 ** the first entry. TRUE is also returned if the table is empty.
5528 int sqlite3BtreeEof(BtCursor
*pCur
){
5529 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5530 ** have been deleted? This API will need to change to return an error code
5531 ** as well as the boolean result value.
5533 return (CURSOR_VALID
!=pCur
->eState
);
5537 ** Return an estimate for the number of rows in the table that pCur is
5538 ** pointing to. Return a negative number if no estimate is currently
5541 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
5545 assert( cursorOwnsBtShared(pCur
) );
5546 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5548 /* Currently this interface is only called by the OP_IfSmaller
5549 ** opcode, and it that case the cursor will always be valid and
5550 ** will always point to a leaf node. */
5551 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
5552 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
5554 n
= pCur
->pPage
->nCell
;
5555 for(i
=0; i
<pCur
->iPage
; i
++){
5556 n
*= pCur
->apPage
[i
]->nCell
;
5562 ** Advance the cursor to the next entry in the database.
5565 ** SQLITE_OK success
5566 ** SQLITE_DONE cursor is already pointing at the last element
5567 ** otherwise some kind of error occurred
5569 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5570 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5571 ** to the next cell on the current page. The (slower) btreeNext() helper
5572 ** routine is called when it is necessary to move to a different page or
5573 ** to restore the cursor.
5575 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5576 ** cursor corresponds to an SQL index and this routine could have been
5577 ** skipped if the SQL index had been a unique index. The F argument
5578 ** is a hint to the implement. SQLite btree implementation does not use
5579 ** this hint, but COMDB2 does.
5581 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
5586 assert( cursorOwnsBtShared(pCur
) );
5587 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5588 if( pCur
->eState
!=CURSOR_VALID
){
5589 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5590 rc
= restoreCursorPosition(pCur
);
5591 if( rc
!=SQLITE_OK
){
5594 if( CURSOR_INVALID
==pCur
->eState
){
5597 if( pCur
->skipNext
){
5598 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_SKIPNEXT
);
5599 pCur
->eState
= CURSOR_VALID
;
5600 if( pCur
->skipNext
>0 ){
5608 pPage
= pCur
->pPage
;
5610 if( !pPage
->isInit
){
5611 /* The only known way for this to happen is for there to be a
5612 ** recursive SQL function that does a DELETE operation as part of a
5613 ** SELECT which deletes content out from under an active cursor
5614 ** in a corrupt database file where the table being DELETE-ed from
5615 ** has pages in common with the table being queried. See TH3
5616 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5618 return SQLITE_CORRUPT_BKPT
;
5621 /* If the database file is corrupt, it is possible for the value of idx
5622 ** to be invalid here. This can only occur if a second cursor modifies
5623 ** the page while cursor pCur is holding a reference to it. Which can
5624 ** only happen if the database is corrupt in such a way as to link the
5625 ** page into more than one b-tree structure. */
5626 testcase( idx
>pPage
->nCell
);
5628 if( idx
>=pPage
->nCell
){
5630 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
5632 return moveToLeftmost(pCur
);
5635 if( pCur
->iPage
==0 ){
5636 pCur
->eState
= CURSOR_INVALID
;
5640 pPage
= pCur
->pPage
;
5641 }while( pCur
->ix
>=pPage
->nCell
);
5642 if( pPage
->intKey
){
5643 return sqlite3BtreeNext(pCur
, 0);
5651 return moveToLeftmost(pCur
);
5654 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
5656 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
5657 assert( cursorOwnsBtShared(pCur
) );
5658 assert( flags
==0 || flags
==1 );
5659 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5660 pCur
->info
.nSize
= 0;
5661 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5662 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
5663 pPage
= pCur
->pPage
;
5664 if( (++pCur
->ix
)>=pPage
->nCell
){
5666 return btreeNext(pCur
);
5671 return moveToLeftmost(pCur
);
5676 ** Step the cursor to the back to the previous entry in the database.
5679 ** SQLITE_OK success
5680 ** SQLITE_DONE the cursor is already on the first element of the table
5681 ** otherwise some kind of error occurred
5683 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5684 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5685 ** to the previous cell on the current page. The (slower) btreePrevious()
5686 ** helper routine is called when it is necessary to move to a different page
5687 ** or to restore the cursor.
5689 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5690 ** the cursor corresponds to an SQL index and this routine could have been
5691 ** skipped if the SQL index had been a unique index. The F argument is a
5692 ** hint to the implement. The native SQLite btree implementation does not
5693 ** use this hint, but COMDB2 does.
5695 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
5699 assert( cursorOwnsBtShared(pCur
) );
5700 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5701 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
5702 assert( pCur
->info
.nSize
==0 );
5703 if( pCur
->eState
!=CURSOR_VALID
){
5704 rc
= restoreCursorPosition(pCur
);
5705 if( rc
!=SQLITE_OK
){
5708 if( CURSOR_INVALID
==pCur
->eState
){
5711 if( pCur
->skipNext
){
5712 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_SKIPNEXT
);
5713 pCur
->eState
= CURSOR_VALID
;
5714 if( pCur
->skipNext
<0 ){
5722 pPage
= pCur
->pPage
;
5723 assert( pPage
->isInit
);
5726 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
5728 rc
= moveToRightmost(pCur
);
5730 while( pCur
->ix
==0 ){
5731 if( pCur
->iPage
==0 ){
5732 pCur
->eState
= CURSOR_INVALID
;
5737 assert( pCur
->info
.nSize
==0 );
5738 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
5741 pPage
= pCur
->pPage
;
5742 if( pPage
->intKey
&& !pPage
->leaf
){
5743 rc
= sqlite3BtreePrevious(pCur
, 0);
5750 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
5751 assert( cursorOwnsBtShared(pCur
) );
5752 assert( flags
==0 || flags
==1 );
5753 assert( pCur
->skipNext
==0 || pCur
->eState
!=CURSOR_VALID
);
5754 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
5755 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
5756 pCur
->info
.nSize
= 0;
5757 if( pCur
->eState
!=CURSOR_VALID
5759 || pCur
->pPage
->leaf
==0
5761 return btreePrevious(pCur
);
5768 ** Allocate a new page from the database file.
5770 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5771 ** has already been called on the new page.) The new page has also
5772 ** been referenced and the calling routine is responsible for calling
5773 ** sqlite3PagerUnref() on the new page when it is done.
5775 ** SQLITE_OK is returned on success. Any other return value indicates
5776 ** an error. *ppPage is set to NULL in the event of an error.
5778 ** If the "nearby" parameter is not 0, then an effort is made to
5779 ** locate a page close to the page number "nearby". This can be used in an
5780 ** attempt to keep related pages close to each other in the database file,
5781 ** which in turn can make database access faster.
5783 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5784 ** anywhere on the free-list, then it is guaranteed to be returned. If
5785 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5786 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5787 ** are no restrictions on which page is returned.
5789 static int allocateBtreePage(
5790 BtShared
*pBt
, /* The btree */
5791 MemPage
**ppPage
, /* Store pointer to the allocated page here */
5792 Pgno
*pPgno
, /* Store the page number here */
5793 Pgno nearby
, /* Search for a page near this one */
5794 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5798 u32 n
; /* Number of pages on the freelist */
5799 u32 k
; /* Number of leaves on the trunk of the freelist */
5800 MemPage
*pTrunk
= 0;
5801 MemPage
*pPrevTrunk
= 0;
5802 Pgno mxPage
; /* Total size of the database file */
5804 assert( sqlite3_mutex_held(pBt
->mutex
) );
5805 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
5806 pPage1
= pBt
->pPage1
;
5807 mxPage
= btreePagecount(pBt
);
5808 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5809 ** stores stores the total number of pages on the freelist. */
5810 n
= get4byte(&pPage1
->aData
[36]);
5811 testcase( n
==mxPage
-1 );
5813 return SQLITE_CORRUPT_BKPT
;
5816 /* There are pages on the freelist. Reuse one of those pages. */
5818 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
5819 u32 nSearch
= 0; /* Count of the number of search attempts */
5821 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5822 ** shows that the page 'nearby' is somewhere on the free-list, then
5823 ** the entire-list will be searched for that page.
5825 #ifndef SQLITE_OMIT_AUTOVACUUM
5826 if( eMode
==BTALLOC_EXACT
){
5827 if( nearby
<=mxPage
){
5830 assert( pBt
->autoVacuum
);
5831 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
5833 if( eType
==PTRMAP_FREEPAGE
){
5837 }else if( eMode
==BTALLOC_LE
){
5842 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5843 ** first free-list trunk page. iPrevTrunk is initially 1.
5845 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
5847 put4byte(&pPage1
->aData
[36], n
-1);
5849 /* The code within this loop is run only once if the 'searchList' variable
5850 ** is not true. Otherwise, it runs once for each trunk-page on the
5851 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5852 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5855 pPrevTrunk
= pTrunk
;
5857 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5858 ** is the page number of the next freelist trunk page in the list or
5859 ** zero if this is the last freelist trunk page. */
5860 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
5862 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5863 ** stores the page number of the first page of the freelist, or zero if
5864 ** the freelist is empty. */
5865 iTrunk
= get4byte(&pPage1
->aData
[32]);
5867 testcase( iTrunk
==mxPage
);
5868 if( iTrunk
>mxPage
|| nSearch
++ > n
){
5869 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
5871 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
5875 goto end_allocate_page
;
5877 assert( pTrunk
!=0 );
5878 assert( pTrunk
->aData
!=0 );
5879 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5880 ** is the number of leaf page pointers to follow. */
5881 k
= get4byte(&pTrunk
->aData
[4]);
5882 if( k
==0 && !searchList
){
5883 /* The trunk has no leaves and the list is not being searched.
5884 ** So extract the trunk page itself and use it as the newly
5885 ** allocated page */
5886 assert( pPrevTrunk
==0 );
5887 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5889 goto end_allocate_page
;
5892 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5895 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5896 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
5897 /* Value of k is out of range. Database corruption */
5898 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
5899 goto end_allocate_page
;
5900 #ifndef SQLITE_OMIT_AUTOVACUUM
5901 }else if( searchList
5902 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
5904 /* The list is being searched and this trunk page is the page
5905 ** to allocate, regardless of whether it has leaves.
5910 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5912 goto end_allocate_page
;
5916 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5918 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5919 if( rc
!=SQLITE_OK
){
5920 goto end_allocate_page
;
5922 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5925 /* The trunk page is required by the caller but it contains
5926 ** pointers to free-list leaves. The first leaf becomes a trunk
5927 ** page in this case.
5930 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
5931 if( iNewTrunk
>mxPage
){
5932 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
5933 goto end_allocate_page
;
5935 testcase( iNewTrunk
==mxPage
);
5936 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
5937 if( rc
!=SQLITE_OK
){
5938 goto end_allocate_page
;
5940 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
5941 if( rc
!=SQLITE_OK
){
5942 releasePage(pNewTrunk
);
5943 goto end_allocate_page
;
5945 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5946 put4byte(&pNewTrunk
->aData
[4], k
-1);
5947 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
5948 releasePage(pNewTrunk
);
5950 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
5951 put4byte(&pPage1
->aData
[32], iNewTrunk
);
5953 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5955 goto end_allocate_page
;
5957 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
5961 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5964 /* Extract a leaf from the trunk */
5967 unsigned char *aData
= pTrunk
->aData
;
5971 if( eMode
==BTALLOC_LE
){
5973 iPage
= get4byte(&aData
[8+i
*4]);
5974 if( iPage
<=nearby
){
5981 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
5983 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
5994 iPage
= get4byte(&aData
[8+closest
*4]);
5995 testcase( iPage
==mxPage
);
5997 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
5998 goto end_allocate_page
;
6000 testcase( iPage
==mxPage
);
6002 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6006 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6007 ": %d more free pages\n",
6008 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6009 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6010 if( rc
) goto end_allocate_page
;
6012 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6014 put4byte(&aData
[4], k
-1);
6015 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6016 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6017 if( rc
==SQLITE_OK
){
6018 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6019 if( rc
!=SQLITE_OK
){
6020 releasePage(*ppPage
);
6027 releasePage(pPrevTrunk
);
6029 }while( searchList
);
6031 /* There are no pages on the freelist, so append a new page to the
6034 ** Normally, new pages allocated by this block can be requested from the
6035 ** pager layer with the 'no-content' flag set. This prevents the pager
6036 ** from trying to read the pages content from disk. However, if the
6037 ** current transaction has already run one or more incremental-vacuum
6038 ** steps, then the page we are about to allocate may contain content
6039 ** that is required in the event of a rollback. In this case, do
6040 ** not set the no-content flag. This causes the pager to load and journal
6041 ** the current page content before overwriting it.
6043 ** Note that the pager will not actually attempt to load or journal
6044 ** content for any page that really does lie past the end of the database
6045 ** file on disk. So the effects of disabling the no-content optimization
6046 ** here are confined to those pages that lie between the end of the
6047 ** database image and the end of the database file.
6049 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6051 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6054 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6056 #ifndef SQLITE_OMIT_AUTOVACUUM
6057 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6058 /* If *pPgno refers to a pointer-map page, allocate two new pages
6059 ** at the end of the file instead of one. The first allocated page
6060 ** becomes a new pointer-map page, the second is used by the caller.
6063 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
6064 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6065 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6066 if( rc
==SQLITE_OK
){
6067 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6072 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6075 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6076 *pPgno
= pBt
->nPage
;
6078 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6079 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6081 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6082 if( rc
!=SQLITE_OK
){
6083 releasePage(*ppPage
);
6086 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
6089 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6092 releasePage(pTrunk
);
6093 releasePage(pPrevTrunk
);
6094 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6095 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6100 ** This function is used to add page iPage to the database file free-list.
6101 ** It is assumed that the page is not already a part of the free-list.
6103 ** The value passed as the second argument to this function is optional.
6104 ** If the caller happens to have a pointer to the MemPage object
6105 ** corresponding to page iPage handy, it may pass it as the second value.
6106 ** Otherwise, it may pass NULL.
6108 ** If a pointer to a MemPage object is passed as the second argument,
6109 ** its reference count is not altered by this function.
6111 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6112 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6113 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6114 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6115 MemPage
*pPage
; /* Page being freed. May be NULL. */
6116 int rc
; /* Return Code */
6117 int nFree
; /* Initial number of pages on free-list */
6119 assert( sqlite3_mutex_held(pBt
->mutex
) );
6120 assert( CORRUPT_DB
|| iPage
>1 );
6121 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6123 if( iPage
<2 ) return SQLITE_CORRUPT_BKPT
;
6126 sqlite3PagerRef(pPage
->pDbPage
);
6128 pPage
= btreePageLookup(pBt
, iPage
);
6131 /* Increment the free page count on pPage1 */
6132 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6133 if( rc
) goto freepage_out
;
6134 nFree
= get4byte(&pPage1
->aData
[36]);
6135 put4byte(&pPage1
->aData
[36], nFree
+1);
6137 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6138 /* If the secure_delete option is enabled, then
6139 ** always fully overwrite deleted information with zeros.
6141 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6142 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6146 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6149 /* If the database supports auto-vacuum, write an entry in the pointer-map
6150 ** to indicate that the page is free.
6153 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6154 if( rc
) goto freepage_out
;
6157 /* Now manipulate the actual database free-list structure. There are two
6158 ** possibilities. If the free-list is currently empty, or if the first
6159 ** trunk page in the free-list is full, then this page will become a
6160 ** new free-list trunk page. Otherwise, it will become a leaf of the
6161 ** first trunk page in the current free-list. This block tests if it
6162 ** is possible to add the page as a new free-list leaf.
6165 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6167 iTrunk
= get4byte(&pPage1
->aData
[32]);
6168 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6169 if( rc
!=SQLITE_OK
){
6173 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6174 assert( pBt
->usableSize
>32 );
6175 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6176 rc
= SQLITE_CORRUPT_BKPT
;
6179 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6180 /* In this case there is room on the trunk page to insert the page
6181 ** being freed as a new leaf.
