Typo fixes in comment. No changes to code.
[sqlite.git] / src / malloc.c
blobe7714aa103a46b226e1d41bc9e92571b0c07929e
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
16 #include <stdarg.h>
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26 #else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32 #endif
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
39 typedef struct ScratchFreeslot {
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
41 } ScratchFreeslot;
44 ** State information local to the memory allocation subsystem.
46 static SQLITE_WSD struct Mem0Global {
47 sqlite3_mutex *mutex; /* Mutex to serialize access */
48 sqlite3_int64 alarmThreshold; /* The soft heap limit */
51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
52 ** (so that a range test can be used to determine if an allocation
53 ** being freed came from pScratch) and a pointer to the list of
54 ** unused scratch allocations.
56 void *pScratchEnd;
57 ScratchFreeslot *pScratchFree;
58 u32 nScratchFree;
61 ** True if heap is nearly "full" where "full" is defined by the
62 ** sqlite3_soft_heap_limit() setting.
64 int nearlyFull;
65 } mem0 = { 0, 0, 0, 0, 0, 0 };
67 #define mem0 GLOBAL(struct Mem0Global, mem0)
70 ** Return the memory allocator mutex. sqlite3_status() needs it.
72 sqlite3_mutex *sqlite3MallocMutex(void){
73 return mem0.mutex;
76 #ifndef SQLITE_OMIT_DEPRECATED
78 ** Deprecated external interface. It used to set an alarm callback
79 ** that was invoked when memory usage grew too large. Now it is a
80 ** no-op.
82 int sqlite3_memory_alarm(
83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
84 void *pArg,
85 sqlite3_int64 iThreshold
87 (void)xCallback;
88 (void)pArg;
89 (void)iThreshold;
90 return SQLITE_OK;
92 #endif
95 ** Set the soft heap-size limit for the library. Passing a zero or
96 ** negative value indicates no limit.
98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
99 sqlite3_int64 priorLimit;
100 sqlite3_int64 excess;
101 sqlite3_int64 nUsed;
102 #ifndef SQLITE_OMIT_AUTOINIT
103 int rc = sqlite3_initialize();
104 if( rc ) return -1;
105 #endif
106 sqlite3_mutex_enter(mem0.mutex);
107 priorLimit = mem0.alarmThreshold;
108 if( n<0 ){
109 sqlite3_mutex_leave(mem0.mutex);
110 return priorLimit;
112 mem0.alarmThreshold = n;
113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114 mem0.nearlyFull = (n>0 && n<=nUsed);
115 sqlite3_mutex_leave(mem0.mutex);
116 excess = sqlite3_memory_used() - n;
117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118 return priorLimit;
120 void sqlite3_soft_heap_limit(int n){
121 if( n<0 ) n = 0;
122 sqlite3_soft_heap_limit64(n);
126 ** Initialize the memory allocation subsystem.
128 int sqlite3MallocInit(void){
129 int rc;
130 if( sqlite3GlobalConfig.m.xMalloc==0 ){
131 sqlite3MemSetDefault();
133 memset(&mem0, 0, sizeof(mem0));
134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
136 && sqlite3GlobalConfig.nScratch>0 ){
137 int i, n, sz;
138 ScratchFreeslot *pSlot;
139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
140 sqlite3GlobalConfig.szScratch = sz;
141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
142 n = sqlite3GlobalConfig.nScratch;
143 mem0.pScratchFree = pSlot;
144 mem0.nScratchFree = n;
145 for(i=0; i<n-1; i++){
146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
147 pSlot = pSlot->pNext;
149 pSlot->pNext = 0;
150 mem0.pScratchEnd = (void*)&pSlot[1];
151 }else{
152 mem0.pScratchEnd = 0;
153 sqlite3GlobalConfig.pScratch = 0;
154 sqlite3GlobalConfig.szScratch = 0;
155 sqlite3GlobalConfig.nScratch = 0;
157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
158 || sqlite3GlobalConfig.nPage<=0 ){
159 sqlite3GlobalConfig.pPage = 0;
160 sqlite3GlobalConfig.szPage = 0;
162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
164 return rc;
168 ** Return true if the heap is currently under memory pressure - in other
169 ** words if the amount of heap used is close to the limit set by
170 ** sqlite3_soft_heap_limit().
172 int sqlite3HeapNearlyFull(void){
173 return mem0.nearlyFull;
177 ** Deinitialize the memory allocation subsystem.
179 void sqlite3MallocEnd(void){
180 if( sqlite3GlobalConfig.m.xShutdown ){
181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
183 memset(&mem0, 0, sizeof(mem0));
187 ** Return the amount of memory currently checked out.
