Merge latest trunk changes with this branch.
[sqlite.git] / src / insert.c
blob78b07a025c0586815c3d63821bccbbc086bcc7f8
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 if( x>=0 ){
92 pIdx->zColAff[n] = pTab->aCol[x].affinity;
93 }else if( x==XN_ROWID ){
94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95 }else{
96 char aff;
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100 if( aff==0 ) aff = SQLITE_AFF_BLOB;
101 pIdx->zColAff[n] = aff;
104 pIdx->zColAff[n] = 0;
107 return pIdx->zColAff;
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following. Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should be
118 ** an OP_MakeRecord) to the affinity string.
120 ** A column affinity string has one character per column:
122 ** Character Column affinity
123 ** ------------------------------
124 ** 'A' BLOB
125 ** 'B' TEXT
126 ** 'C' NUMERIC
127 ** 'D' INTEGER
128 ** 'E' REAL
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131 int i;
132 char *zColAff = pTab->zColAff;
133 if( zColAff==0 ){
134 sqlite3 *db = sqlite3VdbeDb(v);
135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136 if( !zColAff ){
137 sqlite3OomFault(db);
138 return;
141 for(i=0; i<pTab->nCol; i++){
142 zColAff[i] = pTab->aCol[i].affinity;
145 zColAff[i--] = 0;
146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147 pTab->zColAff = zColAff;
149 i = sqlite3Strlen30(zColAff);
150 if( i ){
151 if( iReg ){
152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
153 }else{
154 sqlite3VdbeChangeP4(v, -1, zColAff, i);
160 ** Return non-zero if the table pTab in database iDb or any of its indices
161 ** have been opened at any point in the VDBE program. This is used to see if
162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
163 ** run without using a temporary table for the results of the SELECT.
165 static int readsTable(Parse *p, int iDb, Table *pTab){
166 Vdbe *v = sqlite3GetVdbe(p);
167 int i;
168 int iEnd = sqlite3VdbeCurrentAddr(v);
169 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
171 #endif
173 for(i=1; i<iEnd; i++){
174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
175 assert( pOp!=0 );
176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
177 Index *pIndex;
178 int tnum = pOp->p2;
179 if( tnum==pTab->tnum ){
180 return 1;
182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
183 if( tnum==pIndex->tnum ){
184 return 1;
188 #ifndef SQLITE_OMIT_VIRTUALTABLE
189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
190 assert( pOp->p4.pVtab!=0 );
191 assert( pOp->p4type==P4_VTAB );
192 return 1;
194 #endif
196 return 0;
199 #ifndef SQLITE_OMIT_AUTOINCREMENT
201 ** Locate or create an AutoincInfo structure associated with table pTab
202 ** which is in database iDb. Return the register number for the register
203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
204 ** table. (Also return zero when doing a VACUUM since we do not want to
205 ** update the AUTOINCREMENT counters during a VACUUM.)
207 ** There is at most one AutoincInfo structure per table even if the
208 ** same table is autoincremented multiple times due to inserts within
209 ** triggers. A new AutoincInfo structure is created if this is the
210 ** first use of table pTab. On 2nd and subsequent uses, the original
211 ** AutoincInfo structure is used.
213 ** Four consecutive registers are allocated:
215 ** (1) The name of the pTab table.
216 ** (2) The maximum ROWID of pTab.
217 ** (3) The rowid in sqlite_sequence of pTab
218 ** (4) The original value of the max ROWID in pTab, or NULL if none
220 ** The 2nd register is the one that is returned. That is all the
221 ** insert routine needs to know about.
223 static int autoIncBegin(
224 Parse *pParse, /* Parsing context */
225 int iDb, /* Index of the database holding pTab */
226 Table *pTab /* The table we are writing to */
228 int memId = 0; /* Register holding maximum rowid */
229 assert( pParse->db->aDb[iDb].pSchema!=0 );
230 if( (pTab->tabFlags & TF_Autoincrement)!=0
231 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
233 Parse *pToplevel = sqlite3ParseToplevel(pParse);
234 AutoincInfo *pInfo;
235 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
237 /* Verify that the sqlite_sequence table exists and is an ordinary
238 ** rowid table with exactly two columns.
239 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
240 if( pSeqTab==0
241 || !HasRowid(pSeqTab)
242 || IsVirtual(pSeqTab)
243 || pSeqTab->nCol!=2
245 pParse->nErr++;
246 pParse->rc = SQLITE_CORRUPT_SEQUENCE;
247 return 0;
250 pInfo = pToplevel->pAinc;
251 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
252 if( pInfo==0 ){
253 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
254 if( pInfo==0 ) return 0;
255 pInfo->pNext = pToplevel->pAinc;
256 pToplevel->pAinc = pInfo;
257 pInfo->pTab = pTab;
258 pInfo->iDb = iDb;
259 pToplevel->nMem++; /* Register to hold name of table */
260 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
261 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
263 memId = pInfo->regCtr;
265 return memId;
269 ** This routine generates code that will initialize all of the
270 ** register used by the autoincrement tracker.
272 void sqlite3AutoincrementBegin(Parse *pParse){
273 AutoincInfo *p; /* Information about an AUTOINCREMENT */
274 sqlite3 *db = pParse->db; /* The database connection */
275 Db *pDb; /* Database only autoinc table */
276 int memId; /* Register holding max rowid */
277 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
279 /* This routine is never called during trigger-generation. It is
280 ** only called from the top-level */
281 assert( pParse->pTriggerTab==0 );
282 assert( sqlite3IsToplevel(pParse) );
284 assert( v ); /* We failed long ago if this is not so */
285 for(p = pParse->pAinc; p; p = p->pNext){
286 static const int iLn = VDBE_OFFSET_LINENO(2);
287 static const VdbeOpList autoInc[] = {
288 /* 0 */ {OP_Null, 0, 0, 0},
289 /* 1 */ {OP_Rewind, 0, 10, 0},
290 /* 2 */ {OP_Column, 0, 0, 0},
291 /* 3 */ {OP_Ne, 0, 9, 0},
292 /* 4 */ {OP_Rowid, 0, 0, 0},
293 /* 5 */ {OP_Column, 0, 1, 0},
294 /* 6 */ {OP_AddImm, 0, 0, 0},
295 /* 7 */ {OP_Copy, 0, 0, 0},
296 /* 8 */ {OP_Goto, 0, 11, 0},
297 /* 9 */ {OP_Next, 0, 2, 0},
298 /* 10 */ {OP_Integer, 0, 0, 0},
299 /* 11 */ {OP_Close, 0, 0, 0}
301 VdbeOp *aOp;
302 pDb = &db->aDb[p->iDb];
303 memId = p->regCtr;
304 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
305 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
306 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
307 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
308 if( aOp==0 ) break;
309 aOp[0].p2 = memId;
310 aOp[0].p3 = memId+2;
311 aOp[2].p3 = memId;
312 aOp[3].p1 = memId-1;
313 aOp[3].p3 = memId;
314 aOp[3].p5 = SQLITE_JUMPIFNULL;
315 aOp[4].p2 = memId+1;
316 aOp[5].p3 = memId;
317 aOp[6].p1 = memId;
318 aOp[7].p2 = memId+2;
319 aOp[7].p1 = memId;
320 aOp[10].p2 = memId;
325 ** Update the maximum rowid for an autoincrement calculation.
327 ** This routine should be called when the regRowid register holds a
328 ** new rowid that is about to be inserted. If that new rowid is
329 ** larger than the maximum rowid in the memId memory cell, then the
330 ** memory cell is updated.
332 static void autoIncStep(Parse *pParse, int memId, int regRowid){
333 if( memId>0 ){
334 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
339 ** This routine generates the code needed to write autoincrement
340 ** maximum rowid values back into the sqlite_sequence register.
341 ** Every statement that might do an INSERT into an autoincrement
342 ** table (either directly or through triggers) needs to call this
343 ** routine just before the "exit" code.
345 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
346 AutoincInfo *p;
347 Vdbe *v = pParse->pVdbe;
348 sqlite3 *db = pParse->db;
350 assert( v );
351 for(p = pParse->pAinc; p; p = p->pNext){
352 static const int iLn = VDBE_OFFSET_LINENO(2);
353 static const VdbeOpList autoIncEnd[] = {
354 /* 0 */ {OP_NotNull, 0, 2, 0},
355 /* 1 */ {OP_NewRowid, 0, 0, 0},
356 /* 2 */ {OP_MakeRecord, 0, 2, 0},
357 /* 3 */ {OP_Insert, 0, 0, 0},
358 /* 4 */ {OP_Close, 0, 0, 0}
360 VdbeOp *aOp;
361 Db *pDb = &db->aDb[p->iDb];
362 int iRec;
363 int memId = p->regCtr;
365 iRec = sqlite3GetTempReg(pParse);
366 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
367 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
368 VdbeCoverage(v);
369 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
370 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
371 if( aOp==0 ) break;
372 aOp[0].p1 = memId+1;
373 aOp[1].p2 = memId+1;
374 aOp[2].p1 = memId-1;
375 aOp[2].p3 = iRec;
376 aOp[3].p2 = iRec;
377 aOp[3].p3 = memId+1;
378 aOp[3].p5 = OPFLAG_APPEND;
379 sqlite3ReleaseTempReg(pParse, iRec);
382 void sqlite3AutoincrementEnd(Parse *pParse){
383 if( pParse->pAinc ) autoIncrementEnd(pParse);
385 #else
387 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
388 ** above are all no-ops
390 # define autoIncBegin(A,B,C) (0)
391 # define autoIncStep(A,B,C)
392 #endif /* SQLITE_OMIT_AUTOINCREMENT */
395 /* Forward declaration */
396 static int xferOptimization(
397 Parse *pParse, /* Parser context */
398 Table *pDest, /* The table we are inserting into */
399 Select *pSelect, /* A SELECT statement to use as the data source */
400 int onError, /* How to handle constraint errors */
401 int iDbDest /* The database of pDest */
405 ** This routine is called to handle SQL of the following forms:
407 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
408 ** insert into TABLE (IDLIST) select
409 ** insert into TABLE (IDLIST) default values
411 ** The IDLIST following the table name is always optional. If omitted,
412 ** then a list of all (non-hidden) columns for the table is substituted.