6183 ** Note that the trunk page is not really full until it contains
6184 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6185 ** coded. But due to a coding error in versions of SQLite prior to
6186 ** 3.6.0, databases with freelist trunk pages holding more than
6187 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6188 ** to maintain backwards compatibility with older versions of SQLite,
6189 ** we will continue to restrict the number of entries to usableSize/4 - 8
6190 ** for now. At some point in the future (once everyone has upgraded
6191 ** to 3.6.0 or later) we should consider fixing the conditional above
6192 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6194 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6195 ** avoid using the last six entries in the freelist trunk page array in
6196 ** order that database files created by newer versions of SQLite can be
6197 ** read by older versions of SQLite.
6199 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6200 if( rc
==SQLITE_OK
){
6201 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6202 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6203 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6204 sqlite3PagerDontWrite(pPage
->pDbPage
);
6206 rc
= btreeSetHasContent(pBt
, iPage
);
6208 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
6213 /* If control flows to this point, then it was not possible to add the
6214 ** the page being freed as a leaf page of the first trunk in the free-list.
6215 ** Possibly because the free-list is empty, or possibly because the
6216 ** first trunk in the free-list is full. Either way, the page being freed
6217 ** will become the new first trunk page in the free-list.
6219 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6222 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6223 if( rc
!=SQLITE_OK
){
6226 put4byte(pPage
->aData
, iTrunk
);
6227 put4byte(&pPage
->aData
[4], 0);
6228 put4byte(&pPage1
->aData
[32], iPage
);
6229 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
6236 releasePage(pTrunk
);
6239 static void freePage(MemPage
*pPage
, int *pRC
){
6240 if( (*pRC
)==SQLITE_OK
){
6241 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6246 ** Free any overflow pages associated with the given Cell. Store
6247 ** size information about the cell in pInfo.
6249 static int clearCell(
6250 MemPage
*pPage
, /* The page that contains the Cell */
6251 unsigned char *pCell
, /* First byte of the Cell */
6252 CellInfo
*pInfo
/* Size information about the cell */
6260 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6261 pPage
->xParseCell(pPage
, pCell
, pInfo
);
6262 if( pInfo
->nLocal
==pInfo
->nPayload
){
6263 return SQLITE_OK
; /* No overflow pages. Return without doing anything */
6265 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6266 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6267 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6268 /* Cell extends past end of page */
6269 return SQLITE_CORRUPT_PAGE(pPage
);
6271 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6273 assert( pBt
->usableSize
> 4 );
6274 ovflPageSize
= pBt
->usableSize
- 4;
6275 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6277 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6282 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6283 /* 0 is not a legal page number and page 1 cannot be an
6284 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6285 ** file the database must be corrupt. */
6286 return SQLITE_CORRUPT_BKPT
;
6289 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6293 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6294 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6296 /* There is no reason any cursor should have an outstanding reference
6297 ** to an overflow page belonging to a cell that is being deleted/updated.
6298 ** So if there exists more than one reference to this page, then it
6299 ** must not really be an overflow page and the database must be corrupt.
6300 ** It is helpful to detect this before calling freePage2(), as
6301 ** freePage2() may zero the page contents if secure-delete mode is
6302 ** enabled. If this 'overflow' page happens to be a page that the
6303 ** caller is iterating through or using in some other way, this
6304 ** can be problematic.
6306 rc
= SQLITE_CORRUPT_BKPT
;
6308 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6312 sqlite3PagerUnref(pOvfl
->pDbPage
);
6321 ** Create the byte sequence used to represent a cell on page pPage
6322 ** and write that byte sequence into pCell[]. Overflow pages are
6323 ** allocated and filled in as necessary. The calling procedure
6324 ** is responsible for making sure sufficient space has been allocated
6327 ** Note that pCell does not necessary need to point to the pPage->aData
6328 ** area. pCell might point to some temporary storage. The cell will
6329 ** be constructed in this temporary area then copied into pPage->aData
6332 static int fillInCell(
6333 MemPage
*pPage
, /* The page that contains the cell */
6334 unsigned char *pCell
, /* Complete text of the cell */
6335 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6336 int *pnSize
/* Write cell size here */
6340 int nSrc
, n
, rc
, mn
;
6342 MemPage
*pToRelease
;
6343 unsigned char *pPrior
;
6344 unsigned char *pPayload
;
6349 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6351 /* pPage is not necessarily writeable since pCell might be auxiliary
6352 ** buffer space that is separate from the pPage buffer area */
6353 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6354 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6356 /* Fill in the header. */
6357 nHeader
= pPage
->childPtrSize
;
6358 if( pPage
->intKey
){
6359 nPayload
= pX
->nData
+ pX
->nZero
;
6362 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6363 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6364 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6366 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6367 nSrc
= nPayload
= (int)pX
->nKey
;
6369 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6372 /* Fill in the payload */
6373 pPayload
= &pCell
[nHeader
];
6374 if( nPayload
<=pPage
->maxLocal
){
6375 /* This is the common case where everything fits on the btree page
6376 ** and no overflow pages are required. */
6377 n
= nHeader
+ nPayload
;
6382 assert( nSrc
<=nPayload
);
6383 testcase( nSrc
<nPayload
);
6384 memcpy(pPayload
, pSrc
, nSrc
);
6385 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6389 /* If we reach this point, it means that some of the content will need
6390 ** to spill onto overflow pages.
6392 mn
= pPage
->minLocal
;
6393 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6394 testcase( n
==pPage
->maxLocal
);
6395 testcase( n
==pPage
->maxLocal
+1 );
6396 if( n
> pPage
->maxLocal
) n
= mn
;
6398 *pnSize
= n
+ nHeader
+ 4;
6399 pPrior
= &pCell
[nHeader
+n
];
6404 /* At this point variables should be set as follows:
6406 ** nPayload Total payload size in bytes
6407 ** pPayload Begin writing payload here
6408 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6409 ** that means content must spill into overflow pages.
6410 ** *pnSize Size of the local cell (not counting overflow pages)
6411 ** pPrior Where to write the pgno of the first overflow page
6413 ** Use a call to btreeParseCellPtr() to verify that the values above
6414 ** were computed correctly.
6419 pPage
->xParseCell(pPage
, pCell
, &info
);
6420 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6421 assert( info
.nKey
==pX
->nKey
);
6422 assert( *pnSize
== info
.nSize
);
6423 assert( spaceLeft
== info
.nLocal
);
6427 /* Write the payload into the local Cell and any extra into overflow pages */
6430 if( n
>spaceLeft
) n
= spaceLeft
;
6432 /* If pToRelease is not zero than pPayload points into the data area
6433 ** of pToRelease. Make sure pToRelease is still writeable. */
6434 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6436 /* If pPayload is part of the data area of pPage, then make sure pPage
6437 ** is still writeable */
6438 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
6439 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6442 memcpy(pPayload
, pSrc
, n
);
6445 memcpy(pPayload
, pSrc
, n
);
6447 memset(pPayload
, 0, n
);
6450 if( nPayload
<=0 ) break;
6457 #ifndef SQLITE_OMIT_AUTOVACUUM
6458 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
6459 if( pBt
->autoVacuum
){
6463 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
6467 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
6468 #ifndef SQLITE_OMIT_AUTOVACUUM
6469 /* If the database supports auto-vacuum, and the second or subsequent
6470 ** overflow page is being allocated, add an entry to the pointer-map
6471 ** for that page now.
6473 ** If this is the first overflow page, then write a partial entry
6474 ** to the pointer-map. If we write nothing to this pointer-map slot,
6475 ** then the optimistic overflow chain processing in clearCell()
6476 ** may misinterpret the uninitialized values and delete the
6477 ** wrong pages from the database.
6479 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
6480 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
6481 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
6488 releasePage(pToRelease
);
6492 /* If pToRelease is not zero than pPrior points into the data area
6493 ** of pToRelease. Make sure pToRelease is still writeable. */
6494 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6496 /* If pPrior is part of the data area of pPage, then make sure pPage
6497 ** is still writeable */
6498 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
6499 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6501 put4byte(pPrior
, pgnoOvfl
);
6502 releasePage(pToRelease
);
6504 pPrior
= pOvfl
->aData
;
6505 put4byte(pPrior
, 0);
6506 pPayload
= &pOvfl
->aData
[4];
6507 spaceLeft
= pBt
->usableSize
- 4;
6510 releasePage(pToRelease
);
6515 ** Remove the i-th cell from pPage. This routine effects pPage only.
6516 ** The cell content is not freed or deallocated. It is assumed that
6517 ** the cell content has been copied someplace else. This routine just
6518 ** removes the reference to the cell from pPage.
6520 ** "sz" must be the number of bytes in the cell.
6522 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
6523 u32 pc
; /* Offset to cell content of cell being deleted */
6524 u8
*data
; /* pPage->aData */
6525 u8
*ptr
; /* Used to move bytes around within data[] */
6526 int rc
; /* The return code */
6527 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
6530 assert( idx
>=0 && idx
<pPage
->nCell
);
6531 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
6532 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6533 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6534 data
= pPage
->aData
;
6535 ptr
= &pPage
->aCellIdx
[2*idx
];
6537 hdr
= pPage
->hdrOffset
;
6538 testcase( pc
==get2byte(&data
[hdr
+5]) );
6539 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
6540 if( pc
+sz
> pPage
->pBt
->usableSize
){
6541 *pRC
= SQLITE_CORRUPT_BKPT
;
6544 rc
= freeSpace(pPage
, pc
, sz
);
6550 if( pPage
->nCell
==0 ){
6551 memset(&data
[hdr
+1], 0, 4);
6553 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
6554 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
6555 - pPage
->childPtrSize
- 8;
6557 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
6558 put2byte(&data
[hdr
+3], pPage
->nCell
);
6564 ** Insert a new cell on pPage at cell index "i". pCell points to the
6565 ** content of the cell.
6567 ** If the cell content will fit on the page, then put it there. If it
6568 ** will not fit, then make a copy of the cell content into pTemp if
6569 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6570 ** in pPage->apOvfl[] and make it point to the cell content (either
6571 ** in pTemp or the original pCell) and also record its index.
6572 ** Allocating a new entry in pPage->aCell[] implies that
6573 ** pPage->nOverflow is incremented.
6575 ** *pRC must be SQLITE_OK when this routine is called.
6577 static void insertCell(
6578 MemPage
*pPage
, /* Page into which we are copying */
6579 int i
, /* New cell becomes the i-th cell of the page */
6580 u8
*pCell
, /* Content of the new cell */
6581 int sz
, /* Bytes of content in pCell */
6582 u8
*pTemp
, /* Temp storage space for pCell, if needed */
6583 Pgno iChild
, /* If non-zero, replace first 4 bytes with this value */
6584 int *pRC
/* Read and write return code from here */
6586 int idx
= 0; /* Where to write new cell content in data[] */
6587 int j
; /* Loop counter */
6588 u8
*data
; /* The content of the whole page */
6589 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
6591 assert( *pRC
==SQLITE_OK
);
6592 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
6593 assert( MX_CELL(pPage
->pBt
)<=10921 );
6594 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
6595 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
6596 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
6597 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6598 /* The cell should normally be sized correctly. However, when moving a
6599 ** malformed cell from a leaf page to an interior page, if the cell size
6600 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6601 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6602 ** the term after the || in the following assert(). */
6603 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || (sz
==8 && iChild
>0) );
6604 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
6606 memcpy(pTemp
, pCell
, sz
);
6610 put4byte(pCell
, iChild
);
6612 j
= pPage
->nOverflow
++;
6613 /* Comparison against ArraySize-1 since we hold back one extra slot
6614 ** as a contingency. In other words, never need more than 3 overflow
6615 ** slots but 4 are allocated, just to be safe. */
6616 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
6617 pPage
->apOvfl
[j
] = pCell
;
6618 pPage
->aiOvfl
[j
] = (u16
)i
;
6620 /* When multiple overflows occur, they are always sequential and in
6621 ** sorted order. This invariants arise because multiple overflows can
6622 ** only occur when inserting divider cells into the parent page during
6623 ** balancing, and the dividers are adjacent and sorted.
6625 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
6626 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
6628 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6629 if( rc
!=SQLITE_OK
){
6633 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6634 data
= pPage
->aData
;
6635 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
6636 rc
= allocateSpace(pPage
, sz
, &idx
);
6637 if( rc
){ *pRC
= rc
; return; }
6638 /* The allocateSpace() routine guarantees the following properties
6639 ** if it returns successfully */
6641 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
6642 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
6643 pPage
->nFree
-= (u16
)(2 + sz
);
6644 memcpy(&data
[idx
], pCell
, sz
);
6646 put4byte(&data
[idx
], iChild
);
6648 pIns
= pPage
->aCellIdx
+ i
*2;
6649 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
6650 put2byte(pIns
, idx
);
6652 /* increment the cell count */
6653 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
6654 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
);
6655 #ifndef SQLITE_OMIT_AUTOVACUUM
6656 if( pPage
->pBt
->autoVacuum
){
6657 /* The cell may contain a pointer to an overflow page. If so, write
6658 ** the entry for the overflow page into the pointer map.
6660 ptrmapPutOvflPtr(pPage
, pCell
, pRC
);
6667 ** A CellArray object contains a cache of pointers and sizes for a
6668 ** consecutive sequence of cells that might be held on multiple pages.
6670 typedef struct CellArray CellArray
;
6672 int nCell
; /* Number of cells in apCell[] */
6673 MemPage
*pRef
; /* Reference page */
6674 u8
**apCell
; /* All cells begin balanced */
6675 u16
*szCell
; /* Local size of all cells in apCell[] */
6679 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6682 static void populateCellCache(CellArray
*p
, int idx
, int N
){
6683 assert( idx
>=0 && idx
+N
<=p
->nCell
);
6685 assert( p
->apCell
[idx
]!=0 );
6686 if( p
->szCell
[idx
]==0 ){
6687 p
->szCell
[idx
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]);
6689 assert( CORRUPT_DB
||
6690 p
->szCell
[idx
]==p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]) );
6698 ** Return the size of the Nth element of the cell array
6700 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
6701 assert( N
>=0 && N
<p
->nCell
);
6702 assert( p
->szCell
[N
]==0 );
6703 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
6704 return p
->szCell
[N
];
6706 static u16
cachedCellSize(CellArray
*p
, int N
){
6707 assert( N
>=0 && N
<p
->nCell
);
6708 if( p
->szCell
[N
] ) return p
->szCell
[N
];
6709 return computeCellSize(p
, N
);
6713 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6714 ** szCell[] array contains the size in bytes of each cell. This function
6715 ** replaces the current contents of page pPg with the contents of the cell
6718 ** Some of the cells in apCell[] may currently be stored in pPg. This
6719 ** function works around problems caused by this by making a copy of any
6720 ** such cells before overwriting the page data.
6722 ** The MemPage.nFree field is invalidated by this function. It is the
6723 ** responsibility of the caller to set it correctly.
6725 static int rebuildPage(
6726 MemPage
*pPg
, /* Edit this page */
6727 int nCell
, /* Final number of cells on page */
6728 u8
**apCell
, /* Array of cells */
6729 u16
*szCell
/* Array of cell sizes */
6731 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
6732 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
6733 const int usableSize
= pPg
->pBt
->usableSize
;
6734 u8
* const pEnd
= &aData
[usableSize
];
6736 u8
*pCellptr
= pPg
->aCellIdx
;
6737 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
6740 i
= get2byte(&aData
[hdr
+5]);
6741 memcpy(&pTmp
[i
], &aData
[i
], usableSize
- i
);
6744 for(i
=0; i
<nCell
; i
++){
6745 u8
*pCell
= apCell
[i
];
6746 if( SQLITE_WITHIN(pCell
,aData
,pEnd
) ){
6747 pCell
= &pTmp
[pCell
- aData
];
6750 put2byte(pCellptr
, (pData
- aData
));
6752 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
6753 memcpy(pData
, pCell
, szCell
[i
]);
6754 assert( szCell
[i
]==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
6755 testcase( szCell
[i
]!=pPg
->xCellSize(pPg
,pCell
) );
6758 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6762 put2byte(&aData
[hdr
+1], 0);
6763 put2byte(&aData
[hdr
+3], pPg
->nCell
);
6764 put2byte(&aData
[hdr
+5], pData
- aData
);
6765 aData
[hdr
+7] = 0x00;
6770 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6771 ** contains the size in bytes of each such cell. This function attempts to
6772 ** add the cells stored in the array to page pPg. If it cannot (because
6773 ** the page needs to be defragmented before the cells will fit), non-zero
6774 ** is returned. Otherwise, if the cells are added successfully, zero is
6777 ** Argument pCellptr points to the first entry in the cell-pointer array
6778 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6779 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6780 ** cell in the array. It is the responsibility of the caller to ensure
6781 ** that it is safe to overwrite this part of the cell-pointer array.
