Modify the sqlite3OsFileControl() interface to detect unopened sqlite3_file
[sqlite.git] / src / pcache.c
blob41fb03100c632b815de2f01a27e5b87a1dd9e741
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 #include "sqliteInt.h"
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained to that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
39 ** pointers).
41 struct PCache {
42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
43 PgHdr *pSynced; /* Last synced page in dirty page list */
44 int nRefSum; /* Sum of ref counts over all pages */
45 int szCache; /* Configured cache size */
46 int szSpill; /* Size before spilling occurs */
47 int szPage; /* Size of every page in this cache */
48 int szExtra; /* Size of extra space for each page */
49 u8 bPurgeable; /* True if pages are on backing store */
50 u8 eCreate; /* eCreate value for for xFetch() */
51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
52 void *pStress; /* Argument to xStress */
53 sqlite3_pcache *pCache; /* Pluggable cache module */
56 /********************************** Test and Debug Logic **********************/
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
59 ** recompiling.
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 void pcacheDump(PCache *pCache){
70 int N;
71 int i, j;
72 sqlite3_pcache_page *pLower;
73 PgHdr *pPg;
74 unsigned char *a;
76 if( sqlite3PcacheTrace<2 ) return;
77 if( pCache->pCache==0 ) return;
78 N = sqlite3PcachePagecount(pCache);
79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80 for(i=1; i<=N; i++){
81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82 if( pLower==0 ) continue;
83 pPg = (PgHdr*)pLower->pExtra;
84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85 a = (unsigned char *)pLower->pBuf;
86 for(j=0; j<12; j++) printf("%02x", a[j]);
87 printf("\n");
88 if( pPg->pPage==0 ){
89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
93 #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
99 ** Check invariants on a PgHdr entry. Return true if everything is OK.
100 ** Return false if any invariant is violated.
102 ** This routine is for use inside of assert() statements only. For
103 ** example:
105 ** assert( sqlite3PcachePageSanity(pPg) );
107 #ifdef SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109 PCache *pCache;
110 assert( pPg!=0 );
111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
112 pCache = pPg->pCache;
113 assert( pCache!=0 ); /* Every page has an associated PCache */
114 if( pPg->flags & PGHDR_CLEAN ){
115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */
117 assert( pCache->pDirtyTail!=pPg );
119 /* WRITEABLE pages must also be DIRTY */
120 if( pPg->flags & PGHDR_WRITEABLE ){
121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
124 ** for example, when using the sqlite3PagerDontWrite() optimization:
125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126 ** (2) Page X moved to freelist, WRITEABLE is cleared
127 ** (3) Page X reused, WRITEABLE is set again
128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129 ** in step 3, and page might be written into the database without first
130 ** syncing the rollback journal, which might cause corruption on a power
131 ** loss.
133 ** Another example is when the database page size is smaller than the
134 ** disk sector size. When any page of a sector is journalled, all pages
135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136 ** in case they are later modified, since all pages in the same sector
137 ** must be journalled and synced before any of those pages can be safely
138 ** written.
140 return 1;
142 #endif /* SQLITE_DEBUG */
145 /********************************** Linked List Management ********************/
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
153 ** Manage pPage's participation on the dirty list. Bits of the addRemove
154 ** argument determines what operation to do. The 0x01 bit means first
155 ** remove pPage from the dirty list. The 0x02 means add pPage back to
156 ** the dirty list. Doing both moves pPage to the front of the dirty list.
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159 PCache *p = pPage->pCache;
161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163 pPage->pgno));
164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166 assert( pPage->pDirtyPrev || pPage==p->pDirty );
168 /* Update the PCache1.pSynced variable if necessary. */
169 if( p->pSynced==pPage ){
170 p->pSynced = pPage->pDirtyPrev;
173 if( pPage->pDirtyNext ){
174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175 }else{
176 assert( pPage==p->pDirtyTail );
177 p->pDirtyTail = pPage->pDirtyPrev;
179 if( pPage->pDirtyPrev ){
180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181 }else{
182 /* If there are now no dirty pages in the cache, set eCreate to 2.
