Fix problem with window functions min() and max() when used with a PARTITION
[sqlite.git] / src / vdbemem.c
blob6e0f8d6e07beafc1084413f9698c1db16a25f8b2
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
96 #ifdef SQLITE_DEBUG
98 ** Check that string value of pMem agrees with its integer or real value.
100 ** A single int or real value always converts to the same strings. But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent. See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around. It returns
112 ** true if everything is ok and false if there is a problem.
114 ** This routine is for use inside of assert() statements only.
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
138 return 1;
140 #endif /* SQLITE_DEBUG */
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157 int rc;
158 #endif
159 assert( (pMem->flags&MEM_RowSet)==0 );
160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163 return SQLITE_OK;
165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168 #else
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177 return rc;
178 #endif
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation. pMem must be either a string or
187 ** blob if bPreserve is true. If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
192 assert( (pMem->flags&MEM_RowSet)==0 );
193 testcase( pMem->db==0 );
195 /* If the bPreserve flag is set to true, then the memory cell must already
196 ** contain a valid string or blob value. */
197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202 if( n<32 ) n = 32;
203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225 pMem->xDel((void *)(pMem->z));
228 pMem->z = pMem->zMalloc;
229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230 return SQLITE_OK;
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249 if( pMem->szMalloc<szNew ){
250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
252 assert( (pMem->flags & MEM_Dyn)==0 );
253 pMem->z = pMem->zMalloc;
254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255 return SQLITE_OK;
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280 assert( (pMem->flags&MEM_RowSet)==0 );
281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
288 pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291 #endif
293 return SQLITE_OK;
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302 int nByte;
303 assert( pMem->flags & MEM_Zero );
304 assert( pMem->flags&MEM_Blob );
305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
320 return SQLITE_OK;
322 #endif
325 ** Make sure the given Mem is \u0000 terminated.
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
339 ** Add MEM_Str to the set of representations for the given Mem. Numbers
340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341 ** is a no-op.
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353 int fg = pMem->flags;
354 const int nByte = 32;
356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357 assert( !(fg&MEM_Zero) );
358 assert( !(fg&(MEM_Str|MEM_Blob)) );
359 assert( fg&(MEM_Int|MEM_Real) );
360 assert( (pMem->flags&MEM_RowSet)==0 );
361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365 pMem->enc = 0;
366 return SQLITE_NOMEM_BKPT;
369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
375 if( fg & MEM_Int ){
376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377 }else{
378 assert( fg & MEM_Real );
379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
381 pMem->n = sqlite3Strlen30(pMem->z);
382 pMem->enc = SQLITE_UTF8;
383 pMem->flags |= MEM_Str|MEM_Term;
384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385 sqlite3VdbeChangeEncoding(pMem, enc);
386 return SQLITE_OK;
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function. The
392 ** result of the aggregate is stored back into pMem.
394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395 ** otherwise.
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
419 ** Memory cell pAccum contains the context of an aggregate function.
420 ** This routine calls the xValue method for that function and stores
421 ** the results in memory cell pMem.
423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424 ** otherwise.
426 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
427 sqlite3_context ctx;
428 Mem t;
429 assert( pFunc!=0 );
430 assert( pFunc->xValue!=0 );
431 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
432 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
433 memset(&ctx, 0, sizeof(ctx));
434 memset(&t, 0, sizeof(t));
435 t.flags = MEM_Null;
436 t.db = pAccum->db;
437 ctx.pOut = pOut;
438 ctx.pMem = pAccum;
439 ctx.pFunc = pFunc;
440 pFunc->xValue(&ctx);
441 return ctx.isError;
445 ** If the memory cell contains a value that must be freed by
446 ** invoking the external callback in Mem.xDel, then this routine
447 ** will free that value. It also sets Mem.flags to MEM_Null.
449 ** This is a helper routine for sqlite3VdbeMemSetNull() and
450 ** for sqlite3VdbeMemRelease(). Use those other routines as the
451 ** entry point for releasing Mem resources.
453 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
454 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
455 assert( VdbeMemDynamic(p) );
456 if( p->flags&MEM_Agg ){
457 sqlite3VdbeMemFinalize(p, p->u.pDef);
458 assert( (p->flags & MEM_Agg)==0 );
459 testcase( p->flags & MEM_Dyn );
461 if( p->flags&MEM_Dyn ){
462 assert( (p->flags&MEM_RowSet)==0 );
463 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
464 p->xDel((void *)p->z);
465 }else if( p->flags&MEM_RowSet ){
466 sqlite3RowSetClear(p->u.pRowSet);
467 }else if( p->flags&MEM_Frame ){
468 VdbeFrame *pFrame = p->u.pFrame;
469 pFrame->pParent = pFrame->v->pDelFrame;
470 pFrame->v->pDelFrame = pFrame;
472 p->flags = MEM_Null;
476 ** Release memory held by the Mem p, both external memory cleared
477 ** by p->xDel and memory in p->zMalloc.
479 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
480 ** the unusual case where there really is memory in p that needs
481 ** to be freed.
483 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
484 if( VdbeMemDynamic(p) ){
485 vdbeMemClearExternAndSetNull(p);
487 if( p->szMalloc ){
488 sqlite3DbFreeNN(p->db, p->zMalloc);
489 p->szMalloc = 0;
491 p->z = 0;
495 ** Release any memory resources held by the Mem. Both the memory that is
496 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
498 ** Use this routine prior to clean up prior to abandoning a Mem, or to
499 ** reset a Mem back to its minimum memory utilization.
501 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
502 ** prior to inserting new content into the Mem.
