Fix over-length source code lines in select.c. No logic changes.
[sqlite.git] / src / build.c
blob6cd23c2abf7a20c3b716b09fd97f74b5c83145c2
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366 return pMod->pEpoTab;
369 #endif
370 if( (flags & LOCATE_NOERR)==0 ){
371 if( zDbase ){
372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376 pParse->checkSchema = 1;
380 return p;
384 ** Locate the table identified by *p.
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 u32 flags,
395 struct SrcList_item *p
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{
403 zDb = p->zDatabase;
405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
434 return p;
438 ** Reclaim the memory used by an index
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
480 freeIndex(db, pIndex);
482 db->mDbFlags |= DBFLAG_SchemaChange;
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zDbSName = 0;
500 continue;
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
505 j++;
507 db->nDb = j;
508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510 sqlite3DbFree(db, db->aDb);
511 db->aDb = db->aDbStatic;
516 ** Reset the schema for the database at index iDb. Also reset the
517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
518 ** Deferred resets may be run by calling with iDb<0.
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521 int i;
522 assert( iDb<db->nDb );
524 if( iDb>=0 ){
525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526 DbSetProperty(db, iDb, DB_ResetWanted);
527 DbSetProperty(db, 1, DB_ResetWanted);
530 if( db->nSchemaLock==0 ){
531 for(i=0; i<db->nDb; i++){
532 if( DbHasProperty(db, i, DB_ResetWanted) ){
533 sqlite3SchemaClear(db->aDb[i].pSchema);
540 ** Erase all schema information from all attached databases (including
541 ** "main" and "temp") for a single database connection.
543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
544 int i;
545 sqlite3BtreeEnterAll(db);
546 assert( db->nSchemaLock==0 );
547 for(i=0; i<db->nDb; i++){
548 Db *pDb = &db->aDb[i];
549 if( pDb->pSchema ){
550 sqlite3SchemaClear(pDb->pSchema);
553 db->mDbFlags &= ~DBFLAG_SchemaChange;
554 sqlite3VtabUnlockList(db);
555 sqlite3BtreeLeaveAll(db);
556 sqlite3CollapseDatabaseArray(db);
560 ** This routine is called when a commit occurs.
562 void sqlite3CommitInternalChanges(sqlite3 *db){
563 db->mDbFlags &= ~DBFLAG_SchemaChange;
567 ** Delete memory allocated for the column names of a table or view (the
568 ** Table.aCol[] array).
570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
571 int i;
572 Column *pCol;
573 assert( pTable!=0 );
574 if( (pCol = pTable->aCol)!=0 ){
575 for(i=0; i<pTable->nCol; i++, pCol++){
576 sqlite3DbFree(db, pCol->zName);
577 sqlite3ExprDelete(db, pCol->pDflt);
578 sqlite3DbFree(db, pCol->zColl);
580 sqlite3DbFree(db, pTable->aCol);
585 ** Remove the memory data structures associated with the given
586 ** Table. No changes are made to disk by this routine.
588 ** This routine just deletes the data structure. It does not unlink
589 ** the table data structure from the hash table. But it does destroy
590 ** memory structures of the indices and foreign keys associated with
591 ** the table.
593 ** The db parameter is optional. It is needed if the Table object
594 ** contains lookaside memory. (Table objects in the schema do not use
595 ** lookaside memory, but some ephemeral Table objects do.) Or the
596 ** db parameter can be used with db->pnBytesFreed to measure the memory
597 ** used by the Table object.
599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
600 Index *pIndex, *pNext;
602 #ifdef SQLITE_DEBUG
603 /* Record the number of outstanding lookaside allocations in schema Tables
604 ** prior to doing any free() operations. Since schema Tables do not use
605 ** lookaside, this number should not change. */
606 int nLookaside = 0;
607 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
608 nLookaside = sqlite3LookasideUsed(db, 0);
610 #endif
612 /* Delete all indices associated with this table. */
613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
614 pNext = pIndex->pNext;
615 assert( pIndex->pSchema==pTable->pSchema
616 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
617 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
618 char *zName = pIndex->zName;
619 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620 &pIndex->pSchema->idxHash, zName, 0
622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623 assert( pOld==pIndex || pOld==0 );
625 freeIndex(db, pIndex);
628 /* Delete any foreign keys attached to this table. */
629 sqlite3FkDelete(db, pTable);
631 /* Delete the Table structure itself.
633 sqlite3DeleteColumnNames(db, pTable);
634 sqlite3DbFree(db, pTable->zName);
635 sqlite3DbFree(db, pTable->zColAff);
636 sqlite3SelectDelete(db, pTable->pSelect);
637 sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639 sqlite3VtabClear(db, pTable);
640 #endif
641 sqlite3DbFree(db, pTable);
643 /* Verify that no lookaside memory was used by schema tables */
644 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
647 /* Do not delete the table until the reference count reaches zero. */
648 if( !pTable ) return;
649 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
650 deleteTable(db, pTable);
655 ** Unlink the given table from the hash tables and the delete the
656 ** table structure with all its indices and foreign keys.
658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
659 Table *p;
660 Db *pDb;
662 assert( db!=0 );
663 assert( iDb>=0 && iDb<db->nDb );
664 assert( zTabName );
665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
667 pDb = &db->aDb[iDb];
668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
669 sqlite3DeleteTable(db, p);
670 db->mDbFlags |= DBFLAG_SchemaChange;
674 ** Given a token, return a string that consists of the text of that
675 ** token. Space to hold the returned string
676 ** is obtained from sqliteMalloc() and must be freed by the calling
677 ** function.
679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
680 ** surround the body of the token are removed.
682 ** Tokens are often just pointers into the original SQL text and so
683 ** are not \000 terminated and are not persistent. The returned string
684 ** is \000 terminated and is persistent.
686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
687 char *zName;
688 if( pName ){
689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
690 sqlite3Dequote(zName);
691 }else{
692 zName = 0;
694 return zName;
698 ** Open the sqlite_master table stored in database number iDb for
699 ** writing. The table is opened using cursor 0.
701 void sqlite3OpenMasterTable(Parse *p, int iDb){
702 Vdbe *v = sqlite3GetVdbe(p);
703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
705 if( p->nTab==0 ){
706 p->nTab = 1;
711 ** Parameter zName points to a nul-terminated buffer containing the name
712 ** of a database ("main", "temp" or the name of an attached db). This
713 ** function returns the index of the named database in db->aDb[], or
714 ** -1 if the named db cannot be found.
716 int sqlite3FindDbName(sqlite3 *db, const char *zName){
717 int i = -1; /* Database number */
718 if( zName ){
719 Db *pDb;
720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
722 /* "main" is always an acceptable alias for the primary database
723 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
724 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
727 return i;
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737 int i; /* Database number */
738 char *zName; /* Name we are searching for */
739 zName = sqlite3NameFromToken(db, pName);
740 i = sqlite3FindDbName(db, zName);
741 sqlite3DbFree(db, zName);
742 return i;
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
748 ** CREATE TABLE xxx.yyy (...);
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
753 ** CREATE TABLE yyy(...);
755 ** Then pName1 is set to "yyy" and pName2 is "".
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name. The index of the
759 ** database "xxx" is returned.
761 int sqlite3TwoPartName(
762 Parse *pParse, /* Parsing and code generating context */
763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
765 Token **pUnqual /* Write the unqualified object name here */
767 int iDb; /* Database holding the object */
768 sqlite3 *db = pParse->db;
770 assert( pName2!=0 );
771 if( pName2->n>0 ){
772 if( db->init.busy ) {
773 sqlite3ErrorMsg(pParse, "corrupt database");
774 return -1;
776 *pUnqual = pName2;
777 iDb = sqlite3FindDb(db, pName1);
778 if( iDb<0 ){
779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
780 return -1;
782 }else{
783 assert( db->init.iDb==0 || db->init.busy
784 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
785 iDb = db->init.iDb;
786 *pUnqual = pName1;
788 return iDb;
792 ** This routine is used to check if the UTF-8 string zName is a legal
793 ** unqualified name for a new schema object (table, index, view or
794 ** trigger). All names are legal except those that begin with the string
795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
796 ** is reserved for internal use.
798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
799 if( !pParse->db->init.busy && pParse->nested==0
800 && (pParse->db->flags & SQLITE_WriteSchema)==0
801 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
802 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
803 return SQLITE_ERROR;
805 return SQLITE_OK;
809 ** Return the PRIMARY KEY index of a table
811 Index *sqlite3PrimaryKeyIndex(Table *pTab){
812 Index *p;
813 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
814 return p;
818 ** Return the column of index pIdx that corresponds to table
819 ** column iCol. Return -1 if not found.
821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
822 int i;
823 for(i=0; i<pIdx->nColumn; i++){
824 if( iCol==pIdx->aiColumn[i] ) return i;
826 return -1;
830 ** Begin constructing a new table representation in memory. This is
831 ** the first of several action routines that get called in response
832 ** to a CREATE TABLE statement. In particular, this routine is called
833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
834 ** flag is true if the table should be stored in the auxiliary database
835 ** file instead of in the main database file. This is normally the case
836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
837 ** CREATE and TABLE.
839 ** The new table record is initialized and put in pParse->pNewTable.
840 ** As more of the CREATE TABLE statement is parsed, additional action
841 ** routines will be called to add more information to this record.
842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
843 ** is called to complete the construction of the new table record.
845 void sqlite3StartTable(
846 Parse *pParse, /* Parser context */
847 Token *pName1, /* First part of the name of the table or view */
848 Token *pName2, /* Second part of the name of the table or view */
849 int isTemp, /* True if this is a TEMP table */
850 int isView, /* True if this is a VIEW */
851 int isVirtual, /* True if this is a VIRTUAL table */
852 int noErr /* Do nothing if table already exists */
854 Table *pTable;
855 char *zName = 0; /* The name of the new table */
856 sqlite3 *db = pParse->db;
857 Vdbe *v;
858 int iDb; /* Database number to create the table in */
859 Token *pName; /* Unqualified name of the table to create */
861 if( db->init.busy && db->init.newTnum==1 ){
862 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
863 iDb = db->init.iDb;
864 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
865 pName = pName1;
866 }else{
867 /* The common case */
868 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
869 if( iDb<0 ) return;
870 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
871 /* If creating a temp table, the name may not be qualified. Unless
872 ** the database name is "temp" anyway. */
873 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
874 return;
876 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
877 zName = sqlite3NameFromToken(db, pName);
879 pParse->sNameToken = *pName;
880 if( zName==0 ) return;
881 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
882 goto begin_table_error;
884 if( db->init.iDb==1 ) isTemp = 1;
885 #ifndef SQLITE_OMIT_AUTHORIZATION
886 assert( isTemp==0 || isTemp==1 );
887 assert( isView==0 || isView==1 );
889 static const u8 aCode[] = {
890 SQLITE_CREATE_TABLE,
891 SQLITE_CREATE_TEMP_TABLE,
892 SQLITE_CREATE_VIEW,
893 SQLITE_CREATE_TEMP_VIEW
895 char *zDb = db->aDb[iDb].zDbSName;
896 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
897 goto begin_table_error;
899 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
900 zName, 0, zDb) ){
901 goto begin_table_error;
904 #endif
906 /* Make sure the new table name does not collide with an existing
907 ** index or table name in the same database. Issue an error message if
908 ** it does. The exception is if the statement being parsed was passed
909 ** to an sqlite3_declare_vtab() call. In that case only the column names
910 ** and types will be used, so there is no need to test for namespace
911 ** collisions.
913 if( !IN_DECLARE_VTAB ){
914 char *zDb = db->aDb[iDb].zDbSName;
915 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
916 goto begin_table_error;
918 pTable = sqlite3FindTable(db, zName, zDb);
919 if( pTable ){
920 if( !noErr ){
921 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
922 }else{
923 assert( !db->init.busy || CORRUPT_DB );
924 sqlite3CodeVerifySchema(pParse, iDb);
926 goto begin_table_error;
928 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
929 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
930 goto begin_table_error;
934 pTable = sqlite3DbMallocZero(db, sizeof(Table));
935 if( pTable==0 ){
936 assert( db->mallocFailed );
937 pParse->rc = SQLITE_NOMEM_BKPT;
938 pParse->nErr++;
939 goto begin_table_error;
941 pTable->zName = zName;
942 pTable->iPKey = -1;
943 pTable->pSchema = db->aDb[iDb].pSchema;
944 pTable->nTabRef = 1;
945 #ifdef SQLITE_DEFAULT_ROWEST
946 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
947 #else
948 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
949 #endif
950 assert( pParse->pNewTable==0 );
951 pParse->pNewTable = pTable;
953 /* If this is the magic sqlite_sequence table used by autoincrement,
954 ** then record a pointer to this table in the main database structure
955 ** so that INSERT can find the table easily.
957 #ifndef SQLITE_OMIT_AUTOINCREMENT
958 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
959 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
960 pTable->pSchema->pSeqTab = pTable;
962 #endif
964 /* Begin generating the code that will insert the table record into
965 ** the SQLITE_MASTER table. Note in particular that we must go ahead
966 ** and allocate the record number for the table entry now. Before any
967 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
968 ** indices to be created and the table record must come before the
969 ** indices. Hence, the record number for the table must be allocated
970 ** now.
972 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
973 int addr1;
974 int fileFormat;
975 int reg1, reg2, reg3;
976 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
977 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
978 sqlite3BeginWriteOperation(pParse, 1, iDb);
980 #ifndef SQLITE_OMIT_VIRTUALTABLE
981 if( isVirtual ){
982 sqlite3VdbeAddOp0(v, OP_VBegin);
984 #endif
986 /* If the file format and encoding in the database have not been set,
987 ** set them now.
989 reg1 = pParse->regRowid = ++pParse->nMem;
990 reg2 = pParse->regRoot = ++pParse->nMem;
991 reg3 = ++pParse->nMem;
992 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
993 sqlite3VdbeUsesBtree(v, iDb);
994 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
995 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
996 1 : SQLITE_MAX_FILE_FORMAT;
997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
998 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
999 sqlite3VdbeJumpHere(v, addr1);
1001 /* This just creates a place-holder record in the sqlite_master table.
1002 ** The record created does not contain anything yet. It will be replaced
1003 ** by the real entry in code generated at sqlite3EndTable().
1005 ** The rowid for the new entry is left in register pParse->regRowid.
1006 ** The root page number of the new table is left in reg pParse->regRoot.
1007 ** The rowid and root page number values are needed by the code that
1008 ** sqlite3EndTable will generate.
1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1011 if( isView || isVirtual ){
1012 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1013 }else
1014 #endif
1016 pParse->addrCrTab =
1017 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1019 sqlite3OpenMasterTable(pParse, iDb);
1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1021 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1024 sqlite3VdbeAddOp0(v, OP_Close);
1027 /* Normal (non-error) return. */
1028 return;
1030 /* If an error occurs, we jump here */
1031 begin_table_error:
1032 sqlite3DbFree(db, zName);
1033 return;
1036 /* Set properties of a table column based on the (magical)
1037 ** name of the column.
