Modify the sqlite3OsFileControl() interface to detect unopened sqlite3_file
[sqlite.git] / src / insert.c
blob9f7032c52cac1a51f23e46daa4564be05655c06c
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 if( x>=0 ){
92 pIdx->zColAff[n] = pTab->aCol[x].affinity;
93 }else if( x==XN_ROWID ){
94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95 }else{
96 char aff;
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100 if( aff==0 ) aff = SQLITE_AFF_BLOB;
101 pIdx->zColAff[n] = aff;
104 pIdx->zColAff[n] = 0;
107 return pIdx->zColAff;
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following. Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should be
118 ** an OP_MakeRecord) to the affinity string.
120 ** A column affinity string has one character per column:
122 ** Character Column affinity
123 ** ------------------------------
124 ** 'A' BLOB
125 ** 'B' TEXT
126 ** 'C' NUMERIC
127 ** 'D' INTEGER
128 ** 'E' REAL
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131 int i;
132 char *zColAff = pTab->zColAff;
133 if( zColAff==0 ){
134 sqlite3 *db = sqlite3VdbeDb(v);
135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136 if( !zColAff ){
137 sqlite3OomFault(db);
138 return;
141 for(i=0; i<pTab->nCol; i++){
142 zColAff[i] = pTab->aCol[i].affinity;
145 zColAff[i--] = 0;
146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147 pTab->zColAff = zColAff;
149 i = sqlite3Strlen30(zColAff);
150 if( i ){
151 if( iReg ){
152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
153 }else{
154 sqlite3VdbeChangeP4(v, -1, zColAff, i);
160 ** Return non-zero if the table pTab in database iDb or any of its indices
161 ** have been opened at any point in the VDBE program. This is used to see if
162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
163 ** run without using a temporary table for the results of the SELECT.
165 static int readsTable(Parse *p, int iDb, Table *pTab){
166 Vdbe *v = sqlite3GetVdbe(p);
167 int i;
168 int iEnd = sqlite3VdbeCurrentAddr(v);
169 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
171 #endif
173 for(i=1; i<iEnd; i++){
174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
175 assert( pOp!=0 );
176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
177 Index *pIndex;
178 int tnum = pOp->p2;
179 if( tnum==pTab->tnum ){
180 return 1;
182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
183 if( tnum==pIndex->tnum ){
184 return 1;
188 #ifndef SQLITE_OMIT_VIRTUALTABLE
189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
190 assert( pOp->p4.pVtab!=0 );
191 assert( pOp->p4type==P4_VTAB );
192 return 1;
194 #endif
196 return 0;
199 #ifndef SQLITE_OMIT_AUTOINCREMENT
201 ** Locate or create an AutoincInfo structure associated with table pTab
202 ** which is in database iDb. Return the register number for the register
203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
204 ** table. (Also return zero when doing a VACUUM since we do not want to
205 ** update the AUTOINCREMENT counters during a VACUUM.)
207 ** There is at most one AutoincInfo structure per table even if the
208 ** same table is autoincremented multiple times due to inserts within
209 ** triggers. A new AutoincInfo structure is created if this is the
210 ** first use of table pTab. On 2nd and subsequent uses, the original
211 ** AutoincInfo structure is used.
213 ** Four consecutive registers are allocated:
215 ** (1) The name of the pTab table.
216 ** (2) The maximum ROWID of pTab.
217 ** (3) The rowid in sqlite_sequence of pTab
218 ** (4) The original value of the max ROWID in pTab, or NULL if none
220 ** The 2nd register is the one that is returned. That is all the
221 ** insert routine needs to know about.