504 void sqlite3VdbeMemRelease(Mem *p){
505 assert( sqlite3VdbeCheckMemInvariants(p) );
506 if( VdbeMemDynamic(p) || p->szMalloc ){
507 vdbeMemClear(p);
512 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
513 ** If the double is out of range of a 64-bit signed integer then
514 ** return the closest available 64-bit signed integer.
516 static SQLITE_NOINLINE i64 doubleToInt64(double r){
517 #ifdef SQLITE_OMIT_FLOATING_POINT
518 /* When floating-point is omitted, double and int64 are the same thing */
519 return r;
520 #else
522 ** Many compilers we encounter do not define constants for the
523 ** minimum and maximum 64-bit integers, or they define them
524 ** inconsistently. And many do not understand the "LL" notation.
525 ** So we define our own static constants here using nothing
526 ** larger than a 32-bit integer constant.
528 static const i64 maxInt = LARGEST_INT64;
529 static const i64 minInt = SMALLEST_INT64;
531 if( r<=(double)minInt ){
532 return minInt;
533 }else if( r>=(double)maxInt ){
534 return maxInt;
535 }else{
536 return (i64)r;
538 #endif
542 ** Return some kind of integer value which is the best we can do
543 ** at representing the value that *pMem describes as an integer.
544 ** If pMem is an integer, then the value is exact. If pMem is
545 ** a floating-point then the value returned is the integer part.
546 ** If pMem is a string or blob, then we make an attempt to convert
547 ** it into an integer and return that. If pMem represents an
548 ** an SQL-NULL value, return 0.
550 ** If pMem represents a string value, its encoding might be changed.
552 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
553 i64 value = 0;
554 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
555 return value;
557 i64 sqlite3VdbeIntValue(Mem *pMem){
558 int flags;
559 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
560 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
561 flags = pMem->flags;
562 if( flags & MEM_Int ){
563 return pMem->u.i;
564 }else if( flags & MEM_Real ){
565 return doubleToInt64(pMem->u.r);
566 }else if( flags & (MEM_Str|MEM_Blob) ){
567 assert( pMem->z || pMem->n==0 );
568 return memIntValue(pMem);
569 }else{
570 return 0;
575 ** Return the best representation of pMem that we can get into a
576 ** double. If pMem is already a double or an integer, return its
577 ** value. If it is a string or blob, try to convert it to a double.
578 ** If it is a NULL, return 0.0.
580 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
581 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
582 double val = (double)0;
583 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
584 return val;
586 double sqlite3VdbeRealValue(Mem *pMem){
587 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
588 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
589 if( pMem->flags & MEM_Real ){
590 return pMem->u.r;
591 }else if( pMem->flags & MEM_Int ){
592 return (double)pMem->u.i;
593 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
594 return memRealValue(pMem);
595 }else{
596 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
597 return (double)0;
602 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
603 ** Return the value ifNull if pMem is NULL.
605 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
606 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
607 if( pMem->flags & MEM_Null ) return ifNull;
608 return sqlite3VdbeRealValue(pMem)!=0.0;
612 ** The MEM structure is already a MEM_Real. Try to also make it a
613 ** MEM_Int if we can.
615 void sqlite3VdbeIntegerAffinity(Mem *pMem){
616 i64 ix;
617 assert( pMem->flags & MEM_Real );
618 assert( (pMem->flags & MEM_RowSet)==0 );
619 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
620 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
622 ix = doubleToInt64(pMem->u.r);
624 /* Only mark the value as an integer if
626 ** (1) the round-trip conversion real->int->real is a no-op, and
627 ** (2) The integer is neither the largest nor the smallest
628 ** possible integer (ticket #3922)
630 ** The second and third terms in the following conditional enforces
631 ** the second condition under the assumption that addition overflow causes
632 ** values to wrap around.
634 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
635 pMem->u.i = ix;
636 MemSetTypeFlag(pMem, MEM_Int);
641 ** Convert pMem to type integer. Invalidate any prior representations.
643 int sqlite3VdbeMemIntegerify(Mem *pMem){
644 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
645 assert( (pMem->flags & MEM_RowSet)==0 );
646 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
648 pMem->u.i = sqlite3VdbeIntValue(pMem);
649 MemSetTypeFlag(pMem, MEM_Int);
650 return SQLITE_OK;
654 ** Convert pMem so that it is of type MEM_Real.
655 ** Invalidate any prior representations.
657 int sqlite3VdbeMemRealify(Mem *pMem){
658 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
659 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
661 pMem->u.r = sqlite3VdbeRealValue(pMem);
662 MemSetTypeFlag(pMem, MEM_Real);
663 return SQLITE_OK;
666 /* Compare a floating point value to an integer. Return true if the two
667 ** values are the same within the precision of the floating point value.
669 ** For some versions of GCC on 32-bit machines, if you do the more obvious
670 ** comparison of "r1==(double)i" you sometimes get an answer of false even
671 ** though the r1 and (double)i values are bit-for-bit the same.
673 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
674 double r2 = (double)i;
675 return memcmp(&r1, &r2, sizeof(r1))==0;
679 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
680 ** Invalidate any prior representations.
682 ** Every effort is made to force the conversion, even if the input
683 ** is a string that does not look completely like a number. Convert
684 ** as much of the string as we can and ignore the rest.
686 int sqlite3VdbeMemNumerify(Mem *pMem){
687 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
688 int rc;
689 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
690 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
691 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
692 if( rc==0 ){
693 MemSetTypeFlag(pMem, MEM_Int);
694 }else{
695 i64 i = pMem->u.i;
696 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
697 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
698 pMem->u.i = i;
699 MemSetTypeFlag(pMem, MEM_Int);
700 }else{
701 MemSetTypeFlag(pMem, MEM_Real);
705 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
706 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
707 return SQLITE_OK;
711 ** Cast the datatype of the value in pMem according to the affinity
712 ** "aff". Casting is different from applying affinity in that a cast
713 ** is forced. In other words, the value is converted into the desired
714 ** affinity even if that results in loss of data. This routine is
715 ** used (for example) to implement the SQL "cast()" operator.