1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1041 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1042 pCol->colFlags |= COLFLAG_HIDDEN;
1043 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1044 pTab->tabFlags |= TF_OOOHidden;
1047 #endif
1051 ** Add a new column to the table currently being constructed.
1053 ** The parser calls this routine once for each column declaration
1054 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1055 ** first to get things going. Then this routine is called for each
1056 ** column.
1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1059 Table *p;
1060 int i;
1061 char *z;
1062 char *zType;
1063 Column *pCol;
1064 sqlite3 *db = pParse->db;
1065 if( (p = pParse->pNewTable)==0 ) return;
1066 #if SQLITE_MAX_COLUMN
1067 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1068 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1069 return;
1071 #endif
1072 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1073 if( z==0 ) return;
1074 memcpy(z, pName->z, pName->n);
1075 z[pName->n] = 0;
1076 sqlite3Dequote(z);
1077 for(i=0; i<p->nCol; i++){
1078 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1079 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1080 sqlite3DbFree(db, z);
1081 return;
1084 if( (p->nCol & 0x7)==0 ){
1085 Column *aNew;
1086 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1087 if( aNew==0 ){
1088 sqlite3DbFree(db, z);
1089 return;
1091 p->aCol = aNew;
1093 pCol = &p->aCol[p->nCol];
1094 memset(pCol, 0, sizeof(p->aCol[0]));
1095 pCol->zName = z;
1096 sqlite3ColumnPropertiesFromName(p, pCol);
1098 if( pType->n==0 ){
1099 /* If there is no type specified, columns have the default affinity
1100 ** 'BLOB'. */
1101 pCol->affinity = SQLITE_AFF_BLOB;
1102 pCol->szEst = 1;
1103 }else{
1104 zType = z + sqlite3Strlen30(z) + 1;
1105 memcpy(zType, pType->z, pType->n);
1106 zType[pType->n] = 0;
1107 sqlite3Dequote(zType);
1108 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1109 pCol->colFlags |= COLFLAG_HASTYPE;
1111 p->nCol++;
1112 pParse->constraintName.n = 0;
1116 ** This routine is called by the parser while in the middle of
1117 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1118 ** been seen on a column. This routine sets the notNull flag on
1119 ** the column currently under construction.
1121 void sqlite3AddNotNull(Parse *pParse, int onError){
1122 Table *p;
1123 p = pParse->pNewTable;
1124 if( p==0 || NEVER(p->nCol<1) ) return;
1125 p->aCol[p->nCol-1].notNull = (u8)onError;
1126 p->tabFlags |= TF_HasNotNull;
1130 ** Scan the column type name zType (length nType) and return the
1131 ** associated affinity type.
1133 ** This routine does a case-independent search of zType for the
1134 ** substrings in the following table. If one of the substrings is
1135 ** found, the corresponding affinity is returned. If zType contains
1136 ** more than one of the substrings, entries toward the top of
1137 ** the table take priority. For example, if zType is 'BLOBINT',
1138 ** SQLITE_AFF_INTEGER is returned.
1140 ** Substring | Affinity
1141 ** --------------------------------
1142 ** 'INT' | SQLITE_AFF_INTEGER
1143 ** 'CHAR' | SQLITE_AFF_TEXT
1144 ** 'CLOB' | SQLITE_AFF_TEXT
1145 ** 'TEXT' | SQLITE_AFF_TEXT
1146 ** 'BLOB' | SQLITE_AFF_BLOB
1147 ** 'REAL' | SQLITE_AFF_REAL
1148 ** 'FLOA' | SQLITE_AFF_REAL
1149 ** 'DOUB' | SQLITE_AFF_REAL
1151 ** If none of the substrings in the above table are found,
1152 ** SQLITE_AFF_NUMERIC is returned.
1154 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1155 u32 h = 0;
1156 char aff = SQLITE_AFF_NUMERIC;
1157 const char *zChar = 0;
1159 assert( zIn!=0 );
1160 while( zIn[0] ){
1161 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1162 zIn++;
1163 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1164 aff = SQLITE_AFF_TEXT;
1165 zChar = zIn;
1166 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1167 aff = SQLITE_AFF_TEXT;
1168 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1169 aff = SQLITE_AFF_TEXT;
1170 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1171 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1172 aff = SQLITE_AFF_BLOB;
1173 if( zIn[0]=='(' ) zChar = zIn;
1174 #ifndef SQLITE_OMIT_FLOATING_POINT
1175 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1176 && aff==SQLITE_AFF_NUMERIC ){
1177 aff = SQLITE_AFF_REAL;
1178 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1179 && aff==SQLITE_AFF_NUMERIC ){
1180 aff = SQLITE_AFF_REAL;
1181 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1182 && aff==SQLITE_AFF_NUMERIC ){
1183 aff = SQLITE_AFF_REAL;
1184 #endif
1185 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1186 aff = SQLITE_AFF_INTEGER;
1187 break;
1191 /* If pszEst is not NULL, store an estimate of the field size. The
1192 ** estimate is scaled so that the size of an integer is 1. */
1193 if( pszEst ){
1194 *pszEst = 1; /* default size is approx 4 bytes */
1195 if( aff<SQLITE_AFF_NUMERIC ){
1196 if( zChar ){
1197 while( zChar[0] ){
1198 if( sqlite3Isdigit(zChar[0]) ){
1199 int v = 0;
1200 sqlite3GetInt32(zChar, &v);
1201 v = v/4 + 1;
1202 if( v>255 ) v = 255;
1203 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1204 break;
1206 zChar++;
1208 }else{
1209 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1213 return aff;
1217 ** The expression is the default value for the most recently added column
1218 ** of the table currently under construction.
1220 ** Default value expressions must be constant. Raise an exception if this
1221 ** is not the case.
1223 ** This routine is called by the parser while in the middle of
1224 ** parsing a CREATE TABLE statement.
1226 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1227 Table *p;
1228 Column *pCol;
1229 sqlite3 *db = pParse->db;
1230 p = pParse->pNewTable;
1231 if( p!=0 ){
1232 pCol = &(p->aCol[p->nCol-1]);
1233 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1234 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1235 pCol->zName);
1236 }else{
1237 /* A copy of pExpr is used instead of the original, as pExpr contains
1238 ** tokens that point to volatile memory. The 'span' of the expression
1239 ** is required by pragma table_info.
1241 Expr x;
1242 sqlite3ExprDelete(db, pCol->pDflt);
1243 memset(&x, 0, sizeof(x));
1244 x.op = TK_SPAN;
1245 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1246 (int)(pSpan->zEnd - pSpan->zStart));
1247 x.pLeft = pSpan->pExpr;
1248 x.flags = EP_Skip;
1249 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1250 sqlite3DbFree(db, x.u.zToken);
1253 sqlite3ExprDelete(db, pSpan->pExpr);
1257 ** Backwards Compatibility Hack:
1259 ** Historical versions of SQLite accepted strings as column names in
1260 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1262 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1263 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1265 ** This is goofy. But to preserve backwards compatibility we continue to
1266 ** accept it. This routine does the necessary conversion. It converts
1267 ** the expression given in its argument from a TK_STRING into a TK_ID
1268 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1269 ** If the epxression is anything other than TK_STRING, the expression is
1270 ** unchanged.
1272 static void sqlite3StringToId(Expr *p){
1273 if( p->op==TK_STRING ){
1274 p->op = TK_ID;
1275 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1276 p->pLeft->op = TK_ID;
1281 ** Designate the PRIMARY KEY for the table. pList is a list of names
1282 ** of columns that form the primary key. If pList is NULL, then the
1283 ** most recently added column of the table is the primary key.
1285 ** A table can have at most one primary key. If the table already has
1286 ** a primary key (and this is the second primary key) then create an
1287 ** error.
1289 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1290 ** then we will try to use that column as the rowid. Set the Table.iPKey
1291 ** field of the table under construction to be the index of the
1292 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1293 ** no INTEGER PRIMARY KEY.
1295 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1296 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1298 void sqlite3AddPrimaryKey(
1299 Parse *pParse, /* Parsing context */
1300 ExprList *pList, /* List of field names to be indexed */
1301 int onError, /* What to do with a uniqueness conflict */
1302 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1303 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1305 Table *pTab = pParse->pNewTable;
1306 Column *pCol = 0;
1307 int iCol = -1, i;
1308 int nTerm;
1309 if( pTab==0 ) goto primary_key_exit;
1310 if( pTab->tabFlags & TF_HasPrimaryKey ){
1311 sqlite3ErrorMsg(pParse,
1312 "table \"%s\" has more than one primary key", pTab->zName);
1313 goto primary_key_exit;
1315 pTab->tabFlags |= TF_HasPrimaryKey;
1316 if( pList==0 ){
1317 iCol = pTab->nCol - 1;
1318 pCol = &pTab->aCol[iCol];
1319 pCol->colFlags |= COLFLAG_PRIMKEY;
1320 nTerm = 1;
1321 }else{
1322 nTerm = pList->nExpr;
1323 for(i=0; i<nTerm; i++){
1324 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1325 assert( pCExpr!=0 );
1326 sqlite3StringToId(pCExpr);
1327 if( pCExpr->op==TK_ID ){
1328 const char *zCName = pCExpr->u.zToken;
1329 for(iCol=0; iCol<pTab->nCol; iCol++){
1330 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1331 pCol = &pTab->aCol[iCol];
1332 pCol->colFlags |= COLFLAG_PRIMKEY;
1333 break;
1339 if( nTerm==1
1340 && pCol
1341 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1342 && sortOrder!=SQLITE_SO_DESC
1344 pTab->iPKey = iCol;
1345 pTab->keyConf = (u8)onError;
1346 assert( autoInc==0 || autoInc==1 );
1347 pTab->tabFlags |= autoInc*TF_Autoincrement;
1348 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1349 }else if( autoInc ){
1350 #ifndef SQLITE_OMIT_AUTOINCREMENT
1351 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1352 "INTEGER PRIMARY KEY");
1353 #endif
1354 }else{
1355 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1356 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1357 pList = 0;
1360 primary_key_exit:
1361 sqlite3ExprListDelete(pParse->db, pList);
1362 return;
1366 ** Add a new CHECK constraint to the table currently under construction.
1368 void sqlite3AddCheckConstraint(
1369 Parse *pParse, /* Parsing context */
1370 Expr *pCheckExpr /* The check expression */
1372 #ifndef SQLITE_OMIT_CHECK
1373 Table *pTab = pParse->pNewTable;
1374 sqlite3 *db = pParse->db;
1375 if( pTab && !IN_DECLARE_VTAB
1376 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1378 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1379 if( pParse->constraintName.n ){
1380 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1382 }else
1383 #endif
1385 sqlite3ExprDelete(pParse->db, pCheckExpr);
1390 ** Set the collation function of the most recently parsed table column
1391 ** to the CollSeq given.
1393 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1394 Table *p;
1395 int i;
1396 char *zColl; /* Dequoted name of collation sequence */
1397 sqlite3 *db;
1399 if( (p = pParse->pNewTable)==0 ) return;
1400 i = p->nCol-1;
1401 db = pParse->db;
1402 zColl = sqlite3NameFromToken(db, pToken);
1403 if( !zColl ) return;
1405 if( sqlite3LocateCollSeq(pParse, zColl) ){
1406 Index *pIdx;
1407 sqlite3DbFree(db, p->aCol[i].zColl);
1408 p->aCol[i].zColl = zColl;
1410 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1411 ** then an index may have been created on this column before the
1412 ** collation type was added. Correct this if it is the case.
1414 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1415 assert( pIdx->nKeyCol==1 );
1416 if( pIdx->aiColumn[0]==i ){
1417 pIdx->azColl[0] = p->aCol[i].zColl;
1420 }else{
1421 sqlite3DbFree(db, zColl);
1426 ** This function returns the collation sequence for database native text
1427 ** encoding identified by the string zName, length nName.
1429 ** If the requested collation sequence is not available, or not available
1430 ** in the database native encoding, the collation factory is invoked to
1431 ** request it. If the collation factory does not supply such a sequence,
1432 ** and the sequence is available in another text encoding, then that is
1433 ** returned instead.
1435 ** If no versions of the requested collations sequence are available, or
1436 ** another error occurs, NULL is returned and an error message written into
1437 ** pParse.
1439 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1440 ** invokes the collation factory if the named collation cannot be found
1441 ** and generates an error message.
1443 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1445 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1446 sqlite3 *db = pParse->db;
1447 u8 enc = ENC(db);
1448 u8 initbusy = db->init.busy;
1449 CollSeq *pColl;
1451 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1452 if( !initbusy && (!pColl || !pColl->xCmp) ){
1453 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1456 return pColl;
1461 ** Generate code that will increment the schema cookie.
1463 ** The schema cookie is used to determine when the schema for the
1464 ** database changes. After each schema change, the cookie value
1465 ** changes. When a process first reads the schema it records the
1466 ** cookie. Thereafter, whenever it goes to access the database,
1467 ** it checks the cookie to make sure the schema has not changed
1468 ** since it was last read.
1470 ** This plan is not completely bullet-proof. It is possible for
1471 ** the schema to change multiple times and for the cookie to be
1472 ** set back to prior value. But schema changes are infrequent
1473 ** and the probability of hitting the same cookie value is only
1474 ** 1 chance in 2^32. So we're safe enough.
1476 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1477 ** the schema-version whenever the schema changes.
1479 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1480 sqlite3 *db = pParse->db;
1481 Vdbe *v = pParse->pVdbe;
1482 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1483 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1484 db->aDb[iDb].pSchema->schema_cookie+1);
1488 ** Measure the number of characters needed to output the given
1489 ** identifier. The number returned includes any quotes used
1490 ** but does not include the null terminator.
1492 ** The estimate is conservative. It might be larger that what is
1493 ** really needed.
1495 static int identLength(const char *z){
1496 int n;
1497 for(n=0; *z; n++, z++){
1498 if( *z=='"' ){ n++; }
1500 return n + 2;
1504 ** The first parameter is a pointer to an output buffer. The second
1505 ** parameter is a pointer to an integer that contains the offset at
1506 ** which to write into the output buffer. This function copies the
1507 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1508 ** to the specified offset in the buffer and updates *pIdx to refer
1509 ** to the first byte after the last byte written before returning.
1511 ** If the string zSignedIdent consists entirely of alpha-numeric
1512 ** characters, does not begin with a digit and is not an SQL keyword,
1513 ** then it is copied to the output buffer exactly as it is. Otherwise,
1514 ** it is quoted using double-quotes.