413 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
414 ** is omitted.
416 ** For the pSelect parameter holds the values to be inserted for the
417 ** first two forms shown above. A VALUES clause is really just short-hand
418 ** for a SELECT statement that omits the FROM clause and everything else
419 ** that follows. If the pSelect parameter is NULL, that means that the
420 ** DEFAULT VALUES form of the INSERT statement is intended.
422 ** The code generated follows one of four templates. For a simple
423 ** insert with data coming from a single-row VALUES clause, the code executes
424 ** once straight down through. Pseudo-code follows (we call this
425 ** the "1st template"):
427 ** open write cursor to <table> and its indices
428 ** put VALUES clause expressions into registers
429 ** write the resulting record into <table>
430 ** cleanup
432 ** The three remaining templates assume the statement is of the form
434 ** INSERT INTO <table> SELECT ...
436 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
437 ** in other words if the SELECT pulls all columns from a single table
438 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
439 ** if <table2> and <table1> are distinct tables but have identical
440 ** schemas, including all the same indices, then a special optimization
441 ** is invoked that copies raw records from <table2> over to <table1>.
442 ** See the xferOptimization() function for the implementation of this
443 ** template. This is the 2nd template.
445 ** open a write cursor to <table>
446 ** open read cursor on <table2>
447 ** transfer all records in <table2> over to <table>
448 ** close cursors
449 ** foreach index on <table>
450 ** open a write cursor on the <table> index
451 ** open a read cursor on the corresponding <table2> index
452 ** transfer all records from the read to the write cursors
453 ** close cursors
454 ** end foreach
456 ** The 3rd template is for when the second template does not apply
457 ** and the SELECT clause does not read from <table> at any time.
458 ** The generated code follows this template:
460 ** X <- A
461 ** goto B
462 ** A: setup for the SELECT
463 ** loop over the rows in the SELECT
464 ** load values into registers R..R+n
465 ** yield X
466 ** end loop
467 ** cleanup after the SELECT
468 ** end-coroutine X
469 ** B: open write cursor to <table> and its indices
470 ** C: yield X, at EOF goto D
471 ** insert the select result into <table> from R..R+n
472 ** goto C
473 ** D: cleanup
475 ** The 4th template is used if the insert statement takes its
476 ** values from a SELECT but the data is being inserted into a table
477 ** that is also read as part of the SELECT. In the third form,
478 ** we have to use an intermediate table to store the results of
479 ** the select. The template is like this:
481 ** X <- A
482 ** goto B
483 ** A: setup for the SELECT
484 ** loop over the tables in the SELECT
485 ** load value into register R..R+n
486 ** yield X
487 ** end loop
488 ** cleanup after the SELECT
489 ** end co-routine R
490 ** B: open temp table
491 ** L: yield X, at EOF goto M
492 ** insert row from R..R+n into temp table
493 ** goto L
494 ** M: open write cursor to <table> and its indices
495 ** rewind temp table
496 ** C: loop over rows of intermediate table
497 ** transfer values form intermediate table into <table>
498 ** end loop
499 ** D: cleanup
501 void sqlite3Insert(
502 Parse *pParse, /* Parser context */
503 SrcList *pTabList, /* Name of table into which we are inserting */
504 Select *pSelect, /* A SELECT statement to use as the data source */
505 IdList *pColumn, /* Column names corresponding to IDLIST. */
506 int onError, /* How to handle constraint errors */
507 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
509 sqlite3 *db; /* The main database structure */
510 Table *pTab; /* The table to insert into. aka TABLE */
511 int i, j; /* Loop counters */
512 Vdbe *v; /* Generate code into this virtual machine */
513 Index *pIdx; /* For looping over indices of the table */
514 int nColumn; /* Number of columns in the data */
515 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
516 int iDataCur = 0; /* VDBE cursor that is the main data repository */
517 int iIdxCur = 0; /* First index cursor */
518 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
519 int endOfLoop; /* Label for the end of the insertion loop */
520 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
521 int addrInsTop = 0; /* Jump to label "D" */
522 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
523 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
524 int iDb; /* Index of database holding TABLE */
525 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
526 u8 appendFlag = 0; /* True if the insert is likely to be an append */
527 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
528 u8 bIdListInOrder; /* True if IDLIST is in table order */
529 ExprList *pList = 0; /* List of VALUES() to be inserted */
531 /* Register allocations */
532 int regFromSelect = 0;/* Base register for data coming from SELECT */
533 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
534 int regRowCount = 0; /* Memory cell used for the row counter */
535 int regIns; /* Block of regs holding rowid+data being inserted */
536 int regRowid; /* registers holding insert rowid */
537 int regData; /* register holding first column to insert */
538 int *aRegIdx = 0; /* One register allocated to each index */
540 #ifndef SQLITE_OMIT_TRIGGER
541 int isView; /* True if attempting to insert into a view */
542 Trigger *pTrigger; /* List of triggers on pTab, if required */
543 int tmask; /* Mask of trigger times */
544 #endif
546 db = pParse->db;
547 if( pParse->nErr || db->mallocFailed ){
548 goto insert_cleanup;
550 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
552 /* If the Select object is really just a simple VALUES() list with a
553 ** single row (the common case) then keep that one row of values
554 ** and discard the other (unused) parts of the pSelect object
556 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
557 pList = pSelect->pEList;
558 pSelect->pEList = 0;
559 sqlite3SelectDelete(db, pSelect);
560 pSelect = 0;
563 /* Locate the table into which we will be inserting new information.
565 assert( pTabList->nSrc==1 );
566 pTab = sqlite3SrcListLookup(pParse, pTabList);
567 if( pTab==0 ){
568 goto insert_cleanup;
570 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
571 assert( iDb<db->nDb );
572 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
573 db->aDb[iDb].zDbSName) ){
574 goto insert_cleanup;
576 withoutRowid = !HasRowid(pTab);
578 /* Figure out if we have any triggers and if the table being
579 ** inserted into is a view
581 #ifndef SQLITE_OMIT_TRIGGER
582 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
583 isView = pTab->pSelect!=0;
584 #else
585 # define pTrigger 0
586 # define tmask 0
587 # define isView 0
588 #endif
589 #ifdef SQLITE_OMIT_VIEW
590 # undef isView
591 # define isView 0
592 #endif
593 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
595 /* If pTab is really a view, make sure it has been initialized.
596 ** ViewGetColumnNames() is a no-op if pTab is not a view.
598 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
599 goto insert_cleanup;
602 /* Cannot insert into a read-only table.
604 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
605 goto insert_cleanup;
608 /* Allocate a VDBE
610 v = sqlite3GetVdbe(pParse);
611 if( v==0 ) goto insert_cleanup;
612 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
613 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
615 #ifndef SQLITE_OMIT_XFER_OPT
616 /* If the statement is of the form
618 ** INSERT INTO <table1> SELECT * FROM <table2>;
620 ** Then special optimizations can be applied that make the transfer
621 ** very fast and which reduce fragmentation of indices.
623 ** This is the 2nd template.
625 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
626 assert( !pTrigger );
627 assert( pList==0 );
628 goto insert_end;
630 #endif /* SQLITE_OMIT_XFER_OPT */
632 /* If this is an AUTOINCREMENT table, look up the sequence number in the
633 ** sqlite_sequence table and store it in memory cell regAutoinc.
635 regAutoinc = autoIncBegin(pParse, iDb, pTab);
637 /* Allocate registers for holding the rowid of the new row,
638 ** the content of the new row, and the assembled row record.
640 regRowid = regIns = pParse->nMem+1;
641 pParse->nMem += pTab->nCol + 1;
642 if( IsVirtual(pTab) ){
643 regRowid++;
644 pParse->nMem++;
646 regData = regRowid+1;
648 /* If the INSERT statement included an IDLIST term, then make sure
649 ** all elements of the IDLIST really are columns of the table and
650 ** remember the column indices.
652 ** If the table has an INTEGER PRIMARY KEY column and that column
653 ** is named in the IDLIST, then record in the ipkColumn variable
654 ** the index into IDLIST of the primary key column. ipkColumn is
655 ** the index of the primary key as it appears in IDLIST, not as
656 ** is appears in the original table. (The index of the INTEGER
657 ** PRIMARY KEY in the original table is pTab->iPKey.)