6783 ** When this function is called, *ppData points to the start of the
6784 ** content area on page pPg. If the size of the content area is extended,
6785 ** *ppData is updated to point to the new start of the content area
6786 ** before returning.
6788 ** Finally, argument pBegin points to the byte immediately following the
6789 ** end of the space required by this page for the cell-pointer area (for
6790 ** all cells - not just those inserted by the current call). If the content
6791 ** area must be extended to before this point in order to accomodate all
6792 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6794 static int pageInsertArray(
6795 MemPage
*pPg
, /* Page to add cells to */
6796 u8
*pBegin
, /* End of cell-pointer array */
6797 u8
**ppData
, /* IN/OUT: Page content -area pointer */
6798 u8
*pCellptr
, /* Pointer to cell-pointer area */
6799 int iFirst
, /* Index of first cell to add */
6800 int nCell
, /* Number of cells to add to pPg */
6801 CellArray
*pCArray
/* Array of cells */
6804 u8
*aData
= pPg
->aData
;
6805 u8
*pData
= *ppData
;
6806 int iEnd
= iFirst
+ nCell
;
6807 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
6808 for(i
=iFirst
; i
<iEnd
; i
++){
6811 sz
= cachedCellSize(pCArray
, i
);
6812 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
6813 if( (pData
- pBegin
)<sz
) return 1;
6817 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6818 ** database. But they might for a corrupt database. Hence use memmove()
6819 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6820 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
6821 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
6823 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
6824 put2byte(pCellptr
, (pSlot
- aData
));
6832 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6833 ** contains the size in bytes of each such cell. This function adds the
6834 ** space associated with each cell in the array that is currently stored
6835 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6836 ** fields of the page are not updated.
6838 ** This function returns the total number of cells added to the free-list.
6840 static int pageFreeArray(
6841 MemPage
*pPg
, /* Page to edit */
6842 int iFirst
, /* First cell to delete */
6843 int nCell
, /* Cells to delete */
6844 CellArray
*pCArray
/* Array of cells */
6846 u8
* const aData
= pPg
->aData
;
6847 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
6848 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
6851 int iEnd
= iFirst
+ nCell
;
6855 for(i
=iFirst
; i
<iEnd
; i
++){
6856 u8
*pCell
= pCArray
->apCell
[i
];
6857 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
6859 /* No need to use cachedCellSize() here. The sizes of all cells that
6860 ** are to be freed have already been computing while deciding which
6861 ** cells need freeing */
6862 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
6863 if( pFree
!=(pCell
+ sz
) ){
6865 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
6866 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
6870 if( pFree
+sz
>pEnd
) return 0;
6879 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
6880 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
6886 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6887 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6888 ** with apCell[iOld]. After balancing, this page should hold nNew cells
6889 ** starting at apCell[iNew].
6891 ** This routine makes the necessary adjustments to pPg so that it contains
6892 ** the correct cells after being balanced.
6894 ** The pPg->nFree field is invalid when this function returns. It is the
6895 ** responsibility of the caller to set it correctly.
6897 static int editPage(
6898 MemPage
*pPg
, /* Edit this page */
6899 int iOld
, /* Index of first cell currently on page */
6900 int iNew
, /* Index of new first cell on page */
6901 int nNew
, /* Final number of cells on page */
6902 CellArray
*pCArray
/* Array of cells and sizes */
6904 u8
* const aData
= pPg
->aData
;
6905 const int hdr
= pPg
->hdrOffset
;
6906 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
6907 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
6911 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
6912 int iNewEnd
= iNew
+ nNew
;
6915 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
6916 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
6919 /* Remove cells from the start and end of the page */
6921 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
6922 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
6925 if( iNewEnd
< iOldEnd
){
6926 nCell
-= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
6929 pData
= &aData
[get2byteNotZero(&aData
[hdr
+5])];
6930 if( pData
<pBegin
) goto editpage_fail
;
6932 /* Add cells to the start of the page */
6934 int nAdd
= MIN(nNew
,iOld
-iNew
);
6935 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
6936 pCellptr
= pPg
->aCellIdx
;
6937 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
6938 if( pageInsertArray(
6939 pPg
, pBegin
, &pData
, pCellptr
,
6941 ) ) goto editpage_fail
;
6945 /* Add any overflow cells */
6946 for(i
=0; i
<pPg
->nOverflow
; i
++){
6947 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
6948 if( iCell
>=0 && iCell
<nNew
){
6949 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
6950 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
6952 if( pageInsertArray(
6953 pPg
, pBegin
, &pData
, pCellptr
,
6954 iCell
+iNew
, 1, pCArray
6955 ) ) goto editpage_fail
;
6959 /* Append cells to the end of the page */
6960 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
6961 if( pageInsertArray(
6962 pPg
, pBegin
, &pData
, pCellptr
,
6963 iNew
+nCell
, nNew
-nCell
, pCArray
6964 ) ) goto editpage_fail
;
6969 put2byte(&aData
[hdr
+3], pPg
->nCell
);
6970 put2byte(&aData
[hdr
+5], pData
- aData
);
6973 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
6974 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
6975 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
6976 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
6977 pCell
= &pTmp
[pCell
- aData
];
6979 assert( 0==memcmp(pCell
, &aData
[iOff
],
6980 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
6986 /* Unable to edit this page. Rebuild it from scratch instead. */
6987 populateCellCache(pCArray
, iNew
, nNew
);
6988 return rebuildPage(pPg
, nNew
, &pCArray
->apCell
[iNew
], &pCArray
->szCell
[iNew
]);
6992 ** The following parameters determine how many adjacent pages get involved
6993 ** in a balancing operation. NN is the number of neighbors on either side
6994 ** of the page that participate in the balancing operation. NB is the
6995 ** total number of pages that participate, including the target page and
6996 ** NN neighbors on either side.
6998 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6999 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7000 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7001 ** The value of NN appears to give the best results overall.
7003 #define NN 1 /* Number of neighbors on either side of pPage */
7004 #define NB (NN*2+1) /* Total pages involved in the balance */
7007 #ifndef SQLITE_OMIT_QUICKBALANCE
7009 ** This version of balance() handles the common special case where
7010 ** a new entry is being inserted on the extreme right-end of the
7011 ** tree, in other words, when the new entry will become the largest
7012 ** entry in the tree.
7014 ** Instead of trying to balance the 3 right-most leaf pages, just add
7015 ** a new page to the right-hand side and put the one new entry in
7016 ** that page. This leaves the right side of the tree somewhat
7017 ** unbalanced. But odds are that we will be inserting new entries
7018 ** at the end soon afterwards so the nearly empty page will quickly
7019 ** fill up. On average.
7021 ** pPage is the leaf page which is the right-most page in the tree.
7022 ** pParent is its parent. pPage must have a single overflow entry
7023 ** which is also the right-most entry on the page.
7025 ** The pSpace buffer is used to store a temporary copy of the divider
7026 ** cell that will be inserted into pParent. Such a cell consists of a 4
7027 ** byte page number followed by a variable length integer. In other
7028 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7029 ** least 13 bytes in size.
7031 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7032 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7033 MemPage
*pNew
; /* Newly allocated page */
7034 int rc
; /* Return Code */
7035 Pgno pgnoNew
; /* Page number of pNew */
7037 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7038 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7039 assert( pPage
->nOverflow
==1 );
7041 /* This error condition is now caught prior to reaching this function */
7042 if( NEVER(pPage
->nCell
==0) ) return SQLITE_CORRUPT_BKPT
;
7044 /* Allocate a new page. This page will become the right-sibling of
7045 ** pPage. Make the parent page writable, so that the new divider cell
7046 ** may be inserted. If both these operations are successful, proceed.
7048 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7050 if( rc
==SQLITE_OK
){
7052 u8
*pOut
= &pSpace
[4];
7053 u8
*pCell
= pPage
->apOvfl
[0];
7054 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7057 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7058 assert( pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7059 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7060 rc
= rebuildPage(pNew
, 1, &pCell
, &szCell
);
7061 if( NEVER(rc
) ) return rc
;
7062 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7064 /* If this is an auto-vacuum database, update the pointer map
7065 ** with entries for the new page, and any pointer from the
7066 ** cell on the page to an overflow page. If either of these
7067 ** operations fails, the return code is set, but the contents
7068 ** of the parent page are still manipulated by thh code below.
7069 ** That is Ok, at this point the parent page is guaranteed to
7070 ** be marked as dirty. Returning an error code will cause a
7071 ** rollback, undoing any changes made to the parent page.
7074 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7075 if( szCell
>pNew
->minLocal
){
7076 ptrmapPutOvflPtr(pNew
, pCell
, &rc
);
7080 /* Create a divider cell to insert into pParent. The divider cell
7081 ** consists of a 4-byte page number (the page number of pPage) and
7082 ** a variable length key value (which must be the same value as the
7083 ** largest key on pPage).
7085 ** To find the largest key value on pPage, first find the right-most
7086 ** cell on pPage. The first two fields of this cell are the
7087 ** record-length (a variable length integer at most 32-bits in size)
7088 ** and the key value (a variable length integer, may have any value).
7089 ** The first of the while(...) loops below skips over the record-length
7090 ** field. The second while(...) loop copies the key value from the
7091 ** cell on pPage into the pSpace buffer.
7093 pCell
= findCell(pPage
, pPage
->nCell
-1);
7095 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7097 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7099 /* Insert the new divider cell into pParent. */
7100 if( rc
==SQLITE_OK
){
7101 insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7102 0, pPage
->pgno
, &rc
);
7105 /* Set the right-child pointer of pParent to point to the new page. */
7106 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7108 /* Release the reference to the new page. */
7114 #endif /* SQLITE_OMIT_QUICKBALANCE */
7118 ** This function does not contribute anything to the operation of SQLite.
7119 ** it is sometimes activated temporarily while debugging code responsible
7120 ** for setting pointer-map entries.
7122 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7124 for(i
=0; i
<nPage
; i
++){
7127 MemPage
*pPage
= apPage
[i
];
7128 BtShared
*pBt
= pPage
->pBt
;
7129 assert( pPage
->isInit
);
7131 for(j
=0; j
<pPage
->nCell
; j
++){
7135 z
= findCell(pPage
, j
);
7136 pPage
->xParseCell(pPage
, z
, &info
);
7137 if( info
.nLocal
<info
.nPayload
){
7138 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7139 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7140 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7143 Pgno child
= get4byte(z
);
7144 ptrmapGet(pBt
, child
, &e
, &n
);
7145 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7149 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7150 ptrmapGet(pBt
, child
, &e
, &n
);
7151 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7159 ** This function is used to copy the contents of the b-tree node stored
7160 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7161 ** the pointer-map entries for each child page are updated so that the
7162 ** parent page stored in the pointer map is page pTo. If pFrom contained
7163 ** any cells with overflow page pointers, then the corresponding pointer
7164 ** map entries are also updated so that the parent page is page pTo.
7166 ** If pFrom is currently carrying any overflow cells (entries in the
7167 ** MemPage.apOvfl[] array), they are not copied to pTo.
7169 ** Before returning, page pTo is reinitialized using btreeInitPage().
7171 ** The performance of this function is not critical. It is only used by
7172 ** the balance_shallower() and balance_deeper() procedures, neither of
7173 ** which are called often under normal circumstances.
7175 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7176 if( (*pRC
)==SQLITE_OK
){
7177 BtShared
* const pBt
= pFrom
->pBt
;
7178 u8
* const aFrom
= pFrom
->aData
;
7179 u8
* const aTo
= pTo
->aData
;
7180 int const iFromHdr
= pFrom
->hdrOffset
;
7181 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7186 assert( pFrom
->isInit
);
7187 assert( pFrom
->nFree
>=iToHdr
);
7188 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
7190 /* Copy the b-tree node content from page pFrom to page pTo. */
7191 iData
= get2byte(&aFrom
[iFromHdr
+5]);
7192 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
7193 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
7195 /* Reinitialize page pTo so that the contents of the MemPage structure
7196 ** match the new data. The initialization of pTo can actually fail under
7197 ** fairly obscure circumstances, even though it is a copy of initialized
7201 rc
= btreeInitPage(pTo
);
7202 if( rc
!=SQLITE_OK
){
7207 /* If this is an auto-vacuum database, update the pointer-map entries
7208 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7211 *pRC
= setChildPtrmaps(pTo
);
7217 ** This routine redistributes cells on the iParentIdx'th child of pParent
7218 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7219 ** same amount of free space. Usually a single sibling on either side of the
7220 ** page are used in the balancing, though both siblings might come from one
7221 ** side if the page is the first or last child of its parent. If the page
7222 ** has fewer than 2 siblings (something which can only happen if the page
7223 ** is a root page or a child of a root page) then all available siblings
7224 ** participate in the balancing.
7226 ** The number of siblings of the page might be increased or decreased by
7227 ** one or two in an effort to keep pages nearly full but not over full.
7229 ** Note that when this routine is called, some of the cells on the page
7230 ** might not actually be stored in MemPage.aData[]. This can happen
7231 ** if the page is overfull. This routine ensures that all cells allocated
7232 ** to the page and its siblings fit into MemPage.aData[] before returning.
7234 ** In the course of balancing the page and its siblings, cells may be
7235 ** inserted into or removed from the parent page (pParent). Doing so
7236 ** may cause the parent page to become overfull or underfull. If this
7237 ** happens, it is the responsibility of the caller to invoke the correct
7238 ** balancing routine to fix this problem (see the balance() routine).
7240 ** If this routine fails for any reason, it might leave the database
7241 ** in a corrupted state. So if this routine fails, the database should
7244 ** The third argument to this function, aOvflSpace, is a pointer to a
7245 ** buffer big enough to hold one page. If while inserting cells into the parent
7246 ** page (pParent) the parent page becomes overfull, this buffer is
7247 ** used to store the parent's overflow cells. Because this function inserts
7248 ** a maximum of four divider cells into the parent page, and the maximum
7249 ** size of a cell stored within an internal node is always less than 1/4
7250 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7251 ** enough for all overflow cells.
7253 ** If aOvflSpace is set to a null pointer, this function returns
7256 static int balance_nonroot(
7257 MemPage
*pParent
, /* Parent page of siblings being balanced */
7258 int iParentIdx
, /* Index of "the page" in pParent */
7259 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
7260 int isRoot
, /* True if pParent is a root-page */
7261 int bBulk
/* True if this call is part of a bulk load */
7263 BtShared
*pBt
; /* The whole database */
7264 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
7265 int nNew
= 0; /* Number of pages in apNew[] */
7266 int nOld
; /* Number of pages in apOld[] */
7267 int i
, j
, k
; /* Loop counters */
7268 int nxDiv
; /* Next divider slot in pParent->aCell[] */
7269 int rc
= SQLITE_OK
; /* The return code */
7270 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
7271 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
7272 int usableSpace
; /* Bytes in pPage beyond the header */
7273 int pageFlags
; /* Value of pPage->aData[0] */
7274 int iSpace1
= 0; /* First unused byte of aSpace1[] */
7275 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
7276 int szScratch
; /* Size of scratch memory requested */
7277 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
7278 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
7279 u8
*pRight
; /* Location in parent of right-sibling pointer */
7280 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
7281 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
7282 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
7283 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
7284 u8
*aSpace1
; /* Space for copies of dividers cells */
7285 Pgno pgno
; /* Temp var to store a page number in */
7286 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
7287 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
7288 Pgno aPgOrder
[NB
+2]; /* Copy of aPgno[] used for sorting pages */
7289 u16 aPgFlags
[NB
+2]; /* flags field of new pages before shuffling */
7290 CellArray b
; /* Parsed information on cells being balanced */
7292 memset(abDone
, 0, sizeof(abDone
));
7296 assert( sqlite3_mutex_held(pBt
->mutex
) );
7297 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7300 TRACE(("BALANCE: begin page %d child of %d\n", pPage
->pgno
, pParent
->pgno
));
7303 /* At this point pParent may have at most one overflow cell. And if
7304 ** this overflow cell is present, it must be the cell with
7305 ** index iParentIdx. This scenario comes about when this function
7306 ** is called (indirectly) from sqlite3BtreeDelete().