223 static int autoIncBegin(
224 Parse *pParse, /* Parsing context */
225 int iDb, /* Index of the database holding pTab */
226 Table *pTab /* The table we are writing to */
228 int memId = 0; /* Register holding maximum rowid */
229 if( (pTab->tabFlags & TF_Autoincrement)!=0
230 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
232 Parse *pToplevel = sqlite3ParseToplevel(pParse);
233 AutoincInfo *pInfo;
235 pInfo = pToplevel->pAinc;
236 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
237 if( pInfo==0 ){
238 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
239 if( pInfo==0 ) return 0;
240 pInfo->pNext = pToplevel->pAinc;
241 pToplevel->pAinc = pInfo;
242 pInfo->pTab = pTab;
243 pInfo->iDb = iDb;
244 pToplevel->nMem++; /* Register to hold name of table */
245 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
246 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
248 memId = pInfo->regCtr;
250 return memId;
254 ** This routine generates code that will initialize all of the
255 ** register used by the autoincrement tracker.
257 void sqlite3AutoincrementBegin(Parse *pParse){
258 AutoincInfo *p; /* Information about an AUTOINCREMENT */
259 sqlite3 *db = pParse->db; /* The database connection */
260 Db *pDb; /* Database only autoinc table */
261 int memId; /* Register holding max rowid */
262 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
264 /* This routine is never called during trigger-generation. It is
265 ** only called from the top-level */
266 assert( pParse->pTriggerTab==0 );
267 assert( sqlite3IsToplevel(pParse) );
269 assert( v ); /* We failed long ago if this is not so */
270 for(p = pParse->pAinc; p; p = p->pNext){
271 static const int iLn = VDBE_OFFSET_LINENO(2);
272 static const VdbeOpList autoInc[] = {
273 /* 0 */ {OP_Null, 0, 0, 0},
274 /* 1 */ {OP_Rewind, 0, 10, 0},
275 /* 2 */ {OP_Column, 0, 0, 0},
276 /* 3 */ {OP_Ne, 0, 9, 0},
277 /* 4 */ {OP_Rowid, 0, 0, 0},
278 /* 5 */ {OP_Column, 0, 1, 0},
279 /* 6 */ {OP_AddImm, 0, 0, 0},
280 /* 7 */ {OP_Copy, 0, 0, 0},
281 /* 8 */ {OP_Goto, 0, 11, 0},
282 /* 9 */ {OP_Next, 0, 2, 0},
283 /* 10 */ {OP_Integer, 0, 0, 0},
284 /* 11 */ {OP_Close, 0, 0, 0}
286 VdbeOp *aOp;
287 pDb = &db->aDb[p->iDb];
288 memId = p->regCtr;
289 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
290 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
291 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
292 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
293 if( aOp==0 ) break;
294 aOp[0].p2 = memId;
295 aOp[0].p3 = memId+2;
296 aOp[2].p3 = memId;
297 aOp[3].p1 = memId-1;
298 aOp[3].p3 = memId;
299 aOp[3].p5 = SQLITE_JUMPIFNULL;
300 aOp[4].p2 = memId+1;
301 aOp[5].p3 = memId;
302 aOp[6].p1 = memId;
303 aOp[7].p2 = memId+2;
304 aOp[7].p1 = memId;
305 aOp[10].p2 = memId;
310 ** Update the maximum rowid for an autoincrement calculation.
312 ** This routine should be called when the regRowid register holds a
313 ** new rowid that is about to be inserted. If that new rowid is
314 ** larger than the maximum rowid in the memId memory cell, then the
315 ** memory cell is updated.
317 static void autoIncStep(Parse *pParse, int memId, int regRowid){
318 if( memId>0 ){
319 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
324 ** This routine generates the code needed to write autoincrement
325 ** maximum rowid values back into the sqlite_sequence register.
326 ** Every statement that might do an INSERT into an autoincrement
327 ** table (either directly or through triggers) needs to call this
328 ** routine just before the "exit" code.