659 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
660 if( pColumn ){
661 for(i=0; i<pColumn->nId; i++){
662 pColumn->a[i].idx = -1;
664 for(i=0; i<pColumn->nId; i++){
665 for(j=0; j<pTab->nCol; j++){
666 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
667 pColumn->a[i].idx = j;
668 if( i!=j ) bIdListInOrder = 0;
669 if( j==pTab->iPKey ){
670 ipkColumn = i; assert( !withoutRowid );
672 break;
675 if( j>=pTab->nCol ){
676 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
677 ipkColumn = i;
678 bIdListInOrder = 0;
679 }else{
680 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
681 pTabList, 0, pColumn->a[i].zName);
682 pParse->checkSchema = 1;
683 goto insert_cleanup;
689 /* Figure out how many columns of data are supplied. If the data
690 ** is coming from a SELECT statement, then generate a co-routine that
691 ** produces a single row of the SELECT on each invocation. The
692 ** co-routine is the common header to the 3rd and 4th templates.
694 if( pSelect ){
695 /* Data is coming from a SELECT or from a multi-row VALUES clause.
696 ** Generate a co-routine to run the SELECT. */
697 int regYield; /* Register holding co-routine entry-point */
698 int addrTop; /* Top of the co-routine */
699 int rc; /* Result code */
701 regYield = ++pParse->nMem;
702 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
703 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
704 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
705 dest.iSdst = bIdListInOrder ? regData : 0;
706 dest.nSdst = pTab->nCol;
707 rc = sqlite3Select(pParse, pSelect, &dest);
708 regFromSelect = dest.iSdst;
709 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
710 sqlite3VdbeEndCoroutine(v, regYield);
711 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
712 assert( pSelect->pEList );
713 nColumn = pSelect->pEList->nExpr;
715 /* Set useTempTable to TRUE if the result of the SELECT statement
716 ** should be written into a temporary table (template 4). Set to
717 ** FALSE if each output row of the SELECT can be written directly into
718 ** the destination table (template 3).
720 ** A temp table must be used if the table being updated is also one
721 ** of the tables being read by the SELECT statement. Also use a
722 ** temp table in the case of row triggers.
724 if( pTrigger || readsTable(pParse, iDb, pTab) ){
725 useTempTable = 1;
728 if( useTempTable ){
729 /* Invoke the coroutine to extract information from the SELECT
730 ** and add it to a transient table srcTab. The code generated
731 ** here is from the 4th template:
733 ** B: open temp table
734 ** L: yield X, goto M at EOF
735 ** insert row from R..R+n into temp table
736 ** goto L
737 ** M: ...
739 int regRec; /* Register to hold packed record */
740 int regTempRowid; /* Register to hold temp table ROWID */
741 int addrL; /* Label "L" */
743 srcTab = pParse->nTab++;
744 regRec = sqlite3GetTempReg(pParse);
745 regTempRowid = sqlite3GetTempReg(pParse);
746 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
747 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
748 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
749 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
750 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
751 sqlite3VdbeGoto(v, addrL);
752 sqlite3VdbeJumpHere(v, addrL);
753 sqlite3ReleaseTempReg(pParse, regRec);
754 sqlite3ReleaseTempReg(pParse, regTempRowid);
756 }else{
757 /* This is the case if the data for the INSERT is coming from a
758 ** single-row VALUES clause
760 NameContext sNC;
761 memset(&sNC, 0, sizeof(sNC));
762 sNC.pParse = pParse;
763 srcTab = -1;
764 assert( useTempTable==0 );
765 if( pList ){
766 nColumn = pList->nExpr;
767 if( sqlite3ResolveExprListNames(&sNC, pList) ){
768 goto insert_cleanup;
770 }else{
771 nColumn = 0;
775 /* If there is no IDLIST term but the table has an integer primary
776 ** key, the set the ipkColumn variable to the integer primary key
777 ** column index in the original table definition.
779 if( pColumn==0 && nColumn>0 ){
780 ipkColumn = pTab->iPKey;
783 /* Make sure the number of columns in the source data matches the number
784 ** of columns to be inserted into the table.
786 for(i=0; i<pTab->nCol; i++){
787 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
789 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
790 sqlite3ErrorMsg(pParse,
791 "table %S has %d columns but %d values were supplied",
792 pTabList, 0, pTab->nCol-nHidden, nColumn);
793 goto insert_cleanup;
795 if( pColumn!=0 && nColumn!=pColumn->nId ){
796 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
797 goto insert_cleanup;
800 /* Initialize the count of rows to be inserted
802 if( (db->flags & SQLITE_CountRows)!=0
803 && !pParse->nested
804 && !pParse->pTriggerTab
806 regRowCount = ++pParse->nMem;
807 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
810 /* If this is not a view, open the table and and all indices */
811 if( !isView ){
812 int nIdx;
813 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
814 &iDataCur, &iIdxCur);
815 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
816 if( aRegIdx==0 ){
817 goto insert_cleanup;
819 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
820 assert( pIdx );
821 aRegIdx[i] = ++pParse->nMem;
822 pParse->nMem += pIdx->nColumn;
825 #ifndef SQLITE_OMIT_UPSERT
826 if( pUpsert ){
827 pTabList->a[0].iCursor = iDataCur;
828 pUpsert->pUpsertSrc = pTabList;
829 pUpsert->regData = regData;
830 pUpsert->iDataCur = iDataCur;
831 pUpsert->iIdxCur = iIdxCur;
832 if( pUpsert->pUpsertTarget ){
833 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
836 #endif
839 /* This is the top of the main insertion loop */
840 if( useTempTable ){
841 /* This block codes the top of loop only. The complete loop is the
842 ** following pseudocode (template 4):
844 ** rewind temp table, if empty goto D
845 ** C: loop over rows of intermediate table
846 ** transfer values form intermediate table into <table>
847 ** end loop
848 ** D: ...
850 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
851 addrCont = sqlite3VdbeCurrentAddr(v);
852 }else if( pSelect ){
853 /* This block codes the top of loop only. The complete loop is the
854 ** following pseudocode (template 3):
856 ** C: yield X, at EOF goto D
857 ** insert the select result into <table> from R..R+n
858 ** goto C
859 ** D: ...
861 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
862 VdbeCoverage(v);
865 /* Run the BEFORE and INSTEAD OF triggers, if there are any
867 endOfLoop = sqlite3VdbeMakeLabel(v);
868 if( tmask & TRIGGER_BEFORE ){
869 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
871 /* build the NEW.* reference row. Note that if there is an INTEGER
872 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
873 ** translated into a unique ID for the row. But on a BEFORE trigger,
874 ** we do not know what the unique ID will be (because the insert has
875 ** not happened yet) so we substitute a rowid of -1
877 if( ipkColumn<0 ){
878 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
879 }else{
880 int addr1;
881 assert( !withoutRowid );
882 if( useTempTable ){
883 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
884 }else{
885 assert( pSelect==0 ); /* Otherwise useTempTable is true */
886 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
888 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
889 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
890 sqlite3VdbeJumpHere(v, addr1);
891 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
894 /* Cannot have triggers on a virtual table. If it were possible,
895 ** this block would have to account for hidden column.
897 assert( !IsVirtual(pTab) );
899 /* Create the new column data
901 for(i=j=0; i<pTab->nCol; i++){
902 if( pColumn ){
903 for(j=0; j<pColumn->nId; j++){
904 if( pColumn->a[j].idx==i ) break;
907 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
908 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
909 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
910 }else if( useTempTable ){
911 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
912 }else{
913 assert( pSelect==0 ); /* Otherwise useTempTable is true */
914 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
916 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
919 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
920 ** do not attempt any conversions before assembling the record.
921 ** If this is a real table, attempt conversions as required by the
922 ** table column affinities.
924 if( !isView ){
925 sqlite3TableAffinity(v, pTab, regCols+1);
928 /* Fire BEFORE or INSTEAD OF triggers */
929 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
930 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
932 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
935 /* Compute the content of the next row to insert into a range of
936 ** registers beginning at regIns.
938 if( !isView ){
939 if( IsVirtual(pTab) ){
940 /* The row that the VUpdate opcode will delete: none */
941 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
943 if( ipkColumn>=0 ){
944 if( useTempTable ){
945 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
946 }else if( pSelect ){
947 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
948 }else{
949 VdbeOp *pOp;
950 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
951 pOp = sqlite3VdbeGetOp(v, -1);
952 assert( pOp!=0 );
953 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){
954 appendFlag = 1;
955 pOp->opcode = OP_NewRowid;
956 pOp->p1 = iDataCur;
957 pOp->p2 = regRowid;
958 pOp->p3 = regAutoinc;
961 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
962 ** to generate a unique primary key value.
964 if( !appendFlag ){
965 int addr1;
966 if( !IsVirtual(pTab) ){
967 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
968 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
969 sqlite3VdbeJumpHere(v, addr1);
970 }else{
971 addr1 = sqlite3VdbeCurrentAddr(v);
972 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
974 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
976 }else if( IsVirtual(pTab) || withoutRowid ){
977 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
978 }else{
979 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
980 appendFlag = 1;
982 autoIncStep(pParse, regAutoinc, regRowid);
984 /* Compute data for all columns of the new entry, beginning
985 ** with the first column.
987 nHidden = 0;
988 for(i=0; i<pTab->nCol; i++){
989 int iRegStore = regRowid+1+i;
990 if( i==pTab->iPKey ){
991 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
992 ** Whenever this column is read, the rowid will be substituted
993 ** in its place. Hence, fill this column with a NULL to avoid
994 ** taking up data space with information that will never be used.