189 sqlite3_int64 sqlite3_memory_used(void){
190 sqlite3_int64 res, mx;
191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
192 return res;
196 ** Return the maximum amount of memory that has ever been
197 ** checked out since either the beginning of this process
198 ** or since the most recent reset.
200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
201 sqlite3_int64 res, mx;
202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
203 return mx;
207 ** Trigger the alarm
209 static void sqlite3MallocAlarm(int nByte){
210 if( mem0.alarmThreshold<=0 ) return;
211 sqlite3_mutex_leave(mem0.mutex);
212 sqlite3_release_memory(nByte);
213 sqlite3_mutex_enter(mem0.mutex);
217 ** Do a memory allocation with statistics and alarms. Assume the
218 ** lock is already held.
220 static void mallocWithAlarm(int n, void **pp){
221 void *p;
222 int nFull;
223 assert( sqlite3_mutex_held(mem0.mutex) );
224 assert( n>0 );
226 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
227 ** implementation of malloc_good_size(), which must be called in debug
228 ** mode and specifically when the DMD "Dark Matter Detector" is enabled
229 ** or else a crash results. Hence, do not attempt to optimize out the
230 ** following xRoundup() call. */
231 nFull = sqlite3GlobalConfig.m.xRoundup(n);
233 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
234 if( mem0.alarmThreshold>0 ){
235 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
236 if( nUsed >= mem0.alarmThreshold - nFull ){
237 mem0.nearlyFull = 1;
238 sqlite3MallocAlarm(nFull);
239 }else{
240 mem0.nearlyFull = 0;
243 p = sqlite3GlobalConfig.m.xMalloc(nFull);
244 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
245 if( p==0 && mem0.alarmThreshold>0 ){
246 sqlite3MallocAlarm(nFull);
247 p = sqlite3GlobalConfig.m.xMalloc(nFull);
249 #endif
250 if( p ){
251 nFull = sqlite3MallocSize(p);
252 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
253 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
255 *pp = p;
259 ** Allocate memory. This routine is like sqlite3_malloc() except that it
260 ** assumes the memory subsystem has already been initialized.
262 void *sqlite3Malloc(u64 n){
263 void *p;
264 if( n==0 || n>=0x7fffff00 ){
265 /* A memory allocation of a number of bytes which is near the maximum
266 ** signed integer value might cause an integer overflow inside of the
267 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
268 ** 255 bytes of overhead. SQLite itself will never use anything near
269 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
270 p = 0;
271 }else if( sqlite3GlobalConfig.bMemstat ){
272 sqlite3_mutex_enter(mem0.mutex);
273 mallocWithAlarm((int)n, &p);
274 sqlite3_mutex_leave(mem0.mutex);
275 }else{
276 p = sqlite3GlobalConfig.m.xMalloc((int)n);
278 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
279 return p;
283 ** This version of the memory allocation is for use by the application.
284 ** First make sure the memory subsystem is initialized, then do the
285 ** allocation.
287 void *sqlite3_malloc(int n){
288 #ifndef SQLITE_OMIT_AUTOINIT
289 if( sqlite3_initialize() ) return 0;
290 #endif
291 return n<=0 ? 0 : sqlite3Malloc(n);
293 void *sqlite3_malloc64(sqlite3_uint64 n){
294 #ifndef SQLITE_OMIT_AUTOINIT
295 if( sqlite3_initialize() ) return 0;
296 #endif
297 return sqlite3Malloc(n);
301 ** Each thread may only have a single outstanding allocation from
302 ** xScratchMalloc(). We verify this constraint in the single-threaded
303 ** case by setting scratchAllocOut to 1 when an allocation
304 ** is outstanding clearing it when the allocation is freed.
306 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
307 static int scratchAllocOut = 0;
308 #endif
312 ** Allocate memory that is to be used and released right away.
313 ** This routine is similar to alloca() in that it is not intended
314 ** for situations where the memory might be held long-term. This
315 ** routine is intended to get memory to old large transient data
316 ** structures that would not normally fit on the stack of an
317 ** embedded processor.
319 void *sqlite3ScratchMalloc(int n){
320 void *p;
321 assert( n>0 );
323 sqlite3_mutex_enter(mem0.mutex);
324 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n);
325 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
326 p = mem0.pScratchFree;
327 mem0.pScratchFree = mem0.pScratchFree->pNext;
328 mem0.nScratchFree--;
329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
330 sqlite3_mutex_leave(mem0.mutex);
331 }else{
332 sqlite3_mutex_leave(mem0.mutex);
333 p = sqlite3Malloc(n);
334 if( sqlite3GlobalConfig.bMemstat && p ){
335 sqlite3_mutex_enter(mem0.mutex);
336 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
337 sqlite3_mutex_leave(mem0.mutex);
339 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
341 assert( sqlite3_mutex_notheld(mem0.mutex) );
344 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
345 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
346 ** buffers per thread.