330 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
331 AutoincInfo *p;
332 Vdbe *v = pParse->pVdbe;
333 sqlite3 *db = pParse->db;
335 assert( v );
336 for(p = pParse->pAinc; p; p = p->pNext){
337 static const int iLn = VDBE_OFFSET_LINENO(2);
338 static const VdbeOpList autoIncEnd[] = {
339 /* 0 */ {OP_NotNull, 0, 2, 0},
340 /* 1 */ {OP_NewRowid, 0, 0, 0},
341 /* 2 */ {OP_MakeRecord, 0, 2, 0},
342 /* 3 */ {OP_Insert, 0, 0, 0},
343 /* 4 */ {OP_Close, 0, 0, 0}
345 VdbeOp *aOp;
346 Db *pDb = &db->aDb[p->iDb];
347 int iRec;
348 int memId = p->regCtr;
350 iRec = sqlite3GetTempReg(pParse);
351 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
352 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
353 VdbeCoverage(v);
354 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
355 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
356 if( aOp==0 ) break;
357 aOp[0].p1 = memId+1;
358 aOp[1].p2 = memId+1;
359 aOp[2].p1 = memId-1;
360 aOp[2].p3 = iRec;
361 aOp[3].p2 = iRec;
362 aOp[3].p3 = memId+1;
363 aOp[3].p5 = OPFLAG_APPEND;
364 sqlite3ReleaseTempReg(pParse, iRec);
367 void sqlite3AutoincrementEnd(Parse *pParse){
368 if( pParse->pAinc ) autoIncrementEnd(pParse);
370 #else
372 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
373 ** above are all no-ops
375 # define autoIncBegin(A,B,C) (0)
376 # define autoIncStep(A,B,C)
377 #endif /* SQLITE_OMIT_AUTOINCREMENT */
380 /* Forward declaration */
381 static int xferOptimization(
382 Parse *pParse, /* Parser context */
383 Table *pDest, /* The table we are inserting into */
384 Select *pSelect, /* A SELECT statement to use as the data source */
385 int onError, /* How to handle constraint errors */
386 int iDbDest /* The database of pDest */
390 ** This routine is called to handle SQL of the following forms:
392 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
393 ** insert into TABLE (IDLIST) select
394 ** insert into TABLE (IDLIST) default values
396 ** The IDLIST following the table name is always optional. If omitted,
397 ** then a list of all (non-hidden) columns for the table is substituted.
398 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
399 ** is omitted.
401 ** For the pSelect parameter holds the values to be inserted for the
402 ** first two forms shown above. A VALUES clause is really just short-hand
403 ** for a SELECT statement that omits the FROM clause and everything else
404 ** that follows. If the pSelect parameter is NULL, that means that the
405 ** DEFAULT VALUES form of the INSERT statement is intended.
407 ** The code generated follows one of four templates. For a simple
408 ** insert with data coming from a single-row VALUES clause, the code executes
409 ** once straight down through. Pseudo-code follows (we call this
410 ** the "1st template"):
412 ** open write cursor to <table> and its indices
413 ** put VALUES clause expressions into registers
414 ** write the resulting record into <table>
415 ** cleanup
417 ** The three remaining templates assume the statement is of the form
419 ** INSERT INTO <table> SELECT ...
421 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
422 ** in other words if the SELECT pulls all columns from a single table
423 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
424 ** if <table2> and <table1> are distinct tables but have identical
425 ** schemas, including all the same indices, then a special optimization
426 ** is invoked that copies raw records from <table2> over to <table1>.
427 ** See the xferOptimization() function for the implementation of this
428 ** template. This is the 2nd template.
430 ** open a write cursor to <table>
431 ** open read cursor on <table2>
432 ** transfer all records in <table2> over to <table>
433 ** close cursors
434 ** foreach index on <table>
435 ** open a write cursor on the <table> index
436 ** open a read cursor on the corresponding <table2> index
437 ** transfer all records from the read to the write cursors
438 ** close cursors
439 ** end foreach
441 ** The 3rd template is for when the second template does not apply
442 ** and the SELECT clause does not read from <table> at any time.