995 ** As there may be shallow copies of this value, make it a soft-NULL */
996 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
997 continue;
999 if( pColumn==0 ){
1000 if( IsHiddenColumn(&pTab->aCol[i]) ){
1001 j = -1;
1002 nHidden++;
1003 }else{
1004 j = i - nHidden;
1006 }else{
1007 for(j=0; j<pColumn->nId; j++){
1008 if( pColumn->a[j].idx==i ) break;
1011 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
1012 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1013 }else if( useTempTable ){
1014 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
1015 }else if( pSelect ){
1016 if( regFromSelect!=regData ){
1017 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
1019 }else{
1020 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
1024 /* Generate code to check constraints and generate index keys and
1025 ** do the insertion.
1027 #ifndef SQLITE_OMIT_VIRTUALTABLE
1028 if( IsVirtual(pTab) ){
1029 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1030 sqlite3VtabMakeWritable(pParse, pTab);
1031 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1032 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1033 sqlite3MayAbort(pParse);
1034 }else
1035 #endif
1037 int isReplace; /* Set to true if constraints may cause a replace */
1038 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1039 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1040 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1042 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1044 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1045 ** constraints or (b) there are no triggers and this table is not a
1046 ** parent table in a foreign key constraint. It is safe to set the
1047 ** flag in the second case as if any REPLACE constraint is hit, an
1048 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1049 ** cursor that is disturbed. And these instructions both clear the
1050 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1051 ** functionality. */
1052 bUseSeek = (isReplace==0 || (pTrigger==0 &&
1053 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1055 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1056 regIns, aRegIdx, 0, appendFlag, bUseSeek
1061 /* Update the count of rows that are inserted
1063 if( regRowCount ){
1064 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1067 if( pTrigger ){
1068 /* Code AFTER triggers */
1069 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1070 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1073 /* The bottom of the main insertion loop, if the data source
1074 ** is a SELECT statement.
1076 sqlite3VdbeResolveLabel(v, endOfLoop);
1077 if( useTempTable ){
1078 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1079 sqlite3VdbeJumpHere(v, addrInsTop);
1080 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1081 }else if( pSelect ){
1082 sqlite3VdbeGoto(v, addrCont);
1083 sqlite3VdbeJumpHere(v, addrInsTop);
1086 insert_end:
1087 /* Update the sqlite_sequence table by storing the content of the
1088 ** maximum rowid counter values recorded while inserting into
1089 ** autoincrement tables.
1091 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1092 sqlite3AutoincrementEnd(pParse);
1096 ** Return the number of rows inserted. If this routine is
1097 ** generating code because of a call to sqlite3NestedParse(), do not
1098 ** invoke the callback function.
1100 if( regRowCount ){
1101 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1102 sqlite3VdbeSetNumCols(v, 1);
1103 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1106 insert_cleanup:
1107 sqlite3SrcListDelete(db, pTabList);
1108 sqlite3ExprListDelete(db, pList);
1109 sqlite3UpsertDelete(db, pUpsert);
1110 sqlite3SelectDelete(db, pSelect);
1111 sqlite3IdListDelete(db, pColumn);
1112 sqlite3DbFree(db, aRegIdx);
1115 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1116 ** they may interfere with compilation of other functions in this file
1117 ** (or in another file, if this file becomes part of the amalgamation). */
1118 #ifdef isView
1119 #undef isView
1120 #endif
1121 #ifdef pTrigger
1122 #undef pTrigger
1123 #endif
1124 #ifdef tmask
1125 #undef tmask
1126 #endif
1129 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
1131 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1132 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1134 /* This is the Walker callback from checkConstraintUnchanged(). Set
1135 ** bit 0x01 of pWalker->eCode if
1136 ** pWalker->eCode to 0 if this expression node references any of the
1137 ** columns that are being modifed by an UPDATE statement.
1139 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1140 if( pExpr->op==TK_COLUMN ){
1141 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1142 if( pExpr->iColumn>=0 ){
1143 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1144 pWalker->eCode |= CKCNSTRNT_COLUMN;
1146 }else{
1147 pWalker->eCode |= CKCNSTRNT_ROWID;
1150 return WRC_Continue;
1154 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1155 ** only columns that are modified by the UPDATE are those for which
1156 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1158 ** Return true if CHECK constraint pExpr does not use any of the
1159 ** changing columns (or the rowid if it is changing). In other words,
1160 ** return true if this CHECK constraint can be skipped when validating
1161 ** the new row in the UPDATE statement.
1163 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
1164 Walker w;
1165 memset(&w, 0, sizeof(w));
1166 w.eCode = 0;
1167 w.xExprCallback = checkConstraintExprNode;
1168 w.u.aiCol = aiChng;
1169 sqlite3WalkExpr(&w, pExpr);
1170 if( !chngRowid ){
1171 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1172 w.eCode &= ~CKCNSTRNT_ROWID;
1174 testcase( w.eCode==0 );
1175 testcase( w.eCode==CKCNSTRNT_COLUMN );
1176 testcase( w.eCode==CKCNSTRNT_ROWID );
1177 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1178 return !w.eCode;
1182 ** An instance of the ConstraintAddr object remembers the byte-code addresses
1183 ** for sections of the constraint checks that deal with uniqueness constraints
1184 ** on the rowid and on the upsert constraint.
1186 ** This information is passed into checkReorderConstraintChecks() to insert
1187 ** some OP_Goto operations so that the rowid and upsert constraints occur
1188 ** in the correct order relative to other constraints.
1190 typedef struct ConstraintAddr ConstraintAddr;
1191 struct ConstraintAddr {
1192 int ipkTop; /* Subroutine for rowid constraint check */
1193 int upsertTop; /* Label for upsert constraint check subroutine */
1194 int upsertTop2; /* Copy of upsertTop not cleared by the call */
1195 int upsertBtm; /* upsert constraint returns to this label */
1196 int ipkBtm; /* Return opcode rowid constraint check */
1200 ** Generate any OP_Goto operations needed to cause constraints to be
1201 ** run that haven't already been run.
1203 static void reorderConstraintChecks(Vdbe *v, ConstraintAddr *p){
1204 if( p->upsertTop ){
1205 testcase( sqlite3VdbeLabelHasBeenResolved(v, p->upsertTop) );
1206 sqlite3VdbeGoto(v, p->upsertTop);
1207 VdbeComment((v, "call upsert subroutine"));
1208 sqlite3VdbeResolveLabel(v, p->upsertBtm);
1209 p->upsertTop = 0;
1211 if( p->ipkTop ){
1212 sqlite3VdbeGoto(v, p->ipkTop);
1213 VdbeComment((v, "call rowid unique-check subroutine"));
1214 sqlite3VdbeJumpHere(v, p->ipkBtm);
1215 p->ipkTop = 0;
1220 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1221 ** on table pTab.
1223 ** The regNewData parameter is the first register in a range that contains
1224 ** the data to be inserted or the data after the update. There will be
1225 ** pTab->nCol+1 registers in this range. The first register (the one
1226 ** that regNewData points to) will contain the new rowid, or NULL in the
1227 ** case of a WITHOUT ROWID table. The second register in the range will
1228 ** contain the content of the first table column. The third register will
1229 ** contain the content of the second table column. And so forth.
1231 ** The regOldData parameter is similar to regNewData except that it contains
1232 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1233 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1234 ** checking regOldData for zero.
1236 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1237 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1238 ** might be modified by the UPDATE. If pkChng is false, then the key of
1239 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1241 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1242 ** was explicitly specified as part of the INSERT statement. If pkChng
1243 ** is zero, it means that the either rowid is computed automatically or
1244 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1245 ** pkChng will only be true if the INSERT statement provides an integer
1246 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1248 ** The code generated by this routine will store new index entries into
1249 ** registers identified by aRegIdx[]. No index entry is created for
1250 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1251 ** the same as the order of indices on the linked list of indices
1252 ** at pTab->pIndex.
1254 ** The caller must have already opened writeable cursors on the main
1255 ** table and all applicable indices (that is to say, all indices for which
1256 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1257 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1258 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1259 ** for the first index in the pTab->pIndex list. Cursors for other indices
1260 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1262 ** This routine also generates code to check constraints. NOT NULL,
1263 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1264 ** then the appropriate action is performed. There are five possible
1265 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1267 ** Constraint type Action What Happens
1268 ** --------------- ---------- ----------------------------------------
1269 ** any ROLLBACK The current transaction is rolled back and
1270 ** sqlite3_step() returns immediately with a
1271 ** return code of SQLITE_CONSTRAINT.
1273 ** any ABORT Back out changes from the current command
1274 ** only (do not do a complete rollback) then
1275 ** cause sqlite3_step() to return immediately
1276 ** with SQLITE_CONSTRAINT.
1278 ** any FAIL Sqlite3_step() returns immediately with a
1279 ** return code of SQLITE_CONSTRAINT. The
1280 ** transaction is not rolled back and any
1281 ** changes to prior rows are retained.
1283 ** any IGNORE The attempt in insert or update the current
1284 ** row is skipped, without throwing an error.
1285 ** Processing continues with the next row.
1286 ** (There is an immediate jump to ignoreDest.)