348 ** This can only be checked in single-threaded mode.
350 assert( scratchAllocOut==0 );
351 if( p ) scratchAllocOut++;
352 #endif
354 return p;
356 void sqlite3ScratchFree(void *p){
357 if( p ){
359 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
360 /* Verify that no more than two scratch allocation per thread
361 ** is outstanding at one time. (This is only checked in the
362 ** single-threaded case since checking in the multi-threaded case
363 ** would be much more complicated.) */
364 assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
365 scratchAllocOut--;
366 #endif
368 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){
369 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
370 ScratchFreeslot *pSlot;
371 pSlot = (ScratchFreeslot*)p;
372 sqlite3_mutex_enter(mem0.mutex);
373 pSlot->pNext = mem0.pScratchFree;
374 mem0.pScratchFree = pSlot;
375 mem0.nScratchFree++;
376 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
377 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
378 sqlite3_mutex_leave(mem0.mutex);
379 }else{
380 /* Release memory back to the heap */
381 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
382 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
383 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
384 if( sqlite3GlobalConfig.bMemstat ){
385 int iSize = sqlite3MallocSize(p);
386 sqlite3_mutex_enter(mem0.mutex);
387 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
388 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
389 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
390 sqlite3GlobalConfig.m.xFree(p);
391 sqlite3_mutex_leave(mem0.mutex);
392 }else{
393 sqlite3GlobalConfig.m.xFree(p);
400 ** TRUE if p is a lookaside memory allocation from db
402 #ifndef SQLITE_OMIT_LOOKASIDE
403 static int isLookaside(sqlite3 *db, void *p){
404 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
406 #else
407 #define isLookaside(A,B) 0
408 #endif
411 ** Return the size of a memory allocation previously obtained from
412 ** sqlite3Malloc() or sqlite3_malloc().
414 int sqlite3MallocSize(void *p){
415 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
416 return sqlite3GlobalConfig.m.xSize(p);
418 int sqlite3DbMallocSize(sqlite3 *db, void *p){
419 assert( p!=0 );
420 if( db==0 || !isLookaside(db,p) ){
421 #if SQLITE_DEBUG
422 if( db==0 ){
423 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
424 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
425 }else{
426 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
427 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
429 #endif
430 return sqlite3GlobalConfig.m.xSize(p);
431 }else{
432 assert( sqlite3_mutex_held(db->mutex) );
433 return db->lookaside.sz;
436 sqlite3_uint64 sqlite3_msize(void *p){
437 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
438 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
439 return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
443 ** Free memory previously obtained from sqlite3Malloc().
445 void sqlite3_free(void *p){
446 if( p==0 ) return; /* IMP: R-49053-54554 */
447 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
448 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
449 if( sqlite3GlobalConfig.bMemstat ){
450 sqlite3_mutex_enter(mem0.mutex);
451 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
452 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
453 sqlite3GlobalConfig.m.xFree(p);
454 sqlite3_mutex_leave(mem0.mutex);
455 }else{
456 sqlite3GlobalConfig.m.xFree(p);
461 ** Add the size of memory allocation "p" to the count in
462 ** *db->pnBytesFreed.
464 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
465 *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
469 ** Free memory that might be associated with a particular database
470 ** connection.