717 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
718 if( pMem->flags & MEM_Null ) return;
719 switch( aff ){
720 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
721 if( (pMem->flags & MEM_Blob)==0 ){
722 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
723 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
724 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
725 }else{
726 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
728 break;
730 case SQLITE_AFF_NUMERIC: {
731 sqlite3VdbeMemNumerify(pMem);
732 break;
734 case SQLITE_AFF_INTEGER: {
735 sqlite3VdbeMemIntegerify(pMem);
736 break;
738 case SQLITE_AFF_REAL: {
739 sqlite3VdbeMemRealify(pMem);
740 break;
742 default: {
743 assert( aff==SQLITE_AFF_TEXT );
744 assert( MEM_Str==(MEM_Blob>>3) );
745 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
746 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
747 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
748 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
749 break;
755 ** Initialize bulk memory to be a consistent Mem object.
757 ** The minimum amount of initialization feasible is performed.
759 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
760 assert( (flags & ~MEM_TypeMask)==0 );
761 pMem->flags = flags;
762 pMem->db = db;
763 pMem->szMalloc = 0;
768 ** Delete any previous value and set the value stored in *pMem to NULL.
770 ** This routine calls the Mem.xDel destructor to dispose of values that
771 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
772 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
773 ** routine to invoke the destructor and deallocates Mem.zMalloc.
775 ** Use this routine to reset the Mem prior to insert a new value.
777 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
779 void sqlite3VdbeMemSetNull(Mem *pMem){
780 if( VdbeMemDynamic(pMem) ){
781 vdbeMemClearExternAndSetNull(pMem);
782 }else{
783 pMem->flags = MEM_Null;
786 void sqlite3ValueSetNull(sqlite3_value *p){
787 sqlite3VdbeMemSetNull((Mem*)p);
791 ** Delete any previous value and set the value to be a BLOB of length
792 ** n containing all zeros.
794 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
795 sqlite3VdbeMemRelease(pMem);
796 pMem->flags = MEM_Blob|MEM_Zero;
797 pMem->n = 0;
798 if( n<0 ) n = 0;
799 pMem->u.nZero = n;
800 pMem->enc = SQLITE_UTF8;
801 pMem->z = 0;
805 ** The pMem is known to contain content that needs to be destroyed prior
806 ** to a value change. So invoke the destructor, then set the value to
807 ** a 64-bit integer.
809 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
810 sqlite3VdbeMemSetNull(pMem);
811 pMem->u.i = val;
812 pMem->flags = MEM_Int;
816 ** Delete any previous value and set the value stored in *pMem to val,
817 ** manifest type INTEGER.
819 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
820 if( VdbeMemDynamic(pMem) ){
821 vdbeReleaseAndSetInt64(pMem, val);
822 }else{
823 pMem->u.i = val;
824 pMem->flags = MEM_Int;
828 /* A no-op destructor */
829 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
832 ** Set the value stored in *pMem should already be a NULL.
833 ** Also store a pointer to go with it.
835 void sqlite3VdbeMemSetPointer(
836 Mem *pMem,
837 void *pPtr,
838 const char *zPType,
839 void (*xDestructor)(void*)
841 assert( pMem->flags==MEM_Null );
842 pMem->u.zPType = zPType ? zPType : "";
843 pMem->z = pPtr;
844 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
845 pMem->eSubtype = 'p';
846 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
849 #ifndef SQLITE_OMIT_FLOATING_POINT
851 ** Delete any previous value and set the value stored in *pMem to val,
852 ** manifest type REAL.
854 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
855 sqlite3VdbeMemSetNull(pMem);
856 if( !sqlite3IsNaN(val) ){
857 pMem->u.r = val;
858 pMem->flags = MEM_Real;
861 #endif
864 ** Delete any previous value and set the value of pMem to be an
865 ** empty boolean index.
867 void sqlite3VdbeMemSetRowSet(Mem *pMem){
868 sqlite3 *db = pMem->db;
869 assert( db!=0 );
870 assert( (pMem->flags & MEM_RowSet)==0 );
871 sqlite3VdbeMemRelease(pMem);
872 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
873 if( db->mallocFailed ){
874 pMem->flags = MEM_Null;
875 pMem->szMalloc = 0;
876 }else{
877 assert( pMem->zMalloc );
878 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
879 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
880 assert( pMem->u.pRowSet!=0 );
881 pMem->flags = MEM_RowSet;
886 ** Return true if the Mem object contains a TEXT or BLOB that is
887 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
889 int sqlite3VdbeMemTooBig(Mem *p){
890 assert( p->db!=0 );
891 if( p->flags & (MEM_Str|MEM_Blob) ){
892 int n = p->n;
893 if( p->flags & MEM_Zero ){
894 n += p->u.nZero;
896 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
898 return 0;
901 #ifdef SQLITE_DEBUG
903 ** This routine prepares a memory cell for modification by breaking
904 ** its link to a shallow copy and by marking any current shallow
905 ** copies of this cell as invalid.
907 ** This is used for testing and debugging only - to make sure shallow
908 ** copies are not misused.
910 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
911 int i;
912 Mem *pX;
913 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
914 if( pX->pScopyFrom==pMem ){
915 /* If pX is marked as a shallow copy of pMem, then verify that
916 ** no significant changes have been made to pX since the OP_SCopy.