443 ** The generated code follows this template:
445 ** X <- A
446 ** goto B
447 ** A: setup for the SELECT
448 ** loop over the rows in the SELECT
449 ** load values into registers R..R+n
450 ** yield X
451 ** end loop
452 ** cleanup after the SELECT
453 ** end-coroutine X
454 ** B: open write cursor to <table> and its indices
455 ** C: yield X, at EOF goto D
456 ** insert the select result into <table> from R..R+n
457 ** goto C
458 ** D: cleanup
460 ** The 4th template is used if the insert statement takes its
461 ** values from a SELECT but the data is being inserted into a table
462 ** that is also read as part of the SELECT. In the third form,
463 ** we have to use an intermediate table to store the results of
464 ** the select. The template is like this:
466 ** X <- A
467 ** goto B
468 ** A: setup for the SELECT
469 ** loop over the tables in the SELECT
470 ** load value into register R..R+n
471 ** yield X
472 ** end loop
473 ** cleanup after the SELECT
474 ** end co-routine R
475 ** B: open temp table
476 ** L: yield X, at EOF goto M
477 ** insert row from R..R+n into temp table
478 ** goto L
479 ** M: open write cursor to <table> and its indices
480 ** rewind temp table
481 ** C: loop over rows of intermediate table
482 ** transfer values form intermediate table into <table>
483 ** end loop
484 ** D: cleanup
486 void sqlite3Insert(
487 Parse *pParse, /* Parser context */
488 SrcList *pTabList, /* Name of table into which we are inserting */
489 Select *pSelect, /* A SELECT statement to use as the data source */
490 IdList *pColumn, /* Column names corresponding to IDLIST. */
491 int onError /* How to handle constraint errors */
493 sqlite3 *db; /* The main database structure */
494 Table *pTab; /* The table to insert into. aka TABLE */
495 int i, j; /* Loop counters */
496 Vdbe *v; /* Generate code into this virtual machine */
497 Index *pIdx; /* For looping over indices of the table */
498 int nColumn; /* Number of columns in the data */
499 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
500 int iDataCur = 0; /* VDBE cursor that is the main data repository */
501 int iIdxCur = 0; /* First index cursor */
502 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
503 int endOfLoop; /* Label for the end of the insertion loop */
504 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
505 int addrInsTop = 0; /* Jump to label "D" */
506 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
507 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
508 int iDb; /* Index of database holding TABLE */
509 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
510 u8 appendFlag = 0; /* True if the insert is likely to be an append */
511 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
512 u8 bIdListInOrder; /* True if IDLIST is in table order */
513 ExprList *pList = 0; /* List of VALUES() to be inserted */
515 /* Register allocations */
516 int regFromSelect = 0;/* Base register for data coming from SELECT */
517 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
518 int regRowCount = 0; /* Memory cell used for the row counter */
519 int regIns; /* Block of regs holding rowid+data being inserted */
520 int regRowid; /* registers holding insert rowid */
521 int regData; /* register holding first column to insert */
522 int *aRegIdx = 0; /* One register allocated to each index */
524 #ifndef SQLITE_OMIT_TRIGGER
525 int isView; /* True if attempting to insert into a view */
526 Trigger *pTrigger; /* List of triggers on pTab, if required */
527 int tmask; /* Mask of trigger times */
528 #endif
530 db = pParse->db;
531 if( pParse->nErr || db->mallocFailed ){
532 goto insert_cleanup;
534 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
536 /* If the Select object is really just a simple VALUES() list with a
537 ** single row (the common case) then keep that one row of values
538 ** and discard the other (unused) parts of the pSelect object
540 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
541 pList = pSelect->pEList;
542 pSelect->pEList = 0;
543 sqlite3SelectDelete(db, pSelect);
544 pSelect = 0;
547 /* Locate the table into which we will be inserting new information.
549 assert( pTabList->nSrc==1 );
550 pTab = sqlite3SrcListLookup(pParse, pTabList);
551 if( pTab==0 ){
552 goto insert_cleanup;
554 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
555 assert( iDb<db->nDb );
556 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
557 db->aDb[iDb].zDbSName) ){
558 goto insert_cleanup;
560 withoutRowid = !HasRowid(pTab);
562 /* Figure out if we have any triggers and if the table being
563 ** inserted into is a view
565 #ifndef SQLITE_OMIT_TRIGGER
566 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
567 isView = pTab->pSelect!=0;
568 #else
569 # define pTrigger 0
570 # define tmask 0
571 # define isView 0
572 #endif
573 #ifdef SQLITE_OMIT_VIEW
574 # undef isView
575 # define isView 0
576 #endif
577 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
579 /* If pTab is really a view, make sure it has been initialized.