472 void sqlite3DbFree(sqlite3 *db, void *p){
473 assert( db==0 || sqlite3_mutex_held(db->mutex) );
474 if( p==0 ) return;
475 if( db ){
476 if( db->pnBytesFreed ){
477 measureAllocationSize(db, p);
478 return;
480 if( isLookaside(db, p) ){
481 LookasideSlot *pBuf = (LookasideSlot*)p;
482 #if SQLITE_DEBUG
483 /* Trash all content in the buffer being freed */
484 memset(p, 0xaa, db->lookaside.sz);
485 #endif
486 pBuf->pNext = db->lookaside.pFree;
487 db->lookaside.pFree = pBuf;
488 db->lookaside.nOut--;
489 return;
492 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
493 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
494 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
495 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
496 sqlite3_free(p);
500 ** Change the size of an existing memory allocation
502 void *sqlite3Realloc(void *pOld, u64 nBytes){
503 int nOld, nNew, nDiff;
504 void *pNew;
505 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
506 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
507 if( pOld==0 ){
508 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
510 if( nBytes==0 ){
511 sqlite3_free(pOld); /* IMP: R-26507-47431 */
512 return 0;
514 if( nBytes>=0x7fffff00 ){
515 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
516 return 0;
518 nOld = sqlite3MallocSize(pOld);
519 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
520 ** argument to xRealloc is always a value returned by a prior call to
521 ** xRoundup. */
522 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
523 if( nOld==nNew ){
524 pNew = pOld;
525 }else if( sqlite3GlobalConfig.bMemstat ){
526 sqlite3_mutex_enter(mem0.mutex);
527 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
528 nDiff = nNew - nOld;
529 if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
530 mem0.alarmThreshold-nDiff ){
531 sqlite3MallocAlarm(nDiff);
533 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
534 if( pNew==0 && mem0.alarmThreshold>0 ){
535 sqlite3MallocAlarm((int)nBytes);
536 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
538 if( pNew ){
539 nNew = sqlite3MallocSize(pNew);
540 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
542 sqlite3_mutex_leave(mem0.mutex);
543 }else{
544 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
546 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
547 return pNew;
551 ** The public interface to sqlite3Realloc. Make sure that the memory
552 ** subsystem is initialized prior to invoking sqliteRealloc.
554 void *sqlite3_realloc(void *pOld, int n){
555 #ifndef SQLITE_OMIT_AUTOINIT
556 if( sqlite3_initialize() ) return 0;
557 #endif
558 if( n<0 ) n = 0; /* IMP: R-26507-47431 */
559 return sqlite3Realloc(pOld, n);
561 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
562 #ifndef SQLITE_OMIT_AUTOINIT
563 if( sqlite3_initialize() ) return 0;
564 #endif
565 return sqlite3Realloc(pOld, n);
570 ** Allocate and zero memory.
572 void *sqlite3MallocZero(u64 n){
573 void *p = sqlite3Malloc(n);
574 if( p ){
575 memset(p, 0, (size_t)n);
577 return p;
581 ** Allocate and zero memory. If the allocation fails, make
582 ** the mallocFailed flag in the connection pointer.
584 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
585 void *p;
586 testcase( db==0 );
587 p = sqlite3DbMallocRaw(db, n);
588 if( p ) memset(p, 0, (size_t)n);
589 return p;
593 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
594 ** slower case when the allocation cannot be fulfilled using lookaside.
596 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
597 void *p;
598 assert( db!=0 );
599 p = sqlite3Malloc(n);
600 if( !p ) sqlite3OomFault(db);
601 sqlite3MemdebugSetType(p,
602 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
603 return p;
607 ** Allocate memory, either lookaside (if possible) or heap.
608 ** If the allocation fails, set the mallocFailed flag in
609 ** the connection pointer.
611 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
612 ** failure on the same database connection) then always return 0.
613 ** Hence for a particular database connection, once malloc starts
614 ** failing, it fails consistently until mallocFailed is reset.
615 ** This is an important assumption. There are many places in the
616 ** code that do things like this:
618 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
619 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
620 ** if( b ) a[10] = 9;
622 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
623 ** that all prior mallocs (ex: "a") worked too.
625 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
626 ** not a NULL pointer.
628 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
629 void *p;
630 if( db ) return sqlite3DbMallocRawNN(db, n);
631 p = sqlite3Malloc(n);
632 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
633 return p;
635 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
636 #ifndef SQLITE_OMIT_LOOKASIDE
637 LookasideSlot *pBuf;
638 assert( db!=0 );
639 assert( sqlite3_mutex_held(db->mutex) );
640 assert( db->pnBytesFreed==0 );
641 if( db->lookaside.bDisable==0 ){
642 assert( db->mallocFailed==0 );
643 if( n>db->lookaside.sz ){
644 db->lookaside.anStat[1]++;
645 }else if( (pBuf = db->lookaside.pFree)==0 ){
646 db->lookaside.anStat[2]++;
647 }else{
648 db->lookaside.pFree = pBuf->pNext;
649 db->lookaside.nOut++;
650 db->lookaside.anStat[0]++;
651 if( db->lookaside.nOut>db->lookaside.mxOut ){
652 db->lookaside.mxOut = db->lookaside.nOut;
654 return (void*)pBuf;
656 }else if( db->mallocFailed ){
657 return 0;
659 #else
660 assert( db!=0 );
661 assert( sqlite3_mutex_held(db->mutex) );
662 assert( db->pnBytesFreed==0 );
663 if( db->mallocFailed ){
664 return 0;
666 #endif
667 return dbMallocRawFinish(db, n);
670 /* Forward declaration */
671 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
674 ** Resize the block of memory pointed to by p to n bytes. If the
675 ** resize fails, set the mallocFailed flag in the connection object.