917 ** A significant change would indicated a missed call to this
918 ** function for pX. Minor changes, such as adding or removing a
919 ** dual type, are allowed, as long as the underlying value is the
920 ** same. */
921 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
922 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
923 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
924 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
925 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
927 /* pMem is the register that is changing. But also mark pX as
928 ** undefined so that we can quickly detect the shallow-copy error */
929 pX->flags = MEM_Undefined;
930 pX->pScopyFrom = 0;
933 pMem->pScopyFrom = 0;
934 #ifdef SQLITE_DEBUG_COLUMN_CACHE
935 pMem->iTabColHash = 0;
936 #endif
938 #endif /* SQLITE_DEBUG */
942 ** Make an shallow copy of pFrom into pTo. Prior contents of
943 ** pTo are freed. The pFrom->z field is not duplicated. If
944 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
945 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
947 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
948 vdbeMemClearExternAndSetNull(pTo);
949 assert( !VdbeMemDynamic(pTo) );
950 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
952 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
953 assert( (pFrom->flags & MEM_RowSet)==0 );
954 assert( pTo->db==pFrom->db );
955 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
956 memcpy(pTo, pFrom, MEMCELLSIZE);
957 #ifdef SQLITE_DEBUG_COLUMNCACHE
958 pTo->iTabColHash = pFrom->iTabColHash;
959 #endif
960 if( (pFrom->flags&MEM_Static)==0 ){
961 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
962 assert( srcType==MEM_Ephem || srcType==MEM_Static );
963 pTo->flags |= srcType;
968 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
969 ** freed before the copy is made.
971 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
972 int rc = SQLITE_OK;
974 assert( (pFrom->flags & MEM_RowSet)==0 );
975 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
976 memcpy(pTo, pFrom, MEMCELLSIZE);
977 #ifdef SQLITE_DEBUG_COLUMNCACHE
978 pTo->iTabColHash = pFrom->iTabColHash;
979 #endif
980 pTo->flags &= ~MEM_Dyn;
981 if( pTo->flags&(MEM_Str|MEM_Blob) ){
982 if( 0==(pFrom->flags&MEM_Static) ){
983 pTo->flags |= MEM_Ephem;
984 rc = sqlite3VdbeMemMakeWriteable(pTo);
988 return rc;
992 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
993 ** freed. If pFrom contains ephemeral data, a copy is made.
995 ** pFrom contains an SQL NULL when this routine returns.
997 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
998 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
999 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1000 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1002 sqlite3VdbeMemRelease(pTo);
1003 memcpy(pTo, pFrom, sizeof(Mem));
1004 pFrom->flags = MEM_Null;
1005 pFrom->szMalloc = 0;
1009 ** Change the value of a Mem to be a string or a BLOB.
1011 ** The memory management strategy depends on the value of the xDel
1012 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1013 ** string is copied into a (possibly existing) buffer managed by the
1014 ** Mem structure. Otherwise, any existing buffer is freed and the
1015 ** pointer copied.
1017 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1018 ** size limit) then no memory allocation occurs. If the string can be
1019 ** stored without allocating memory, then it is. If a memory allocation
1020 ** is required to store the string, then value of pMem is unchanged. In
1021 ** either case, SQLITE_TOOBIG is returned.
1023 int sqlite3VdbeMemSetStr(
1024 Mem *pMem, /* Memory cell to set to string value */
1025 const char *z, /* String pointer */
1026 int n, /* Bytes in string, or negative */
1027 u8 enc, /* Encoding of z. 0 for BLOBs */
1028 void (*xDel)(void*) /* Destructor function */
1030 int nByte = n; /* New value for pMem->n */
1031 int iLimit; /* Maximum allowed string or blob size */
1032 u16 flags = 0; /* New value for pMem->flags */
1034 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1035 assert( (pMem->flags & MEM_RowSet)==0 );
1037 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1038 if( !z ){
1039 sqlite3VdbeMemSetNull(pMem);
1040 return SQLITE_OK;
1043 if( pMem->db ){
1044 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1045 }else{
1046 iLimit = SQLITE_MAX_LENGTH;
1048 flags = (enc==0?MEM_Blob:MEM_Str);
1049 if( nByte<0 ){
1050 assert( enc!=0 );
1051 if( enc==SQLITE_UTF8 ){
1052 nByte = 0x7fffffff & (int)strlen(z);
1053 if( nByte>iLimit ) nByte = iLimit+1;
1054 }else{
1055 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1057 flags |= MEM_Term;
1060 /* The following block sets the new values of Mem.z and Mem.xDel. It
1061 ** also sets a flag in local variable "flags" to indicate the memory
1062 ** management (one of MEM_Dyn or MEM_Static).
1064 if( xDel==SQLITE_TRANSIENT ){
1065 int nAlloc = nByte;
1066 if( flags&MEM_Term ){
1067 nAlloc += (enc==SQLITE_UTF8?1:2);
1069 if( nByte>iLimit ){
1070 return SQLITE_TOOBIG;
1072 testcase( nAlloc==0 );
1073 testcase( nAlloc==31 );
1074 testcase( nAlloc==32 );
1075 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1076 return SQLITE_NOMEM_BKPT;
1078 memcpy(pMem->z, z, nAlloc);
1079 }else if( xDel==SQLITE_DYNAMIC ){
1080 sqlite3VdbeMemRelease(pMem);
1081 pMem->zMalloc = pMem->z = (char *)z;
1082 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1083 }else{
1084 sqlite3VdbeMemRelease(pMem);
1085 pMem->z = (char *)z;
1086 pMem->xDel = xDel;
1087 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1090 pMem->n = nByte;
1091 pMem->flags = flags;
1092 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1094 #ifndef SQLITE_OMIT_UTF16
1095 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1096 return SQLITE_NOMEM_BKPT;
1098 #endif
1100 if( nByte>iLimit ){
1101 return SQLITE_TOOBIG;
1104 return SQLITE_OK;
1108 ** Move data out of a btree key or data field and into a Mem structure.