7308 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
7309 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
7312 return SQLITE_NOMEM_BKPT
;
7315 /* Find the sibling pages to balance. Also locate the cells in pParent
7316 ** that divide the siblings. An attempt is made to find NN siblings on
7317 ** either side of pPage. More siblings are taken from one side, however,
7318 ** if there are fewer than NN siblings on the other side. If pParent
7319 ** has NB or fewer children then all children of pParent are taken.
7321 ** This loop also drops the divider cells from the parent page. This
7322 ** way, the remainder of the function does not have to deal with any
7323 ** overflow cells in the parent page, since if any existed they will
7324 ** have already been removed.
7326 i
= pParent
->nOverflow
+ pParent
->nCell
;
7330 assert( bBulk
==0 || bBulk
==1 );
7331 if( iParentIdx
==0 ){
7333 }else if( iParentIdx
==i
){
7336 nxDiv
= iParentIdx
-1;
7341 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
7342 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
7344 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7346 pgno
= get4byte(pRight
);
7348 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0, 0);
7350 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
7351 goto balance_cleanup
;
7353 nMaxCells
+= 1+apOld
[i
]->nCell
+apOld
[i
]->nOverflow
;
7354 if( (i
--)==0 ) break;
7356 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
7357 apDiv
[i
] = pParent
->apOvfl
[0];
7358 pgno
= get4byte(apDiv
[i
]);
7359 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7360 pParent
->nOverflow
= 0;
7362 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7363 pgno
= get4byte(apDiv
[i
]);
7364 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7366 /* Drop the cell from the parent page. apDiv[i] still points to
7367 ** the cell within the parent, even though it has been dropped.
7368 ** This is safe because dropping a cell only overwrites the first
7369 ** four bytes of it, and this function does not need the first
7370 ** four bytes of the divider cell. So the pointer is safe to use
7373 ** But not if we are in secure-delete mode. In secure-delete mode,
7374 ** the dropCell() routine will overwrite the entire cell with zeroes.
7375 ** In this case, temporarily copy the cell into the aOvflSpace[]
7376 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7378 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
7381 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
7382 if( (iOff
+szNew
[i
])>(int)pBt
->usableSize
){
7383 rc
= SQLITE_CORRUPT_BKPT
;
7384 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
7385 goto balance_cleanup
;
7387 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
7388 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
7391 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
7395 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7397 nMaxCells
= (nMaxCells
+ 3)&~3;
7400 ** Allocate space for memory structures
7403 nMaxCells
*sizeof(u8
*) /* b.apCell */
7404 + nMaxCells
*sizeof(u16
) /* b.szCell */
7405 + pBt
->pageSize
; /* aSpace1 */
7407 assert( szScratch
<=6*(int)pBt
->pageSize
);
7408 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
7410 rc
= SQLITE_NOMEM_BKPT
;
7411 goto balance_cleanup
;
7413 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
7414 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
7415 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
7418 ** Load pointers to all cells on sibling pages and the divider cells
7419 ** into the local b.apCell[] array. Make copies of the divider cells
7420 ** into space obtained from aSpace1[]. The divider cells have already
7421 ** been removed from pParent.
7423 ** If the siblings are on leaf pages, then the child pointers of the
7424 ** divider cells are stripped from the cells before they are copied
7425 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7426 ** child pointers. If siblings are not leaves, then all cell in
7427 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7430 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7431 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7434 leafCorrection
= b
.pRef
->leaf
*4;
7435 leafData
= b
.pRef
->intKeyLeaf
;
7436 for(i
=0; i
<nOld
; i
++){
7437 MemPage
*pOld
= apOld
[i
];
7438 int limit
= pOld
->nCell
;
7439 u8
*aData
= pOld
->aData
;
7440 u16 maskPage
= pOld
->maskPage
;
7441 u8
*piCell
= aData
+ pOld
->cellOffset
;
7444 /* Verify that all sibling pages are of the same "type" (table-leaf,
7445 ** table-interior, index-leaf, or index-interior).
7447 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
7448 rc
= SQLITE_CORRUPT_BKPT
;
7449 goto balance_cleanup
;
7452 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7453 ** contains overflow cells, include them in the b.apCell[] array
7454 ** in the correct spot.
7456 ** Note that when there are multiple overflow cells, it is always the
7457 ** case that they are sequential and adjacent. This invariant arises
7458 ** because multiple overflows can only occurs when inserting divider
7459 ** cells into a parent on a prior balance, and divider cells are always
7460 ** adjacent and are inserted in order. There is an assert() tagged
7461 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7464 ** This must be done in advance. Once the balance starts, the cell
7465 ** offset section of the btree page will be overwritten and we will no
7466 ** long be able to find the cells if a pointer to each cell is not saved
7469 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
7470 if( pOld
->nOverflow
>0 ){
7471 limit
= pOld
->aiOvfl
[0];
7472 for(j
=0; j
<limit
; j
++){
7473 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7477 for(k
=0; k
<pOld
->nOverflow
; k
++){
7478 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
7479 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
7483 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
7484 while( piCell
<piEnd
){
7485 assert( b
.nCell
<nMaxCells
);
7486 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7491 cntOld
[i
] = b
.nCell
;
7492 if( i
<nOld
-1 && !leafData
){
7493 u16 sz
= (u16
)szNew
[i
];
7495 assert( b
.nCell
<nMaxCells
);
7496 b
.szCell
[b
.nCell
] = sz
;
7497 pTemp
= &aSpace1
[iSpace1
];
7499 assert( sz
<=pBt
->maxLocal
+23 );
7500 assert( iSpace1
<= (int)pBt
->pageSize
);
7501 memcpy(pTemp
, apDiv
[i
], sz
);
7502 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
7503 assert( leafCorrection
==0 || leafCorrection
==4 );
7504 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
7506 assert( leafCorrection
==0 );
7507 assert( pOld
->hdrOffset
==0 );
7508 /* The right pointer of the child page pOld becomes the left
7509 ** pointer of the divider cell */
7510 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
7512 assert( leafCorrection
==4 );
7513 while( b
.szCell
[b
.nCell
]<4 ){
7514 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7515 ** does exist, pad it with 0x00 bytes. */
7516 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
7517 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
7518 aSpace1
[iSpace1
++] = 0x00;
7519 b
.szCell
[b
.nCell
]++;
7527 ** Figure out the number of pages needed to hold all b.nCell cells.
7528 ** Store this number in "k". Also compute szNew[] which is the total
7529 ** size of all cells on the i-th page and cntNew[] which is the index
7530 ** in b.apCell[] of the cell that divides page i from page i+1.
7531 ** cntNew[k] should equal b.nCell.
7533 ** Values computed by this block:
7535 ** k: The total number of sibling pages
7536 ** szNew[i]: Spaced used on the i-th sibling page.
7537 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7538 ** the right of the i-th sibling page.
7539 ** usableSpace: Number of bytes of space available on each sibling.
7542 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
7543 for(i
=0; i
<nOld
; i
++){
7544 MemPage
*p
= apOld
[i
];
7545 szNew
[i
] = usableSpace
- p
->nFree
;
7546 for(j
=0; j
<p
->nOverflow
; j
++){
7547 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
7549 cntNew
[i
] = cntOld
[i
];
7554 while( szNew
[i
]>usableSpace
){
7557 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
7559 cntNew
[k
-1] = b
.nCell
;
7561 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
7564 if( cntNew
[i
]<b
.nCell
){
7565 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7573 while( cntNew
[i
]<b
.nCell
){
7574 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7575 if( szNew
[i
]+sz
>usableSpace
) break;
7579 if( cntNew
[i
]<b
.nCell
){
7580 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7587 if( cntNew
[i
]>=b
.nCell
){
7589 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
7590 rc
= SQLITE_CORRUPT_BKPT
;
7591 goto balance_cleanup
;
7596 ** The packing computed by the previous block is biased toward the siblings
7597 ** on the left side (siblings with smaller keys). The left siblings are
7598 ** always nearly full, while the right-most sibling might be nearly empty.
7599 ** The next block of code attempts to adjust the packing of siblings to
7600 ** get a better balance.
7602 ** This adjustment is more than an optimization. The packing above might
7603 ** be so out of balance as to be illegal. For example, the right-most
7604 ** sibling might be completely empty. This adjustment is not optional.
7606 for(i
=k
-1; i
>0; i
--){
7607 int szRight
= szNew
[i
]; /* Size of sibling on the right */
7608 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
7609 int r
; /* Index of right-most cell in left sibling */
7610 int d
; /* Index of first cell to the left of right sibling */
7612 r
= cntNew
[i
-1] - 1;
7613 d
= r
+ 1 - leafData
;
7614 (void)cachedCellSize(&b
, d
);
7616 assert( d
<nMaxCells
);
7617 assert( r
<nMaxCells
);
7618 (void)cachedCellSize(&b
, r
);
7620 && (bBulk
|| szRight
+b
.szCell
[d
]+2 > szLeft
-(b
.szCell
[r
]+(i
==k
-1?0:2)))){
7623 szRight
+= b
.szCell
[d
] + 2;
7624 szLeft
-= b
.szCell
[r
] + 2;
7630 szNew
[i
-1] = szLeft
;
7631 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
7632 rc
= SQLITE_CORRUPT_BKPT
;
7633 goto balance_cleanup
;
7637 /* Sanity check: For a non-corrupt database file one of the follwing
7639 ** (1) We found one or more cells (cntNew[0])>0), or
7640 ** (2) pPage is a virtual root page. A virtual root page is when
7641 ** the real root page is page 1 and we are the only child of
7644 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
7645 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7646 apOld
[0]->pgno
, apOld
[0]->nCell
,
7647 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
7648 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
7652 ** Allocate k new pages. Reuse old pages where possible.
7654 pageFlags
= apOld
[0]->aData
[0];
7658 pNew
= apNew
[i
] = apOld
[i
];
7660 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
7662 if( rc
) goto balance_cleanup
;
7665 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
7666 if( rc
) goto balance_cleanup
;
7667 zeroPage(pNew
, pageFlags
);
7670 cntOld
[i
] = b
.nCell
;
7672 /* Set the pointer-map entry for the new sibling page. */
7674 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7675 if( rc
!=SQLITE_OK
){
7676 goto balance_cleanup
;
7683 ** Reassign page numbers so that the new pages are in ascending order.
7684 ** This helps to keep entries in the disk file in order so that a scan
7685 ** of the table is closer to a linear scan through the file. That in turn
7686 ** helps the operating system to deliver pages from the disk more rapidly.
7688 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7689 ** than (NB+2) (a small constant), that should not be a problem.
7691 ** When NB==3, this one optimization makes the database about 25% faster
7692 ** for large insertions and deletions.
7694 for(i
=0; i
<nNew
; i
++){
7695 aPgOrder
[i
] = aPgno
[i
] = apNew
[i
]->pgno
;
7696 aPgFlags
[i
] = apNew
[i
]->pDbPage
->flags
;
7698 if( aPgno
[j
]==aPgno
[i
] ){
7699 /* This branch is taken if the set of sibling pages somehow contains
7700 ** duplicate entries. This can happen if the database is corrupt.
7701 ** It would be simpler to detect this as part of the loop below, but
7702 ** we do the detection here in order to avoid populating the pager
7703 ** cache with two separate objects associated with the same
7705 assert( CORRUPT_DB
);
7706 rc
= SQLITE_CORRUPT_BKPT
;
7707 goto balance_cleanup
;
7711 for(i
=0; i
<nNew
; i
++){
7712 int iBest
= 0; /* aPgno[] index of page number to use */
7713 for(j
=1; j
<nNew
; j
++){
7714 if( aPgOrder
[j
]<aPgOrder
[iBest
] ) iBest
= j
;
7716 pgno
= aPgOrder
[iBest
];
7717 aPgOrder
[iBest
] = 0xffffffff;
7720 sqlite3PagerRekey(apNew
[iBest
]->pDbPage
, pBt
->nPage
+iBest
+1, 0);
7722 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgno
, aPgFlags
[iBest
]);
7723 apNew
[i
]->pgno
= pgno
;
7727 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7728 "%d(%d nc=%d) %d(%d nc=%d)\n",
7729 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
7730 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
7731 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
7732 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
7733 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
7734 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
7735 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
7736 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
7737 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
7740 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7741 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
7743 /* If the sibling pages are not leaves, ensure that the right-child pointer
7744 ** of the right-most new sibling page is set to the value that was
7745 ** originally in the same field of the right-most old sibling page. */
7746 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
7747 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
7748 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
7751 /* Make any required updates to pointer map entries associated with
7752 ** cells stored on sibling pages following the balance operation. Pointer
7753 ** map entries associated with divider cells are set by the insertCell()
7754 ** routine. The associated pointer map entries are:
7756 ** a) if the cell contains a reference to an overflow chain, the
7757 ** entry associated with the first page in the overflow chain, and
7759 ** b) if the sibling pages are not leaves, the child page associated
7762 ** If the sibling pages are not leaves, then the pointer map entry
7763 ** associated with the right-child of each sibling may also need to be
7764 ** updated. This happens below, after the sibling pages have been
7765 ** populated, not here.
7768 MemPage
*pNew
= apNew
[0];
7769 u8
*aOld
= pNew
->aData
;
7770 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
7771 int usableSize
= pBt
->usableSize
;
7775 for(i
=0; i
<b
.nCell
; i
++){
7776 u8
*pCell
= b
.apCell
[i
];
7777 if( i
==cntOldNext
){
7778 MemPage
*pOld
= (++iOld
)<nNew
? apNew
[iOld
] : apOld
[iOld
];
7779 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
7782 if( i
==cntNew
[iNew
] ){
7783 pNew
= apNew
[++iNew
];
7784 if( !leafData
) continue;
7787 /* Cell pCell is destined for new sibling page pNew. Originally, it
7788 ** was either part of sibling page iOld (possibly an overflow cell),
7789 ** or else the divider cell to the left of sibling page iOld. So,
7790 ** if sibling page iOld had the same page number as pNew, and if
7791 ** pCell really was a part of sibling page iOld (not a divider or
7792 ** overflow cell), we can skip updating the pointer map entries. */
7794 || pNew
->pgno
!=aPgno
[iOld
]
7795 || !SQLITE_WITHIN(pCell
,aOld
,&aOld
[usableSize
])
7797 if( !leafCorrection
){
7798 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
7800 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
7801 ptrmapPutOvflPtr(pNew
, pCell
, &rc
);
7803 if( rc
) goto balance_cleanup
;
7808 /* Insert new divider cells into pParent. */
7809 for(i
=0; i
<nNew
-1; i
++){
7813 MemPage
*pNew
= apNew
[i
];
7816 assert( j
<nMaxCells
);
7817 assert( b
.apCell
[j
]!=0 );
7818 pCell
= b
.apCell
[j
];
7819 sz
= b
.szCell
[j
] + leafCorrection
;
7820 pTemp
= &aOvflSpace
[iOvflSpace
];
7822 memcpy(&pNew
->aData
[8], pCell
, 4);
7823 }else if( leafData
){
7824 /* If the tree is a leaf-data tree, and the siblings are leaves,
7825 ** then there is no divider cell in b.apCell[]. Instead, the divider
7826 ** cell consists of the integer key for the right-most cell of
7827 ** the sibling-page assembled above only.
7831 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
7833 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
7837 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7838 ** previously stored on a leaf node, and its reported size was 4
7839 ** bytes, then it may actually be smaller than this
7840 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7841 ** any cell). But it is important to pass the correct size to
7842 ** insertCell(), so reparse the cell now.
7844 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7845 ** and WITHOUT ROWID tables with exactly one column which is the
7848 if( b
.szCell
[j
]==4 ){
7849 assert(leafCorrection
==4);
7850 sz
= pParent
->xCellSize(pParent
, pCell
);
7854 assert( sz
<=pBt
->maxLocal
+23 );
7855 assert( iOvflSpace
<= (int)pBt
->pageSize
);
7856 insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
, &rc
);
7857 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
7858 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7861 /* Now update the actual sibling pages. The order in which they are updated
7862 ** is important, as this code needs to avoid disrupting any page from which
7863 ** cells may still to be read. In practice, this means:
7865 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7866 ** then it is not safe to update page apNew[iPg] until after
7867 ** the left-hand sibling apNew[iPg-1] has been updated.