1516 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1517 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1518 int i, j, needQuote;
1519 i = *pIdx;
1521 for(j=0; zIdent[j]; j++){
1522 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1524 needQuote = sqlite3Isdigit(zIdent[0])
1525 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1526 || zIdent[j]!=0
1527 || j==0;
1529 if( needQuote ) z[i++] = '"';
1530 for(j=0; zIdent[j]; j++){
1531 z[i++] = zIdent[j];
1532 if( zIdent[j]=='"' ) z[i++] = '"';
1534 if( needQuote ) z[i++] = '"';
1535 z[i] = 0;
1536 *pIdx = i;
1540 ** Generate a CREATE TABLE statement appropriate for the given
1541 ** table. Memory to hold the text of the statement is obtained
1542 ** from sqliteMalloc() and must be freed by the calling function.
1544 static char *createTableStmt(sqlite3 *db, Table *p){
1545 int i, k, n;
1546 char *zStmt;
1547 char *zSep, *zSep2, *zEnd;
1548 Column *pCol;
1549 n = 0;
1550 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1551 n += identLength(pCol->zName) + 5;
1553 n += identLength(p->zName);
1554 if( n<50 ){
1555 zSep = "";
1556 zSep2 = ",";
1557 zEnd = ")";
1558 }else{
1559 zSep = "\n ";
1560 zSep2 = ",\n ";
1561 zEnd = "\n)";
1563 n += 35 + 6*p->nCol;
1564 zStmt = sqlite3DbMallocRaw(0, n);
1565 if( zStmt==0 ){
1566 sqlite3OomFault(db);
1567 return 0;
1569 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1570 k = sqlite3Strlen30(zStmt);
1571 identPut(zStmt, &k, p->zName);
1572 zStmt[k++] = '(';
1573 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1574 static const char * const azType[] = {
1575 /* SQLITE_AFF_BLOB */ "",
1576 /* SQLITE_AFF_TEXT */ " TEXT",
1577 /* SQLITE_AFF_NUMERIC */ " NUM",
1578 /* SQLITE_AFF_INTEGER */ " INT",
1579 /* SQLITE_AFF_REAL */ " REAL"
1581 int len;
1582 const char *zType;
1584 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1585 k += sqlite3Strlen30(&zStmt[k]);
1586 zSep = zSep2;
1587 identPut(zStmt, &k, pCol->zName);
1588 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1589 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1590 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1591 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1592 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1593 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1594 testcase( pCol->affinity==SQLITE_AFF_REAL );
1596 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1597 len = sqlite3Strlen30(zType);
1598 assert( pCol->affinity==SQLITE_AFF_BLOB
1599 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1600 memcpy(&zStmt[k], zType, len);
1601 k += len;
1602 assert( k<=n );
1604 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1605 return zStmt;
1609 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1610 ** on success and SQLITE_NOMEM on an OOM error.
1612 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1613 char *zExtra;
1614 int nByte;
1615 if( pIdx->nColumn>=N ) return SQLITE_OK;
1616 assert( pIdx->isResized==0 );
1617 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1618 zExtra = sqlite3DbMallocZero(db, nByte);
1619 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1620 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1621 pIdx->azColl = (const char**)zExtra;
1622 zExtra += sizeof(char*)*N;
1623 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1624 pIdx->aiColumn = (i16*)zExtra;
1625 zExtra += sizeof(i16)*N;
1626 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1627 pIdx->aSortOrder = (u8*)zExtra;
1628 pIdx->nColumn = N;
1629 pIdx->isResized = 1;
1630 return SQLITE_OK;
1634 ** Estimate the total row width for a table.
1636 static void estimateTableWidth(Table *pTab){
1637 unsigned wTable = 0;
1638 const Column *pTabCol;
1639 int i;
1640 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1641 wTable += pTabCol->szEst;
1643 if( pTab->iPKey<0 ) wTable++;
1644 pTab->szTabRow = sqlite3LogEst(wTable*4);
1648 ** Estimate the average size of a row for an index.
1650 static void estimateIndexWidth(Index *pIdx){
1651 unsigned wIndex = 0;
1652 int i;
1653 const Column *aCol = pIdx->pTable->aCol;
1654 for(i=0; i<pIdx->nColumn; i++){
1655 i16 x = pIdx->aiColumn[i];
1656 assert( x<pIdx->pTable->nCol );
1657 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1659 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1662 /* Return true if value x is found any of the first nCol entries of aiCol[]
1664 static int hasColumn(const i16 *aiCol, int nCol, int x){
1665 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1666 return 0;
1670 ** This routine runs at the end of parsing a CREATE TABLE statement that
1671 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1672 ** internal schema data structures and the generated VDBE code so that they
1673 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1674 ** Changes include:
1676 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1677 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1678 ** into BTREE_BLOBKEY.
1679 ** (3) Bypass the creation of the sqlite_master table entry
1680 ** for the PRIMARY KEY as the primary key index is now
1681 ** identified by the sqlite_master table entry of the table itself.
1682 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1683 ** schema to the rootpage from the main table.
1684 ** (5) Add all table columns to the PRIMARY KEY Index object
1685 ** so that the PRIMARY KEY is a covering index. The surplus
1686 ** columns are part of KeyInfo.nAllField and are not used for
1687 ** sorting or lookup or uniqueness checks.
1688 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1689 ** indices with the PRIMARY KEY columns.
1691 ** For virtual tables, only (1) is performed.
1693 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1694 Index *pIdx;
1695 Index *pPk;
1696 int nPk;
1697 int i, j;
1698 sqlite3 *db = pParse->db;
1699 Vdbe *v = pParse->pVdbe;
1701 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1703 if( !db->init.imposterTable ){
1704 for(i=0; i<pTab->nCol; i++){
1705 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1706 pTab->aCol[i].notNull = OE_Abort;
1711 /* The remaining transformations only apply to b-tree tables, not to
1712 ** virtual tables */
1713 if( IN_DECLARE_VTAB ) return;
1715 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1716 ** into BTREE_BLOBKEY.
1718 if( pParse->addrCrTab ){
1719 assert( v );
1720 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1723 /* Locate the PRIMARY KEY index. Or, if this table was originally
1724 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1726 if( pTab->iPKey>=0 ){
1727 ExprList *pList;
1728 Token ipkToken;
1729 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1730 pList = sqlite3ExprListAppend(pParse, 0,
1731 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1732 if( pList==0 ) return;
1733 pList->a[0].sortOrder = pParse->iPkSortOrder;
1734 assert( pParse->pNewTable==pTab );
1735 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1736 SQLITE_IDXTYPE_PRIMARYKEY);
1737 if( db->mallocFailed ) return;
1738 pPk = sqlite3PrimaryKeyIndex(pTab);
1739 pTab->iPKey = -1;
1740 }else{
1741 pPk = sqlite3PrimaryKeyIndex(pTab);
1744 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1745 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1746 ** code assumes the PRIMARY KEY contains no repeated columns.
1748 for(i=j=1; i<pPk->nKeyCol; i++){
1749 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1750 pPk->nColumn--;
1751 }else{
1752 pPk->aiColumn[j++] = pPk->aiColumn[i];
1755 pPk->nKeyCol = j;
1757 assert( pPk!=0 );
1758 pPk->isCovering = 1;
1759 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1760 nPk = pPk->nKeyCol;
1762 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1763 ** table entry. This is only required if currently generating VDBE
1764 ** code for a CREATE TABLE (not when parsing one as part of reading
1765 ** a database schema). */
1766 if( v && pPk->tnum>0 ){
1767 assert( db->init.busy==0 );
1768 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1771 /* The root page of the PRIMARY KEY is the table root page */
1772 pPk->tnum = pTab->tnum;
1774 /* Update the in-memory representation of all UNIQUE indices by converting
1775 ** the final rowid column into one or more columns of the PRIMARY KEY.
1777 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1778 int n;
1779 if( IsPrimaryKeyIndex(pIdx) ) continue;
1780 for(i=n=0; i<nPk; i++){
1781 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1783 if( n==0 ){
1784 /* This index is a superset of the primary key */
1785 pIdx->nColumn = pIdx->nKeyCol;
1786 continue;
1788 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1789 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1790 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1791 pIdx->aiColumn[j] = pPk->aiColumn[i];
1792 pIdx->azColl[j] = pPk->azColl[i];
1793 j++;
1796 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1797 assert( pIdx->nColumn>=j );
1800 /* Add all table columns to the PRIMARY KEY index
1802 if( nPk<pTab->nCol ){
1803 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1804 for(i=0, j=nPk; i<pTab->nCol; i++){
1805 if( !hasColumn(pPk->aiColumn, j, i) ){
1806 assert( j<pPk->nColumn );
1807 pPk->aiColumn[j] = i;
1808 pPk->azColl[j] = sqlite3StrBINARY;
1809 j++;
1812 assert( pPk->nColumn==j );
1813 assert( pTab->nCol==j );
1814 }else{
1815 pPk->nColumn = pTab->nCol;
1820 ** This routine is called to report the final ")" that terminates
1821 ** a CREATE TABLE statement.
1823 ** The table structure that other action routines have been building
1824 ** is added to the internal hash tables, assuming no errors have
1825 ** occurred.
1827 ** An entry for the table is made in the master table on disk, unless
1828 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1829 ** it means we are reading the sqlite_master table because we just
1830 ** connected to the database or because the sqlite_master table has
1831 ** recently changed, so the entry for this table already exists in
1832 ** the sqlite_master table. We do not want to create it again.
1834 ** If the pSelect argument is not NULL, it means that this routine
1835 ** was called to create a table generated from a
1836 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1837 ** the new table will match the result set of the SELECT.
1839 void sqlite3EndTable(
1840 Parse *pParse, /* Parse context */
1841 Token *pCons, /* The ',' token after the last column defn. */
1842 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1843 u8 tabOpts, /* Extra table options. Usually 0. */
1844 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1846 Table *p; /* The new table */
1847 sqlite3 *db = pParse->db; /* The database connection */
1848 int iDb; /* Database in which the table lives */
1849 Index *pIdx; /* An implied index of the table */
1851 if( pEnd==0 && pSelect==0 ){
1852 return;
1854 assert( !db->mallocFailed );
1855 p = pParse->pNewTable;
1856 if( p==0 ) return;
1858 assert( !db->init.busy || !pSelect );
1860 /* If the db->init.busy is 1 it means we are reading the SQL off the
1861 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1862 ** So do not write to the disk again. Extract the root page number
1863 ** for the table from the db->init.newTnum field. (The page number
1864 ** should have been put there by the sqliteOpenCb routine.)
1866 ** If the root page number is 1, that means this is the sqlite_master
1867 ** table itself. So mark it read-only.
1869 if( db->init.busy ){
1870 p->tnum = db->init.newTnum;
1871 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1874 /* Special processing for WITHOUT ROWID Tables */
1875 if( tabOpts & TF_WithoutRowid ){
1876 if( (p->tabFlags & TF_Autoincrement) ){
1877 sqlite3ErrorMsg(pParse,
1878 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1879 return;
1881 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1882 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1883 }else{
1884 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1885 convertToWithoutRowidTable(pParse, p);
1889 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1891 #ifndef SQLITE_OMIT_CHECK
1892 /* Resolve names in all CHECK constraint expressions.
1894 if( p->pCheck ){
1895 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1897 #endif /* !defined(SQLITE_OMIT_CHECK) */
1899 /* Estimate the average row size for the table and for all implied indices */
1900 estimateTableWidth(p);
1901 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1902 estimateIndexWidth(pIdx);
1905 /* If not initializing, then create a record for the new table
1906 ** in the SQLITE_MASTER table of the database.
1908 ** If this is a TEMPORARY table, write the entry into the auxiliary
1909 ** file instead of into the main database file.
1911 if( !db->init.busy ){
1912 int n;
1913 Vdbe *v;
1914 char *zType; /* "view" or "table" */
1915 char *zType2; /* "VIEW" or "TABLE" */
1916 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1918 v = sqlite3GetVdbe(pParse);
1919 if( NEVER(v==0) ) return;
1921 sqlite3VdbeAddOp1(v, OP_Close, 0);
1924 ** Initialize zType for the new view or table.
1926 if( p->pSelect==0 ){
1927 /* A regular table */
1928 zType = "table";
1929 zType2 = "TABLE";
1930 #ifndef SQLITE_OMIT_VIEW
1931 }else{
1932 /* A view */
1933 zType = "view";
1934 zType2 = "VIEW";
1935 #endif
1938 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1939 ** statement to populate the new table. The root-page number for the
1940 ** new table is in register pParse->regRoot.
1942 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1943 ** suitable state to query for the column names and types to be used
1944 ** by the new table.
1946 ** A shared-cache write-lock is not required to write to the new table,
1947 ** as a schema-lock must have already been obtained to create it. Since
1948 ** a schema-lock excludes all other database users, the write-lock would
1949 ** be redundant.
1951 if( pSelect ){
1952 SelectDest dest; /* Where the SELECT should store results */
1953 int regYield; /* Register holding co-routine entry-point */
1954 int addrTop; /* Top of the co-routine */
1955 int regRec; /* A record to be insert into the new table */
1956 int regRowid; /* Rowid of the next row to insert */
1957 int addrInsLoop; /* Top of the loop for inserting rows */
1958 Table *pSelTab; /* A table that describes the SELECT results */
1960 regYield = ++pParse->nMem;
1961 regRec = ++pParse->nMem;
1962 regRowid = ++pParse->nMem;
1963 assert(pParse->nTab==1);
1964 sqlite3MayAbort(pParse);
1965 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1966 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1967 pParse->nTab = 2;
1968 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1969 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1970 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1971 sqlite3Select(pParse, pSelect, &dest);
1972 sqlite3VdbeEndCoroutine(v, regYield);
1973 sqlite3VdbeJumpHere(v, addrTop - 1);
1974 if( pParse->nErr ) return;
1975 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1976 if( pSelTab==0 ) return;
1977 assert( p->aCol==0 );
1978 p->nCol = pSelTab->nCol;
1979 p->aCol = pSelTab->aCol;
1980 pSelTab->nCol = 0;
1981 pSelTab->aCol = 0;
1982 sqlite3DeleteTable(db, pSelTab);
1983 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1984 VdbeCoverage(v);
1985 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1986 sqlite3TableAffinity(v, p, 0);
1987 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1988 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1989 sqlite3VdbeGoto(v, addrInsLoop);
1990 sqlite3VdbeJumpHere(v, addrInsLoop);
1991 sqlite3VdbeAddOp1(v, OP_Close, 1);
1994 /* Compute the complete text of the CREATE statement */
1995 if( pSelect ){
1996 zStmt = createTableStmt(db, p);
1997 }else{
1998 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1999 n = (int)(pEnd2->z - pParse->sNameToken.z);
2000 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2001 zStmt = sqlite3MPrintf(db,
2002 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2006 /* A slot for the record has already been allocated in the
2007 ** SQLITE_MASTER table. We just need to update that slot with all
2008 ** the information we've collected.