1109 ** The data is payload from the entry that pCur is currently pointing
1110 ** to. offset and amt determine what portion of the data or key to retrieve.
1111 ** The result is written into the pMem element.
1113 ** The pMem object must have been initialized. This routine will use
1114 ** pMem->zMalloc to hold the content from the btree, if possible. New
1115 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1116 ** is responsible for making sure that the pMem object is eventually
1117 ** destroyed.
1119 ** If this routine fails for any reason (malloc returns NULL or unable
1120 ** to read from the disk) then the pMem is left in an inconsistent state.
1122 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1123 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1124 u32 offset, /* Offset from the start of data to return bytes from. */
1125 u32 amt, /* Number of bytes to return. */
1126 Mem *pMem /* OUT: Return data in this Mem structure. */
1128 int rc;
1129 pMem->flags = MEM_Null;
1130 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1131 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1132 if( rc==SQLITE_OK ){
1133 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1134 pMem->flags = MEM_Blob;
1135 pMem->n = (int)amt;
1136 }else{
1137 sqlite3VdbeMemRelease(pMem);
1140 return rc;
1142 int sqlite3VdbeMemFromBtree(
1143 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1144 u32 offset, /* Offset from the start of data to return bytes from. */
1145 u32 amt, /* Number of bytes to return. */
1146 Mem *pMem /* OUT: Return data in this Mem structure. */
1148 char *zData; /* Data from the btree layer */
1149 u32 available = 0; /* Number of bytes available on the local btree page */
1150 int rc = SQLITE_OK; /* Return code */
1152 assert( sqlite3BtreeCursorIsValid(pCur) );
1153 assert( !VdbeMemDynamic(pMem) );
1155 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1156 ** that both the BtShared and database handle mutexes are held. */
1157 assert( (pMem->flags & MEM_RowSet)==0 );
1158 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1159 assert( zData!=0 );
1161 if( offset+amt<=available ){
1162 pMem->z = &zData[offset];
1163 pMem->flags = MEM_Blob|MEM_Ephem;
1164 pMem->n = (int)amt;
1165 }else{
1166 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1169 return rc;
1173 ** The pVal argument is known to be a value other than NULL.
1174 ** Convert it into a string with encoding enc and return a pointer
1175 ** to a zero-terminated version of that string.
1177 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1178 assert( pVal!=0 );
1179 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1180 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1181 assert( (pVal->flags & MEM_RowSet)==0 );
1182 assert( (pVal->flags & (MEM_Null))==0 );
1183 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1184 if( ExpandBlob(pVal) ) return 0;
1185 pVal->flags |= MEM_Str;
1186 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1187 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1189 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1190 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1191 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1192 return 0;
1195 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1196 }else{
1197 sqlite3VdbeMemStringify(pVal, enc, 0);
1198 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1200 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1201 || pVal->db->mallocFailed );
1202 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1203 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1204 return pVal->z;
1205 }else{
1206 return 0;
1210 /* This function is only available internally, it is not part of the
1211 ** external API. It works in a similar way to sqlite3_value_text(),
1212 ** except the data returned is in the encoding specified by the second
1213 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1214 ** SQLITE_UTF8.
1216 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1217 ** If that is the case, then the result must be aligned on an even byte
1218 ** boundary.
1220 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1221 if( !pVal ) return 0;
1222 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1223 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1224 assert( (pVal->flags & MEM_RowSet)==0 );
1225 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1226 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1227 return pVal->z;
1229 if( pVal->flags&MEM_Null ){
1230 return 0;
1232 return valueToText(pVal, enc);
1236 ** Create a new sqlite3_value object.
1238 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1239 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1240 if( p ){
1241 p->flags = MEM_Null;
1242 p->db = db;
1244 return p;
1248 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1249 ** valueNew(). See comments above valueNew() for details.
1251 struct ValueNewStat4Ctx {
1252 Parse *pParse;
1253 Index *pIdx;
1254 UnpackedRecord **ppRec;
1255 int iVal;
1259 ** Allocate and return a pointer to a new sqlite3_value object. If
1260 ** the second argument to this function is NULL, the object is allocated
1261 ** by calling sqlite3ValueNew().
1263 ** Otherwise, if the second argument is non-zero, then this function is
1264 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1265 ** already been allocated, allocate the UnpackedRecord structure that
1266 ** that function will return to its caller here. Then return a pointer to
1267 ** an sqlite3_value within the UnpackedRecord.a[] array.
1269 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1271 if( p ){
1272 UnpackedRecord *pRec = p->ppRec[0];
1274 if( pRec==0 ){
1275 Index *pIdx = p->pIdx; /* Index being probed */
1276 int nByte; /* Bytes of space to allocate */
1277 int i; /* Counter variable */
1278 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1280 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1281 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1282 if( pRec ){
1283 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1284 if( pRec->pKeyInfo ){
1285 assert( pRec->pKeyInfo->nAllField==nCol );
1286 assert( pRec->pKeyInfo->enc==ENC(db) );
1287 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1288 for(i=0; i<nCol; i++){
1289 pRec->aMem[i].flags = MEM_Null;
1290 pRec->aMem[i].db = db;
1292 }else{
1293 sqlite3DbFreeNN(db, pRec);
1294 pRec = 0;
1297 if( pRec==0 ) return 0;
1298 p->ppRec[0] = pRec;
1301 pRec->nField = p->iVal+1;
1302 return &pRec->aMem[p->iVal];
1304 #else
1305 UNUSED_PARAMETER(p);
1306 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1307 return sqlite3ValueNew(db);
1311 ** The expression object indicated by the second argument is guaranteed
1312 ** to be a scalar SQL function. If
1314 ** * all function arguments are SQL literals,
1315 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1316 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1318 ** then this routine attempts to invoke the SQL function. Assuming no
1319 ** error occurs, output parameter (*ppVal) is set to point to a value
1320 ** object containing the result before returning SQLITE_OK.