1288 ** NOT NULL REPLACE The NULL value is replace by the default
1289 ** value for that column. If the default value
1290 ** is NULL, the action is the same as ABORT.
1292 ** UNIQUE REPLACE The other row that conflicts with the row
1293 ** being inserted is removed.
1295 ** CHECK REPLACE Illegal. The results in an exception.
1297 ** Which action to take is determined by the overrideError parameter.
1298 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1299 ** is used. Or if pParse->onError==OE_Default then the onError value
1300 ** for the constraint is used.
1302 void sqlite3GenerateConstraintChecks(
1303 Parse *pParse, /* The parser context */
1304 Table *pTab, /* The table being inserted or updated */
1305 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1306 int iDataCur, /* Canonical data cursor (main table or PK index) */
1307 int iIdxCur, /* First index cursor */
1308 int regNewData, /* First register in a range holding values to insert */
1309 int regOldData, /* Previous content. 0 for INSERTs */
1310 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1311 u8 overrideError, /* Override onError to this if not OE_Default */
1312 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1313 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1314 int *aiChng, /* column i is unchanged if aiChng[i]<0 */
1315 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
1317 Vdbe *v; /* VDBE under constrution */
1318 Index *pIdx; /* Pointer to one of the indices */
1319 Index *pPk = 0; /* The PRIMARY KEY index */
1320 sqlite3 *db; /* Database connection */
1321 int i; /* loop counter */
1322 int ix; /* Index loop counter */
1323 int nCol; /* Number of columns */
1324 int onError; /* Conflict resolution strategy */
1325 int addr1; /* Address of jump instruction */
1326 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1327 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1328 ConstraintAddr sAddr;/* Address information for constraint reordering */
1329 Index *pUpIdx = 0; /* Index to which to apply the upsert */
1330 u8 isUpdate; /* True if this is an UPDATE operation */
1331 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1332 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */
1334 isUpdate = regOldData!=0;
1335 db = pParse->db;
1336 v = sqlite3GetVdbe(pParse);
1337 assert( v!=0 );
1338 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1339 nCol = pTab->nCol;
1340 memset(&sAddr, 0, sizeof(sAddr));
1342 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1343 ** normal rowid tables. nPkField is the number of key fields in the
1344 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1345 ** number of fields in the true primary key of the table. */
1346 if( HasRowid(pTab) ){
1347 pPk = 0;
1348 nPkField = 1;
1349 }else{
1350 pPk = sqlite3PrimaryKeyIndex(pTab);
1351 nPkField = pPk->nKeyCol;
1354 /* Record that this module has started */
1355 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1356 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1358 /* Test all NOT NULL constraints.
1360 for(i=0; i<nCol; i++){
1361 if( i==pTab->iPKey ){
1362 continue; /* ROWID is never NULL */
1364 if( aiChng && aiChng[i]<0 ){
1365 /* Don't bother checking for NOT NULL on columns that do not change */
1366 continue;
1368 onError = pTab->aCol[i].notNull;
1369 if( onError==OE_None ) continue; /* This column is allowed to be NULL */
1370 if( overrideError!=OE_Default ){
1371 onError = overrideError;
1372 }else if( onError==OE_Default ){
1373 onError = OE_Abort;
1375 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1376 onError = OE_Abort;
1378 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1379 || onError==OE_Ignore || onError==OE_Replace );
1380 switch( onError ){
1381 case OE_Abort:
1382 sqlite3MayAbort(pParse);
1383 /* Fall through */
1384 case OE_Rollback:
1385 case OE_Fail: {
1386 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1387 pTab->aCol[i].zName);
1388 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1389 regNewData+1+i);
1390 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1391 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1392 VdbeCoverage(v);
1393 break;
1395 case OE_Ignore: {
1396 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1397 VdbeCoverage(v);
1398 break;
1400 default: {
1401 assert( onError==OE_Replace );
1402 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1403 VdbeCoverage(v);
1404 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1405 sqlite3VdbeJumpHere(v, addr1);
1406 break;
1411 /* Test all CHECK constraints
1413 #ifndef SQLITE_OMIT_CHECK
1414 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1415 ExprList *pCheck = pTab->pCheck;
1416 pParse->iSelfTab = -(regNewData+1);
1417 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1418 for(i=0; i<pCheck->nExpr; i++){
1419 int allOk;
1420 Expr *pExpr = pCheck->a[i].pExpr;
1421 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
1422 allOk = sqlite3VdbeMakeLabel(v);
1423 sqlite3VdbeVerifyAbortable(v, onError);
1424 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1425 if( onError==OE_Ignore ){
1426 sqlite3VdbeGoto(v, ignoreDest);
1427 }else{
1428 char *zName = pCheck->a[i].zName;
1429 if( zName==0 ) zName = pTab->zName;
1430 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1431 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1432 onError, zName, P4_TRANSIENT,
1433 P5_ConstraintCheck);
1435 sqlite3VdbeResolveLabel(v, allOk);
1437 pParse->iSelfTab = 0;
1439 #endif /* !defined(SQLITE_OMIT_CHECK) */
1441 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1442 ** order:
1444 ** (1) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1445 ** (2) OE_Update
1446 ** (3) OE_Replace
1448 ** OE_Fail and OE_Ignore must happen before any changes are made.
1449 ** OE_Update guarantees that only a single row will change, so it
1450 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1451 ** could happen in any order, but they are grouped up front for
1452 ** convenience.
1454 ** Constraint checking code is generated in this order:
1455 ** (A) The rowid constraint
1456 ** (B) Unique index constraints that do not have OE_Replace as their
1457 ** default conflict resolution strategy
1458 ** (C) Unique index that do use OE_Replace by default.
1460 ** The ordering of (2) and (3) is accomplished by making sure the linked
1461 ** list of indexes attached to a table puts all OE_Replace indexes last
1462 ** in the list. See sqlite3CreateIndex() for where that happens.
1465 if( pUpsert ){
1466 if( pUpsert->pUpsertTarget==0 ){
1467 /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1468 ** Make all unique constraint resolution be OE_Ignore */
1469 assert( pUpsert->pUpsertSet==0 );
1470 overrideError = OE_Ignore;
1471 pUpsert = 0;
1472 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1473 /* If the constraint-target is on some column other than
1474 ** then ROWID, then we might need to move the UPSERT around
1475 ** so that it occurs in the correct order. */
1476 sAddr.upsertTop = sAddr.upsertTop2 = sqlite3VdbeMakeLabel(v);
1477 sAddr.upsertBtm = sqlite3VdbeMakeLabel(v);
1481 /* If rowid is changing, make sure the new rowid does not previously
1482 ** exist in the table.
1484 if( pkChng && pPk==0 ){
1485 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1487 /* Figure out what action to take in case of a rowid collision */
1488 onError = pTab->keyConf;
1489 if( overrideError!=OE_Default ){
1490 onError = overrideError;
1491 }else if( onError==OE_Default ){
1492 onError = OE_Abort;
1495 /* figure out whether or not upsert applies in this case */
1496 if( pUpsert && pUpsert->pUpsertIdx==0 ){
1497 if( pUpsert->pUpsertSet==0 ){
1498 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
1499 }else{
1500 onError = OE_Update; /* DO UPDATE */
1504 /* If the response to a rowid conflict is REPLACE but the response
1505 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1506 ** to defer the running of the rowid conflict checking until after
1507 ** the UNIQUE constraints have run.
1509 assert( OE_Update>OE_Replace );
1510 assert( OE_Ignore<OE_Replace );
1511 assert( OE_Fail<OE_Replace );
1512 assert( OE_Abort<OE_Replace );
1513 assert( OE_Rollback<OE_Replace );
1514 if( onError>=OE_Replace
1515 && (pUpsert || onError!=overrideError)
1516 && pTab->pIndex
1518 sAddr.ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1521 if( isUpdate ){
1522 /* pkChng!=0 does not mean that the rowid has changed, only that
1523 ** it might have changed. Skip the conflict logic below if the rowid
1524 ** is unchanged. */
1525 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1526 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1527 VdbeCoverage(v);
1530 /* Check to see if the new rowid already exists in the table. Skip
1531 ** the following conflict logic if it does not. */
1532 VdbeNoopComment((v, "uniqueness check for ROWID"));
1533 sqlite3VdbeVerifyAbortable(v, onError);
1534 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1535 VdbeCoverage(v);
1536 sqlite3ExprCachePush(pParse);
1538 switch( onError ){
1539 default: {
1540 onError = OE_Abort;
1541 /* Fall thru into the next case */
1543 case OE_Rollback:
1544 case OE_Abort:
1545 case OE_Fail: {
1546 testcase( onError==OE_Rollback );
1547 testcase( onError==OE_Abort );
1548 testcase( onError==OE_Fail );
1549 sqlite3RowidConstraint(pParse, onError, pTab);
1550 break;
1552 case OE_Replace: {
1553 /* If there are DELETE triggers on this table and the
1554 ** recursive-triggers flag is set, call GenerateRowDelete() to
1555 ** remove the conflicting row from the table. This will fire
1556 ** the triggers and remove both the table and index b-tree entries.
1558 ** Otherwise, if there are no triggers or the recursive-triggers
1559 ** flag is not set, but the table has one or more indexes, call
1560 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1561 ** only. The table b-tree entry will be replaced by the new entry
1562 ** when it is inserted.