2010 sqlite3NestedParse(pParse,
2011 "UPDATE %Q.%s "
2012 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2013 "WHERE rowid=#%d",
2014 db->aDb[iDb].zDbSName, MASTER_NAME,
2015 zType,
2016 p->zName,
2017 p->zName,
2018 pParse->regRoot,
2019 zStmt,
2020 pParse->regRowid
2022 sqlite3DbFree(db, zStmt);
2023 sqlite3ChangeCookie(pParse, iDb);
2025 #ifndef SQLITE_OMIT_AUTOINCREMENT
2026 /* Check to see if we need to create an sqlite_sequence table for
2027 ** keeping track of autoincrement keys.
2029 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2030 Db *pDb = &db->aDb[iDb];
2031 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2032 if( pDb->pSchema->pSeqTab==0 ){
2033 sqlite3NestedParse(pParse,
2034 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2035 pDb->zDbSName
2039 #endif
2041 /* Reparse everything to update our internal data structures */
2042 sqlite3VdbeAddParseSchemaOp(v, iDb,
2043 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2047 /* Add the table to the in-memory representation of the database.
2049 if( db->init.busy ){
2050 Table *pOld;
2051 Schema *pSchema = p->pSchema;
2052 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2053 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2054 if( pOld ){
2055 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2056 sqlite3OomFault(db);
2057 return;
2059 pParse->pNewTable = 0;
2060 db->mDbFlags |= DBFLAG_SchemaChange;
2062 #ifndef SQLITE_OMIT_ALTERTABLE
2063 if( !p->pSelect ){
2064 const char *zName = (const char *)pParse->sNameToken.z;
2065 int nName;
2066 assert( !pSelect && pCons && pEnd );
2067 if( pCons->z==0 ){
2068 pCons = pEnd;
2070 nName = (int)((const char *)pCons->z - zName);
2071 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2073 #endif
2077 #ifndef SQLITE_OMIT_VIEW
2079 ** The parser calls this routine in order to create a new VIEW
2081 void sqlite3CreateView(
2082 Parse *pParse, /* The parsing context */
2083 Token *pBegin, /* The CREATE token that begins the statement */
2084 Token *pName1, /* The token that holds the name of the view */
2085 Token *pName2, /* The token that holds the name of the view */
2086 ExprList *pCNames, /* Optional list of view column names */
2087 Select *pSelect, /* A SELECT statement that will become the new view */
2088 int isTemp, /* TRUE for a TEMPORARY view */
2089 int noErr /* Suppress error messages if VIEW already exists */
2091 Table *p;
2092 int n;
2093 const char *z;
2094 Token sEnd;
2095 DbFixer sFix;
2096 Token *pName = 0;
2097 int iDb;
2098 sqlite3 *db = pParse->db;
2100 if( pParse->nVar>0 ){
2101 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2102 goto create_view_fail;
2104 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2105 p = pParse->pNewTable;
2106 if( p==0 || pParse->nErr ) goto create_view_fail;
2107 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2108 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2109 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2110 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2112 /* Make a copy of the entire SELECT statement that defines the view.
2113 ** This will force all the Expr.token.z values to be dynamically
2114 ** allocated rather than point to the input string - which means that
2115 ** they will persist after the current sqlite3_exec() call returns.
2117 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2118 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2119 if( db->mallocFailed ) goto create_view_fail;
2121 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2122 ** the end.
2124 sEnd = pParse->sLastToken;
2125 assert( sEnd.z[0]!=0 );
2126 if( sEnd.z[0]!=';' ){
2127 sEnd.z += sEnd.n;
2129 sEnd.n = 0;
2130 n = (int)(sEnd.z - pBegin->z);
2131 assert( n>0 );
2132 z = pBegin->z;
2133 while( sqlite3Isspace(z[n-1]) ){ n--; }
2134 sEnd.z = &z[n-1];
2135 sEnd.n = 1;
2137 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2138 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2140 create_view_fail:
2141 sqlite3SelectDelete(db, pSelect);
2142 sqlite3ExprListDelete(db, pCNames);
2143 return;
2145 #endif /* SQLITE_OMIT_VIEW */
2147 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2149 ** The Table structure pTable is really a VIEW. Fill in the names of
2150 ** the columns of the view in the pTable structure. Return the number
2151 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2153 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2154 Table *pSelTab; /* A fake table from which we get the result set */
2155 Select *pSel; /* Copy of the SELECT that implements the view */
2156 int nErr = 0; /* Number of errors encountered */
2157 int n; /* Temporarily holds the number of cursors assigned */
2158 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2159 #ifndef SQLITE_OMIT_VIRTUALTABLE
2160 int rc;
2161 #endif
2162 #ifndef SQLITE_OMIT_AUTHORIZATION
2163 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2164 #endif
2166 assert( pTable );
2168 #ifndef SQLITE_OMIT_VIRTUALTABLE
2169 db->nSchemaLock++;
2170 rc = sqlite3VtabCallConnect(pParse, pTable);
2171 db->nSchemaLock--;
2172 if( rc ){
2173 return 1;
2175 if( IsVirtual(pTable) ) return 0;
2176 #endif
2178 #ifndef SQLITE_OMIT_VIEW
2179 /* A positive nCol means the columns names for this view are
2180 ** already known.
2182 if( pTable->nCol>0 ) return 0;
2184 /* A negative nCol is a special marker meaning that we are currently
2185 ** trying to compute the column names. If we enter this routine with
2186 ** a negative nCol, it means two or more views form a loop, like this:
2188 ** CREATE VIEW one AS SELECT * FROM two;
2189 ** CREATE VIEW two AS SELECT * FROM one;
2191 ** Actually, the error above is now caught prior to reaching this point.
2192 ** But the following test is still important as it does come up
2193 ** in the following:
2195 ** CREATE TABLE main.ex1(a);
2196 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2197 ** SELECT * FROM temp.ex1;
2199 if( pTable->nCol<0 ){
2200 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2201 return 1;
2203 assert( pTable->nCol>=0 );
2205 /* If we get this far, it means we need to compute the table names.
2206 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2207 ** "*" elements in the results set of the view and will assign cursors
2208 ** to the elements of the FROM clause. But we do not want these changes
2209 ** to be permanent. So the computation is done on a copy of the SELECT
2210 ** statement that defines the view.
2212 assert( pTable->pSelect );
2213 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2214 if( pSel ){
2215 n = pParse->nTab;
2216 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2217 pTable->nCol = -1;
2218 db->lookaside.bDisable++;
2219 #ifndef SQLITE_OMIT_AUTHORIZATION
2220 xAuth = db->xAuth;
2221 db->xAuth = 0;
2222 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2223 db->xAuth = xAuth;
2224 #else
2225 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2226 #endif
2227 pParse->nTab = n;
2228 if( pTable->pCheck ){
2229 /* CREATE VIEW name(arglist) AS ...
2230 ** The names of the columns in the table are taken from
2231 ** arglist which is stored in pTable->pCheck. The pCheck field
2232 ** normally holds CHECK constraints on an ordinary table, but for
2233 ** a VIEW it holds the list of column names.
2235 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2236 &pTable->nCol, &pTable->aCol);
2237 if( db->mallocFailed==0
2238 && pParse->nErr==0
2239 && pTable->nCol==pSel->pEList->nExpr
2241 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2243 }else if( pSelTab ){
2244 /* CREATE VIEW name AS... without an argument list. Construct
2245 ** the column names from the SELECT statement that defines the view.
2247 assert( pTable->aCol==0 );
2248 pTable->nCol = pSelTab->nCol;
2249 pTable->aCol = pSelTab->aCol;
2250 pSelTab->nCol = 0;
2251 pSelTab->aCol = 0;
2252 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2253 }else{
2254 pTable->nCol = 0;
2255 nErr++;
2257 sqlite3DeleteTable(db, pSelTab);
2258 sqlite3SelectDelete(db, pSel);
2259 db->lookaside.bDisable--;
2260 } else {
2261 nErr++;
2263 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2264 #endif /* SQLITE_OMIT_VIEW */
2265 return nErr;
2267 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2269 #ifndef SQLITE_OMIT_VIEW
2271 ** Clear the column names from every VIEW in database idx.
2273 static void sqliteViewResetAll(sqlite3 *db, int idx){
2274 HashElem *i;
2275 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2276 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2277 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2278 Table *pTab = sqliteHashData(i);
2279 if( pTab->pSelect ){
2280 sqlite3DeleteColumnNames(db, pTab);
2281 pTab->aCol = 0;
2282 pTab->nCol = 0;
2285 DbClearProperty(db, idx, DB_UnresetViews);
2287 #else
2288 # define sqliteViewResetAll(A,B)
2289 #endif /* SQLITE_OMIT_VIEW */
2292 ** This function is called by the VDBE to adjust the internal schema
2293 ** used by SQLite when the btree layer moves a table root page. The
2294 ** root-page of a table or index in database iDb has changed from iFrom
2295 ** to iTo.
2297 ** Ticket #1728: The symbol table might still contain information
2298 ** on tables and/or indices that are the process of being deleted.
2299 ** If you are unlucky, one of those deleted indices or tables might
2300 ** have the same rootpage number as the real table or index that is
2301 ** being moved. So we cannot stop searching after the first match
2302 ** because the first match might be for one of the deleted indices
2303 ** or tables and not the table/index that is actually being moved.
2304 ** We must continue looping until all tables and indices with
2305 ** rootpage==iFrom have been converted to have a rootpage of iTo
2306 ** in order to be certain that we got the right one.
2308 #ifndef SQLITE_OMIT_AUTOVACUUM
2309 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2310 HashElem *pElem;
2311 Hash *pHash;
2312 Db *pDb;
2314 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2315 pDb = &db->aDb[iDb];
2316 pHash = &pDb->pSchema->tblHash;
2317 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2318 Table *pTab = sqliteHashData(pElem);
2319 if( pTab->tnum==iFrom ){
2320 pTab->tnum = iTo;
2323 pHash = &pDb->pSchema->idxHash;
2324 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2325 Index *pIdx = sqliteHashData(pElem);
2326 if( pIdx->tnum==iFrom ){
2327 pIdx->tnum = iTo;
2331 #endif
2334 ** Write code to erase the table with root-page iTable from database iDb.
2335 ** Also write code to modify the sqlite_master table and internal schema
2336 ** if a root-page of another table is moved by the btree-layer whilst
2337 ** erasing iTable (this can happen with an auto-vacuum database).
2339 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2340 Vdbe *v = sqlite3GetVdbe(pParse);
2341 int r1 = sqlite3GetTempReg(pParse);
2342 assert( iTable>1 );
2343 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2344 sqlite3MayAbort(pParse);
2345 #ifndef SQLITE_OMIT_AUTOVACUUM
2346 /* OP_Destroy stores an in integer r1. If this integer
2347 ** is non-zero, then it is the root page number of a table moved to
2348 ** location iTable. The following code modifies the sqlite_master table to
2349 ** reflect this.
2351 ** The "#NNN" in the SQL is a special constant that means whatever value
2352 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2353 ** token for additional information.
2355 sqlite3NestedParse(pParse,
2356 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2357 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2358 #endif
2359 sqlite3ReleaseTempReg(pParse, r1);
2363 ** Write VDBE code to erase table pTab and all associated indices on disk.
2364 ** Code to update the sqlite_master tables and internal schema definitions
2365 ** in case a root-page belonging to another table is moved by the btree layer
2366 ** is also added (this can happen with an auto-vacuum database).
2368 static void destroyTable(Parse *pParse, Table *pTab){
2369 #ifdef SQLITE_OMIT_AUTOVACUUM
2370 Index *pIdx;
2371 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2372 destroyRootPage(pParse, pTab->tnum, iDb);
2373 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2374 destroyRootPage(pParse, pIdx->tnum, iDb);
2376 #else
2377 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2378 ** is not defined), then it is important to call OP_Destroy on the
2379 ** table and index root-pages in order, starting with the numerically
2380 ** largest root-page number. This guarantees that none of the root-pages
2381 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2382 ** following were coded:
2384 ** OP_Destroy 4 0
2385 ** ...
2386 ** OP_Destroy 5 0
2388 ** and root page 5 happened to be the largest root-page number in the
2389 ** database, then root page 5 would be moved to page 4 by the
2390 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2391 ** a free-list page.
2393 int iTab = pTab->tnum;
2394 int iDestroyed = 0;
2396 while( 1 ){
2397 Index *pIdx;
2398 int iLargest = 0;
2400 if( iDestroyed==0 || iTab<iDestroyed ){
2401 iLargest = iTab;
2403 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2404 int iIdx = pIdx->tnum;
2405 assert( pIdx->pSchema==pTab->pSchema );
2406 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2407 iLargest = iIdx;
2410 if( iLargest==0 ){
2411 return;
2412 }else{
2413 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2414 assert( iDb>=0 && iDb<pParse->db->nDb );
2415 destroyRootPage(pParse, iLargest, iDb);
2416 iDestroyed = iLargest;
2419 #endif
2423 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2424 ** after a DROP INDEX or DROP TABLE command.
2426 static void sqlite3ClearStatTables(
2427 Parse *pParse, /* The parsing context */
2428 int iDb, /* The database number */
2429 const char *zType, /* "idx" or "tbl" */
2430 const char *zName /* Name of index or table */
2432 int i;
2433 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2434 for(i=1; i<=4; i++){
2435 char zTab[24];
2436 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2437 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2438 sqlite3NestedParse(pParse,
2439 "DELETE FROM %Q.%s WHERE %s=%Q",
2440 zDbName, zTab, zType, zName
2447 ** Generate code to drop a table.
2449 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2450 Vdbe *v;
2451 sqlite3 *db = pParse->db;
2452 Trigger *pTrigger;
2453 Db *pDb = &db->aDb[iDb];
2455 v = sqlite3GetVdbe(pParse);
2456 assert( v!=0 );
2457 sqlite3BeginWriteOperation(pParse, 1, iDb);
2459 #ifndef SQLITE_OMIT_VIRTUALTABLE
2460 if( IsVirtual(pTab) ){
2461 sqlite3VdbeAddOp0(v, OP_VBegin);
2463 #endif
2465 /* Drop all triggers associated with the table being dropped. Code
2466 ** is generated to remove entries from sqlite_master and/or
2467 ** sqlite_temp_master if required.
2469 pTrigger = sqlite3TriggerList(pParse, pTab);
2470 while( pTrigger ){
2471 assert( pTrigger->pSchema==pTab->pSchema ||
2472 pTrigger->pSchema==db->aDb[1].pSchema );
2473 sqlite3DropTriggerPtr(pParse, pTrigger);
2474 pTrigger = pTrigger->pNext;
2477 #ifndef SQLITE_OMIT_AUTOINCREMENT
2478 /* Remove any entries of the sqlite_sequence table associated with
2479 ** the table being dropped. This is done before the table is dropped
2480 ** at the btree level, in case the sqlite_sequence table needs to
2481 ** move as a result of the drop (can happen in auto-vacuum mode).