183 ** This is an optimization that allows sqlite3PcacheFetch() to skip
184 ** searching for a dirty page to eject from the cache when it might
185 ** otherwise have to. */
186 assert( pPage==p->pDirty );
187 p->pDirty = pPage->pDirtyNext;
188 assert( p->bPurgeable || p->eCreate==2 );
189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
190 assert( p->bPurgeable==0 || p->eCreate==1 );
191 p->eCreate = 2;
195 if( addRemove & PCACHE_DIRTYLIST_ADD ){
196 pPage->pDirtyPrev = 0;
197 pPage->pDirtyNext = p->pDirty;
198 if( pPage->pDirtyNext ){
199 assert( pPage->pDirtyNext->pDirtyPrev==0 );
200 pPage->pDirtyNext->pDirtyPrev = pPage;
201 }else{
202 p->pDirtyTail = pPage;
203 if( p->bPurgeable ){
204 assert( p->eCreate==2 );
205 p->eCreate = 1;
208 p->pDirty = pPage;
210 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
211 ** pSynced to point to it. Checking the NEED_SYNC flag is an
212 ** optimization, as if pSynced points to a page with the NEED_SYNC
213 ** flag set sqlite3PcacheFetchStress() searches through all newer
214 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
215 if( !p->pSynced
216 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
218 p->pSynced = pPage;
221 pcacheDump(p);
225 ** Wrapper around the pluggable caches xUnpin method. If the cache is
226 ** being used for an in-memory database, this function is a no-op.
228 static void pcacheUnpin(PgHdr *p){
229 if( p->pCache->bPurgeable ){
230 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
231 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
232 pcacheDump(p->pCache);
237 ** Compute the number of pages of cache requested. p->szCache is the
238 ** cache size requested by the "PRAGMA cache_size" statement.
240 static int numberOfCachePages(PCache *p){
241 if( p->szCache>=0 ){
242 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
243 ** suggested cache size is set to N. */
244 return p->szCache;
245 }else{
246 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
247 ** the number of cache pages is adjusted to use approximately abs(N*1024)
248 ** bytes of memory. */
249 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
253 /*************************************************** General Interfaces ******
255 ** Initialize and shutdown the page cache subsystem. Neither of these
256 ** functions are threadsafe.
258 int sqlite3PcacheInitialize(void){
259 if( sqlite3GlobalConfig.pcache2.xInit==0 ){
260 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
261 ** built-in default page cache is used instead of the application defined
262 ** page cache. */
263 sqlite3PCacheSetDefault();
265 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
267 void sqlite3PcacheShutdown(void){
268 if( sqlite3GlobalConfig.pcache2.xShutdown ){
269 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
270 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
275 ** Return the size in bytes of a PCache object.
277 int sqlite3PcacheSize(void){ return sizeof(PCache); }
280 ** Create a new PCache object. Storage space to hold the object
281 ** has already been allocated and is passed in as the p pointer.
282 ** The caller discovers how much space needs to be allocated by
283 ** calling sqlite3PcacheSize().
285 ** szExtra is some extra space allocated for each page. The first
286 ** 8 bytes of the extra space will be zeroed as the page is allocated,
287 ** but remaining content will be uninitialized. Though it is opaque
288 ** to this module, the extra space really ends up being the MemPage
289 ** structure in the pager.
291 int sqlite3PcacheOpen(
292 int szPage, /* Size of every page */
293 int szExtra, /* Extra space associated with each page */
294 int bPurgeable, /* True if pages are on backing store */
295 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
296 void *pStress, /* Argument to xStress */
297 PCache *p /* Preallocated space for the PCache */
299 memset(p, 0, sizeof(PCache));
300 p->szPage = 1;
301 p->szExtra = szExtra;
302 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
303 p->bPurgeable = bPurgeable;
304 p->eCreate = 2;
305 p->xStress = xStress;
306 p->pStress = pStress;
307 p->szCache = 100;
308 p->szSpill = 1;
309 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
310 return sqlite3PcacheSetPageSize(p, szPage);
314 ** Change the page size for PCache object. The caller must ensure that there
315 ** are no outstanding page references when this function is called.