1564 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1565 ** also invoke MultiWrite() to indicate that this VDBE may require
1566 ** statement rollback (if the statement is aborted after the delete
1567 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1568 ** but being more selective here allows statements like:
1570 ** REPLACE INTO t(rowid) VALUES($newrowid)
1572 ** to run without a statement journal if there are no indexes on the
1573 ** table.
1575 Trigger *pTrigger = 0;
1576 if( db->flags&SQLITE_RecTriggers ){
1577 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1579 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1580 sqlite3MultiWrite(pParse);
1581 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1582 regNewData, 1, 0, OE_Replace, 1, -1);
1583 }else{
1584 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1585 assert( HasRowid(pTab) );
1586 /* This OP_Delete opcode fires the pre-update-hook only. It does
1587 ** not modify the b-tree. It is more efficient to let the coming
1588 ** OP_Insert replace the existing entry than it is to delete the
1589 ** existing entry and then insert a new one. */
1590 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1591 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1592 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1593 if( pTab->pIndex ){
1594 sqlite3MultiWrite(pParse);
1595 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1598 seenReplace = 1;
1599 break;
1601 #ifndef SQLITE_OMIT_UPSERT
1602 case OE_Update: {
1603 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1604 /* Fall through */
1606 #endif
1607 case OE_Ignore: {
1608 testcase( onError==OE_Ignore );
1609 sqlite3VdbeGoto(v, ignoreDest);
1610 break;
1613 sqlite3ExprCachePop(pParse);
1614 sqlite3VdbeResolveLabel(v, addrRowidOk);
1615 if( sAddr.ipkTop ){
1616 sAddr.ipkBtm = sqlite3VdbeAddOp0(v, OP_Goto);
1617 sqlite3VdbeJumpHere(v, sAddr.ipkTop-1);
1621 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1622 ** index and making sure that duplicate entries do not already exist.
1623 ** Compute the revised record entries for indices as we go.
1625 ** This loop also handles the case of the PRIMARY KEY index for a
1626 ** WITHOUT ROWID table.
1628 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1629 int regIdx; /* Range of registers hold conent for pIdx */
1630 int regR; /* Range of registers holding conflicting PK */
1631 int iThisCur; /* Cursor for this UNIQUE index */
1632 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1634 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1635 if( pUpIdx==pIdx ){
1636 addrUniqueOk = sAddr.upsertBtm;
1637 upsertBypass = sqlite3VdbeGoto(v, 0);
1638 VdbeComment((v, "Skip upsert subroutine"));
1639 sqlite3VdbeResolveLabel(v, sAddr.upsertTop2);
1640 }else{
1641 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1643 VdbeNoopComment((v, "uniqueness check for %s", pIdx->zName));
1644 if( bAffinityDone==0 ){
1645 sqlite3TableAffinity(v, pTab, regNewData+1);
1646 bAffinityDone = 1;
1648 iThisCur = iIdxCur+ix;
1651 /* Skip partial indices for which the WHERE clause is not true */
1652 if( pIdx->pPartIdxWhere ){
1653 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1654 pParse->iSelfTab = -(regNewData+1);
1655 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1656 SQLITE_JUMPIFNULL);
1657 pParse->iSelfTab = 0;
1660 /* Create a record for this index entry as it should appear after
1661 ** the insert or update. Store that record in the aRegIdx[ix] register
1663 regIdx = aRegIdx[ix]+1;
1664 for(i=0; i<pIdx->nColumn; i++){
1665 int iField = pIdx->aiColumn[i];
1666 int x;
1667 if( iField==XN_EXPR ){
1668 pParse->iSelfTab = -(regNewData+1);
1669 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1670 pParse->iSelfTab = 0;
1671 VdbeComment((v, "%s column %d", pIdx->zName, i));
1672 }else{
1673 if( iField==XN_ROWID || iField==pTab->iPKey ){
1674 x = regNewData;
1675 }else{
1676 x = iField + regNewData + 1;
1678 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1679 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1682 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1683 VdbeComment((v, "for %s", pIdx->zName));
1684 #ifdef SQLITE_ENABLE_NULL_TRIM
1685 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable);
1686 #endif
1688 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1689 ** of a WITHOUT ROWID table and there has been no change the
1690 ** primary key, then no collision is possible. The collision detection
1691 ** logic below can all be skipped. */
1692 if( isUpdate && pPk==pIdx && pkChng==0 ){
1693 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1694 continue;
1697 /* Find out what action to take in case there is a uniqueness conflict */
1698 onError = pIdx->onError;
1699 if( onError==OE_None ){
1700 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1701 continue; /* pIdx is not a UNIQUE index */
1703 if( overrideError!=OE_Default ){
1704 onError = overrideError;
1705 }else if( onError==OE_Default ){
1706 onError = OE_Abort;
1709 /* Figure out if the upsert clause applies to this index */
1710 if( pUpIdx==pIdx ){
1711 if( pUpsert->pUpsertSet==0 ){
1712 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
1713 }else{
1714 onError = OE_Update; /* DO UPDATE */
1718 /* Invoke subroutines to handle IPK replace and upsert prior to running
1719 ** the first REPLACE constraint check. */
1720 if( onError==OE_Replace ){
1721 testcase( sAddr.ipkTop );
1722 testcase( sAddr.upsertTop
1723 && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) );
1724 reorderConstraintChecks(v, &sAddr);
1727 /* Collision detection may be omitted if all of the following are true:
1728 ** (1) The conflict resolution algorithm is REPLACE
1729 ** (2) The table is a WITHOUT ROWID table
1730 ** (3) There are no secondary indexes on the table
1731 ** (4) No delete triggers need to be fired if there is a conflict
1732 ** (5) No FK constraint counters need to be updated if a conflict occurs.
1734 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
1735 && pPk==pIdx /* Condition 2 */
1736 && onError==OE_Replace /* Condition 1 */
1737 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
1738 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1739 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
1740 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1742 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1743 continue;
1746 /* Check to see if the new index entry will be unique */
1747 sqlite3ExprCachePush(pParse);
1748 sqlite3VdbeVerifyAbortable(v, onError);
1749 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1750 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1752 /* Generate code to handle collisions */
1753 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1754 if( isUpdate || onError==OE_Replace ){
1755 if( HasRowid(pTab) ){
1756 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1757 /* Conflict only if the rowid of the existing index entry
1758 ** is different from old-rowid */
1759 if( isUpdate ){
1760 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1761 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1762 VdbeCoverage(v);
1764 }else{
1765 int x;
1766 /* Extract the PRIMARY KEY from the end of the index entry and
1767 ** store it in registers regR..regR+nPk-1 */
1768 if( pIdx!=pPk ){
1769 for(i=0; i<pPk->nKeyCol; i++){
1770 assert( pPk->aiColumn[i]>=0 );
1771 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1772 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1773 VdbeComment((v, "%s.%s", pTab->zName,
1774 pTab->aCol[pPk->aiColumn[i]].zName));
1777 if( isUpdate ){
1778 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1779 ** table, only conflict if the new PRIMARY KEY values are actually
1780 ** different from the old.
1782 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1783 ** of the matched index row are different from the original PRIMARY
1784 ** KEY values of this row before the update. */
1785 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1786 int op = OP_Ne;
1787 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1789 for(i=0; i<pPk->nKeyCol; i++){
1790 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1791 x = pPk->aiColumn[i];
1792 assert( x>=0 );
1793 if( i==(pPk->nKeyCol-1) ){
1794 addrJump = addrUniqueOk;
1795 op = OP_Eq;
1797 sqlite3VdbeAddOp4(v, op,
1798 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1800 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1801 VdbeCoverageIf(v, op==OP_Eq);
1802 VdbeCoverageIf(v, op==OP_Ne);
1808 /* Generate code that executes if the new index entry is not unique */
1809 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1810 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
1811 switch( onError ){
1812 case OE_Rollback:
1813 case OE_Abort:
1814 case OE_Fail: {
1815 testcase( onError==OE_Rollback );
1816 testcase( onError==OE_Abort );
1817 testcase( onError==OE_Fail );
1818 sqlite3UniqueConstraint(pParse, onError, pIdx);
1819 break;
1821 #ifndef SQLITE_OMIT_UPSERT
1822 case OE_Update: {
1823 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
1824 /* Fall through */
1826 #endif
1827 case OE_Ignore: {
1828 testcase( onError==OE_Ignore );
1829 sqlite3VdbeGoto(v, ignoreDest);
1830 break;
1832 default: {
1833 Trigger *pTrigger = 0;
1834 assert( onError==OE_Replace );
1835 if( db->flags&SQLITE_RecTriggers ){
1836 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1838 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1839 sqlite3MultiWrite(pParse);
1841 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1842 regR, nPkField, 0, OE_Replace,
1843 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1844 seenReplace = 1;
1845 break;
1848 if( pUpIdx==pIdx ){
1849 sqlite3VdbeJumpHere(v, upsertBypass);
1850 }else{
1851 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1853 sqlite3ExprCachePop(pParse);
1854 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1857 testcase( sAddr.ipkTop!=0 );
1858 testcase( sAddr.upsertTop
1859 && sqlite3VdbeLabelHasBeenResolved(v,sAddr.upsertTop) );
1860 reorderConstraintChecks(v, &sAddr);
1862 *pbMayReplace = seenReplace;
1863 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1866 #ifdef SQLITE_ENABLE_NULL_TRIM
1868 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1869 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1871 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1873 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1874 u16 i;
1876 /* Records with omitted columns are only allowed for schema format
1877 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1878 if( pTab->pSchema->file_format<2 ) return;
1880 for(i=pTab->nCol-1; i>0; i--){
1881 if( pTab->aCol[i].pDflt!=0 ) break;
1882 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1884 sqlite3VdbeChangeP5(v, i+1);
1886 #endif
1889 ** This routine generates code to finish the INSERT or UPDATE operation
1890 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1891 ** A consecutive range of registers starting at regNewData contains the
1892 ** rowid and the content to be inserted.