2483 if( pTab->tabFlags & TF_Autoincrement ){
2484 sqlite3NestedParse(pParse,
2485 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2486 pDb->zDbSName, pTab->zName
2489 #endif
2491 /* Drop all SQLITE_MASTER table and index entries that refer to the
2492 ** table. The program name loops through the master table and deletes
2493 ** every row that refers to a table of the same name as the one being
2494 ** dropped. Triggers are handled separately because a trigger can be
2495 ** created in the temp database that refers to a table in another
2496 ** database.
2498 sqlite3NestedParse(pParse,
2499 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2500 pDb->zDbSName, MASTER_NAME, pTab->zName);
2501 if( !isView && !IsVirtual(pTab) ){
2502 destroyTable(pParse, pTab);
2505 /* Remove the table entry from SQLite's internal schema and modify
2506 ** the schema cookie.
2508 if( IsVirtual(pTab) ){
2509 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2511 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2512 sqlite3ChangeCookie(pParse, iDb);
2513 sqliteViewResetAll(db, iDb);
2517 ** This routine is called to do the work of a DROP TABLE statement.
2518 ** pName is the name of the table to be dropped.
2520 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2521 Table *pTab;
2522 Vdbe *v;
2523 sqlite3 *db = pParse->db;
2524 int iDb;
2526 if( db->mallocFailed ){
2527 goto exit_drop_table;
2529 assert( pParse->nErr==0 );
2530 assert( pName->nSrc==1 );
2531 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2532 if( noErr ) db->suppressErr++;
2533 assert( isView==0 || isView==LOCATE_VIEW );
2534 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2535 if( noErr ) db->suppressErr--;
2537 if( pTab==0 ){
2538 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2539 goto exit_drop_table;
2541 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2542 assert( iDb>=0 && iDb<db->nDb );
2544 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2545 ** it is initialized.
2547 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2548 goto exit_drop_table;
2550 #ifndef SQLITE_OMIT_AUTHORIZATION
2552 int code;
2553 const char *zTab = SCHEMA_TABLE(iDb);
2554 const char *zDb = db->aDb[iDb].zDbSName;
2555 const char *zArg2 = 0;
2556 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2557 goto exit_drop_table;
2559 if( isView ){
2560 if( !OMIT_TEMPDB && iDb==1 ){
2561 code = SQLITE_DROP_TEMP_VIEW;
2562 }else{
2563 code = SQLITE_DROP_VIEW;
2565 #ifndef SQLITE_OMIT_VIRTUALTABLE
2566 }else if( IsVirtual(pTab) ){
2567 code = SQLITE_DROP_VTABLE;
2568 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2569 #endif
2570 }else{
2571 if( !OMIT_TEMPDB && iDb==1 ){
2572 code = SQLITE_DROP_TEMP_TABLE;
2573 }else{
2574 code = SQLITE_DROP_TABLE;
2577 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2578 goto exit_drop_table;
2580 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2581 goto exit_drop_table;
2584 #endif
2585 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2586 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2587 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2588 goto exit_drop_table;
2591 #ifndef SQLITE_OMIT_VIEW
2592 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2593 ** on a table.
2595 if( isView && pTab->pSelect==0 ){
2596 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2597 goto exit_drop_table;
2599 if( !isView && pTab->pSelect ){
2600 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2601 goto exit_drop_table;
2603 #endif
2605 /* Generate code to remove the table from the master table
2606 ** on disk.
2608 v = sqlite3GetVdbe(pParse);
2609 if( v ){
2610 sqlite3BeginWriteOperation(pParse, 1, iDb);
2611 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2612 sqlite3FkDropTable(pParse, pName, pTab);
2613 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2616 exit_drop_table:
2617 sqlite3SrcListDelete(db, pName);
2621 ** This routine is called to create a new foreign key on the table
2622 ** currently under construction. pFromCol determines which columns
2623 ** in the current table point to the foreign key. If pFromCol==0 then
2624 ** connect the key to the last column inserted. pTo is the name of
2625 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2626 ** of tables in the parent pTo table. flags contains all
2627 ** information about the conflict resolution algorithms specified
2628 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2630 ** An FKey structure is created and added to the table currently
2631 ** under construction in the pParse->pNewTable field.
2633 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2634 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2636 void sqlite3CreateForeignKey(
2637 Parse *pParse, /* Parsing context */
2638 ExprList *pFromCol, /* Columns in this table that point to other table */
2639 Token *pTo, /* Name of the other table */
2640 ExprList *pToCol, /* Columns in the other table */
2641 int flags /* Conflict resolution algorithms. */
2643 sqlite3 *db = pParse->db;
2644 #ifndef SQLITE_OMIT_FOREIGN_KEY
2645 FKey *pFKey = 0;
2646 FKey *pNextTo;
2647 Table *p = pParse->pNewTable;
2648 int nByte;
2649 int i;
2650 int nCol;
2651 char *z;
2653 assert( pTo!=0 );
2654 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2655 if( pFromCol==0 ){
2656 int iCol = p->nCol-1;
2657 if( NEVER(iCol<0) ) goto fk_end;
2658 if( pToCol && pToCol->nExpr!=1 ){
2659 sqlite3ErrorMsg(pParse, "foreign key on %s"
2660 " should reference only one column of table %T",
2661 p->aCol[iCol].zName, pTo);
2662 goto fk_end;
2664 nCol = 1;
2665 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2666 sqlite3ErrorMsg(pParse,
2667 "number of columns in foreign key does not match the number of "
2668 "columns in the referenced table");
2669 goto fk_end;
2670 }else{
2671 nCol = pFromCol->nExpr;
2673 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2674 if( pToCol ){
2675 for(i=0; i<pToCol->nExpr; i++){
2676 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2679 pFKey = sqlite3DbMallocZero(db, nByte );
2680 if( pFKey==0 ){
2681 goto fk_end;
2683 pFKey->pFrom = p;
2684 pFKey->pNextFrom = p->pFKey;
2685 z = (char*)&pFKey->aCol[nCol];
2686 pFKey->zTo = z;
2687 memcpy(z, pTo->z, pTo->n);
2688 z[pTo->n] = 0;
2689 sqlite3Dequote(z);
2690 z += pTo->n+1;
2691 pFKey->nCol = nCol;
2692 if( pFromCol==0 ){
2693 pFKey->aCol[0].iFrom = p->nCol-1;
2694 }else{
2695 for(i=0; i<nCol; i++){
2696 int j;
2697 for(j=0; j<p->nCol; j++){
2698 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2699 pFKey->aCol[i].iFrom = j;
2700 break;
2703 if( j>=p->nCol ){
2704 sqlite3ErrorMsg(pParse,
2705 "unknown column \"%s\" in foreign key definition",
2706 pFromCol->a[i].zName);
2707 goto fk_end;
2711 if( pToCol ){
2712 for(i=0; i<nCol; i++){
2713 int n = sqlite3Strlen30(pToCol->a[i].zName);
2714 pFKey->aCol[i].zCol = z;
2715 memcpy(z, pToCol->a[i].zName, n);
2716 z[n] = 0;
2717 z += n+1;
2720 pFKey->isDeferred = 0;
2721 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2722 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2724 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2725 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2726 pFKey->zTo, (void *)pFKey
2728 if( pNextTo==pFKey ){
2729 sqlite3OomFault(db);
2730 goto fk_end;
2732 if( pNextTo ){
2733 assert( pNextTo->pPrevTo==0 );
2734 pFKey->pNextTo = pNextTo;
2735 pNextTo->pPrevTo = pFKey;
2738 /* Link the foreign key to the table as the last step.
2740 p->pFKey = pFKey;
2741 pFKey = 0;
2743 fk_end:
2744 sqlite3DbFree(db, pFKey);
2745 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2746 sqlite3ExprListDelete(db, pFromCol);
2747 sqlite3ExprListDelete(db, pToCol);
2751 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2752 ** clause is seen as part of a foreign key definition. The isDeferred
2753 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2754 ** The behavior of the most recently created foreign key is adjusted
2755 ** accordingly.
2757 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2758 #ifndef SQLITE_OMIT_FOREIGN_KEY
2759 Table *pTab;
2760 FKey *pFKey;
2761 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2762 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2763 pFKey->isDeferred = (u8)isDeferred;
2764 #endif
2768 ** Generate code that will erase and refill index *pIdx. This is
2769 ** used to initialize a newly created index or to recompute the
2770 ** content of an index in response to a REINDEX command.
2772 ** if memRootPage is not negative, it means that the index is newly
2773 ** created. The register specified by memRootPage contains the
2774 ** root page number of the index. If memRootPage is negative, then
2775 ** the index already exists and must be cleared before being refilled and
2776 ** the root page number of the index is taken from pIndex->tnum.
2778 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2779 Table *pTab = pIndex->pTable; /* The table that is indexed */
2780 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2781 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2782 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2783 int addr1; /* Address of top of loop */
2784 int addr2; /* Address to jump to for next iteration */
2785 int tnum; /* Root page of index */
2786 int iPartIdxLabel; /* Jump to this label to skip a row */
2787 Vdbe *v; /* Generate code into this virtual machine */
2788 KeyInfo *pKey; /* KeyInfo for index */
2789 int regRecord; /* Register holding assembled index record */
2790 sqlite3 *db = pParse->db; /* The database connection */
2791 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2793 #ifndef SQLITE_OMIT_AUTHORIZATION
2794 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2795 db->aDb[iDb].zDbSName ) ){
2796 return;
2798 #endif
2800 /* Require a write-lock on the table to perform this operation */
2801 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2803 v = sqlite3GetVdbe(pParse);
2804 if( v==0 ) return;
2805 if( memRootPage>=0 ){
2806 tnum = memRootPage;
2807 }else{
2808 tnum = pIndex->tnum;
2810 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2811 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2813 /* Open the sorter cursor if we are to use one. */
2814 iSorter = pParse->nTab++;
2815 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2816 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2818 /* Open the table. Loop through all rows of the table, inserting index
2819 ** records into the sorter. */
2820 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2821 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2822 regRecord = sqlite3GetTempReg(pParse);
2824 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2825 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2826 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2827 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2828 sqlite3VdbeJumpHere(v, addr1);
2829 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2830 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2831 (char *)pKey, P4_KEYINFO);
2832 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2834 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2835 if( IsUniqueIndex(pIndex) ){
2836 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2837 sqlite3VdbeGoto(v, j2);
2838 addr2 = sqlite3VdbeCurrentAddr(v);
2839 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2840 pIndex->nKeyCol); VdbeCoverage(v);
2841 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2842 }else{
2843 addr2 = sqlite3VdbeCurrentAddr(v);
2845 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2846 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2847 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2848 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2849 sqlite3ReleaseTempReg(pParse, regRecord);
2850 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2851 sqlite3VdbeJumpHere(v, addr1);
2853 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2854 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2855 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2859 ** Allocate heap space to hold an Index object with nCol columns.
2861 ** Increase the allocation size to provide an extra nExtra bytes
2862 ** of 8-byte aligned space after the Index object and return a
2863 ** pointer to this extra space in *ppExtra.
2865 Index *sqlite3AllocateIndexObject(
2866 sqlite3 *db, /* Database connection */
2867 i16 nCol, /* Total number of columns in the index */
2868 int nExtra, /* Number of bytes of extra space to alloc */
2869 char **ppExtra /* Pointer to the "extra" space */
2871 Index *p; /* Allocated index object */
2872 int nByte; /* Bytes of space for Index object + arrays */
2874 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2875 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2876 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2877 sizeof(i16)*nCol + /* Index.aiColumn */
2878 sizeof(u8)*nCol); /* Index.aSortOrder */
2879 p = sqlite3DbMallocZero(db, nByte + nExtra);
2880 if( p ){
2881 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2882 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2883 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2884 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2885 p->aSortOrder = (u8*)pExtra;
2886 p->nColumn = nCol;
2887 p->nKeyCol = nCol - 1;
2888 *ppExtra = ((char*)p) + nByte;
2890 return p;
2894 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2895 ** and pTblList is the name of the table that is to be indexed. Both will
2896 ** be NULL for a primary key or an index that is created to satisfy a
2897 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2898 ** as the table to be indexed. pParse->pNewTable is a table that is
2899 ** currently being constructed by a CREATE TABLE statement.
2901 ** pList is a list of columns to be indexed. pList will be NULL if this
2902 ** is a primary key or unique-constraint on the most recent column added
2903 ** to the table currently under construction.
2905 void sqlite3CreateIndex(
2906 Parse *pParse, /* All information about this parse */
2907 Token *pName1, /* First part of index name. May be NULL */
2908 Token *pName2, /* Second part of index name. May be NULL */
2909 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2910 ExprList *pList, /* A list of columns to be indexed */
2911 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2912 Token *pStart, /* The CREATE token that begins this statement */
2913 Expr *pPIWhere, /* WHERE clause for partial indices */
2914 int sortOrder, /* Sort order of primary key when pList==NULL */
2915 int ifNotExist, /* Omit error if index already exists */
2916 u8 idxType /* The index type */
2918 Table *pTab = 0; /* Table to be indexed */
2919 Index *pIndex = 0; /* The index to be created */
2920 char *zName = 0; /* Name of the index */
2921 int nName; /* Number of characters in zName */
2922 int i, j;
2923 DbFixer sFix; /* For assigning database names to pTable */
2924 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2925 sqlite3 *db = pParse->db;
2926 Db *pDb; /* The specific table containing the indexed database */
2927 int iDb; /* Index of the database that is being written */
2928 Token *pName = 0; /* Unqualified name of the index to create */
2929 struct ExprList_item *pListItem; /* For looping over pList */
2930 int nExtra = 0; /* Space allocated for zExtra[] */
2931 int nExtraCol; /* Number of extra columns needed */
2932 char *zExtra = 0; /* Extra space after the Index object */
2933 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2935 if( db->mallocFailed || pParse->nErr>0 ){
2936 goto exit_create_index;
2938 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2939 goto exit_create_index;
2941 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2942 goto exit_create_index;
2946 ** Find the table that is to be indexed. Return early if not found.
2948 if( pTblName!=0 ){
2950 /* Use the two-part index name to determine the database
2951 ** to search for the table. 'Fix' the table name to this db
2952 ** before looking up the table.
2954 assert( pName1 && pName2 );
2955 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2956 if( iDb<0 ) goto exit_create_index;
2957 assert( pName && pName->z );
2959 #ifndef SQLITE_OMIT_TEMPDB
2960 /* If the index name was unqualified, check if the table
2961 ** is a temp table. If so, set the database to 1. Do not do this
2962 ** if initialising a database schema.