317 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
318 assert( pCache->nRefSum==0 && pCache->pDirty==0 );
319 if( pCache->szPage ){
320 sqlite3_pcache *pNew;
321 pNew = sqlite3GlobalConfig.pcache2.xCreate(
322 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
323 pCache->bPurgeable
325 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
326 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
327 if( pCache->pCache ){
328 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
330 pCache->pCache = pNew;
331 pCache->szPage = szPage;
332 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
334 return SQLITE_OK;
338 ** Try to obtain a page from the cache.
340 ** This routine returns a pointer to an sqlite3_pcache_page object if
341 ** such an object is already in cache, or if a new one is created.
342 ** This routine returns a NULL pointer if the object was not in cache
343 ** and could not be created.
345 ** The createFlags should be 0 to check for existing pages and should
346 ** be 3 (not 1, but 3) to try to create a new page.
348 ** If the createFlag is 0, then NULL is always returned if the page
349 ** is not already in the cache. If createFlag is 1, then a new page
350 ** is created only if that can be done without spilling dirty pages
351 ** and without exceeding the cache size limit.
353 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
354 ** initialize the sqlite3_pcache_page object and convert it into a
355 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
356 ** routines are split this way for performance reasons. When separated
357 ** they can both (usually) operate without having to push values to
358 ** the stack on entry and pop them back off on exit, which saves a
359 ** lot of pushing and popping.
361 sqlite3_pcache_page *sqlite3PcacheFetch(
362 PCache *pCache, /* Obtain the page from this cache */
363 Pgno pgno, /* Page number to obtain */
364 int createFlag /* If true, create page if it does not exist already */
366 int eCreate;
367 sqlite3_pcache_page *pRes;
369 assert( pCache!=0 );
370 assert( pCache->pCache!=0 );
371 assert( createFlag==3 || createFlag==0 );
372 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
374 /* eCreate defines what to do if the page does not exist.
375 ** 0 Do not allocate a new page. (createFlag==0)
376 ** 1 Allocate a new page if doing so is inexpensive.
377 ** (createFlag==1 AND bPurgeable AND pDirty)
378 ** 2 Allocate a new page even it doing so is difficult.
379 ** (createFlag==1 AND !(bPurgeable AND pDirty)
381 eCreate = createFlag & pCache->eCreate;
382 assert( eCreate==0 || eCreate==1 || eCreate==2 );
383 assert( createFlag==0 || pCache->eCreate==eCreate );
384 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
385 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
386 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
387 createFlag?" create":"",pRes));
388 return pRes;
392 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
393 ** page because no clean pages are available for reuse and the cache
394 ** size limit has been reached, then this routine can be invoked to
395 ** try harder to allocate a page. This routine might invoke the stress
396 ** callback to spill dirty pages to the journal. It will then try to
397 ** allocate the new page and will only fail to allocate a new page on
398 ** an OOM error.
400 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
402 int sqlite3PcacheFetchStress(
403 PCache *pCache, /* Obtain the page from this cache */
404 Pgno pgno, /* Page number to obtain */
405 sqlite3_pcache_page **ppPage /* Write result here */
407 PgHdr *pPg;
408 if( pCache->eCreate==2 ) return 0;
410 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
411 /* Find a dirty page to write-out and recycle. First try to find a
412 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
413 ** cleared), but if that is not possible settle for any other
414 ** unreferenced dirty page.