1894 ** The arguments to this routine should be the same as the first six
1895 ** arguments to sqlite3GenerateConstraintChecks.
1897 void sqlite3CompleteInsertion(
1898 Parse *pParse, /* The parser context */
1899 Table *pTab, /* the table into which we are inserting */
1900 int iDataCur, /* Cursor of the canonical data source */
1901 int iIdxCur, /* First index cursor */
1902 int regNewData, /* Range of content */
1903 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1904 int update_flags, /* True for UPDATE, False for INSERT */
1905 int appendBias, /* True if this is likely to be an append */
1906 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1908 Vdbe *v; /* Prepared statements under construction */
1909 Index *pIdx; /* An index being inserted or updated */
1910 u8 pik_flags; /* flag values passed to the btree insert */
1911 int regData; /* Content registers (after the rowid) */
1912 int regRec; /* Register holding assembled record for the table */
1913 int i; /* Loop counter */
1914 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1916 assert( update_flags==0
1917 || update_flags==OPFLAG_ISUPDATE
1918 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1921 v = sqlite3GetVdbe(pParse);
1922 assert( v!=0 );
1923 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1924 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1925 if( aRegIdx[i]==0 ) continue;
1926 bAffinityDone = 1;
1927 if( pIdx->pPartIdxWhere ){
1928 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1929 VdbeCoverage(v);
1931 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1932 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1933 assert( pParse->nested==0 );
1934 pik_flags |= OPFLAG_NCHANGE;
1935 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1936 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1937 if( update_flags==0 ){
1938 sqlite3VdbeAddOp4(v, OP_InsertInt,
1939 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
1941 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1943 #endif
1945 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1946 aRegIdx[i]+1,
1947 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1948 sqlite3VdbeChangeP5(v, pik_flags);
1950 if( !HasRowid(pTab) ) return;
1951 regData = regNewData + 1;
1952 regRec = sqlite3GetTempReg(pParse);
1953 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1954 sqlite3SetMakeRecordP5(v, pTab);
1955 if( !bAffinityDone ){
1956 sqlite3TableAffinity(v, pTab, 0);
1957 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1959 if( pParse->nested ){
1960 pik_flags = 0;
1961 }else{
1962 pik_flags = OPFLAG_NCHANGE;
1963 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1965 if( appendBias ){
1966 pik_flags |= OPFLAG_APPEND;
1968 if( useSeekResult ){
1969 pik_flags |= OPFLAG_USESEEKRESULT;
1971 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1972 if( !pParse->nested ){
1973 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1975 sqlite3VdbeChangeP5(v, pik_flags);
1979 ** Allocate cursors for the pTab table and all its indices and generate
1980 ** code to open and initialized those cursors.
1982 ** The cursor for the object that contains the complete data (normally
1983 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1984 ** ROWID table) is returned in *piDataCur. The first index cursor is
1985 ** returned in *piIdxCur. The number of indices is returned.
1987 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1988 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1989 ** If iBase is negative, then allocate the next available cursor.
1991 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1992 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1993 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1994 ** pTab->pIndex list.
1996 ** If pTab is a virtual table, then this routine is a no-op and the
1997 ** *piDataCur and *piIdxCur values are left uninitialized.
1999 int sqlite3OpenTableAndIndices(
2000 Parse *pParse, /* Parsing context */
2001 Table *pTab, /* Table to be opened */
2002 int op, /* OP_OpenRead or OP_OpenWrite */
2003 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2004 int iBase, /* Use this for the table cursor, if there is one */
2005 u8 *aToOpen, /* If not NULL: boolean for each table and index */
2006 int *piDataCur, /* Write the database source cursor number here */
2007 int *piIdxCur /* Write the first index cursor number here */
2009 int i;
2010 int iDb;
2011 int iDataCur;
2012 Index *pIdx;
2013 Vdbe *v;
2015 assert( op==OP_OpenRead || op==OP_OpenWrite );
2016 assert( op==OP_OpenWrite || p5==0 );
2017 if( IsVirtual(pTab) ){
2018 /* This routine is a no-op for virtual tables. Leave the output
2019 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2020 ** can detect if they are used by mistake in the caller. */
2021 return 0;
2023 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2024 v = sqlite3GetVdbe(pParse);
2025 assert( v!=0 );
2026 if( iBase<0 ) iBase = pParse->nTab;
2027 iDataCur = iBase++;
2028 if( piDataCur ) *piDataCur = iDataCur;
2029 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2030 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2031 }else{
2032 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2034 if( piIdxCur ) *piIdxCur = iBase;
2035 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2036 int iIdxCur = iBase++;
2037 assert( pIdx->pSchema==pTab->pSchema );
2038 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2039 if( piDataCur ) *piDataCur = iIdxCur;
2040 p5 = 0;
2042 if( aToOpen==0 || aToOpen[i+1] ){
2043 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2044 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2045 sqlite3VdbeChangeP5(v, p5);
2046 VdbeComment((v, "%s", pIdx->zName));
2049 if( iBase>pParse->nTab ) pParse->nTab = iBase;
2050 return i;
2054 #ifdef SQLITE_TEST
2056 ** The following global variable is incremented whenever the
2057 ** transfer optimization is used. This is used for testing
2058 ** purposes only - to make sure the transfer optimization really
2059 ** is happening when it is supposed to.
2061 int sqlite3_xferopt_count;
2062 #endif /* SQLITE_TEST */
2065 #ifndef SQLITE_OMIT_XFER_OPT
2067 ** Check to see if index pSrc is compatible as a source of data
2068 ** for index pDest in an insert transfer optimization. The rules
2069 ** for a compatible index:
2071 ** * The index is over the same set of columns
2072 ** * The same DESC and ASC markings occurs on all columns
2073 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2074 ** * The same collating sequence on each column
2075 ** * The index has the exact same WHERE clause
2077 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2078 int i;
2079 assert( pDest && pSrc );
2080 assert( pDest->pTable!=pSrc->pTable );
2081 if( pDest->nKeyCol!=pSrc->nKeyCol ){
2082 return 0; /* Different number of columns */
2084 if( pDest->onError!=pSrc->onError ){
2085 return 0; /* Different conflict resolution strategies */
2087 for(i=0; i<pSrc->nKeyCol; i++){
2088 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2089 return 0; /* Different columns indexed */
2091 if( pSrc->aiColumn[i]==XN_EXPR ){
2092 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2093 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2094 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2095 return 0; /* Different expressions in the index */
2098 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2099 return 0; /* Different sort orders */
2101 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2102 return 0; /* Different collating sequences */
2105 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2106 return 0; /* Different WHERE clauses */
2109 /* If no test above fails then the indices must be compatible */
2110 return 1;
2114 ** Attempt the transfer optimization on INSERTs of the form
2116 ** INSERT INTO tab1 SELECT * FROM tab2;
2118 ** The xfer optimization transfers raw records from tab2 over to tab1.
2119 ** Columns are not decoded and reassembled, which greatly improves
2120 ** performance. Raw index records are transferred in the same way.
2122 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2123 ** There are lots of rules for determining compatibility - see comments
2124 ** embedded in the code for details.
2126 ** This routine returns TRUE if the optimization is guaranteed to be used.
2127 ** Sometimes the xfer optimization will only work if the destination table
2128 ** is empty - a factor that can only be determined at run-time. In that
2129 ** case, this routine generates code for the xfer optimization but also
2130 ** does a test to see if the destination table is empty and jumps over the
2131 ** xfer optimization code if the test fails. In that case, this routine
2132 ** returns FALSE so that the caller will know to go ahead and generate
2133 ** an unoptimized transfer. This routine also returns FALSE if there
2134 ** is no chance that the xfer optimization can be applied.
2136 ** This optimization is particularly useful at making VACUUM run faster.