2964 if( !db->init.busy ){
2965 pTab = sqlite3SrcListLookup(pParse, pTblName);
2966 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2967 iDb = 1;
2970 #endif
2972 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2973 if( sqlite3FixSrcList(&sFix, pTblName) ){
2974 /* Because the parser constructs pTblName from a single identifier,
2975 ** sqlite3FixSrcList can never fail. */
2976 assert(0);
2978 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2979 assert( db->mallocFailed==0 || pTab==0 );
2980 if( pTab==0 ) goto exit_create_index;
2981 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2982 sqlite3ErrorMsg(pParse,
2983 "cannot create a TEMP index on non-TEMP table \"%s\"",
2984 pTab->zName);
2985 goto exit_create_index;
2987 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2988 }else{
2989 assert( pName==0 );
2990 assert( pStart==0 );
2991 pTab = pParse->pNewTable;
2992 if( !pTab ) goto exit_create_index;
2993 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2995 pDb = &db->aDb[iDb];
2997 assert( pTab!=0 );
2998 assert( pParse->nErr==0 );
2999 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3000 && db->init.busy==0
3001 #if SQLITE_USER_AUTHENTICATION
3002 && sqlite3UserAuthTable(pTab->zName)==0
3003 #endif
3004 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
3005 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3006 goto exit_create_index;
3008 #ifndef SQLITE_OMIT_VIEW
3009 if( pTab->pSelect ){
3010 sqlite3ErrorMsg(pParse, "views may not be indexed");
3011 goto exit_create_index;
3013 #endif
3014 #ifndef SQLITE_OMIT_VIRTUALTABLE
3015 if( IsVirtual(pTab) ){
3016 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3017 goto exit_create_index;
3019 #endif
3022 ** Find the name of the index. Make sure there is not already another
3023 ** index or table with the same name.
3025 ** Exception: If we are reading the names of permanent indices from the
3026 ** sqlite_master table (because some other process changed the schema) and
3027 ** one of the index names collides with the name of a temporary table or
3028 ** index, then we will continue to process this index.
3030 ** If pName==0 it means that we are
3031 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3032 ** own name.
3034 if( pName ){
3035 zName = sqlite3NameFromToken(db, pName);
3036 if( zName==0 ) goto exit_create_index;
3037 assert( pName->z!=0 );
3038 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3039 goto exit_create_index;
3041 if( !db->init.busy ){
3042 if( sqlite3FindTable(db, zName, 0)!=0 ){
3043 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3044 goto exit_create_index;
3047 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3048 if( !ifNotExist ){
3049 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3050 }else{
3051 assert( !db->init.busy );
3052 sqlite3CodeVerifySchema(pParse, iDb);
3054 goto exit_create_index;
3056 }else{
3057 int n;
3058 Index *pLoop;
3059 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3060 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3061 if( zName==0 ){
3062 goto exit_create_index;
3065 /* Automatic index names generated from within sqlite3_declare_vtab()
3066 ** must have names that are distinct from normal automatic index names.
3067 ** The following statement converts "sqlite3_autoindex..." into
3068 ** "sqlite3_butoindex..." in order to make the names distinct.
3069 ** The "vtab_err.test" test demonstrates the need of this statement. */
3070 if( IN_DECLARE_VTAB ) zName[7]++;
3073 /* Check for authorization to create an index.
3075 #ifndef SQLITE_OMIT_AUTHORIZATION
3077 const char *zDb = pDb->zDbSName;
3078 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3079 goto exit_create_index;
3081 i = SQLITE_CREATE_INDEX;
3082 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3083 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3084 goto exit_create_index;
3087 #endif
3089 /* If pList==0, it means this routine was called to make a primary
3090 ** key out of the last column added to the table under construction.
3091 ** So create a fake list to simulate this.
3093 if( pList==0 ){
3094 Token prevCol;
3095 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3096 pList = sqlite3ExprListAppend(pParse, 0,
3097 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3098 if( pList==0 ) goto exit_create_index;
3099 assert( pList->nExpr==1 );
3100 sqlite3ExprListSetSortOrder(pList, sortOrder);
3101 }else{
3102 sqlite3ExprListCheckLength(pParse, pList, "index");
3105 /* Figure out how many bytes of space are required to store explicitly
3106 ** specified collation sequence names.
3108 for(i=0; i<pList->nExpr; i++){
3109 Expr *pExpr = pList->a[i].pExpr;
3110 assert( pExpr!=0 );
3111 if( pExpr->op==TK_COLLATE ){
3112 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3117 ** Allocate the index structure.
3119 nName = sqlite3Strlen30(zName);
3120 nExtraCol = pPk ? pPk->nKeyCol : 1;
3121 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3122 nName + nExtra + 1, &zExtra);
3123 if( db->mallocFailed ){
3124 goto exit_create_index;
3126 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3127 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3128 pIndex->zName = zExtra;
3129 zExtra += nName + 1;
3130 memcpy(pIndex->zName, zName, nName+1);
3131 pIndex->pTable = pTab;
3132 pIndex->onError = (u8)onError;
3133 pIndex->uniqNotNull = onError!=OE_None;
3134 pIndex->idxType = idxType;
3135 pIndex->pSchema = db->aDb[iDb].pSchema;
3136 pIndex->nKeyCol = pList->nExpr;
3137 if( pPIWhere ){
3138 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3139 pIndex->pPartIdxWhere = pPIWhere;
3140 pPIWhere = 0;
3142 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3144 /* Check to see if we should honor DESC requests on index columns
3146 if( pDb->pSchema->file_format>=4 ){
3147 sortOrderMask = -1; /* Honor DESC */
3148 }else{
3149 sortOrderMask = 0; /* Ignore DESC */
3152 /* Analyze the list of expressions that form the terms of the index and
3153 ** report any errors. In the common case where the expression is exactly
3154 ** a table column, store that column in aiColumn[]. For general expressions,
3155 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3157 ** TODO: Issue a warning if two or more columns of the index are identical.
3158 ** TODO: Issue a warning if the table primary key is used as part of the
3159 ** index key.
3161 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3162 Expr *pCExpr; /* The i-th index expression */
3163 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3164 const char *zColl; /* Collation sequence name */
3166 sqlite3StringToId(pListItem->pExpr);
3167 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3168 if( pParse->nErr ) goto exit_create_index;
3169 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3170 if( pCExpr->op!=TK_COLUMN ){
3171 if( pTab==pParse->pNewTable ){
3172 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3173 "UNIQUE constraints");
3174 goto exit_create_index;
3176 if( pIndex->aColExpr==0 ){
3177 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3178 pIndex->aColExpr = pCopy;
3179 if( !db->mallocFailed ){
3180 assert( pCopy!=0 );
3181 pListItem = &pCopy->a[i];
3184 j = XN_EXPR;
3185 pIndex->aiColumn[i] = XN_EXPR;
3186 pIndex->uniqNotNull = 0;
3187 }else{
3188 j = pCExpr->iColumn;
3189 assert( j<=0x7fff );
3190 if( j<0 ){
3191 j = pTab->iPKey;
3192 }else if( pTab->aCol[j].notNull==0 ){
3193 pIndex->uniqNotNull = 0;
3195 pIndex->aiColumn[i] = (i16)j;
3197 zColl = 0;
3198 if( pListItem->pExpr->op==TK_COLLATE ){
3199 int nColl;
3200 zColl = pListItem->pExpr->u.zToken;
3201 nColl = sqlite3Strlen30(zColl) + 1;
3202 assert( nExtra>=nColl );
3203 memcpy(zExtra, zColl, nColl);
3204 zColl = zExtra;
3205 zExtra += nColl;
3206 nExtra -= nColl;
3207 }else if( j>=0 ){
3208 zColl = pTab->aCol[j].zColl;
3210 if( !zColl ) zColl = sqlite3StrBINARY;
3211 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3212 goto exit_create_index;
3214 pIndex->azColl[i] = zColl;
3215 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3216 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3219 /* Append the table key to the end of the index. For WITHOUT ROWID
3220 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3221 ** normal tables (when pPk==0) this will be the rowid.
3223 if( pPk ){
3224 for(j=0; j<pPk->nKeyCol; j++){
3225 int x = pPk->aiColumn[j];
3226 assert( x>=0 );
3227 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3228 pIndex->nColumn--;
3229 }else{
3230 pIndex->aiColumn[i] = x;
3231 pIndex->azColl[i] = pPk->azColl[j];
3232 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3233 i++;
3236 assert( i==pIndex->nColumn );
3237 }else{
3238 pIndex->aiColumn[i] = XN_ROWID;
3239 pIndex->azColl[i] = sqlite3StrBINARY;
3241 sqlite3DefaultRowEst(pIndex);
3242 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3244 /* If this index contains every column of its table, then mark
3245 ** it as a covering index */
3246 assert( HasRowid(pTab)
3247 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3248 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3249 pIndex->isCovering = 1;
3250 for(j=0; j<pTab->nCol; j++){
3251 if( j==pTab->iPKey ) continue;
3252 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3253 pIndex->isCovering = 0;
3254 break;
3258 if( pTab==pParse->pNewTable ){
3259 /* This routine has been called to create an automatic index as a
3260 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3261 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3262 ** i.e. one of:
3264 ** CREATE TABLE t(x PRIMARY KEY, y);
3265 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3267 ** Either way, check to see if the table already has such an index. If
3268 ** so, don't bother creating this one. This only applies to
3269 ** automatically created indices. Users can do as they wish with
3270 ** explicit indices.
3272 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3273 ** (and thus suppressing the second one) even if they have different
3274 ** sort orders.
3276 ** If there are different collating sequences or if the columns of
3277 ** the constraint occur in different orders, then the constraints are
3278 ** considered distinct and both result in separate indices.
3280 Index *pIdx;
3281 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3282 int k;
3283 assert( IsUniqueIndex(pIdx) );
3284 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3285 assert( IsUniqueIndex(pIndex) );
3287 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3288 for(k=0; k<pIdx->nKeyCol; k++){
3289 const char *z1;
3290 const char *z2;
3291 assert( pIdx->aiColumn[k]>=0 );
3292 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3293 z1 = pIdx->azColl[k];
3294 z2 = pIndex->azColl[k];
3295 if( sqlite3StrICmp(z1, z2) ) break;
3297 if( k==pIdx->nKeyCol ){
3298 if( pIdx->onError!=pIndex->onError ){
3299 /* This constraint creates the same index as a previous
3300 ** constraint specified somewhere in the CREATE TABLE statement.
3301 ** However the ON CONFLICT clauses are different. If both this
3302 ** constraint and the previous equivalent constraint have explicit
3303 ** ON CONFLICT clauses this is an error. Otherwise, use the
3304 ** explicitly specified behavior for the index.
3306 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3307 sqlite3ErrorMsg(pParse,
3308 "conflicting ON CONFLICT clauses specified", 0);
3310 if( pIdx->onError==OE_Default ){
3311 pIdx->onError = pIndex->onError;
3314 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3315 goto exit_create_index;
3320 /* Link the new Index structure to its table and to the other
3321 ** in-memory database structures.
3323 assert( pParse->nErr==0 );
3324 if( db->init.busy ){
3325 Index *p;
3326 assert( !IN_DECLARE_VTAB );
3327 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3328 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3329 pIndex->zName, pIndex);
3330 if( p ){
3331 assert( p==pIndex ); /* Malloc must have failed */
3332 sqlite3OomFault(db);
3333 goto exit_create_index;
3335 db->mDbFlags |= DBFLAG_SchemaChange;
3336 if( pTblName!=0 ){
3337 pIndex->tnum = db->init.newTnum;
3341 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3342 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3343 ** emit code to allocate the index rootpage on disk and make an entry for
3344 ** the index in the sqlite_master table and populate the index with
3345 ** content. But, do not do this if we are simply reading the sqlite_master
3346 ** table to parse the schema, or if this index is the PRIMARY KEY index
3347 ** of a WITHOUT ROWID table.
3349 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3350 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3351 ** has just been created, it contains no data and the index initialization
3352 ** step can be skipped.
3354 else if( HasRowid(pTab) || pTblName!=0 ){
3355 Vdbe *v;
3356 char *zStmt;
3357 int iMem = ++pParse->nMem;
3359 v = sqlite3GetVdbe(pParse);
3360 if( v==0 ) goto exit_create_index;
3362 sqlite3BeginWriteOperation(pParse, 1, iDb);
3364 /* Create the rootpage for the index using CreateIndex. But before
3365 ** doing so, code a Noop instruction and store its address in
3366 ** Index.tnum. This is required in case this index is actually a
3367 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3368 ** that case the convertToWithoutRowidTable() routine will replace
3369 ** the Noop with a Goto to jump over the VDBE code generated below. */
3370 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3371 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3373 /* Gather the complete text of the CREATE INDEX statement into
3374 ** the zStmt variable
3376 if( pStart ){
3377 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3378 if( pName->z[n-1]==';' ) n--;
3379 /* A named index with an explicit CREATE INDEX statement */
3380 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3381 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3382 }else{
3383 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3384 /* zStmt = sqlite3MPrintf(""); */
3385 zStmt = 0;
3388 /* Add an entry in sqlite_master for this index
3390 sqlite3NestedParse(pParse,
3391 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3392 db->aDb[iDb].zDbSName, MASTER_NAME,
3393 pIndex->zName,
3394 pTab->zName,
3395 iMem,
3396 zStmt
3398 sqlite3DbFree(db, zStmt);
3400 /* Fill the index with data and reparse the schema. Code an OP_Expire
3401 ** to invalidate all pre-compiled statements.
3403 if( pTblName ){
3404 sqlite3RefillIndex(pParse, pIndex, iMem);
3405 sqlite3ChangeCookie(pParse, iDb);
3406 sqlite3VdbeAddParseSchemaOp(v, iDb,
3407 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3408 sqlite3VdbeAddOp0(v, OP_Expire);
3411 sqlite3VdbeJumpHere(v, pIndex->tnum);
3414 /* When adding an index to the list of indices for a table, make
3415 ** sure all indices labeled OE_Replace come after all those labeled
3416 ** OE_Ignore. This is necessary for the correct constraint check
3417 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3418 ** UPDATE and INSERT statements.
3420 if( db->init.busy || pTblName==0 ){
3421 if( onError!=OE_Replace || pTab->pIndex==0
3422 || pTab->pIndex->onError==OE_Replace){
3423 pIndex->pNext = pTab->pIndex;
3424 pTab->pIndex = pIndex;
3425 }else{
3426 Index *pOther = pTab->pIndex;
3427 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3428 pOther = pOther->pNext;
3430 pIndex->pNext = pOther->pNext;
3431 pOther->pNext = pIndex;
3433 pIndex = 0;
3436 /* Clean up before exiting */
3437 exit_create_index:
3438 if( pIndex ) freeIndex(db, pIndex);
3439 sqlite3ExprDelete(db, pPIWhere);
3440 sqlite3ExprListDelete(db, pList);
3441 sqlite3SrcListDelete(db, pTblName);
3442 sqlite3DbFree(db, zName);
3446 ** Fill the Index.aiRowEst[] array with default information - information
3447 ** to be used when we have not run the ANALYZE command.