1322 ** Affinity aff is applied to the result of the function before returning.
1323 ** If the result is a text value, the sqlite3_value object uses encoding
1324 ** enc.
1326 ** If the conditions above are not met, this function returns SQLITE_OK
1327 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1328 ** NULL and an SQLite error code returned.
1330 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1331 static int valueFromFunction(
1332 sqlite3 *db, /* The database connection */
1333 Expr *p, /* The expression to evaluate */
1334 u8 enc, /* Encoding to use */
1335 u8 aff, /* Affinity to use */
1336 sqlite3_value **ppVal, /* Write the new value here */
1337 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1339 sqlite3_context ctx; /* Context object for function invocation */
1340 sqlite3_value **apVal = 0; /* Function arguments */
1341 int nVal = 0; /* Size of apVal[] array */
1342 FuncDef *pFunc = 0; /* Function definition */
1343 sqlite3_value *pVal = 0; /* New value */
1344 int rc = SQLITE_OK; /* Return code */
1345 ExprList *pList = 0; /* Function arguments */
1346 int i; /* Iterator variable */
1348 assert( pCtx!=0 );
1349 assert( (p->flags & EP_TokenOnly)==0 );
1350 pList = p->x.pList;
1351 if( pList ) nVal = pList->nExpr;
1352 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1353 assert( pFunc );
1354 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1355 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1357 return SQLITE_OK;
1360 if( pList ){
1361 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1362 if( apVal==0 ){
1363 rc = SQLITE_NOMEM_BKPT;
1364 goto value_from_function_out;
1366 for(i=0; i<nVal; i++){
1367 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1368 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1372 pVal = valueNew(db, pCtx);
1373 if( pVal==0 ){
1374 rc = SQLITE_NOMEM_BKPT;
1375 goto value_from_function_out;
1378 assert( pCtx->pParse->rc==SQLITE_OK );
1379 memset(&ctx, 0, sizeof(ctx));
1380 ctx.pOut = pVal;
1381 ctx.pFunc = pFunc;
1382 pFunc->xSFunc(&ctx, nVal, apVal);
1383 if( ctx.isError ){
1384 rc = ctx.isError;
1385 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1386 }else{
1387 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1388 assert( rc==SQLITE_OK );
1389 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1390 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1391 rc = SQLITE_TOOBIG;
1392 pCtx->pParse->nErr++;
1395 pCtx->pParse->rc = rc;
1397 value_from_function_out:
1398 if( rc!=SQLITE_OK ){
1399 pVal = 0;
1401 if( apVal ){
1402 for(i=0; i<nVal; i++){
1403 sqlite3ValueFree(apVal[i]);
1405 sqlite3DbFreeNN(db, apVal);
1408 *ppVal = pVal;
1409 return rc;
1411 #else
1412 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1413 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1416 ** Extract a value from the supplied expression in the manner described
1417 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1418 ** using valueNew().
1420 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1421 ** has been allocated, it is freed before returning. Or, if pCtx is not
1422 ** NULL, it is assumed that the caller will free any allocated object
1423 ** in all cases.
1425 static int valueFromExpr(
1426 sqlite3 *db, /* The database connection */
1427 Expr *pExpr, /* The expression to evaluate */
1428 u8 enc, /* Encoding to use */
1429 u8 affinity, /* Affinity to use */
1430 sqlite3_value **ppVal, /* Write the new value here */
1431 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1433 int op;
1434 char *zVal = 0;
1435 sqlite3_value *pVal = 0;
1436 int negInt = 1;
1437 const char *zNeg = "";
1438 int rc = SQLITE_OK;
1440 assert( pExpr!=0 );
1441 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1442 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1443 if( op==TK_REGISTER ) op = pExpr->op2;
1444 #else
1445 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1446 #endif
1448 /* Compressed expressions only appear when parsing the DEFAULT clause
1449 ** on a table column definition, and hence only when pCtx==0. This
1450 ** check ensures that an EP_TokenOnly expression is never passed down
1451 ** into valueFromFunction(). */
1452 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1454 if( op==TK_CAST ){
1455 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1456 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1457 testcase( rc!=SQLITE_OK );
1458 if( *ppVal ){
1459 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1460 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1462 return rc;
1465 /* Handle negative integers in a single step. This is needed in the
1466 ** case when the value is -9223372036854775808.