7869 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7870 ** then it is not safe to update page apNew[iPg] until after
7871 ** the right-hand sibling apNew[iPg+1] has been updated.
7873 ** If neither of the above apply, the page is safe to update.
7875 ** The iPg value in the following loop starts at nNew-1 goes down
7876 ** to 0, then back up to nNew-1 again, thus making two passes over
7877 ** the pages. On the initial downward pass, only condition (1) above
7878 ** needs to be tested because (2) will always be true from the previous
7879 ** step. On the upward pass, both conditions are always true, so the
7880 ** upwards pass simply processes pages that were missed on the downward
7883 for(i
=1-nNew
; i
<nNew
; i
++){
7884 int iPg
= i
<0 ? -i
: i
;
7885 assert( iPg
>=0 && iPg
<nNew
);
7886 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
7887 if( i
>=0 /* On the upwards pass, or... */
7888 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
7894 /* Verify condition (1): If cells are moving left, update iPg
7895 ** only after iPg-1 has already been updated. */
7896 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
7898 /* Verify condition (2): If cells are moving right, update iPg
7899 ** only after iPg+1 has already been updated. */
7900 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
7904 nNewCell
= cntNew
[0];
7906 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
7907 iNew
= cntNew
[iPg
-1] + !leafData
;
7908 nNewCell
= cntNew
[iPg
] - iNew
;
7911 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
7912 if( rc
) goto balance_cleanup
;
7914 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
7915 assert( apNew
[iPg
]->nOverflow
==0 );
7916 assert( apNew
[iPg
]->nCell
==nNewCell
);
7920 /* All pages have been processed exactly once */
7921 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
7926 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
7927 /* The root page of the b-tree now contains no cells. The only sibling
7928 ** page is the right-child of the parent. Copy the contents of the
7929 ** child page into the parent, decreasing the overall height of the
7930 ** b-tree structure by one. This is described as the "balance-shallower"
7931 ** sub-algorithm in some documentation.
7933 ** If this is an auto-vacuum database, the call to copyNodeContent()
7934 ** sets all pointer-map entries corresponding to database image pages
7935 ** for which the pointer is stored within the content being copied.
7937 ** It is critical that the child page be defragmented before being
7938 ** copied into the parent, because if the parent is page 1 then it will
7939 ** by smaller than the child due to the database header, and so all the
7940 ** free space needs to be up front.
7942 assert( nNew
==1 || CORRUPT_DB
);
7943 rc
= defragmentPage(apNew
[0], -1);
7944 testcase( rc
!=SQLITE_OK
);
7945 assert( apNew
[0]->nFree
==
7946 (get2byte(&apNew
[0]->aData
[5])-apNew
[0]->cellOffset
-apNew
[0]->nCell
*2)
7949 copyNodeContent(apNew
[0], pParent
, &rc
);
7950 freePage(apNew
[0], &rc
);
7951 }else if( ISAUTOVACUUM
&& !leafCorrection
){
7952 /* Fix the pointer map entries associated with the right-child of each
7953 ** sibling page. All other pointer map entries have already been taken
7955 for(i
=0; i
<nNew
; i
++){
7956 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
7957 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
7961 assert( pParent
->isInit
);
7962 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7963 nOld
, nNew
, b
.nCell
));
7965 /* Free any old pages that were not reused as new pages.
7967 for(i
=nNew
; i
<nOld
; i
++){
7968 freePage(apOld
[i
], &rc
);
7972 if( ISAUTOVACUUM
&& rc
==SQLITE_OK
&& apNew
[0]->isInit
){
7973 /* The ptrmapCheckPages() contains assert() statements that verify that
7974 ** all pointer map pages are set correctly. This is helpful while
7975 ** debugging. This is usually disabled because a corrupt database may
7976 ** cause an assert() statement to fail. */
7977 ptrmapCheckPages(apNew
, nNew
);
7978 ptrmapCheckPages(&pParent
, 1);
7983 ** Cleanup before returning.
7986 sqlite3StackFree(0, b
.apCell
);
7987 for(i
=0; i
<nOld
; i
++){
7988 releasePage(apOld
[i
]);
7990 for(i
=0; i
<nNew
; i
++){
7991 releasePage(apNew
[i
]);
7999 ** This function is called when the root page of a b-tree structure is
8000 ** overfull (has one or more overflow pages).
8002 ** A new child page is allocated and the contents of the current root
8003 ** page, including overflow cells, are copied into the child. The root
8004 ** page is then overwritten to make it an empty page with the right-child
8005 ** pointer pointing to the new page.
8007 ** Before returning, all pointer-map entries corresponding to pages
8008 ** that the new child-page now contains pointers to are updated. The
8009 ** entry corresponding to the new right-child pointer of the root
8010 ** page is also updated.
8012 ** If successful, *ppChild is set to contain a reference to the child
8013 ** page and SQLITE_OK is returned. In this case the caller is required
8014 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8015 ** an error code is returned and *ppChild is set to 0.
8017 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8018 int rc
; /* Return value from subprocedures */
8019 MemPage
*pChild
= 0; /* Pointer to a new child page */
8020 Pgno pgnoChild
= 0; /* Page number of the new child page */
8021 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8023 assert( pRoot
->nOverflow
>0 );
8024 assert( sqlite3_mutex_held(pBt
->mutex
) );
8026 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8027 ** page that will become the new right-child of pPage. Copy the contents
8028 ** of the node stored on pRoot into the new child page.
8030 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8031 if( rc
==SQLITE_OK
){
8032 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8033 copyNodeContent(pRoot
, pChild
, &rc
);
8035 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8040 releasePage(pChild
);
8043 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8044 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8045 assert( pChild
->nCell
==pRoot
->nCell
);
8047 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
8049 /* Copy the overflow cells from pRoot to pChild */
8050 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8051 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8052 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8053 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8054 pChild
->nOverflow
= pRoot
->nOverflow
;
8056 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8057 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8058 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8065 ** The page that pCur currently points to has just been modified in
8066 ** some way. This function figures out if this modification means the
8067 ** tree needs to be balanced, and if so calls the appropriate balancing
8068 ** routine. Balancing routines are:
8072 ** balance_nonroot()
8074 static int balance(BtCursor
*pCur
){
8076 const int nMin
= pCur
->pBt
->usableSize
* 2 / 3;
8077 u8 aBalanceQuickSpace
[13];
8080 VVA_ONLY( int balance_quick_called
= 0 );
8081 VVA_ONLY( int balance_deeper_called
= 0 );
8084 int iPage
= pCur
->iPage
;
8085 MemPage
*pPage
= pCur
->pPage
;
8088 if( pPage
->nOverflow
){
8089 /* The root page of the b-tree is overfull. In this case call the
8090 ** balance_deeper() function to create a new child for the root-page
8091 ** and copy the current contents of the root-page to it. The
8092 ** next iteration of the do-loop will balance the child page.
8094 assert( balance_deeper_called
==0 );
8095 VVA_ONLY( balance_deeper_called
++ );
8096 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8097 if( rc
==SQLITE_OK
){
8101 pCur
->apPage
[0] = pPage
;
8102 pCur
->pPage
= pCur
->apPage
[1];
8103 assert( pCur
->pPage
->nOverflow
);
8108 }else if( pPage
->nOverflow
==0 && pPage
->nFree
<=nMin
){
8111 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8112 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8114 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8115 if( rc
==SQLITE_OK
){
8116 #ifndef SQLITE_OMIT_QUICKBALANCE
8117 if( pPage
->intKeyLeaf
8118 && pPage
->nOverflow
==1
8119 && pPage
->aiOvfl
[0]==pPage
->nCell
8121 && pParent
->nCell
==iIdx
8123 /* Call balance_quick() to create a new sibling of pPage on which
8124 ** to store the overflow cell. balance_quick() inserts a new cell
8125 ** into pParent, which may cause pParent overflow. If this
8126 ** happens, the next iteration of the do-loop will balance pParent
8127 ** use either balance_nonroot() or balance_deeper(). Until this
8128 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8131 ** The purpose of the following assert() is to check that only a
8132 ** single call to balance_quick() is made for each call to this
8133 ** function. If this were not verified, a subtle bug involving reuse
8134 ** of the aBalanceQuickSpace[] might sneak in.
8136 assert( balance_quick_called
==0 );
8137 VVA_ONLY( balance_quick_called
++ );
8138 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
8142 /* In this case, call balance_nonroot() to redistribute cells
8143 ** between pPage and up to 2 of its sibling pages. This involves
8144 ** modifying the contents of pParent, which may cause pParent to
8145 ** become overfull or underfull. The next iteration of the do-loop
8146 ** will balance the parent page to correct this.
8148 ** If the parent page becomes overfull, the overflow cell or cells
8149 ** are stored in the pSpace buffer allocated immediately below.
8150 ** A subsequent iteration of the do-loop will deal with this by
8151 ** calling balance_nonroot() (balance_deeper() may be called first,
8152 ** but it doesn't deal with overflow cells - just moves them to a
8153 ** different page). Once this subsequent call to balance_nonroot()
8154 ** has completed, it is safe to release the pSpace buffer used by
8155 ** the previous call, as the overflow cell data will have been
8156 ** copied either into the body of a database page or into the new
8157 ** pSpace buffer passed to the latter call to balance_nonroot().
8159 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
8160 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
8161 pCur
->hints
&BTREE_BULKLOAD
);
8163 /* If pFree is not NULL, it points to the pSpace buffer used
8164 ** by a previous call to balance_nonroot(). Its contents are
8165 ** now stored either on real database pages or within the
8166 ** new pSpace buffer, so it may be safely freed here. */
8167 sqlite3PageFree(pFree
);
8170 /* The pSpace buffer will be freed after the next call to
8171 ** balance_nonroot(), or just before this function returns, whichever
8177 pPage
->nOverflow
= 0;
8179 /* The next iteration of the do-loop balances the parent page. */
8182 assert( pCur
->iPage
>=0 );
8183 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
8185 }while( rc
==SQLITE_OK
);
8188 sqlite3PageFree(pFree
);
8193 /* Overwrite content from pX into pDest. Only do the write if the
8194 ** content is different from what is already there.
8196 static int btreeOverwriteContent(
8197 MemPage
*pPage
, /* MemPage on which writing will occur */
8198 u8
*pDest
, /* Pointer to the place to start writing */
8199 const BtreePayload
*pX
, /* Source of data to write */
8200 int iOffset
, /* Offset of first byte to write */
8201 int iAmt
/* Number of bytes to be written */
8203 int nData
= pX
->nData
- iOffset
;
8205 /* Overwritting with zeros */
8207 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
8209 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8211 memset(pDest
+ i
, 0, iAmt
- i
);
8215 /* Mixed read data and zeros at the end. Make a recursive call
8216 ** to write the zeros then fall through to write the real data */
8217 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
8222 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
8223 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8225 memcpy(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
8232 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8235 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
8236 int iOffset
; /* Next byte of pX->pData to write */
8237 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
8238 int rc
; /* Return code */
8239 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
8240 BtShared
*pBt
; /* Btree */
8241 Pgno ovflPgno
; /* Next overflow page to write */
8242 u32 ovflPageSize
; /* Size to write on overflow page */
8244 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
){
8245 return SQLITE_CORRUPT_BKPT
;
8247 /* Overwrite the local portion first */
8248 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
8249 0, pCur
->info
.nLocal
);
8251 if( pCur
->info
.nLocal
==nTotal
) return SQLITE_OK
;
8253 /* Now overwrite the overflow pages */
8254 iOffset
= pCur
->info
.nLocal
;
8255 assert( nTotal
>=0 );
8256 assert( iOffset
>=0 );
8257 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
8259 ovflPageSize
= pBt
->usableSize
- 4;
8261 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
8263 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 ){
8264 rc
= SQLITE_CORRUPT_BKPT
;
8266 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
8267 ovflPgno
= get4byte(pPage
->aData
);
8269 ovflPageSize
= nTotal
- iOffset
;
8271 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
8272 iOffset
, ovflPageSize
);
8274 sqlite3PagerUnref(pPage
->pDbPage
);
8276 iOffset
+= ovflPageSize
;
8277 }while( iOffset
<nTotal
);
8283 ** Insert a new record into the BTree. The content of the new record
8284 ** is described by the pX object. The pCur cursor is used only to
8285 ** define what table the record should be inserted into, and is left
8286 ** pointing at a random location.
8288 ** For a table btree (used for rowid tables), only the pX.nKey value of
8289 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8290 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8291 ** hold the content of the row.
8293 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8294 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8295 ** pX.pData,nData,nZero fields must be zero.
8297 ** If the seekResult parameter is non-zero, then a successful call to
8298 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8299 ** been performed. In other words, if seekResult!=0 then the cursor
8300 ** is currently pointing to a cell that will be adjacent to the cell
8301 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8302 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8303 ** that is larger than (pKey,nKey).
8305 ** If seekResult==0, that means pCur is pointing at some unknown location.
8306 ** In that case, this routine must seek the cursor to the correct insertion
8307 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8308 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8309 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8310 ** to decode the key.
8312 int sqlite3BtreeInsert(
8313 BtCursor
*pCur
, /* Insert data into the table of this cursor */
8314 const BtreePayload
*pX
, /* Content of the row to be inserted */
8315 int flags
, /* True if this is likely an append */
8316 int seekResult
/* Result of prior MovetoUnpacked() call */
8319 int loc
= seekResult
; /* -1: before desired location +1: after */
8323 Btree
*p
= pCur
->pBtree
;
8324 BtShared
*pBt
= p
->pBt
;
8325 unsigned char *oldCell
;
8326 unsigned char *newCell
= 0;
8328 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
))==flags
);
8330 if( pCur
->eState
==CURSOR_FAULT
){
8331 assert( pCur
->skipNext
!=SQLITE_OK
);
8332 return pCur
->skipNext
;
8335 assert( cursorOwnsBtShared(pCur
) );
8336 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
8337 && pBt
->inTransaction
==TRANS_WRITE
8338 && (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
8339 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
8341 /* Assert that the caller has been consistent. If this cursor was opened
8342 ** expecting an index b-tree, then the caller should be inserting blob
8343 ** keys with no associated data. If the cursor was opened expecting an
8344 ** intkey table, the caller should be inserting integer keys with a
8345 ** blob of associated data. */
8346 assert( (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
8348 /* Save the positions of any other cursors open on this table.
8350 ** In some cases, the call to btreeMoveto() below is a no-op. For
8351 ** example, when inserting data into a table with auto-generated integer
8352 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8353 ** integer key to use. It then calls this function to actually insert the
8354 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8355 ** that the cursor is already where it needs to be and returns without
8356 ** doing any work. To avoid thwarting these optimizations, it is important
8357 ** not to clear the cursor here.
8359 if( pCur
->curFlags
& BTCF_Multiple
){
8360 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
8364 if( pCur
->pKeyInfo
==0 ){
8365 assert( pX
->pKey
==0 );
8366 /* If this is an insert into a table b-tree, invalidate any incrblob
8367 ** cursors open on the row being replaced */
8368 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
8370 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8371 ** to a row with the same key as the new entry being inserted.
8374 if( flags
& BTREE_SAVEPOSITION
){
8375 assert( pCur
->curFlags
& BTCF_ValidNKey
);
8376 assert( pX
->nKey
==pCur
->info
.nKey
);
8377 assert( pCur
->info
.nSize
!=0 );
8382 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8383 ** that the cursor is not pointing to a row to be overwritten.
8384 ** So do a complete check.
8386 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
8387 /* The cursor is pointing to the entry that is to be
8389 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
8390 if( pCur
->info
.nSize
!=0
8391 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
8393 /* New entry is the same size as the old. Do an overwrite */
8394 return btreeOverwriteCell(pCur
, pX
);
8398 /* The cursor is *not* pointing to the cell to be overwritten, nor
8399 ** to an adjacent cell. Move the cursor so that it is pointing either
8400 ** to the cell to be overwritten or an adjacent cell.
8402 rc
= sqlite3BtreeMovetoUnpacked(pCur
, 0, pX
->nKey
, flags
!=0, &loc
);
8406 /* This is an index or a WITHOUT ROWID table */
8408 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8409 ** to a row with the same key as the new entry being inserted.