2138 static int xferOptimization(
2139 Parse *pParse, /* Parser context */
2140 Table *pDest, /* The table we are inserting into */
2141 Select *pSelect, /* A SELECT statement to use as the data source */
2142 int onError, /* How to handle constraint errors */
2143 int iDbDest /* The database of pDest */
2145 sqlite3 *db = pParse->db;
2146 ExprList *pEList; /* The result set of the SELECT */
2147 Table *pSrc; /* The table in the FROM clause of SELECT */
2148 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
2149 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
2150 int i; /* Loop counter */
2151 int iDbSrc; /* The database of pSrc */
2152 int iSrc, iDest; /* Cursors from source and destination */
2153 int addr1, addr2; /* Loop addresses */
2154 int emptyDestTest = 0; /* Address of test for empty pDest */
2155 int emptySrcTest = 0; /* Address of test for empty pSrc */
2156 Vdbe *v; /* The VDBE we are building */
2157 int regAutoinc; /* Memory register used by AUTOINC */
2158 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
2159 int regData, regRowid; /* Registers holding data and rowid */
2161 if( pSelect==0 ){
2162 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
2164 if( pParse->pWith || pSelect->pWith ){
2165 /* Do not attempt to process this query if there are an WITH clauses
2166 ** attached to it. Proceeding may generate a false "no such table: xxx"
2167 ** error if pSelect reads from a CTE named "xxx". */
2168 return 0;
2170 if( sqlite3TriggerList(pParse, pDest) ){
2171 return 0; /* tab1 must not have triggers */
2173 #ifndef SQLITE_OMIT_VIRTUALTABLE
2174 if( IsVirtual(pDest) ){
2175 return 0; /* tab1 must not be a virtual table */
2177 #endif
2178 if( onError==OE_Default ){
2179 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2180 if( onError==OE_Default ) onError = OE_Abort;
2182 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
2183 if( pSelect->pSrc->nSrc!=1 ){
2184 return 0; /* FROM clause must have exactly one term */
2186 if( pSelect->pSrc->a[0].pSelect ){
2187 return 0; /* FROM clause cannot contain a subquery */
2189 if( pSelect->pWhere ){
2190 return 0; /* SELECT may not have a WHERE clause */
2192 if( pSelect->pOrderBy ){
2193 return 0; /* SELECT may not have an ORDER BY clause */
2195 /* Do not need to test for a HAVING clause. If HAVING is present but
2196 ** there is no ORDER BY, we will get an error. */
2197 if( pSelect->pGroupBy ){
2198 return 0; /* SELECT may not have a GROUP BY clause */
2200 if( pSelect->pLimit ){
2201 return 0; /* SELECT may not have a LIMIT clause */
2203 if( pSelect->pPrior ){
2204 return 0; /* SELECT may not be a compound query */
2206 if( pSelect->selFlags & SF_Distinct ){
2207 return 0; /* SELECT may not be DISTINCT */
2209 pEList = pSelect->pEList;
2210 assert( pEList!=0 );
2211 if( pEList->nExpr!=1 ){
2212 return 0; /* The result set must have exactly one column */
2214 assert( pEList->a[0].pExpr );
2215 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2216 return 0; /* The result set must be the special operator "*" */
2219 /* At this point we have established that the statement is of the
2220 ** correct syntactic form to participate in this optimization. Now
2221 ** we have to check the semantics.
2223 pItem = pSelect->pSrc->a;
2224 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2225 if( pSrc==0 ){
2226 return 0; /* FROM clause does not contain a real table */
2228 if( pSrc==pDest ){
2229 return 0; /* tab1 and tab2 may not be the same table */
2231 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2232 return 0; /* source and destination must both be WITHOUT ROWID or not */
2234 #ifndef SQLITE_OMIT_VIRTUALTABLE
2235 if( IsVirtual(pSrc) ){
2236 return 0; /* tab2 must not be a virtual table */
2238 #endif
2239 if( pSrc->pSelect ){
2240 return 0; /* tab2 may not be a view */
2242 if( pDest->nCol!=pSrc->nCol ){
2243 return 0; /* Number of columns must be the same in tab1 and tab2 */
2245 if( pDest->iPKey!=pSrc->iPKey ){
2246 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2248 for(i=0; i<pDest->nCol; i++){
2249 Column *pDestCol = &pDest->aCol[i];
2250 Column *pSrcCol = &pSrc->aCol[i];
2251 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2252 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2253 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2255 return 0; /* Neither table may have __hidden__ columns */
2257 #endif
2258 if( pDestCol->affinity!=pSrcCol->affinity ){
2259 return 0; /* Affinity must be the same on all columns */
2261 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2262 return 0; /* Collating sequence must be the same on all columns */
2264 if( pDestCol->notNull && !pSrcCol->notNull ){
2265 return 0; /* tab2 must be NOT NULL if tab1 is */
2267 /* Default values for second and subsequent columns need to match. */
2268 if( i>0 ){
2269 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2270 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2271 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2272 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2273 pSrcCol->pDflt->u.zToken)!=0)
2275 return 0; /* Default values must be the same for all columns */
2279 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2280 if( IsUniqueIndex(pDestIdx) ){
2281 destHasUniqueIdx = 1;
2283 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2284 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2286 if( pSrcIdx==0 ){
2287 return 0; /* pDestIdx has no corresponding index in pSrc */
2290 #ifndef SQLITE_OMIT_CHECK
2291 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2292 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2294 #endif
2295 #ifndef SQLITE_OMIT_FOREIGN_KEY
2296 /* Disallow the transfer optimization if the destination table constains
2297 ** any foreign key constraints. This is more restrictive than necessary.
2298 ** But the main beneficiary of the transfer optimization is the VACUUM
2299 ** command, and the VACUUM command disables foreign key constraints. So
2300 ** the extra complication to make this rule less restrictive is probably
2301 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2303 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2304 return 0;
2306 #endif
2307 if( (db->flags & SQLITE_CountRows)!=0 ){
2308 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2311 /* If we get this far, it means that the xfer optimization is at
2312 ** least a possibility, though it might only work if the destination
2313 ** table (tab1) is initially empty.
2315 #ifdef SQLITE_TEST
2316 sqlite3_xferopt_count++;
2317 #endif
2318 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2319 v = sqlite3GetVdbe(pParse);
2320 sqlite3CodeVerifySchema(pParse, iDbSrc);
2321 iSrc = pParse->nTab++;
2322 iDest = pParse->nTab++;
2323 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2324 regData = sqlite3GetTempReg(pParse);
2325 regRowid = sqlite3GetTempReg(pParse);
2326 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2327 assert( HasRowid(pDest) || destHasUniqueIdx );
2328 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2329 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2330 || destHasUniqueIdx /* (2) */
2331 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2333 /* In some circumstances, we are able to run the xfer optimization
2334 ** only if the destination table is initially empty. Unless the
2335 ** DBFLAG_Vacuum flag is set, this block generates code to make
2336 ** that determination. If DBFLAG_Vacuum is set, then the destination
2337 ** table is always empty.
2339 ** Conditions under which the destination must be empty:
2341 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2342 ** (If the destination is not initially empty, the rowid fields
2343 ** of index entries might need to change.)
2345 ** (2) The destination has a unique index. (The xfer optimization
2346 ** is unable to test uniqueness.)
2348 ** (3) onError is something other than OE_Abort and OE_Rollback.
2350 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2351 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2352 sqlite3VdbeJumpHere(v, addr1);
2354 if( HasRowid(pSrc) ){
2355 u8 insFlags;
2356 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2357 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2358 if( pDest->iPKey>=0 ){
2359 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2360 sqlite3VdbeVerifyAbortable(v, onError);
2361 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2362 VdbeCoverage(v);
2363 sqlite3RowidConstraint(pParse, onError, pDest);
2364 sqlite3VdbeJumpHere(v, addr2);
2365 autoIncStep(pParse, regAutoinc, regRowid);
2366 }else if( pDest->pIndex==0 ){
2367 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2368 }else{
2369 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2370 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2372 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2373 if( db->mDbFlags & DBFLAG_Vacuum ){
2374 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2375 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2376 OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2377 }else{
2378 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2380 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2381 (char*)pDest, P4_TABLE);
2382 sqlite3VdbeChangeP5(v, insFlags);
2383 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2384 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2385 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2386 }else{
2387 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2388 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2390 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2391 u8 idxInsFlags = 0;
2392 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2393 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2395 assert( pSrcIdx );
2396 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2397 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2398 VdbeComment((v, "%s", pSrcIdx->zName));
2399 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2400 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2401 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2402 VdbeComment((v, "%s", pDestIdx->zName));
2403 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2404 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2405 if( db->mDbFlags & DBFLAG_Vacuum ){
2406 /* This INSERT command is part of a VACUUM operation, which guarantees
2407 ** that the destination table is empty. If all indexed columns use
2408 ** collation sequence BINARY, then it can also be assumed that the
2409 ** index will be populated by inserting keys in strictly sorted
2410 ** order. In this case, instead of seeking within the b-tree as part
2411 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2412 ** OP_IdxInsert to seek to the point within the b-tree where each key
2413 ** should be inserted. This is faster.
2415 ** If any of the indexed columns use a collation sequence other than
2416 ** BINARY, this optimization is disabled. This is because the user
2417 ** might change the definition of a collation sequence and then run
2418 ** a VACUUM command. In that case keys may not be written in strictly
2419 ** sorted order. */
2420 for(i=0; i<pSrcIdx->nColumn; i++){
2421 const char *zColl = pSrcIdx->azColl[i];
2422 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2424 if( i==pSrcIdx->nColumn ){
2425 idxInsFlags = OPFLAG_USESEEKRESULT;
2426 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2429 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2430 idxInsFlags |= OPFLAG_NCHANGE;
2432 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2433 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2434 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2435 sqlite3VdbeJumpHere(v, addr1);
2436 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2437 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2439 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2440 sqlite3ReleaseTempReg(pParse, regRowid);
2441 sqlite3ReleaseTempReg(pParse, regData);
2442 if( emptyDestTest ){
2443 sqlite3AutoincrementEnd(pParse);
2444 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2445 sqlite3VdbeJumpHere(v, emptyDestTest);
2446 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2447 return 0;
2448 }else{
2449 return 1;
2452 #endif /* SQLITE_OMIT_XFER_OPT */