1468 if( op==TK_UMINUS
1469 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1470 pExpr = pExpr->pLeft;
1471 op = pExpr->op;
1472 negInt = -1;
1473 zNeg = "-";
1476 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1477 pVal = valueNew(db, pCtx);
1478 if( pVal==0 ) goto no_mem;
1479 if( ExprHasProperty(pExpr, EP_IntValue) ){
1480 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1481 }else{
1482 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1483 if( zVal==0 ) goto no_mem;
1484 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1486 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1487 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1488 }else{
1489 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1491 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1492 if( enc!=SQLITE_UTF8 ){
1493 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1495 }else if( op==TK_UMINUS ) {
1496 /* This branch happens for multiple negative signs. Ex: -(-5) */
1497 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1498 && pVal!=0
1500 sqlite3VdbeMemNumerify(pVal);
1501 if( pVal->flags & MEM_Real ){
1502 pVal->u.r = -pVal->u.r;
1503 }else if( pVal->u.i==SMALLEST_INT64 ){
1504 pVal->u.r = -(double)SMALLEST_INT64;
1505 MemSetTypeFlag(pVal, MEM_Real);
1506 }else{
1507 pVal->u.i = -pVal->u.i;
1509 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1511 }else if( op==TK_NULL ){
1512 pVal = valueNew(db, pCtx);
1513 if( pVal==0 ) goto no_mem;
1514 sqlite3VdbeMemNumerify(pVal);
1516 #ifndef SQLITE_OMIT_BLOB_LITERAL
1517 else if( op==TK_BLOB ){
1518 int nVal;
1519 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1520 assert( pExpr->u.zToken[1]=='\'' );
1521 pVal = valueNew(db, pCtx);
1522 if( !pVal ) goto no_mem;
1523 zVal = &pExpr->u.zToken[2];
1524 nVal = sqlite3Strlen30(zVal)-1;
1525 assert( zVal[nVal]=='\'' );
1526 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1527 0, SQLITE_DYNAMIC);
1529 #endif
1530 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1531 else if( op==TK_FUNCTION && pCtx!=0 ){
1532 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1534 #endif
1535 else if( op==TK_TRUEFALSE ){
1536 pVal = valueNew(db, pCtx);
1537 pVal->flags = MEM_Int;
1538 pVal->u.i = pExpr->u.zToken[4]==0;
1541 *ppVal = pVal;
1542 return rc;
1544 no_mem:
1545 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1546 if( pCtx==0 || pCtx->pParse->nErr==0 )
1547 #endif
1548 sqlite3OomFault(db);
1549 sqlite3DbFree(db, zVal);
1550 assert( *ppVal==0 );
1551 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1552 if( pCtx==0 ) sqlite3ValueFree(pVal);
1553 #else
1554 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1555 #endif
1556 return SQLITE_NOMEM_BKPT;
1560 ** Create a new sqlite3_value object, containing the value of pExpr.
1562 ** This only works for very simple expressions that consist of one constant
1563 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1564 ** be converted directly into a value, then the value is allocated and
1565 ** a pointer written to *ppVal. The caller is responsible for deallocating
1566 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1567 ** cannot be converted to a value, then *ppVal is set to NULL.
1569 int sqlite3ValueFromExpr(
1570 sqlite3 *db, /* The database connection */
1571 Expr *pExpr, /* The expression to evaluate */
1572 u8 enc, /* Encoding to use */
1573 u8 affinity, /* Affinity to use */
1574 sqlite3_value **ppVal /* Write the new value here */
1576 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1579 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1581 ** The implementation of the sqlite_record() function. This function accepts
1582 ** a single argument of any type. The return value is a formatted database
1583 ** record (a blob) containing the argument value.
1585 ** This is used to convert the value stored in the 'sample' column of the
1586 ** sqlite_stat3 table to the record format SQLite uses internally.
1588 static void recordFunc(
1589 sqlite3_context *context,
1590 int argc,
1591 sqlite3_value **argv
1593 const int file_format = 1;
1594 u32 iSerial; /* Serial type */
1595 int nSerial; /* Bytes of space for iSerial as varint */
1596 u32 nVal; /* Bytes of space required for argv[0] */
1597 int nRet;
1598 sqlite3 *db;
1599 u8 *aRet;
1601 UNUSED_PARAMETER( argc );
1602 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1603 nSerial = sqlite3VarintLen(iSerial);
1604 db = sqlite3_context_db_handle(context);
1606 nRet = 1 + nSerial + nVal;
1607 aRet = sqlite3DbMallocRawNN(db, nRet);
1608 if( aRet==0 ){
1609 sqlite3_result_error_nomem(context);
1610 }else{
1611 aRet[0] = nSerial+1;
1612 putVarint32(&aRet[1], iSerial);
1613 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1614 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1615 sqlite3DbFreeNN(db, aRet);
1620 ** Register built-in functions used to help read ANALYZE data.
1622 void sqlite3AnalyzeFunctions(void){
1623 static FuncDef aAnalyzeTableFuncs[] = {
1624 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1626 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1630 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1632 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1633 ** pAlloc if one does not exist and the new value is added to the
1634 ** UnpackedRecord object.
1636 ** A value is extracted in the following cases:
1638 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1640 ** * The expression is a bound variable, and this is a reprepare, or
1642 ** * The expression is a literal value.
1644 ** On success, *ppVal is made to point to the extracted value. The caller
1645 ** is responsible for ensuring that the value is eventually freed.
1647 static int stat4ValueFromExpr(
1648 Parse *pParse, /* Parse context */
1649 Expr *pExpr, /* The expression to extract a value from */
1650 u8 affinity, /* Affinity to use */
1651 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1652 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1654 int rc = SQLITE_OK;
1655 sqlite3_value *pVal = 0;
1656 sqlite3 *db = pParse->db;
1658 /* Skip over any TK_COLLATE nodes */
1659 pExpr = sqlite3ExprSkipCollate(pExpr);
1661 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1662 if( !pExpr ){
1663 pVal = valueNew(db, pAlloc);
1664 if( pVal ){
1665 sqlite3VdbeMemSetNull((Mem*)pVal);
1667 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1668 Vdbe *v;
1669 int iBindVar = pExpr->iColumn;
1670 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1671 if( (v = pParse->pReprepare)!=0 ){
1672 pVal = valueNew(db, pAlloc);
1673 if( pVal ){
1674 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1675 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1676 pVal->db = pParse->db;
1679 }else{
1680 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1683 assert( pVal==0 || pVal->db==db );
1684 *ppVal = pVal;
1685 return rc;
1689 ** This function is used to allocate and populate UnpackedRecord
1690 ** structures intended to be compared against sample index keys stored
1691 ** in the sqlite_stat4 table.