8411 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
8413 /* If the cursor is not already pointing either to the cell to be
8414 ** overwritten, or if a new cell is being inserted, if the cursor is
8415 ** not pointing to an immediately adjacent cell, then move the cursor
8418 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
8421 r
.pKeyInfo
= pCur
->pKeyInfo
;
8423 r
.nField
= pX
->nMem
;
8429 rc
= sqlite3BtreeMovetoUnpacked(pCur
, &r
, 0, flags
!=0, &loc
);
8431 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
, flags
!=0, &loc
);
8436 /* If the cursor is currently pointing to an entry to be overwritten
8437 ** and the new content is the same as as the old, then use the
8438 ** overwrite optimization.
8442 if( pCur
->info
.nKey
==pX
->nKey
){
8444 x2
.pData
= pX
->pKey
;
8445 x2
.nData
= pX
->nKey
;
8447 return btreeOverwriteCell(pCur
, &x2
);
8452 assert( pCur
->eState
==CURSOR_VALID
|| (pCur
->eState
==CURSOR_INVALID
&& loc
) );
8454 pPage
= pCur
->pPage
;
8455 assert( pPage
->intKey
|| pX
->nKey
>=0 );
8456 assert( pPage
->leaf
|| !pPage
->intKey
);
8458 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8459 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
8460 loc
==0 ? "overwrite" : "new entry"));
8461 assert( pPage
->isInit
);
8462 newCell
= pBt
->pTmpSpace
;
8463 assert( newCell
!=0 );
8464 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
8465 if( rc
) goto end_insert
;
8466 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
8467 assert( szNew
<= MX_CELL_SIZE(pBt
) );
8471 assert( idx
<pPage
->nCell
);
8472 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8476 oldCell
= findCell(pPage
, idx
);
8478 memcpy(newCell
, oldCell
, 4);
8480 rc
= clearCell(pPage
, oldCell
, &info
);
8481 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
8482 && (!ISAUTOVACUUM
|| szNew
<pPage
->minLocal
)
8484 /* Overwrite the old cell with the new if they are the same size.
8485 ** We could also try to do this if the old cell is smaller, then add
8486 ** the leftover space to the free list. But experiments show that
8487 ** doing that is no faster then skipping this optimization and just
8488 ** calling dropCell() and insertCell().
8490 ** This optimization cannot be used on an autovacuum database if the
8491 ** new entry uses overflow pages, as the insertCell() call below is
8492 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
8493 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
8494 if( oldCell
+szNew
> pPage
->aDataEnd
) return SQLITE_CORRUPT_BKPT
;
8495 memcpy(oldCell
, newCell
, szNew
);
8498 dropCell(pPage
, idx
, info
.nSize
, &rc
);
8499 if( rc
) goto end_insert
;
8500 }else if( loc
<0 && pPage
->nCell
>0 ){
8501 assert( pPage
->leaf
);
8503 pCur
->curFlags
&= ~BTCF_ValidNKey
;
8505 assert( pPage
->leaf
);
8507 insertCell(pPage
, idx
, newCell
, szNew
, 0, 0, &rc
);
8508 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
8509 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
8511 /* If no error has occurred and pPage has an overflow cell, call balance()
8512 ** to redistribute the cells within the tree. Since balance() may move
8513 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8516 ** Previous versions of SQLite called moveToRoot() to move the cursor
8517 ** back to the root page as balance() used to invalidate the contents
8518 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8519 ** set the cursor state to "invalid". This makes common insert operations
8522 ** There is a subtle but important optimization here too. When inserting
8523 ** multiple records into an intkey b-tree using a single cursor (as can
8524 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8525 ** is advantageous to leave the cursor pointing to the last entry in
8526 ** the b-tree if possible. If the cursor is left pointing to the last
8527 ** entry in the table, and the next row inserted has an integer key
8528 ** larger than the largest existing key, it is possible to insert the
8529 ** row without seeking the cursor. This can be a big performance boost.
8531 pCur
->info
.nSize
= 0;
8532 if( pPage
->nOverflow
){
8533 assert( rc
==SQLITE_OK
);
8534 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
8537 /* Must make sure nOverflow is reset to zero even if the balance()
8538 ** fails. Internal data structure corruption will result otherwise.
8539 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8540 ** from trying to save the current position of the cursor. */
8541 pCur
->pPage
->nOverflow
= 0;
8542 pCur
->eState
= CURSOR_INVALID
;
8543 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
8544 btreeReleaseAllCursorPages(pCur
);
8545 if( pCur
->pKeyInfo
){
8546 assert( pCur
->pKey
==0 );
8547 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
8548 if( pCur
->pKey
==0 ){
8551 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
8554 pCur
->eState
= CURSOR_REQUIRESEEK
;
8555 pCur
->nKey
= pX
->nKey
;
8558 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
8565 ** Delete the entry that the cursor is pointing to.
8567 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8568 ** the cursor is left pointing at an arbitrary location after the delete.
8569 ** But if that bit is set, then the cursor is left in a state such that
8570 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8571 ** as it would have been on if the call to BtreeDelete() had been omitted.
8573 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8574 ** associated with a single table entry and its indexes. Only one of those
8575 ** deletes is considered the "primary" delete. The primary delete occurs
8576 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8577 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8578 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8579 ** but which might be used by alternative storage engines.
8581 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
8582 Btree
*p
= pCur
->pBtree
;
8583 BtShared
*pBt
= p
->pBt
;
8584 int rc
; /* Return code */
8585 MemPage
*pPage
; /* Page to delete cell from */
8586 unsigned char *pCell
; /* Pointer to cell to delete */
8587 int iCellIdx
; /* Index of cell to delete */
8588 int iCellDepth
; /* Depth of node containing pCell */
8589 CellInfo info
; /* Size of the cell being deleted */
8590 int bSkipnext
= 0; /* Leaf cursor in SKIPNEXT state */
8591 u8 bPreserve
= flags
& BTREE_SAVEPOSITION
; /* Keep cursor valid */
8593 assert( cursorOwnsBtShared(pCur
) );
8594 assert( pBt
->inTransaction
==TRANS_WRITE
);
8595 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
8596 assert( pCur
->curFlags
& BTCF_WriteFlag
);
8597 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
8598 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
8599 assert( pCur
->ix
<pCur
->pPage
->nCell
);
8600 assert( pCur
->eState
==CURSOR_VALID
);
8601 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
8603 iCellDepth
= pCur
->iPage
;
8604 iCellIdx
= pCur
->ix
;
8605 pPage
= pCur
->pPage
;
8606 pCell
= findCell(pPage
, iCellIdx
);
8608 /* If the bPreserve flag is set to true, then the cursor position must
8609 ** be preserved following this delete operation. If the current delete
8610 ** will cause a b-tree rebalance, then this is done by saving the cursor
8611 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8614 ** Or, if the current delete will not cause a rebalance, then the cursor
8615 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8616 ** before or after the deleted entry. In this case set bSkipnext to true. */
8619 || (pPage
->nFree
+cellSizePtr(pPage
,pCell
)+2)>(int)(pBt
->usableSize
*2/3)
8621 /* A b-tree rebalance will be required after deleting this entry.
8622 ** Save the cursor key. */
8623 rc
= saveCursorKey(pCur
);
8630 /* If the page containing the entry to delete is not a leaf page, move
8631 ** the cursor to the largest entry in the tree that is smaller than
8632 ** the entry being deleted. This cell will replace the cell being deleted
8633 ** from the internal node. The 'previous' entry is used for this instead
8634 ** of the 'next' entry, as the previous entry is always a part of the
8635 ** sub-tree headed by the child page of the cell being deleted. This makes
8636 ** balancing the tree following the delete operation easier. */
8638 rc
= sqlite3BtreePrevious(pCur
, 0);
8639 assert( rc
!=SQLITE_DONE
);
8643 /* Save the positions of any other cursors open on this table before
8644 ** making any modifications. */
8645 if( pCur
->curFlags
& BTCF_Multiple
){
8646 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
8650 /* If this is a delete operation to remove a row from a table b-tree,
8651 ** invalidate any incrblob cursors open on the row being deleted. */
8652 if( pCur
->pKeyInfo
==0 ){
8653 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
8656 /* Make the page containing the entry to be deleted writable. Then free any
8657 ** overflow pages associated with the entry and finally remove the cell
8658 ** itself from within the page. */
8659 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8661 rc
= clearCell(pPage
, pCell
, &info
);
8662 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
8665 /* If the cell deleted was not located on a leaf page, then the cursor
8666 ** is currently pointing to the largest entry in the sub-tree headed
8667 ** by the child-page of the cell that was just deleted from an internal
8668 ** node. The cell from the leaf node needs to be moved to the internal
8669 ** node to replace the deleted cell. */
8671 MemPage
*pLeaf
= pCur
->pPage
;
8674 unsigned char *pTmp
;
8676 if( iCellDepth
<pCur
->iPage
-1 ){
8677 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
8679 n
= pCur
->pPage
->pgno
;
8681 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
8682 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
8683 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
8684 assert( MX_CELL_SIZE(pBt
) >= nCell
);
8685 pTmp
= pBt
->pTmpSpace
;
8687 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
8688 if( rc
==SQLITE_OK
){
8689 insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
, &rc
);
8691 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
8695 /* Balance the tree. If the entry deleted was located on a leaf page,
8696 ** then the cursor still points to that page. In this case the first
8697 ** call to balance() repairs the tree, and the if(...) condition is
8700 ** Otherwise, if the entry deleted was on an internal node page, then
8701 ** pCur is pointing to the leaf page from which a cell was removed to
8702 ** replace the cell deleted from the internal node. This is slightly
8703 ** tricky as the leaf node may be underfull, and the internal node may
8704 ** be either under or overfull. In this case run the balancing algorithm
8705 ** on the leaf node first. If the balance proceeds far enough up the
8706 ** tree that we can be sure that any problem in the internal node has
8707 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8708 ** walk the cursor up the tree to the internal node and balance it as
8711 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
8712 releasePageNotNull(pCur
->pPage
);
8714 while( pCur
->iPage
>iCellDepth
){
8715 releasePage(pCur
->apPage
[pCur
->iPage
--]);
8717 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
8721 if( rc
==SQLITE_OK
){
8723 assert( bPreserve
&& (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
8724 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
8725 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
8726 pCur
->eState
= CURSOR_SKIPNEXT
;
8727 if( iCellIdx
>=pPage
->nCell
){
8728 pCur
->skipNext
= -1;
8729 pCur
->ix
= pPage
->nCell
-1;
8734 rc
= moveToRoot(pCur
);
8736 btreeReleaseAllCursorPages(pCur
);
8737 pCur
->eState
= CURSOR_REQUIRESEEK
;
8739 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
8746 ** Create a new BTree table. Write into *piTable the page
8747 ** number for the root page of the new table.
8749 ** The type of type is determined by the flags parameter. Only the
8750 ** following values of flags are currently in use. Other values for
8751 ** flags might not work:
8753 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8754 ** BTREE_ZERODATA Used for SQL indices
8756 static int btreeCreateTable(Btree
*p
, int *piTable
, int createTabFlags
){
8757 BtShared
*pBt
= p
->pBt
;
8761 int ptfFlags
; /* Page-type flage for the root page of new table */
8763 assert( sqlite3BtreeHoldsMutex(p
) );
8764 assert( pBt
->inTransaction
==TRANS_WRITE
);
8765 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
8767 #ifdef SQLITE_OMIT_AUTOVACUUM
8768 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
8773 if( pBt
->autoVacuum
){
8774 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
8775 MemPage
*pPageMove
; /* The page to move to. */
8777 /* Creating a new table may probably require moving an existing database
8778 ** to make room for the new tables root page. In case this page turns
8779 ** out to be an overflow page, delete all overflow page-map caches
8780 ** held by open cursors.
8782 invalidateAllOverflowCache(pBt
);
8784 /* Read the value of meta[3] from the database to determine where the
8785 ** root page of the new table should go. meta[3] is the largest root-page
8786 ** created so far, so the new root-page is (meta[3]+1).
8788 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
8791 /* The new root-page may not be allocated on a pointer-map page, or the
8792 ** PENDING_BYTE page.
8794 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
8795 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
8798 assert( pgnoRoot
>=3 || CORRUPT_DB
);
8799 testcase( pgnoRoot
<3 );
8801 /* Allocate a page. The page that currently resides at pgnoRoot will
8802 ** be moved to the allocated page (unless the allocated page happens
8803 ** to reside at pgnoRoot).
8805 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
8806 if( rc
!=SQLITE_OK
){
8810 if( pgnoMove
!=pgnoRoot
){
8811 /* pgnoRoot is the page that will be used for the root-page of
8812 ** the new table (assuming an error did not occur). But we were
8813 ** allocated pgnoMove. If required (i.e. if it was not allocated
8814 ** by extending the file), the current page at position pgnoMove
8815 ** is already journaled.
8820 /* Save the positions of any open cursors. This is required in
8821 ** case they are holding a reference to an xFetch reference
8822 ** corresponding to page pgnoRoot. */
8823 rc
= saveAllCursors(pBt
, 0, 0);
8824 releasePage(pPageMove
);
8825 if( rc
!=SQLITE_OK
){
8829 /* Move the page currently at pgnoRoot to pgnoMove. */
8830 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
8831 if( rc
!=SQLITE_OK
){
8834 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
8835 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
8836 rc
= SQLITE_CORRUPT_BKPT
;
8838 if( rc
!=SQLITE_OK
){
8842 assert( eType
!=PTRMAP_ROOTPAGE
);
8843 assert( eType
!=PTRMAP_FREEPAGE
);
8844 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
8847 /* Obtain the page at pgnoRoot */
8848 if( rc
!=SQLITE_OK
){
8851 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
8852 if( rc
!=SQLITE_OK
){
8855 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8856 if( rc
!=SQLITE_OK
){
8864 /* Update the pointer-map and meta-data with the new root-page number. */
8865 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
8871 /* When the new root page was allocated, page 1 was made writable in
8872 ** order either to increase the database filesize, or to decrement the
8873 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8875 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
8876 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
8883 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
8887 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8888 if( createTabFlags
& BTREE_INTKEY
){
8889 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
8891 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
8893 zeroPage(pRoot
, ptfFlags
);
8894 sqlite3PagerUnref(pRoot
->pDbPage
);
8895 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
8896 *piTable
= (int)pgnoRoot
;
8899 int sqlite3BtreeCreateTable(Btree
*p
, int *piTable
, int flags
){
8901 sqlite3BtreeEnter(p
);
8902 rc
= btreeCreateTable(p
, piTable
, flags
);
8903 sqlite3BtreeLeave(p
);
8908 ** Erase the given database page and all its children. Return
8909 ** the page to the freelist.
8911 static int clearDatabasePage(
8912 BtShared
*pBt
, /* The BTree that contains the table */
8913 Pgno pgno
, /* Page number to clear */
8914 int freePageFlag
, /* Deallocate page if true */
8915 int *pnChange
/* Add number of Cells freed to this counter */
8919 unsigned char *pCell
;
8924 assert( sqlite3_mutex_held(pBt
->mutex
) );
8925 if( pgno
>btreePagecount(pBt
) ){
8926 return SQLITE_CORRUPT_BKPT
;
8928 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0, 0);
8931 rc
= SQLITE_CORRUPT_BKPT
;
8932 goto cleardatabasepage_out
;
8935 hdr
= pPage
->hdrOffset
;
8936 for(i
=0; i
<pPage
->nCell
; i
++){
8937 pCell
= findCell(pPage
, i
);
8939 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
8940 if( rc
) goto cleardatabasepage_out
;
8942 rc
= clearCell(pPage
, pCell
, &info
);
8943 if( rc
) goto cleardatabasepage_out
;
8946 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
8947 if( rc
) goto cleardatabasepage_out
;
8948 }else if( pnChange
){
8949 assert( pPage
->intKey
|| CORRUPT_DB
);
8950 testcase( !pPage
->intKey
);
8951 *pnChange
+= pPage
->nCell
;
8954 freePage(pPage
, &rc
);
8955 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
8956 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
8959 cleardatabasepage_out
:
8966 ** Delete all information from a single table in the database. iTable is
8967 ** the page number of the root of the table. After this routine returns,
8968 ** the root page is empty, but still exists.
8970 ** This routine will fail with SQLITE_LOCKED if there are any open
8971 ** read cursors on the table. Open write cursors are moved to the
8972 ** root of the table.