580 ** ViewGetColumnNames() is a no-op if pTab is not a view.
582 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
583 goto insert_cleanup;
586 /* Cannot insert into a read-only table.
588 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
589 goto insert_cleanup;
592 /* Allocate a VDBE
594 v = sqlite3GetVdbe(pParse);
595 if( v==0 ) goto insert_cleanup;
596 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
597 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
599 #ifndef SQLITE_OMIT_XFER_OPT
600 /* If the statement is of the form
602 ** INSERT INTO <table1> SELECT * FROM <table2>;
604 ** Then special optimizations can be applied that make the transfer
605 ** very fast and which reduce fragmentation of indices.
607 ** This is the 2nd template.
609 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
610 assert( !pTrigger );
611 assert( pList==0 );
612 goto insert_end;
614 #endif /* SQLITE_OMIT_XFER_OPT */
616 /* If this is an AUTOINCREMENT table, look up the sequence number in the
617 ** sqlite_sequence table and store it in memory cell regAutoinc.
619 regAutoinc = autoIncBegin(pParse, iDb, pTab);
621 /* Allocate registers for holding the rowid of the new row,
622 ** the content of the new row, and the assembled row record.
624 regRowid = regIns = pParse->nMem+1;
625 pParse->nMem += pTab->nCol + 1;
626 if( IsVirtual(pTab) ){
627 regRowid++;
628 pParse->nMem++;
630 regData = regRowid+1;
632 /* If the INSERT statement included an IDLIST term, then make sure
633 ** all elements of the IDLIST really are columns of the table and
634 ** remember the column indices.
636 ** If the table has an INTEGER PRIMARY KEY column and that column
637 ** is named in the IDLIST, then record in the ipkColumn variable
638 ** the index into IDLIST of the primary key column. ipkColumn is
639 ** the index of the primary key as it appears in IDLIST, not as
640 ** is appears in the original table. (The index of the INTEGER
641 ** PRIMARY KEY in the original table is pTab->iPKey.)
643 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
644 if( pColumn ){
645 for(i=0; i<pColumn->nId; i++){
646 pColumn->a[i].idx = -1;
648 for(i=0; i<pColumn->nId; i++){
649 for(j=0; j<pTab->nCol; j++){
650 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
651 pColumn->a[i].idx = j;
652 if( i!=j ) bIdListInOrder = 0;
653 if( j==pTab->iPKey ){
654 ipkColumn = i; assert( !withoutRowid );
656 break;
659 if( j>=pTab->nCol ){
660 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
661 ipkColumn = i;
662 bIdListInOrder = 0;
663 }else{
664 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
665 pTabList, 0, pColumn->a[i].zName);
666 pParse->checkSchema = 1;
667 goto insert_cleanup;
673 /* Figure out how many columns of data are supplied. If the data
674 ** is coming from a SELECT statement, then generate a co-routine that
675 ** produces a single row of the SELECT on each invocation. The
676 ** co-routine is the common header to the 3rd and 4th templates.
678 if( pSelect ){
679 /* Data is coming from a SELECT or from a multi-row VALUES clause.
680 ** Generate a co-routine to run the SELECT. */
681 int regYield; /* Register holding co-routine entry-point */
682 int addrTop; /* Top of the co-routine */
683 int rc; /* Result code */
685 regYield = ++pParse->nMem;
686 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
687 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
688 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
689 dest.iSdst = bIdListInOrder ? regData : 0;
690 dest.nSdst = pTab->nCol;
691 rc = sqlite3Select(pParse, pSelect, &dest);
692 regFromSelect = dest.iSdst;
693 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
694 sqlite3VdbeEndCoroutine(v, regYield);
695 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
696 assert( pSelect->pEList );
697 nColumn = pSelect->pEList->nExpr;
699 /* Set useTempTable to TRUE if the result of the SELECT statement
700 ** should be written into a temporary table (template 4). Set to
701 ** FALSE if each output row of the SELECT can be written directly into
702 ** the destination table (template 3).