3449 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3450 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3451 ** number of rows in the table that match any particular value of the
3452 ** first column of the index. aiRowEst[2] is an estimate of the number
3453 ** of rows that match any particular combination of the first 2 columns
3454 ** of the index. And so forth. It must always be the case that
3456 ** aiRowEst[N]<=aiRowEst[N-1]
3457 ** aiRowEst[N]>=1
3459 ** Apart from that, we have little to go on besides intuition as to
3460 ** how aiRowEst[] should be initialized. The numbers generated here
3461 ** are based on typical values found in actual indices.
3463 void sqlite3DefaultRowEst(Index *pIdx){
3464 /* 10, 9, 8, 7, 6 */
3465 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3466 LogEst *a = pIdx->aiRowLogEst;
3467 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3468 int i;
3470 /* Indexes with default row estimates should not have stat1 data */
3471 assert( !pIdx->hasStat1 );
3473 /* Set the first entry (number of rows in the index) to the estimated
3474 ** number of rows in the table, or half the number of rows in the table
3475 ** for a partial index. But do not let the estimate drop below 10. */
3476 a[0] = pIdx->pTable->nRowLogEst;
3477 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3478 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3480 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3481 ** 6 and each subsequent value (if any) is 5. */
3482 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3483 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3484 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3487 assert( 0==sqlite3LogEst(1) );
3488 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3492 ** This routine will drop an existing named index. This routine
3493 ** implements the DROP INDEX statement.
3495 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3496 Index *pIndex;
3497 Vdbe *v;
3498 sqlite3 *db = pParse->db;
3499 int iDb;
3501 assert( pParse->nErr==0 ); /* Never called with prior errors */
3502 if( db->mallocFailed ){
3503 goto exit_drop_index;
3505 assert( pName->nSrc==1 );
3506 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3507 goto exit_drop_index;
3509 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3510 if( pIndex==0 ){
3511 if( !ifExists ){
3512 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3513 }else{
3514 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3516 pParse->checkSchema = 1;
3517 goto exit_drop_index;
3519 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3520 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3521 "or PRIMARY KEY constraint cannot be dropped", 0);
3522 goto exit_drop_index;
3524 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3525 #ifndef SQLITE_OMIT_AUTHORIZATION
3527 int code = SQLITE_DROP_INDEX;
3528 Table *pTab = pIndex->pTable;
3529 const char *zDb = db->aDb[iDb].zDbSName;
3530 const char *zTab = SCHEMA_TABLE(iDb);
3531 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3532 goto exit_drop_index;
3534 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3535 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3536 goto exit_drop_index;
3539 #endif
3541 /* Generate code to remove the index and from the master table */
3542 v = sqlite3GetVdbe(pParse);
3543 if( v ){
3544 sqlite3BeginWriteOperation(pParse, 1, iDb);
3545 sqlite3NestedParse(pParse,
3546 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3547 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3549 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3550 sqlite3ChangeCookie(pParse, iDb);
3551 destroyRootPage(pParse, pIndex->tnum, iDb);
3552 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3555 exit_drop_index:
3556 sqlite3SrcListDelete(db, pName);
3560 ** pArray is a pointer to an array of objects. Each object in the
3561 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3562 ** to extend the array so that there is space for a new object at the end.
3564 ** When this function is called, *pnEntry contains the current size of
3565 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3566 ** in total).
3568 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3569 ** space allocated for the new object is zeroed, *pnEntry updated to
3570 ** reflect the new size of the array and a pointer to the new allocation
3571 ** returned. *pIdx is set to the index of the new array entry in this case.
3573 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3574 ** unchanged and a copy of pArray returned.
3576 void *sqlite3ArrayAllocate(
3577 sqlite3 *db, /* Connection to notify of malloc failures */
3578 void *pArray, /* Array of objects. Might be reallocated */
3579 int szEntry, /* Size of each object in the array */
3580 int *pnEntry, /* Number of objects currently in use */
3581 int *pIdx /* Write the index of a new slot here */
3583 char *z;
3584 int n = *pnEntry;
3585 if( (n & (n-1))==0 ){
3586 int sz = (n==0) ? 1 : 2*n;
3587 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3588 if( pNew==0 ){
3589 *pIdx = -1;
3590 return pArray;
3592 pArray = pNew;
3594 z = (char*)pArray;
3595 memset(&z[n * szEntry], 0, szEntry);
3596 *pIdx = n;
3597 ++*pnEntry;
3598 return pArray;
3602 ** Append a new element to the given IdList. Create a new IdList if
3603 ** need be.
3605 ** A new IdList is returned, or NULL if malloc() fails.
3607 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3608 int i;
3609 if( pList==0 ){
3610 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3611 if( pList==0 ) return 0;
3613 pList->a = sqlite3ArrayAllocate(
3615 pList->a,
3616 sizeof(pList->a[0]),
3617 &pList->nId,
3620 if( i<0 ){
3621 sqlite3IdListDelete(db, pList);
3622 return 0;
3624 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3625 return pList;
3629 ** Delete an IdList.
3631 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3632 int i;
3633 if( pList==0 ) return;
3634 for(i=0; i<pList->nId; i++){
3635 sqlite3DbFree(db, pList->a[i].zName);
3637 sqlite3DbFree(db, pList->a);
3638 sqlite3DbFreeNN(db, pList);
3642 ** Return the index in pList of the identifier named zId. Return -1
3643 ** if not found.
3645 int sqlite3IdListIndex(IdList *pList, const char *zName){
3646 int i;
3647 if( pList==0 ) return -1;
3648 for(i=0; i<pList->nId; i++){
3649 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3651 return -1;
3655 ** Expand the space allocated for the given SrcList object by
3656 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3657 ** New slots are zeroed.
3659 ** For example, suppose a SrcList initially contains two entries: A,B.
3660 ** To append 3 new entries onto the end, do this:
3662 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3664 ** After the call above it would contain: A, B, nil, nil, nil.
3665 ** If the iStart argument had been 1 instead of 2, then the result
3666 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3667 ** the iStart value would be 0. The result then would
3668 ** be: nil, nil, nil, A, B.
3670 ** If a memory allocation fails the SrcList is unchanged. The
3671 ** db->mallocFailed flag will be set to true.
3673 SrcList *sqlite3SrcListEnlarge(
3674 sqlite3 *db, /* Database connection to notify of OOM errors */
3675 SrcList *pSrc, /* The SrcList to be enlarged */
3676 int nExtra, /* Number of new slots to add to pSrc->a[] */
3677 int iStart /* Index in pSrc->a[] of first new slot */
3679 int i;
3681 /* Sanity checking on calling parameters */
3682 assert( iStart>=0 );
3683 assert( nExtra>=1 );
3684 assert( pSrc!=0 );
3685 assert( iStart<=pSrc->nSrc );
3687 /* Allocate additional space if needed */
3688 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3689 SrcList *pNew;
3690 int nAlloc = pSrc->nSrc*2+nExtra;
3691 int nGot;
3692 pNew = sqlite3DbRealloc(db, pSrc,
3693 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3694 if( pNew==0 ){
3695 assert( db->mallocFailed );
3696 return pSrc;
3698 pSrc = pNew;
3699 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3700 pSrc->nAlloc = nGot;
3703 /* Move existing slots that come after the newly inserted slots
3704 ** out of the way */
3705 for(i=pSrc->nSrc-1; i>=iStart; i--){
3706 pSrc->a[i+nExtra] = pSrc->a[i];
3708 pSrc->nSrc += nExtra;
3710 /* Zero the newly allocated slots */
3711 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3712 for(i=iStart; i<iStart+nExtra; i++){
3713 pSrc->a[i].iCursor = -1;
3716 /* Return a pointer to the enlarged SrcList */
3717 return pSrc;
3722 ** Append a new table name to the given SrcList. Create a new SrcList if
3723 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3725 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3726 ** SrcList might be the same as the SrcList that was input or it might be
3727 ** a new one. If an OOM error does occurs, then the prior value of pList
3728 ** that is input to this routine is automatically freed.
3730 ** If pDatabase is not null, it means that the table has an optional
3731 ** database name prefix. Like this: "database.table". The pDatabase
3732 ** points to the table name and the pTable points to the database name.
3733 ** The SrcList.a[].zName field is filled with the table name which might
3734 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3735 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3736 ** or with NULL if no database is specified.
3738 ** In other words, if call like this:
3740 ** sqlite3SrcListAppend(D,A,B,0);
3742 ** Then B is a table name and the database name is unspecified. If called
3743 ** like this:
3745 ** sqlite3SrcListAppend(D,A,B,C);
3747 ** Then C is the table name and B is the database name. If C is defined
3748 ** then so is B. In other words, we never have a case where:
3750 ** sqlite3SrcListAppend(D,A,0,C);
3752 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3753 ** before being added to the SrcList.
3755 SrcList *sqlite3SrcListAppend(
3756 sqlite3 *db, /* Connection to notify of malloc failures */
3757 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3758 Token *pTable, /* Table to append */
3759 Token *pDatabase /* Database of the table */
3761 struct SrcList_item *pItem;
3762 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3763 assert( db!=0 );
3764 if( pList==0 ){
3765 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3766 if( pList==0 ) return 0;
3767 pList->nAlloc = 1;
3768 pList->nSrc = 1;
3769 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3770 pList->a[0].iCursor = -1;
3771 }else{
3772 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3774 if( db->mallocFailed ){
3775 sqlite3SrcListDelete(db, pList);
3776 return 0;
3778 pItem = &pList->a[pList->nSrc-1];
3779 if( pDatabase && pDatabase->z==0 ){
3780 pDatabase = 0;
3782 if( pDatabase ){
3783 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3784 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3785 }else{
3786 pItem->zName = sqlite3NameFromToken(db, pTable);
3787 pItem->zDatabase = 0;
3789 return pList;
3793 ** Assign VdbeCursor index numbers to all tables in a SrcList
3795 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3796 int i;
3797 struct SrcList_item *pItem;
3798 assert(pList || pParse->db->mallocFailed );
3799 if( pList ){
3800 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3801 if( pItem->iCursor>=0 ) break;
3802 pItem->iCursor = pParse->nTab++;
3803 if( pItem->pSelect ){
3804 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3811 ** Delete an entire SrcList including all its substructure.
3813 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3814 int i;
3815 struct SrcList_item *pItem;
3816 if( pList==0 ) return;
3817 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3818 sqlite3DbFree(db, pItem->zDatabase);
3819 sqlite3DbFree(db, pItem->zName);
3820 sqlite3DbFree(db, pItem->zAlias);
3821 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3822 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3823 sqlite3DeleteTable(db, pItem->pTab);
3824 sqlite3SelectDelete(db, pItem->pSelect);
3825 sqlite3ExprDelete(db, pItem->pOn);
3826 sqlite3IdListDelete(db, pItem->pUsing);
3828 sqlite3DbFreeNN(db, pList);
3832 ** This routine is called by the parser to add a new term to the
3833 ** end of a growing FROM clause. The "p" parameter is the part of
3834 ** the FROM clause that has already been constructed. "p" is NULL
3835 ** if this is the first term of the FROM clause. pTable and pDatabase
3836 ** are the name of the table and database named in the FROM clause term.
3837 ** pDatabase is NULL if the database name qualifier is missing - the
3838 ** usual case. If the term has an alias, then pAlias points to the
3839 ** alias token. If the term is a subquery, then pSubquery is the
3840 ** SELECT statement that the subquery encodes. The pTable and
3841 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3842 ** parameters are the content of the ON and USING clauses.
3844 ** Return a new SrcList which encodes is the FROM with the new
3845 ** term added.
3847 SrcList *sqlite3SrcListAppendFromTerm(
3848 Parse *pParse, /* Parsing context */
3849 SrcList *p, /* The left part of the FROM clause already seen */
3850 Token *pTable, /* Name of the table to add to the FROM clause */
3851 Token *pDatabase, /* Name of the database containing pTable */
3852 Token *pAlias, /* The right-hand side of the AS subexpression */
3853 Select *pSubquery, /* A subquery used in place of a table name */
3854 Expr *pOn, /* The ON clause of a join */
3855 IdList *pUsing /* The USING clause of a join */
3857 struct SrcList_item *pItem;
3858 sqlite3 *db = pParse->db;
3859 if( !p && (pOn || pUsing) ){
3860 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3861 (pOn ? "ON" : "USING")
3863 goto append_from_error;
3865 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3866 if( p==0 || NEVER(p->nSrc==0) ){
3867 goto append_from_error;
3869 pItem = &p->a[p->nSrc-1];
3870 assert( pAlias!=0 );
3871 if( pAlias->n ){
3872 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3874 pItem->pSelect = pSubquery;
3875 pItem->pOn = pOn;
3876 pItem->pUsing = pUsing;
3877 return p;
3879 append_from_error:
3880 assert( p==0 );
3881 sqlite3ExprDelete(db, pOn);
3882 sqlite3IdListDelete(db, pUsing);
3883 sqlite3SelectDelete(db, pSubquery);
3884 return 0;
3888 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3889 ** element of the source-list passed as the second argument.
3891 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3892 assert( pIndexedBy!=0 );
3893 if( p && pIndexedBy->n>0 ){
3894 struct SrcList_item *pItem;
3895 assert( p->nSrc>0 );
3896 pItem = &p->a[p->nSrc-1];
3897 assert( pItem->fg.notIndexed==0 );
3898 assert( pItem->fg.isIndexedBy==0 );
3899 assert( pItem->fg.isTabFunc==0 );
3900 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3901 /* A "NOT INDEXED" clause was supplied. See parse.y
3902 ** construct "indexed_opt" for details. */
3903 pItem->fg.notIndexed = 1;
3904 }else{
3905 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3906 pItem->fg.isIndexedBy = 1;
3912 ** Add the list of function arguments to the SrcList entry for a
3913 ** table-valued-function.
3915 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3916 if( p ){
3917 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3918 assert( pItem->fg.notIndexed==0 );
3919 assert( pItem->fg.isIndexedBy==0 );
3920 assert( pItem->fg.isTabFunc==0 );
3921 pItem->u1.pFuncArg = pList;
3922 pItem->fg.isTabFunc = 1;
3923 }else{
3924 sqlite3ExprListDelete(pParse->db, pList);
3929 ** When building up a FROM clause in the parser, the join operator
3930 ** is initially attached to the left operand. But the code generator
3931 ** expects the join operator to be on the right operand. This routine
3932 ** Shifts all join operators from left to right for an entire FROM
3933 ** clause.
3935 ** Example: Suppose the join is like this:
3937 ** A natural cross join B
3939 ** The operator is "natural cross join". The A and B operands are stored
3940 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3941 ** operator with A. This routine shifts that operator over to B.