416 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
417 ** flag is currently referenced, then the following may leave pSynced
418 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
419 ** cleared). This is Ok, as pSynced is just an optimization. */
420 for(pPg=pCache->pSynced;
421 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
422 pPg=pPg->pDirtyPrev
424 pCache->pSynced = pPg;
425 if( !pPg ){
426 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
428 if( pPg ){
429 int rc;
430 #ifdef SQLITE_LOG_CACHE_SPILL
431 sqlite3_log(SQLITE_FULL,
432 "spill page %d making room for %d - cache used: %d/%d",
433 pPg->pgno, pgno,
434 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
435 numberOfCachePages(pCache));
436 #endif
437 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
438 rc = pCache->xStress(pCache->pStress, pPg);
439 pcacheDump(pCache);
440 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
441 return rc;
445 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
446 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
450 ** This is a helper routine for sqlite3PcacheFetchFinish()
452 ** In the uncommon case where the page being fetched has not been
453 ** initialized, this routine is invoked to do the initialization.
454 ** This routine is broken out into a separate function since it
455 ** requires extra stack manipulation that can be avoided in the common
456 ** case.
458 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
459 PCache *pCache, /* Obtain the page from this cache */
460 Pgno pgno, /* Page number obtained */
461 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
463 PgHdr *pPgHdr;
464 assert( pPage!=0 );
465 pPgHdr = (PgHdr*)pPage->pExtra;
466 assert( pPgHdr->pPage==0 );
467 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
468 pPgHdr->pPage = pPage;
469 pPgHdr->pData = pPage->pBuf;
470 pPgHdr->pExtra = (void *)&pPgHdr[1];
471 memset(pPgHdr->pExtra, 0, 8);
472 pPgHdr->pCache = pCache;
473 pPgHdr->pgno = pgno;
474 pPgHdr->flags = PGHDR_CLEAN;
475 return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
479 ** This routine converts the sqlite3_pcache_page object returned by
480 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
481 ** must be called after sqlite3PcacheFetch() in order to get a usable
482 ** result.
484 PgHdr *sqlite3PcacheFetchFinish(
485 PCache *pCache, /* Obtain the page from this cache */
486 Pgno pgno, /* Page number obtained */
487 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
489 PgHdr *pPgHdr;
491 assert( pPage!=0 );
492 pPgHdr = (PgHdr *)pPage->pExtra;
494 if( !pPgHdr->pPage ){
495 return pcacheFetchFinishWithInit(pCache, pgno, pPage);
497 pCache->nRefSum++;
498 pPgHdr->nRef++;
499 assert( sqlite3PcachePageSanity(pPgHdr) );
500 return pPgHdr;
504 ** Decrement the reference count on a page. If the page is clean and the
505 ** reference count drops to 0, then it is made eligible for recycling.
507 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
508 assert( p->nRef>0 );
509 p->pCache->nRefSum--;
510 if( (--p->nRef)==0 ){
511 if( p->flags&PGHDR_CLEAN ){
512 pcacheUnpin(p);
513 }else{
514 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
520 ** Increase the reference count of a supplied page by 1.
522 void sqlite3PcacheRef(PgHdr *p){
523 assert(p->nRef>0);
524 assert( sqlite3PcachePageSanity(p) );
525 p->nRef++;
526 p->pCache->nRefSum++;
530 ** Drop a page from the cache. There must be exactly one reference to the
531 ** page. This function deletes that reference, so after it returns the
532 ** page pointed to by p is invalid.
534 void sqlite3PcacheDrop(PgHdr *p){
535 assert( p->nRef==1 );
536 assert( sqlite3PcachePageSanity(p) );
537 if( p->flags&PGHDR_DIRTY ){
538 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
540 p->pCache->nRefSum--;
541 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
545 ** Make sure the page is marked as dirty. If it isn't dirty already,
546 ** make it so.
548 void sqlite3PcacheMakeDirty(PgHdr *p){
549 assert( p->nRef>0 );
550 assert( sqlite3PcachePageSanity(p) );
551 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
552 p->flags &= ~PGHDR_DONT_WRITE;
553 if( p->flags & PGHDR_CLEAN ){
554 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
555 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
556 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
557 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
559 assert( sqlite3PcachePageSanity(p) );
564 ** Make sure the page is marked as clean. If it isn't clean already,
565 ** make it so.