8974 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8975 ** integer value pointed to by pnChange is incremented by the number of
8976 ** entries in the table.
8978 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, int *pnChange
){
8980 BtShared
*pBt
= p
->pBt
;
8981 sqlite3BtreeEnter(p
);
8982 assert( p
->inTrans
==TRANS_WRITE
);
8984 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
8986 if( SQLITE_OK
==rc
){
8987 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8988 ** is the root of a table b-tree - if it is not, the following call is
8990 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
8991 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
8993 sqlite3BtreeLeave(p
);
8998 ** Delete all information from the single table that pCur is open on.
9000 ** This routine only work for pCur on an ephemeral table.
9002 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
9003 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
9007 ** Erase all information in a table and add the root of the table to
9008 ** the freelist. Except, the root of the principle table (the one on
9009 ** page 1) is never added to the freelist.
9011 ** This routine will fail with SQLITE_LOCKED if there are any open
9012 ** cursors on the table.
9014 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9015 ** root page in the database file, then the last root page
9016 ** in the database file is moved into the slot formerly occupied by
9017 ** iTable and that last slot formerly occupied by the last root page
9018 ** is added to the freelist instead of iTable. In this say, all
9019 ** root pages are kept at the beginning of the database file, which
9020 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9021 ** page number that used to be the last root page in the file before
9022 ** the move. If no page gets moved, *piMoved is set to 0.
9023 ** The last root page is recorded in meta[3] and the value of
9024 ** meta[3] is updated by this procedure.
9026 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
9029 BtShared
*pBt
= p
->pBt
;
9031 assert( sqlite3BtreeHoldsMutex(p
) );
9032 assert( p
->inTrans
==TRANS_WRITE
);
9033 assert( iTable
>=2 );
9035 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
9037 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
9045 #ifdef SQLITE_OMIT_AUTOVACUUM
9046 freePage(pPage
, &rc
);
9049 if( pBt
->autoVacuum
){
9051 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
9053 if( iTable
==maxRootPgno
){
9054 /* If the table being dropped is the table with the largest root-page
9055 ** number in the database, put the root page on the free list.
9057 freePage(pPage
, &rc
);
9059 if( rc
!=SQLITE_OK
){
9063 /* The table being dropped does not have the largest root-page
9064 ** number in the database. So move the page that does into the
9065 ** gap left by the deleted root-page.
9069 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9070 if( rc
!=SQLITE_OK
){
9073 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
9075 if( rc
!=SQLITE_OK
){
9079 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9080 freePage(pMove
, &rc
);
9082 if( rc
!=SQLITE_OK
){
9085 *piMoved
= maxRootPgno
;
9088 /* Set the new 'max-root-page' value in the database header. This
9089 ** is the old value less one, less one more if that happens to
9090 ** be a root-page number, less one again if that is the
9091 ** PENDING_BYTE_PAGE.
9094 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
9095 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
9098 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
9100 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
9102 freePage(pPage
, &rc
);
9108 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
9110 sqlite3BtreeEnter(p
);
9111 rc
= btreeDropTable(p
, iTable
, piMoved
);
9112 sqlite3BtreeLeave(p
);
9118 ** This function may only be called if the b-tree connection already
9119 ** has a read or write transaction open on the database.
9121 ** Read the meta-information out of a database file. Meta[0]
9122 ** is the number of free pages currently in the database. Meta[1]
9123 ** through meta[15] are available for use by higher layers. Meta[0]
9124 ** is read-only, the others are read/write.
9126 ** The schema layer numbers meta values differently. At the schema
9127 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9128 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
9130 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9131 ** of reading the value out of the header, it instead loads the "DataVersion"
9132 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9133 ** database file. It is a number computed by the pager. But its access
9134 ** pattern is the same as header meta values, and so it is convenient to
9135 ** read it from this routine.
9137 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
9138 BtShared
*pBt
= p
->pBt
;
9140 sqlite3BtreeEnter(p
);
9141 assert( p
->inTrans
>TRANS_NONE
);
9142 assert( SQLITE_OK
==querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
) );
9143 assert( pBt
->pPage1
);
9144 assert( idx
>=0 && idx
<=15 );
9146 if( idx
==BTREE_DATA_VERSION
){
9147 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iDataVersion
;
9149 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
9152 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9153 ** database, mark the database as read-only. */
9154 #ifdef SQLITE_OMIT_AUTOVACUUM
9155 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
9156 pBt
->btsFlags
|= BTS_READ_ONLY
;
9160 sqlite3BtreeLeave(p
);
9164 ** Write meta-information back into the database. Meta[0] is
9165 ** read-only and may not be written.
9167 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
9168 BtShared
*pBt
= p
->pBt
;
9171 assert( idx
>=1 && idx
<=15 );
9172 sqlite3BtreeEnter(p
);
9173 assert( p
->inTrans
==TRANS_WRITE
);
9174 assert( pBt
->pPage1
!=0 );
9175 pP1
= pBt
->pPage1
->aData
;
9176 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
9177 if( rc
==SQLITE_OK
){
9178 put4byte(&pP1
[36 + idx
*4], iMeta
);
9179 #ifndef SQLITE_OMIT_AUTOVACUUM
9180 if( idx
==BTREE_INCR_VACUUM
){
9181 assert( pBt
->autoVacuum
|| iMeta
==0 );
9182 assert( iMeta
==0 || iMeta
==1 );
9183 pBt
->incrVacuum
= (u8
)iMeta
;
9187 sqlite3BtreeLeave(p
);
9191 #ifndef SQLITE_OMIT_BTREECOUNT
9193 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9194 ** number of entries in the b-tree and write the result to *pnEntry.
9196 ** SQLITE_OK is returned if the operation is successfully executed.
9197 ** Otherwise, if an error is encountered (i.e. an IO error or database
9198 ** corruption) an SQLite error code is returned.
9200 int sqlite3BtreeCount(BtCursor
*pCur
, i64
*pnEntry
){
9201 i64 nEntry
= 0; /* Value to return in *pnEntry */
9202 int rc
; /* Return code */
9204 rc
= moveToRoot(pCur
);
9205 if( rc
==SQLITE_EMPTY
){
9210 /* Unless an error occurs, the following loop runs one iteration for each
9211 ** page in the B-Tree structure (not including overflow pages).
9213 while( rc
==SQLITE_OK
){
9214 int iIdx
; /* Index of child node in parent */
9215 MemPage
*pPage
; /* Current page of the b-tree */
9217 /* If this is a leaf page or the tree is not an int-key tree, then
9218 ** this page contains countable entries. Increment the entry counter
9221 pPage
= pCur
->pPage
;
9222 if( pPage
->leaf
|| !pPage
->intKey
){
9223 nEntry
+= pPage
->nCell
;
9226 /* pPage is a leaf node. This loop navigates the cursor so that it
9227 ** points to the first interior cell that it points to the parent of
9228 ** the next page in the tree that has not yet been visited. The
9229 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9230 ** of the page, or to the number of cells in the page if the next page
9231 ** to visit is the right-child of its parent.
9233 ** If all pages in the tree have been visited, return SQLITE_OK to the
9238 if( pCur
->iPage
==0 ){
9239 /* All pages of the b-tree have been visited. Return successfully. */
9241 return moveToRoot(pCur
);
9244 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
9247 pPage
= pCur
->pPage
;
9250 /* Descend to the child node of the cell that the cursor currently
9251 ** points at. This is the right-child if (iIdx==pPage->nCell).
9254 if( iIdx
==pPage
->nCell
){
9255 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
9257 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
9261 /* An error has occurred. Return an error code. */
9267 ** Return the pager associated with a BTree. This routine is used for
9268 ** testing and debugging only.
9270 Pager
*sqlite3BtreePager(Btree
*p
){
9271 return p
->pBt
->pPager
;
9274 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9276 ** Append a message to the error message string.
9278 static void checkAppendMsg(
9279 IntegrityCk
*pCheck
,
9280 const char *zFormat
,
9284 if( !pCheck
->mxErr
) return;
9287 va_start(ap
, zFormat
);
9288 if( pCheck
->errMsg
.nChar
){
9289 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
9292 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
, pCheck
->v1
, pCheck
->v2
);
9294 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
9296 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
9297 pCheck
->mallocFailed
= 1;
9300 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9302 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9305 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9306 ** corresponds to page iPg is already set.
9308 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
9309 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
9310 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
9314 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9316 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
9317 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
9318 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
9323 ** Add 1 to the reference count for page iPage. If this is the second
9324 ** reference to the page, add an error message to pCheck->zErrMsg.
9325 ** Return 1 if there are 2 or more references to the page and 0 if
9326 ** if this is the first reference to the page.
9328 ** Also check that the page number is in bounds.
9330 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
9331 if( iPage
==0 ) return 1;
9332 if( iPage
>pCheck
->nPage
){
9333 checkAppendMsg(pCheck
, "invalid page number %d", iPage
);
9336 if( getPageReferenced(pCheck
, iPage
) ){
9337 checkAppendMsg(pCheck
, "2nd reference to page %d", iPage
);
9340 setPageReferenced(pCheck
, iPage
);
9344 #ifndef SQLITE_OMIT_AUTOVACUUM
9346 ** Check that the entry in the pointer-map for page iChild maps to
9347 ** page iParent, pointer type ptrType. If not, append an error message
9350 static void checkPtrmap(
9351 IntegrityCk
*pCheck
, /* Integrity check context */
9352 Pgno iChild
, /* Child page number */
9353 u8 eType
, /* Expected pointer map type */
9354 Pgno iParent
/* Expected pointer map parent page number */
9360 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
9361 if( rc
!=SQLITE_OK
){
9362 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) pCheck
->mallocFailed
= 1;
9363 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%d", iChild
);
9367 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
9368 checkAppendMsg(pCheck
,
9369 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9370 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
9376 ** Check the integrity of the freelist or of an overflow page list.
9377 ** Verify that the number of pages on the list is N.
9379 static void checkList(
9380 IntegrityCk
*pCheck
, /* Integrity checking context */
9381 int isFreeList
, /* True for a freelist. False for overflow page list */
9382 int iPage
, /* Page number for first page in the list */
9383 int N
/* Expected number of pages in the list */
9388 while( N
-- > 0 && pCheck
->mxErr
){
9390 unsigned char *pOvflData
;
9392 checkAppendMsg(pCheck
,
9393 "%d of %d pages missing from overflow list starting at %d",
9394 N
+1, expected
, iFirst
);
9397 if( checkRef(pCheck
, iPage
) ) break;
9398 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
9399 checkAppendMsg(pCheck
, "failed to get page %d", iPage
);
9402 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
9404 int n
= get4byte(&pOvflData
[4]);
9405 #ifndef SQLITE_OMIT_AUTOVACUUM
9406 if( pCheck
->pBt
->autoVacuum
){
9407 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
9410 if( n
>(int)pCheck
->pBt
->usableSize
/4-2 ){
9411 checkAppendMsg(pCheck
,
9412 "freelist leaf count too big on page %d", iPage
);
9416 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
9417 #ifndef SQLITE_OMIT_AUTOVACUUM
9418 if( pCheck
->pBt
->autoVacuum
){
9419 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
9422 checkRef(pCheck
, iFreePage
);
9427 #ifndef SQLITE_OMIT_AUTOVACUUM
9429 /* If this database supports auto-vacuum and iPage is not the last
9430 ** page in this overflow list, check that the pointer-map entry for
9431 ** the following page matches iPage.
9433 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
9434 i
= get4byte(pOvflData
);
9435 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
9439 iPage
= get4byte(pOvflData
);
9440 sqlite3PagerUnref(pOvflPage
);
9442 if( isFreeList
&& N
<(iPage
!=0) ){
9443 checkAppendMsg(pCheck
, "free-page count in header is too small");
9447 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9450 ** An implementation of a min-heap.
9452 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
9453 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
9454 ** and aHeap[N*2+1].
9456 ** The heap property is this: Every node is less than or equal to both
9457 ** of its daughter nodes. A consequence of the heap property is that the
9458 ** root node aHeap[1] is always the minimum value currently in the heap.
9460 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9461 ** the heap, preserving the heap property. The btreeHeapPull() routine
9462 ** removes the root element from the heap (the minimum value in the heap)
9463 ** and then moves other nodes around as necessary to preserve the heap
9466 ** This heap is used for cell overlap and coverage testing. Each u32
9467 ** entry represents the span of a cell or freeblock on a btree page.
9468 ** The upper 16 bits are the index of the first byte of a range and the
9469 ** lower 16 bits are the index of the last byte of that range.
9471 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
9472 u32 j
, i
= ++aHeap
[0];
9474 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
9476 aHeap
[j
] = aHeap
[i
];
9481 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
9483 if( (x
= aHeap
[0])==0 ) return 0;
9485 aHeap
[1] = aHeap
[x
];
9486 aHeap
[x
] = 0xffffffff;
9489 while( (j
= i
*2)<=aHeap
[0] ){
9490 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
9491 if( aHeap
[i
]<aHeap
[j
] ) break;
9493 aHeap
[i
] = aHeap
[j
];
9500 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9502 ** Do various sanity checks on a single page of a tree. Return
9503 ** the tree depth. Root pages return 0. Parents of root pages
9504 ** return 1, and so forth.
9506 ** These checks are done:
9508 ** 1. Make sure that cells and freeblocks do not overlap
9509 ** but combine to completely cover the page.
9510 ** 2. Make sure integer cell keys are in order.
9511 ** 3. Check the integrity of overflow pages.
9512 ** 4. Recursively call checkTreePage on all children.
9513 ** 5. Verify that the depth of all children is the same.