3943 void sqlite3SrcListShiftJoinType(SrcList *p){
3944 if( p ){
3945 int i;
3946 for(i=p->nSrc-1; i>0; i--){
3947 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3949 p->a[0].fg.jointype = 0;
3954 ** Generate VDBE code for a BEGIN statement.
3956 void sqlite3BeginTransaction(Parse *pParse, int type){
3957 sqlite3 *db;
3958 Vdbe *v;
3959 int i;
3961 assert( pParse!=0 );
3962 db = pParse->db;
3963 assert( db!=0 );
3964 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3965 return;
3967 v = sqlite3GetVdbe(pParse);
3968 if( !v ) return;
3969 if( type!=TK_DEFERRED ){
3970 for(i=0; i<db->nDb; i++){
3971 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3972 sqlite3VdbeUsesBtree(v, i);
3975 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3979 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3980 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
3981 ** code is generated for a COMMIT.
3983 void sqlite3EndTransaction(Parse *pParse, int eType){
3984 Vdbe *v;
3985 int isRollback;
3987 assert( pParse!=0 );
3988 assert( pParse->db!=0 );
3989 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
3990 isRollback = eType==TK_ROLLBACK;
3991 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
3992 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
3993 return;
3995 v = sqlite3GetVdbe(pParse);
3996 if( v ){
3997 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4002 ** This function is called by the parser when it parses a command to create,
4003 ** release or rollback an SQL savepoint.
4005 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4006 char *zName = sqlite3NameFromToken(pParse->db, pName);
4007 if( zName ){
4008 Vdbe *v = sqlite3GetVdbe(pParse);
4009 #ifndef SQLITE_OMIT_AUTHORIZATION
4010 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4011 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4012 #endif
4013 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4014 sqlite3DbFree(pParse->db, zName);
4015 return;
4017 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4022 ** Make sure the TEMP database is open and available for use. Return
4023 ** the number of errors. Leave any error messages in the pParse structure.
4025 int sqlite3OpenTempDatabase(Parse *pParse){
4026 sqlite3 *db = pParse->db;
4027 if( db->aDb[1].pBt==0 && !pParse->explain ){
4028 int rc;
4029 Btree *pBt;
4030 static const int flags =
4031 SQLITE_OPEN_READWRITE |
4032 SQLITE_OPEN_CREATE |
4033 SQLITE_OPEN_EXCLUSIVE |
4034 SQLITE_OPEN_DELETEONCLOSE |
4035 SQLITE_OPEN_TEMP_DB;
4037 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4038 if( rc!=SQLITE_OK ){
4039 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4040 "file for storing temporary tables");
4041 pParse->rc = rc;
4042 return 1;
4044 db->aDb[1].pBt = pBt;
4045 assert( db->aDb[1].pSchema );
4046 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4047 sqlite3OomFault(db);
4048 return 1;
4051 return 0;
4055 ** Record the fact that the schema cookie will need to be verified
4056 ** for database iDb. The code to actually verify the schema cookie
4057 ** will occur at the end of the top-level VDBE and will be generated
4058 ** later, by sqlite3FinishCoding().
4060 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4061 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4063 assert( iDb>=0 && iDb<pParse->db->nDb );
4064 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4065 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4066 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4067 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4068 DbMaskSet(pToplevel->cookieMask, iDb);
4069 if( !OMIT_TEMPDB && iDb==1 ){
4070 sqlite3OpenTempDatabase(pToplevel);
4076 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4077 ** attached database. Otherwise, invoke it for the database named zDb only.
4079 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4080 sqlite3 *db = pParse->db;
4081 int i;
4082 for(i=0; i<db->nDb; i++){
4083 Db *pDb = &db->aDb[i];
4084 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4085 sqlite3CodeVerifySchema(pParse, i);
4091 ** Generate VDBE code that prepares for doing an operation that
4092 ** might change the database.
4094 ** This routine starts a new transaction if we are not already within
4095 ** a transaction. If we are already within a transaction, then a checkpoint
4096 ** is set if the setStatement parameter is true. A checkpoint should
4097 ** be set for operations that might fail (due to a constraint) part of
4098 ** the way through and which will need to undo some writes without having to
4099 ** rollback the whole transaction. For operations where all constraints
4100 ** can be checked before any changes are made to the database, it is never
4101 ** necessary to undo a write and the checkpoint should not be set.
4103 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4104 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4105 sqlite3CodeVerifySchema(pParse, iDb);
4106 DbMaskSet(pToplevel->writeMask, iDb);
4107 pToplevel->isMultiWrite |= setStatement;
4111 ** Indicate that the statement currently under construction might write
4112 ** more than one entry (example: deleting one row then inserting another,
4113 ** inserting multiple rows in a table, or inserting a row and index entries.)
4114 ** If an abort occurs after some of these writes have completed, then it will
4115 ** be necessary to undo the completed writes.
4117 void sqlite3MultiWrite(Parse *pParse){
4118 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4119 pToplevel->isMultiWrite = 1;
4123 ** The code generator calls this routine if is discovers that it is
4124 ** possible to abort a statement prior to completion. In order to
4125 ** perform this abort without corrupting the database, we need to make
4126 ** sure that the statement is protected by a statement transaction.
4128 ** Technically, we only need to set the mayAbort flag if the
4129 ** isMultiWrite flag was previously set. There is a time dependency
4130 ** such that the abort must occur after the multiwrite. This makes
4131 ** some statements involving the REPLACE conflict resolution algorithm
4132 ** go a little faster. But taking advantage of this time dependency
4133 ** makes it more difficult to prove that the code is correct (in
4134 ** particular, it prevents us from writing an effective
4135 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4136 ** to take the safe route and skip the optimization.
4138 void sqlite3MayAbort(Parse *pParse){
4139 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4140 pToplevel->mayAbort = 1;
4144 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4145 ** error. The onError parameter determines which (if any) of the statement
4146 ** and/or current transaction is rolled back.
4148 void sqlite3HaltConstraint(
4149 Parse *pParse, /* Parsing context */
4150 int errCode, /* extended error code */
4151 int onError, /* Constraint type */
4152 char *p4, /* Error message */
4153 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4154 u8 p5Errmsg /* P5_ErrMsg type */
4156 Vdbe *v = sqlite3GetVdbe(pParse);
4157 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4158 if( onError==OE_Abort ){
4159 sqlite3MayAbort(pParse);
4161 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4162 sqlite3VdbeChangeP5(v, p5Errmsg);
4166 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4168 void sqlite3UniqueConstraint(
4169 Parse *pParse, /* Parsing context */
4170 int onError, /* Constraint type */
4171 Index *pIdx /* The index that triggers the constraint */
4173 char *zErr;
4174 int j;
4175 StrAccum errMsg;
4176 Table *pTab = pIdx->pTable;
4178 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4179 if( pIdx->aColExpr ){
4180 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4181 }else{
4182 for(j=0; j<pIdx->nKeyCol; j++){
4183 char *zCol;
4184 assert( pIdx->aiColumn[j]>=0 );
4185 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4186 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4187 sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4188 sqlite3StrAccumAppend(&errMsg, ".", 1);
4189 sqlite3StrAccumAppendAll(&errMsg, zCol);
4192 zErr = sqlite3StrAccumFinish(&errMsg);
4193 sqlite3HaltConstraint(pParse,
4194 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4195 : SQLITE_CONSTRAINT_UNIQUE,
4196 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4201 ** Code an OP_Halt due to non-unique rowid.
4203 void sqlite3RowidConstraint(
4204 Parse *pParse, /* Parsing context */
4205 int onError, /* Conflict resolution algorithm */
4206 Table *pTab /* The table with the non-unique rowid */
4208 char *zMsg;
4209 int rc;
4210 if( pTab->iPKey>=0 ){
4211 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4212 pTab->aCol[pTab->iPKey].zName);
4213 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4214 }else{
4215 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4216 rc = SQLITE_CONSTRAINT_ROWID;
4218 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4219 P5_ConstraintUnique);
4223 ** Check to see if pIndex uses the collating sequence pColl. Return
4224 ** true if it does and false if it does not.
4226 #ifndef SQLITE_OMIT_REINDEX
4227 static int collationMatch(const char *zColl, Index *pIndex){
4228 int i;
4229 assert( zColl!=0 );
4230 for(i=0; i<pIndex->nColumn; i++){
4231 const char *z = pIndex->azColl[i];
4232 assert( z!=0 || pIndex->aiColumn[i]<0 );
4233 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4234 return 1;
4237 return 0;
4239 #endif
4242 ** Recompute all indices of pTab that use the collating sequence pColl.
4243 ** If pColl==0 then recompute all indices of pTab.
4245 #ifndef SQLITE_OMIT_REINDEX
4246 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4247 Index *pIndex; /* An index associated with pTab */
4249 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4250 if( zColl==0 || collationMatch(zColl, pIndex) ){
4251 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4252 sqlite3BeginWriteOperation(pParse, 0, iDb);
4253 sqlite3RefillIndex(pParse, pIndex, -1);
4257 #endif
4260 ** Recompute all indices of all tables in all databases where the
4261 ** indices use the collating sequence pColl. If pColl==0 then recompute
4262 ** all indices everywhere.
4264 #ifndef SQLITE_OMIT_REINDEX
4265 static void reindexDatabases(Parse *pParse, char const *zColl){
4266 Db *pDb; /* A single database */
4267 int iDb; /* The database index number */
4268 sqlite3 *db = pParse->db; /* The database connection */
4269 HashElem *k; /* For looping over tables in pDb */
4270 Table *pTab; /* A table in the database */
4272 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4273 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4274 assert( pDb!=0 );
4275 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4276 pTab = (Table*)sqliteHashData(k);
4277 reindexTable(pParse, pTab, zColl);
4281 #endif
4284 ** Generate code for the REINDEX command.
4286 ** REINDEX -- 1
4287 ** REINDEX <collation> -- 2
4288 ** REINDEX ?<database>.?<tablename> -- 3
4289 ** REINDEX ?<database>.?<indexname> -- 4
4291 ** Form 1 causes all indices in all attached databases to be rebuilt.
4292 ** Form 2 rebuilds all indices in all databases that use the named
4293 ** collating function. Forms 3 and 4 rebuild the named index or all
4294 ** indices associated with the named table.
4296 #ifndef SQLITE_OMIT_REINDEX
4297 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4298 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4299 char *z; /* Name of a table or index */
4300 const char *zDb; /* Name of the database */
4301 Table *pTab; /* A table in the database */
4302 Index *pIndex; /* An index associated with pTab */
4303 int iDb; /* The database index number */
4304 sqlite3 *db = pParse->db; /* The database connection */
4305 Token *pObjName; /* Name of the table or index to be reindexed */
4307 /* Read the database schema. If an error occurs, leave an error message
4308 ** and code in pParse and return NULL. */
4309 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4310 return;
4313 if( pName1==0 ){
4314 reindexDatabases(pParse, 0);
4315 return;
4316 }else if( NEVER(pName2==0) || pName2->z==0 ){
4317 char *zColl;
4318 assert( pName1->z );
4319 zColl = sqlite3NameFromToken(pParse->db, pName1);
4320 if( !zColl ) return;
4321 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4322 if( pColl ){
4323 reindexDatabases(pParse, zColl);
4324 sqlite3DbFree(db, zColl);
4325 return;
4327 sqlite3DbFree(db, zColl);
4329 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4330 if( iDb<0 ) return;
4331 z = sqlite3NameFromToken(db, pObjName);
4332 if( z==0 ) return;
4333 zDb = db->aDb[iDb].zDbSName;
4334 pTab = sqlite3FindTable(db, z, zDb);
4335 if( pTab ){
4336 reindexTable(pParse, pTab, 0);
4337 sqlite3DbFree(db, z);
4338 return;
4340 pIndex = sqlite3FindIndex(db, z, zDb);
4341 sqlite3DbFree(db, z);
4342 if( pIndex ){
4343 sqlite3BeginWriteOperation(pParse, 0, iDb);
4344 sqlite3RefillIndex(pParse, pIndex, -1);
4345 return;
4347 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4349 #endif
4352 ** Return a KeyInfo structure that is appropriate for the given Index.
4354 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4355 ** when it has finished using it.
4357 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4358 int i;
4359 int nCol = pIdx->nColumn;
4360 int nKey = pIdx->nKeyCol;
4361 KeyInfo *pKey;
4362 if( pParse->nErr ) return 0;
4363 if( pIdx->uniqNotNull ){
4364 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4365 }else{
4366 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4368 if( pKey ){
4369 assert( sqlite3KeyInfoIsWriteable(pKey) );
4370 for(i=0; i<nCol; i++){
4371 const char *zColl = pIdx->azColl[i];
4372 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4373 sqlite3LocateCollSeq(pParse, zColl);
4374 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4376 if( pParse->nErr ){
4377 sqlite3KeyInfoUnref(pKey);
4378 pKey = 0;
4381 return pKey;
4384 #ifndef SQLITE_OMIT_CTE
4386 ** This routine is invoked once per CTE by the parser while parsing a
4387 ** WITH clause.
4389 With *sqlite3WithAdd(
4390 Parse *pParse, /* Parsing context */
4391 With *pWith, /* Existing WITH clause, or NULL */
4392 Token *pName, /* Name of the common-table */
4393 ExprList *pArglist, /* Optional column name list for the table */
4394 Select *pQuery /* Query used to initialize the table */
4396 sqlite3 *db = pParse->db;
4397 With *pNew;
4398 char *zName;
4400 /* Check that the CTE name is unique within this WITH clause. If
4401 ** not, store an error in the Parse structure. */
4402 zName = sqlite3NameFromToken(pParse->db, pName);
4403 if( zName && pWith ){
4404 int i;
4405 for(i=0; i<pWith->nCte; i++){
4406 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4407 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4412 if( pWith ){
4413 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4414 pNew = sqlite3DbRealloc(db, pWith, nByte);
4415 }else{
4416 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4418 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4420 if( db->mallocFailed ){
4421 sqlite3ExprListDelete(db, pArglist);
4422 sqlite3SelectDelete(db, pQuery);
4423 sqlite3DbFree(db, zName);
4424 pNew = pWith;
4425 }else{
4426 pNew->a[pNew->nCte].pSelect = pQuery;
4427 pNew->a[pNew->nCte].pCols = pArglist;
4428 pNew->a[pNew->nCte].zName = zName;
4429 pNew->a[pNew->nCte].zCteErr = 0;
4430 pNew->nCte++;
4433 return pNew;
4437 ** Free the contents of the With object passed as the second argument.
4439 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4440 if( pWith ){
4441 int i;
4442 for(i=0; i<pWith->nCte; i++){
4443 struct Cte *pCte = &pWith->a[i];
4444 sqlite3ExprListDelete(db, pCte->pCols);
4445 sqlite3SelectDelete(db, pCte->pSelect);
4446 sqlite3DbFree(db, pCte->zName);
4448 sqlite3DbFree(db, pWith);
4451 #endif /* !defined(SQLITE_OMIT_CTE) */