677 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
678 assert( db!=0 );
679 if( p==0 ) return sqlite3DbMallocRawNN(db, n);
680 assert( sqlite3_mutex_held(db->mutex) );
681 if( isLookaside(db,p) && n<=db->lookaside.sz ) return p;
682 return dbReallocFinish(db, p, n);
684 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
685 void *pNew = 0;
686 assert( db!=0 );
687 assert( p!=0 );
688 if( db->mallocFailed==0 ){
689 if( isLookaside(db, p) ){
690 pNew = sqlite3DbMallocRawNN(db, n);
691 if( pNew ){
692 memcpy(pNew, p, db->lookaside.sz);
693 sqlite3DbFree(db, p);
695 }else{
696 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
697 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
698 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
699 pNew = sqlite3_realloc64(p, n);
700 if( !pNew ){
701 sqlite3OomFault(db);
703 sqlite3MemdebugSetType(pNew,
704 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
707 return pNew;
711 ** Attempt to reallocate p. If the reallocation fails, then free p
712 ** and set the mallocFailed flag in the database connection.
714 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
715 void *pNew;
716 pNew = sqlite3DbRealloc(db, p, n);
717 if( !pNew ){
718 sqlite3DbFree(db, p);
720 return pNew;
724 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
725 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
726 ** is because when memory debugging is turned on, these two functions are
727 ** called via macros that record the current file and line number in the
728 ** ThreadData structure.
730 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
731 char *zNew;
732 size_t n;
733 if( z==0 ){
734 return 0;
736 n = strlen(z) + 1;
737 zNew = sqlite3DbMallocRaw(db, n);
738 if( zNew ){
739 memcpy(zNew, z, n);
741 return zNew;
743 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
744 char *zNew;
745 assert( db!=0 );
746 if( z==0 ){
747 return 0;
749 assert( (n&0x7fffffff)==n );
750 zNew = sqlite3DbMallocRawNN(db, n+1);
751 if( zNew ){
752 memcpy(zNew, z, (size_t)n);
753 zNew[n] = 0;
755 return zNew;
759 ** Free any prior content in *pz and replace it with a copy of zNew.
761 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
762 sqlite3DbFree(db, *pz);
763 *pz = sqlite3DbStrDup(db, zNew);
767 ** Call this routine to record the fact that an OOM (out-of-memory) error
768 ** has happened. This routine will set db->mallocFailed, and also
769 ** temporarily disable the lookaside memory allocator and interrupt
770 ** any running VDBEs.
772 void sqlite3OomFault(sqlite3 *db){
773 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
774 db->mallocFailed = 1;
775 if( db->nVdbeExec>0 ){
776 db->u1.isInterrupted = 1;
778 db->lookaside.bDisable++;
783 ** This routine reactivates the memory allocator and clears the
784 ** db->mallocFailed flag as necessary.
786 ** The memory allocator is not restarted if there are running
787 ** VDBEs.
789 void sqlite3OomClear(sqlite3 *db){
790 if( db->mallocFailed && db->nVdbeExec==0 ){
791 db->mallocFailed = 0;
792 db->u1.isInterrupted = 0;
793 assert( db->lookaside.bDisable>0 );
794 db->lookaside.bDisable--;
799 ** Take actions at the end of an API call to indicate an OOM error
801 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
802 sqlite3OomClear(db);
803 sqlite3Error(db, SQLITE_NOMEM);
804 return SQLITE_NOMEM_BKPT;
808 ** This function must be called before exiting any API function (i.e.
809 ** returning control to the user) that has called sqlite3_malloc or
810 ** sqlite3_realloc.
812 ** The returned value is normally a copy of the second argument to this
813 ** function. However, if a malloc() failure has occurred since the previous
814 ** invocation SQLITE_NOMEM is returned instead.
816 ** If an OOM as occurred, then the connection error-code (the value
817 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
819 int sqlite3ApiExit(sqlite3* db, int rc){
820 /* If the db handle must hold the connection handle mutex here.
821 ** Otherwise the read (and possible write) of db->mallocFailed
822 ** is unsafe, as is the call to sqlite3Error().
824 assert( db!=0 );
825 assert( sqlite3_mutex_held(db->mutex) );
826 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
827 return apiOomError(db);
829 return rc & db->errMask;