567 void sqlite3PcacheMakeClean(PgHdr *p){
568 assert( sqlite3PcachePageSanity(p) );
569 assert( (p->flags & PGHDR_DIRTY)!=0 );
570 assert( (p->flags & PGHDR_CLEAN)==0 );
571 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
572 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
573 p->flags |= PGHDR_CLEAN;
574 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
575 assert( sqlite3PcachePageSanity(p) );
576 if( p->nRef==0 ){
577 pcacheUnpin(p);
582 ** Make every page in the cache clean.
584 void sqlite3PcacheCleanAll(PCache *pCache){
585 PgHdr *p;
586 pcacheTrace(("%p.CLEAN-ALL\n",pCache));
587 while( (p = pCache->pDirty)!=0 ){
588 sqlite3PcacheMakeClean(p);
593 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
595 void sqlite3PcacheClearWritable(PCache *pCache){
596 PgHdr *p;
597 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
598 for(p=pCache->pDirty; p; p=p->pDirtyNext){
599 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
601 pCache->pSynced = pCache->pDirtyTail;
605 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
607 void sqlite3PcacheClearSyncFlags(PCache *pCache){
608 PgHdr *p;
609 for(p=pCache->pDirty; p; p=p->pDirtyNext){
610 p->flags &= ~PGHDR_NEED_SYNC;
612 pCache->pSynced = pCache->pDirtyTail;
616 ** Change the page number of page p to newPgno.
618 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
619 PCache *pCache = p->pCache;
620 assert( p->nRef>0 );
621 assert( newPgno>0 );
622 assert( sqlite3PcachePageSanity(p) );
623 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
624 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
625 p->pgno = newPgno;
626 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
627 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
632 ** Drop every cache entry whose page number is greater than "pgno". The
633 ** caller must ensure that there are no outstanding references to any pages
634 ** other than page 1 with a page number greater than pgno.
636 ** If there is a reference to page 1 and the pgno parameter passed to this
637 ** function is 0, then the data area associated with page 1 is zeroed, but
638 ** the page object is not dropped.
640 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
641 if( pCache->pCache ){
642 PgHdr *p;
643 PgHdr *pNext;
644 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
645 for(p=pCache->pDirty; p; p=pNext){
646 pNext = p->pDirtyNext;
647 /* This routine never gets call with a positive pgno except right
648 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
649 ** it must be that pgno==0.
651 assert( p->pgno>0 );
652 if( p->pgno>pgno ){
653 assert( p->flags&PGHDR_DIRTY );
654 sqlite3PcacheMakeClean(p);
657 if( pgno==0 && pCache->nRefSum ){
658 sqlite3_pcache_page *pPage1;
659 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
660 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
661 ** pCache->nRefSum>0 */
662 memset(pPage1->pBuf, 0, pCache->szPage);
663 pgno = 1;
666 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
671 ** Close a cache.
673 void sqlite3PcacheClose(PCache *pCache){
674 assert( pCache->pCache!=0 );
675 pcacheTrace(("%p.CLOSE\n",pCache));
676 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
680 ** Discard the contents of the cache.
682 void sqlite3PcacheClear(PCache *pCache){
683 sqlite3PcacheTruncate(pCache, 0);
687 ** Merge two lists of pages connected by pDirty and in pgno order.
688 ** Do not bother fixing the pDirtyPrev pointers.
690 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
691 PgHdr result, *pTail;
692 pTail = &result;
693 assert( pA!=0 && pB!=0 );
694 for(;;){
695 if( pA->pgno<pB->pgno ){
696 pTail->pDirty = pA;
697 pTail = pA;
698 pA = pA->pDirty;
699 if( pA==0 ){
700 pTail->pDirty = pB;
701 break;
703 }else{
704 pTail->pDirty = pB;
705 pTail = pB;
706 pB = pB->pDirty;
707 if( pB==0 ){
708 pTail->pDirty = pA;
709 break;
713 return result.pDirty;
717 ** Sort the list of pages in accending order by pgno. Pages are
718 ** connected by pDirty pointers. The pDirtyPrev pointers are
719 ** corrupted by this sort.