9515 static int checkTreePage(
9516 IntegrityCk
*pCheck
, /* Context for the sanity check */
9517 int iPage
, /* Page number of the page to check */
9518 i64
*piMinKey
, /* Write minimum integer primary key here */
9519 i64 maxKey
/* Error if integer primary key greater than this */
9521 MemPage
*pPage
= 0; /* The page being analyzed */
9522 int i
; /* Loop counter */
9523 int rc
; /* Result code from subroutine call */
9524 int depth
= -1, d2
; /* Depth of a subtree */
9525 int pgno
; /* Page number */
9526 int nFrag
; /* Number of fragmented bytes on the page */
9527 int hdr
; /* Offset to the page header */
9528 int cellStart
; /* Offset to the start of the cell pointer array */
9529 int nCell
; /* Number of cells */
9530 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
9531 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
9532 ** False if IPK must be strictly less than maxKey */
9533 u8
*data
; /* Page content */
9534 u8
*pCell
; /* Cell content */
9535 u8
*pCellIdx
; /* Next element of the cell pointer array */
9536 BtShared
*pBt
; /* The BtShared object that owns pPage */
9537 u32 pc
; /* Address of a cell */
9538 u32 usableSize
; /* Usable size of the page */
9539 u32 contentOffset
; /* Offset to the start of the cell content area */
9540 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
9541 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
9542 const char *saved_zPfx
= pCheck
->zPfx
;
9543 int saved_v1
= pCheck
->v1
;
9544 int saved_v2
= pCheck
->v2
;
9547 /* Check that the page exists
9550 usableSize
= pBt
->usableSize
;
9551 if( iPage
==0 ) return 0;
9552 if( checkRef(pCheck
, iPage
) ) return 0;
9553 pCheck
->zPfx
= "Page %d: ";
9555 if( (rc
= btreeGetPage(pBt
, (Pgno
)iPage
, &pPage
, 0))!=0 ){
9556 checkAppendMsg(pCheck
,
9557 "unable to get the page. error code=%d", rc
);
9561 /* Clear MemPage.isInit to make sure the corruption detection code in
9562 ** btreeInitPage() is executed. */
9563 savedIsInit
= pPage
->isInit
;
9565 if( (rc
= btreeInitPage(pPage
))!=0 ){
9566 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
9567 checkAppendMsg(pCheck
,
9568 "btreeInitPage() returns error code %d", rc
);
9571 data
= pPage
->aData
;
9572 hdr
= pPage
->hdrOffset
;
9574 /* Set up for cell analysis */
9575 pCheck
->zPfx
= "On tree page %d cell %d: ";
9576 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
9577 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
9579 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9580 ** number of cells on the page. */
9581 nCell
= get2byte(&data
[hdr
+3]);
9582 assert( pPage
->nCell
==nCell
);
9584 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9585 ** immediately follows the b-tree page header. */
9586 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
9587 assert( pPage
->aCellIdx
==&data
[cellStart
] );
9588 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
9591 /* Analyze the right-child page of internal pages */
9592 pgno
= get4byte(&data
[hdr
+8]);
9593 #ifndef SQLITE_OMIT_AUTOVACUUM
9594 if( pBt
->autoVacuum
){
9595 pCheck
->zPfx
= "On page %d at right child: ";
9596 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
9599 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
9602 /* For leaf pages, the coverage check will occur in the same loop
9603 ** as the other cell checks, so initialize the heap. */
9604 heap
= pCheck
->heap
;
9608 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9609 ** integer offsets to the cell contents. */
9610 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
9613 /* Check cell size */
9615 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
9616 pc
= get2byteAligned(pCellIdx
);
9618 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
9619 checkAppendMsg(pCheck
, "Offset %d out of range %d..%d",
9620 pc
, contentOffset
, usableSize
-4);
9621 doCoverageCheck
= 0;
9625 pPage
->xParseCell(pPage
, pCell
, &info
);
9626 if( pc
+info
.nSize
>usableSize
){
9627 checkAppendMsg(pCheck
, "Extends off end of page");
9628 doCoverageCheck
= 0;
9632 /* Check for integer primary key out of range */
9633 if( pPage
->intKey
){
9634 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
9635 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
9638 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
9641 /* Check the content overflow list */
9642 if( info
.nPayload
>info
.nLocal
){
9643 int nPage
; /* Number of pages on the overflow chain */
9644 Pgno pgnoOvfl
; /* First page of the overflow chain */
9645 assert( pc
+ info
.nSize
- 4 <= usableSize
);
9646 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
9647 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
9648 #ifndef SQLITE_OMIT_AUTOVACUUM
9649 if( pBt
->autoVacuum
){
9650 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
9653 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
9657 /* Check sanity of left child page for internal pages */
9658 pgno
= get4byte(pCell
);
9659 #ifndef SQLITE_OMIT_AUTOVACUUM
9660 if( pBt
->autoVacuum
){
9661 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
9664 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
9667 checkAppendMsg(pCheck
, "Child page depth differs");
9671 /* Populate the coverage-checking heap for leaf pages */
9672 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
9677 /* Check for complete coverage of the page
9680 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
9681 /* For leaf pages, the min-heap has already been initialized and the
9682 ** cells have already been inserted. But for internal pages, that has
9683 ** not yet been done, so do it now */
9685 heap
= pCheck
->heap
;
9687 for(i
=nCell
-1; i
>=0; i
--){
9689 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
9690 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
9691 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
9694 /* Add the freeblocks to the min-heap
9696 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9697 ** is the offset of the first freeblock, or zero if there are no
9698 ** freeblocks on the page.
9700 i
= get2byte(&data
[hdr
+1]);
9703 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
9704 size
= get2byte(&data
[i
+2]);
9705 assert( (u32
)(i
+size
)<=usableSize
); /* Enforced by btreeInitPage() */
9706 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
9707 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9708 ** big-endian integer which is the offset in the b-tree page of the next
9709 ** freeblock in the chain, or zero if the freeblock is the last on the
9711 j
= get2byte(&data
[i
]);
9712 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9713 ** increasing offset. */
9714 assert( j
==0 || j
>i
+size
); /* Enforced by btreeInitPage() */
9715 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
9718 /* Analyze the min-heap looking for overlap between cells and/or
9719 ** freeblocks, and counting the number of untracked bytes in nFrag.
9721 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9722 ** There is an implied first entry the covers the page header, the cell
9723 ** pointer index, and the gap between the cell pointer index and the start
9726 ** The loop below pulls entries from the min-heap in order and compares
9727 ** the start_address against the previous end_address. If there is an
9728 ** overlap, that means bytes are used multiple times. If there is a gap,
9729 ** that gap is added to the fragmentation count.
9732 prev
= contentOffset
- 1; /* Implied first min-heap entry */
9733 while( btreeHeapPull(heap
,&x
) ){
9734 if( (prev
&0xffff)>=(x
>>16) ){
9735 checkAppendMsg(pCheck
,
9736 "Multiple uses for byte %u of page %d", x
>>16, iPage
);
9739 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
9743 nFrag
+= usableSize
- (prev
&0xffff) - 1;
9744 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9745 ** is stored in the fifth field of the b-tree page header.
9746 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9747 ** number of fragmented free bytes within the cell content area.
9749 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
9750 checkAppendMsg(pCheck
,
9751 "Fragmentation of %d bytes reported as %d on page %d",
9752 nFrag
, data
[hdr
+7], iPage
);
9757 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
9759 pCheck
->zPfx
= saved_zPfx
;
9760 pCheck
->v1
= saved_v1
;
9761 pCheck
->v2
= saved_v2
;
9764 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9766 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9768 ** This routine does a complete check of the given BTree file. aRoot[] is
9769 ** an array of pages numbers were each page number is the root page of
9770 ** a table. nRoot is the number of entries in aRoot.
9772 ** A read-only or read-write transaction must be opened before calling
9775 ** Write the number of error seen in *pnErr. Except for some memory
9776 ** allocation errors, an error message held in memory obtained from
9777 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
9778 ** returned. If a memory allocation error occurs, NULL is returned.
9780 char *sqlite3BtreeIntegrityCheck(
9781 Btree
*p
, /* The btree to be checked */
9782 int *aRoot
, /* An array of root pages numbers for individual trees */
9783 int nRoot
, /* Number of entries in aRoot[] */
9784 int mxErr
, /* Stop reporting errors after this many */
9785 int *pnErr
/* Write number of errors seen to this variable */
9789 BtShared
*pBt
= p
->pBt
;
9790 int savedDbFlags
= pBt
->db
->flags
;
9792 VVA_ONLY( int nRef
);
9794 sqlite3BtreeEnter(p
);
9795 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
9796 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
9799 sCheck
.pPager
= pBt
->pPager
;
9800 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
9801 sCheck
.mxErr
= mxErr
;
9803 sCheck
.mallocFailed
= 0;
9809 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
9810 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
9811 if( sCheck
.nPage
==0 ){
9812 goto integrity_ck_cleanup
;
9815 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
9816 if( !sCheck
.aPgRef
){
9817 sCheck
.mallocFailed
= 1;
9818 goto integrity_ck_cleanup
;
9820 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
9821 if( sCheck
.heap
==0 ){
9822 sCheck
.mallocFailed
= 1;
9823 goto integrity_ck_cleanup
;
9826 i
= PENDING_BYTE_PAGE(pBt
);
9827 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
9829 /* Check the integrity of the freelist
9831 sCheck
.zPfx
= "Main freelist: ";
9832 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
9833 get4byte(&pBt
->pPage1
->aData
[36]));
9836 /* Check all the tables.
9838 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
9839 pBt
->db
->flags
&= ~SQLITE_CellSizeCk
;
9840 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
9842 if( aRoot
[i
]==0 ) continue;
9843 #ifndef SQLITE_OMIT_AUTOVACUUM
9844 if( pBt
->autoVacuum
&& aRoot
[i
]>1 ){
9845 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
9848 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
9850 pBt
->db
->flags
= savedDbFlags
;
9852 /* Make sure every page in the file is referenced
9854 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
9855 #ifdef SQLITE_OMIT_AUTOVACUUM
9856 if( getPageReferenced(&sCheck
, i
)==0 ){
9857 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
9860 /* If the database supports auto-vacuum, make sure no tables contain
9861 ** references to pointer-map pages.
9863 if( getPageReferenced(&sCheck
, i
)==0 &&
9864 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
9865 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
9867 if( getPageReferenced(&sCheck
, i
)!=0 &&
9868 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
9869 checkAppendMsg(&sCheck
, "Pointer map page %d is referenced", i
);
9874 /* Clean up and report errors.
9876 integrity_ck_cleanup
:
9877 sqlite3PageFree(sCheck
.heap
);
9878 sqlite3_free(sCheck
.aPgRef
);
9879 if( sCheck
.mallocFailed
){
9880 sqlite3_str_reset(&sCheck
.errMsg
);
9883 *pnErr
= sCheck
.nErr
;
9884 if( sCheck
.nErr
==0 ) sqlite3_str_reset(&sCheck
.errMsg
);
9885 /* Make sure this analysis did not leave any unref() pages. */
9886 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
9887 sqlite3BtreeLeave(p
);
9888 return sqlite3StrAccumFinish(&sCheck
.errMsg
);
9890 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9893 ** Return the full pathname of the underlying database file. Return
9894 ** an empty string if the database is in-memory or a TEMP database.
9896 ** The pager filename is invariant as long as the pager is
9897 ** open so it is safe to access without the BtShared mutex.
9899 const char *sqlite3BtreeGetFilename(Btree
*p
){
9900 assert( p
->pBt
->pPager
!=0 );
9901 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
9905 ** Return the pathname of the journal file for this database. The return
9906 ** value of this routine is the same regardless of whether the journal file
9907 ** has been created or not.
9909 ** The pager journal filename is invariant as long as the pager is
9910 ** open so it is safe to access without the BtShared mutex.
9912 const char *sqlite3BtreeGetJournalname(Btree
*p
){
9913 assert( p
->pBt
->pPager
!=0 );
9914 return sqlite3PagerJournalname(p
->pBt
->pPager
);
9918 ** Return non-zero if a transaction is active.
9920 int sqlite3BtreeIsInTrans(Btree
*p
){
9921 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
9922 return (p
&& (p
->inTrans
==TRANS_WRITE
));
9925 #ifndef SQLITE_OMIT_WAL
9927 ** Run a checkpoint on the Btree passed as the first argument.
9929 ** Return SQLITE_LOCKED if this or any other connection has an open
9930 ** transaction on the shared-cache the argument Btree is connected to.
9932 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9934 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
9937 BtShared
*pBt
= p
->pBt
;
9938 sqlite3BtreeEnter(p
);
9939 if( pBt
->inTransaction
!=TRANS_NONE
){
9942 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
9944 sqlite3BtreeLeave(p
);
9951 ** Return non-zero if a read (or write) transaction is active.
9953 int sqlite3BtreeIsInReadTrans(Btree
*p
){
9955 assert( sqlite3_mutex_held(p
->db
->mutex
) );
9956 return p
->inTrans
!=TRANS_NONE
;
9959 int sqlite3BtreeIsInBackup(Btree
*p
){
9961 assert( sqlite3_mutex_held(p
->db
->mutex
) );
9962 return p
->nBackup
!=0;
9966 ** This function returns a pointer to a blob of memory associated with
9967 ** a single shared-btree. The memory is used by client code for its own
9968 ** purposes (for example, to store a high-level schema associated with
9969 ** the shared-btree). The btree layer manages reference counting issues.
9971 ** The first time this is called on a shared-btree, nBytes bytes of memory
9972 ** are allocated, zeroed, and returned to the caller. For each subsequent
9973 ** call the nBytes parameter is ignored and a pointer to the same blob
9974 ** of memory returned.
9976 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9977 ** allocated, a null pointer is returned. If the blob has already been
9978 ** allocated, it is returned as normal.
9980 ** Just before the shared-btree is closed, the function passed as the
9981 ** xFree argument when the memory allocation was made is invoked on the
9982 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9983 ** on the memory, the btree layer does that.
9985 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
9986 BtShared
*pBt
= p
->pBt
;
9987 sqlite3BtreeEnter(p
);
9988 if( !pBt
->pSchema
&& nBytes
){
9989 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
9990 pBt
->xFreeSchema
= xFree
;
9992 sqlite3BtreeLeave(p
);
9993 return pBt
->pSchema
;
9997 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9998 ** btree as the argument handle holds an exclusive lock on the
9999 ** sqlite_master table. Otherwise SQLITE_OK.
10001 int sqlite3BtreeSchemaLocked(Btree
*p
){
10003 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10004 sqlite3BtreeEnter(p
);
10005 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
10006 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
10007 sqlite3BtreeLeave(p
);
10012 #ifndef SQLITE_OMIT_SHARED_CACHE
10014 ** Obtain a lock on the table whose root page is iTab. The
10015 ** lock is a write lock if isWritelock is true or a read lock
10018 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
10019 int rc
= SQLITE_OK
;
10020 assert( p
->inTrans
!=TRANS_NONE
);
10022 u8 lockType
= READ_LOCK
+ isWriteLock
;
10023 assert( READ_LOCK
+1==WRITE_LOCK
);
10024 assert( isWriteLock
==0 || isWriteLock
==1 );
10026 sqlite3BtreeEnter(p
);
10027 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
10028 if( rc
==SQLITE_OK
){
10029 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
10031 sqlite3BtreeLeave(p
);
10037 #ifndef SQLITE_OMIT_INCRBLOB
10039 ** Argument pCsr must be a cursor opened for writing on an
10040 ** INTKEY table currently pointing at a valid table entry.
10041 ** This function modifies the data stored as part of that entry.
10043 ** Only the data content may only be modified, it is not possible to
10044 ** change the length of the data stored. If this function is called with
10045 ** parameters that attempt to write past the end of the existing data,
10046 ** no modifications are made and SQLITE_CORRUPT is returned.
10048 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
10050 assert( cursorOwnsBtShared(pCsr
) );
10051 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
10052 assert( pCsr
->curFlags
& BTCF_Incrblob
);
10054 rc
= restoreCursorPosition(pCsr
);
10055 if( rc
!=SQLITE_OK
){
10058 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
10059 if( pCsr
->eState
!=CURSOR_VALID
){
10060 return SQLITE_ABORT
;
10063 /* Save the positions of all other cursors open on this table. This is
10064 ** required in case any of them are holding references to an xFetch
10065 ** version of the b-tree page modified by the accessPayload call below.
10067 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10068 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10069 ** saveAllCursors can only return SQLITE_OK.
10071 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
10072 assert( rc
==SQLITE_OK
);
10074 /* Check some assumptions:
10075 ** (a) the cursor is open for writing,
10076 ** (b) there is a read/write transaction open,
10077 ** (c) the connection holds a write-lock on the table (if required),
10078 ** (d) there are no conflicting read-locks, and
10079 ** (e) the cursor points at a valid row of an intKey table.
10081 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
10082 return SQLITE_READONLY
;
10084 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
10085 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
10086 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
10087 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
10088 assert( pCsr
->pPage
->intKey
);
10090 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
10094 ** Mark this cursor as an incremental blob cursor.
10096 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
10097 pCur
->curFlags
|= BTCF_Incrblob
;
10098 pCur
->pBtree
->hasIncrblobCur
= 1;
10103 ** Set both the "read version" (single byte at byte offset 18) and
10104 ** "write version" (single byte at byte offset 19) fields in the database
10105 ** header to iVersion.
10107 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
10108 BtShared
*pBt
= pBtree
->pBt
;
10109 int rc
; /* Return code */
10111 assert( iVersion
==1 || iVersion
==2 );
10113 /* If setting the version fields to 1, do not automatically open the
10114 ** WAL connection, even if the version fields are currently set to 2.
10116 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10117 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
10119 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
10120 if( rc
==SQLITE_OK
){
10121 u8
*aData
= pBt
->pPage1
->aData
;
10122 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
10123 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
10124 if( rc
==SQLITE_OK
){
10125 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10126 if( rc
==SQLITE_OK
){
10127 aData
[18] = (u8
)iVersion
;
10128 aData
[19] = (u8
)iVersion
;
10134 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10139 ** Return true if the cursor has a hint specified. This routine is
10140 ** only used from within assert() statements
10142 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
10143 return (pCsr
->hints
& mask
)!=0;
10147 ** Return true if the given Btree is read-only.
10149 int sqlite3BtreeIsReadonly(Btree
*p
){
10150 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
10154 ** Return the size of the header added to each page by this module.
10156 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
10158 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10160 ** Return true if the Btree passed as the only argument is sharable.
10162 int sqlite3BtreeSharable(Btree
*p
){
10163 return p
->sharable
;
10167 ** Return the number of connections to the BtShared object accessed by
10168 ** the Btree handle passed as the only argument. For private caches
10169 ** this is always 1. For shared caches it may be 1 or greater.
10171 int sqlite3BtreeConnectionCount(Btree
*p
){
10172 testcase( p
->sharable
);
10173 return p
->pBt
->nRef
;