1693 ** A single call to this function populates zero or more fields of the
1694 ** record starting with field iVal (fields are numbered from left to
1695 ** right starting with 0). A single field is populated if:
1697 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1699 ** * The expression is a bound variable, and this is a reprepare, or
1701 ** * The sqlite3ValueFromExpr() function is able to extract a value
1702 ** from the expression (i.e. the expression is a literal value).
1704 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1705 ** vector components that match either of the two latter criteria listed
1706 ** above.
1708 ** Before any value is appended to the record, the affinity of the
1709 ** corresponding column within index pIdx is applied to it. Before
1710 ** this function returns, output parameter *pnExtract is set to the
1711 ** number of values appended to the record.
1713 ** When this function is called, *ppRec must either point to an object
1714 ** allocated by an earlier call to this function, or must be NULL. If it
1715 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1716 ** is allocated (and *ppRec set to point to it) before returning.
1718 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1719 ** error if a value cannot be extracted from pExpr. If an error does
1720 ** occur, an SQLite error code is returned.
1722 int sqlite3Stat4ProbeSetValue(
1723 Parse *pParse, /* Parse context */
1724 Index *pIdx, /* Index being probed */
1725 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1726 Expr *pExpr, /* The expression to extract a value from */
1727 int nElem, /* Maximum number of values to append */
1728 int iVal, /* Array element to populate */
1729 int *pnExtract /* OUT: Values appended to the record */
1731 int rc = SQLITE_OK;
1732 int nExtract = 0;
1734 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1735 int i;
1736 struct ValueNewStat4Ctx alloc;
1738 alloc.pParse = pParse;
1739 alloc.pIdx = pIdx;
1740 alloc.ppRec = ppRec;
1742 for(i=0; i<nElem; i++){
1743 sqlite3_value *pVal = 0;
1744 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1745 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1746 alloc.iVal = iVal+i;
1747 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1748 if( !pVal ) break;
1749 nExtract++;
1753 *pnExtract = nExtract;
1754 return rc;
1758 ** Attempt to extract a value from expression pExpr using the methods
1759 ** as described for sqlite3Stat4ProbeSetValue() above.
1761 ** If successful, set *ppVal to point to a new value object and return
1762 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1763 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1764 ** does occur, return an SQLite error code. The final value of *ppVal
1765 ** is undefined in this case.
1767 int sqlite3Stat4ValueFromExpr(
1768 Parse *pParse, /* Parse context */
1769 Expr *pExpr, /* The expression to extract a value from */
1770 u8 affinity, /* Affinity to use */
1771 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1773 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1777 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1778 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1779 ** sqlite3_value object is allocated.
1781 ** If *ppVal is initially NULL then the caller is responsible for
1782 ** ensuring that the value written into *ppVal is eventually freed.
1784 int sqlite3Stat4Column(
1785 sqlite3 *db, /* Database handle */
1786 const void *pRec, /* Pointer to buffer containing record */
1787 int nRec, /* Size of buffer pRec in bytes */
1788 int iCol, /* Column to extract */
1789 sqlite3_value **ppVal /* OUT: Extracted value */
1791 u32 t; /* a column type code */
1792 int nHdr; /* Size of the header in the record */
1793 int iHdr; /* Next unread header byte */
1794 int iField; /* Next unread data byte */
1795 int szField; /* Size of the current data field */
1796 int i; /* Column index */
1797 u8 *a = (u8*)pRec; /* Typecast byte array */
1798 Mem *pMem = *ppVal; /* Write result into this Mem object */
1800 assert( iCol>0 );
1801 iHdr = getVarint32(a, nHdr);
1802 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1803 iField = nHdr;
1804 for(i=0; i<=iCol; i++){
1805 iHdr += getVarint32(&a[iHdr], t);
1806 testcase( iHdr==nHdr );
1807 testcase( iHdr==nHdr+1 );
1808 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1809 szField = sqlite3VdbeSerialTypeLen(t);
1810 iField += szField;
1812 testcase( iField==nRec );
1813 testcase( iField==nRec+1 );
1814 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1815 if( pMem==0 ){
1816 pMem = *ppVal = sqlite3ValueNew(db);
1817 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1819 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1820 pMem->enc = ENC(db);
1821 return SQLITE_OK;
1825 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1826 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1827 ** the object.
1829 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1830 if( pRec ){
1831 int i;
1832 int nCol = pRec->pKeyInfo->nAllField;
1833 Mem *aMem = pRec->aMem;
1834 sqlite3 *db = aMem[0].db;
1835 for(i=0; i<nCol; i++){
1836 sqlite3VdbeMemRelease(&aMem[i]);
1838 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1839 sqlite3DbFreeNN(db, pRec);
1842 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1845 ** Change the string value of an sqlite3_value object
1847 void sqlite3ValueSetStr(
1848 sqlite3_value *v, /* Value to be set */
1849 int n, /* Length of string z */
1850 const void *z, /* Text of the new string */
1851 u8 enc, /* Encoding to use */
1852 void (*xDel)(void*) /* Destructor for the string */
1854 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1858 ** Free an sqlite3_value object
1860 void sqlite3ValueFree(sqlite3_value *v){
1861 if( !v ) return;
1862 sqlite3VdbeMemRelease((Mem *)v);
1863 sqlite3DbFreeNN(((Mem*)v)->db, v);
1867 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1868 ** sqlite3_value object assuming that it uses the encoding "enc".
1869 ** The valueBytes() routine is a helper function.
1871 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1872 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1874 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1875 Mem *p = (Mem*)pVal;
1876 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1877 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1878 return p->n;
1880 if( (p->flags & MEM_Blob)!=0 ){
1881 if( p->flags & MEM_Zero ){
1882 return p->n + p->u.nZero;
1883 }else{
1884 return p->n;
1887 if( p->flags & MEM_Null ) return 0;
1888 return valueBytes(pVal, enc);