721 ** Since there cannot be more than 2^31 distinct pages in a database,
722 ** there cannot be more than 31 buckets required by the merge sorter.
723 ** One extra bucket is added to catch overflow in case something
724 ** ever changes to make the previous sentence incorrect.
726 #define N_SORT_BUCKET 32
727 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
728 PgHdr *a[N_SORT_BUCKET], *p;
729 int i;
730 memset(a, 0, sizeof(a));
731 while( pIn ){
732 p = pIn;
733 pIn = p->pDirty;
734 p->pDirty = 0;
735 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
736 if( a[i]==0 ){
737 a[i] = p;
738 break;
739 }else{
740 p = pcacheMergeDirtyList(a[i], p);
741 a[i] = 0;
744 if( NEVER(i==N_SORT_BUCKET-1) ){
745 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
746 ** the input list. But that is impossible.
748 a[i] = pcacheMergeDirtyList(a[i], p);
751 p = a[0];
752 for(i=1; i<N_SORT_BUCKET; i++){
753 if( a[i]==0 ) continue;
754 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
756 return p;
760 ** Return a list of all dirty pages in the cache, sorted by page number.
762 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
763 PgHdr *p;
764 for(p=pCache->pDirty; p; p=p->pDirtyNext){
765 p->pDirty = p->pDirtyNext;
767 return pcacheSortDirtyList(pCache->pDirty);
771 ** Return the total number of references to all pages held by the cache.
773 ** This is not the total number of pages referenced, but the sum of the
774 ** reference count for all pages.
776 int sqlite3PcacheRefCount(PCache *pCache){
777 return pCache->nRefSum;
781 ** Return the number of references to the page supplied as an argument.
783 int sqlite3PcachePageRefcount(PgHdr *p){
784 return p->nRef;
788 ** Return the total number of pages in the cache.
790 int sqlite3PcachePagecount(PCache *pCache){
791 assert( pCache->pCache!=0 );
792 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
795 #ifdef SQLITE_TEST
797 ** Get the suggested cache-size value.
799 int sqlite3PcacheGetCachesize(PCache *pCache){
800 return numberOfCachePages(pCache);
802 #endif
805 ** Set the suggested cache-size value.
807 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
808 assert( pCache->pCache!=0 );
809 pCache->szCache = mxPage;
810 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
811 numberOfCachePages(pCache));
815 ** Set the suggested cache-spill value. Make no changes if if the
816 ** argument is zero. Return the effective cache-spill size, which will
817 ** be the larger of the szSpill and szCache.
819 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
820 int res;
821 assert( p->pCache!=0 );
822 if( mxPage ){
823 if( mxPage<0 ){
824 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
826 p->szSpill = mxPage;
828 res = numberOfCachePages(p);
829 if( res<p->szSpill ) res = p->szSpill;
830 return res;
834 ** Free up as much memory as possible from the page cache.
836 void sqlite3PcacheShrink(PCache *pCache){
837 assert( pCache->pCache!=0 );
838 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
842 ** Return the size of the header added by this middleware layer
843 ** in the page-cache hierarchy.
845 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
848 ** Return the number of dirty pages currently in the cache, as a percentage
849 ** of the configured cache size.
851 int sqlite3PCachePercentDirty(PCache *pCache){
852 PgHdr *pDirty;
853 int nDirty = 0;
854 int nCache = numberOfCachePages(pCache);
855 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
856 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
859 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
861 ** For all dirty pages currently in the cache, invoke the specified
862 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
863 ** defined.
865 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
866 PgHdr *pDirty;
867 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
868 xIter(pDirty);
871 #endif