704 ** A temp table must be used if the table being updated is also one
705 ** of the tables being read by the SELECT statement. Also use a
706 ** temp table in the case of row triggers.
708 if( pTrigger || readsTable(pParse, iDb, pTab) ){
709 useTempTable = 1;
712 if( useTempTable ){
713 /* Invoke the coroutine to extract information from the SELECT
714 ** and add it to a transient table srcTab. The code generated
715 ** here is from the 4th template:
717 ** B: open temp table
718 ** L: yield X, goto M at EOF
719 ** insert row from R..R+n into temp table
720 ** goto L
721 ** M: ...
723 int regRec; /* Register to hold packed record */
724 int regTempRowid; /* Register to hold temp table ROWID */
725 int addrL; /* Label "L" */
727 srcTab = pParse->nTab++;
728 regRec = sqlite3GetTempReg(pParse);
729 regTempRowid = sqlite3GetTempReg(pParse);
730 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
731 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
732 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
733 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
734 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
735 sqlite3VdbeGoto(v, addrL);
736 sqlite3VdbeJumpHere(v, addrL);
737 sqlite3ReleaseTempReg(pParse, regRec);
738 sqlite3ReleaseTempReg(pParse, regTempRowid);
740 }else{
741 /* This is the case if the data for the INSERT is coming from a
742 ** single-row VALUES clause
744 NameContext sNC;
745 memset(&sNC, 0, sizeof(sNC));
746 sNC.pParse = pParse;
747 srcTab = -1;
748 assert( useTempTable==0 );
749 if( pList ){
750 nColumn = pList->nExpr;
751 if( sqlite3ResolveExprListNames(&sNC, pList) ){
752 goto insert_cleanup;
754 }else{
755 nColumn = 0;
759 /* If there is no IDLIST term but the table has an integer primary
760 ** key, the set the ipkColumn variable to the integer primary key
761 ** column index in the original table definition.
763 if( pColumn==0 && nColumn>0 ){
764 ipkColumn = pTab->iPKey;
767 /* Make sure the number of columns in the source data matches the number
768 ** of columns to be inserted into the table.
770 for(i=0; i<pTab->nCol; i++){
771 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
773 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
774 sqlite3ErrorMsg(pParse,
775 "table %S has %d columns but %d values were supplied",
776 pTabList, 0, pTab->nCol-nHidden, nColumn);
777 goto insert_cleanup;
779 if( pColumn!=0 && nColumn!=pColumn->nId ){
780 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
781 goto insert_cleanup;
784 /* Initialize the count of rows to be inserted
786 if( db->flags & SQLITE_CountRows ){
787 regRowCount = ++pParse->nMem;
788 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
791 /* If this is not a view, open the table and and all indices */
792 if( !isView ){
793 int nIdx;
794 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
795 &iDataCur, &iIdxCur);
796 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
797 if( aRegIdx==0 ){
798 goto insert_cleanup;
800 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
801 assert( pIdx );
802 aRegIdx[i] = ++pParse->nMem;
803 pParse->nMem += pIdx->nColumn;
807 /* This is the top of the main insertion loop */
808 if( useTempTable ){
809 /* This block codes the top of loop only. The complete loop is the
810 ** following pseudocode (template 4):
812 ** rewind temp table, if empty goto D
813 ** C: loop over rows of intermediate table
814 ** transfer values form intermediate table into <table>
815 ** end loop
816 ** D: ...
818 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
819 addrCont = sqlite3VdbeCurrentAddr(v);
820 }else if( pSelect ){
821 /* This block codes the top of loop only. The complete loop is the
822 ** following pseudocode (template 3):
824 ** C: yield X, at EOF goto D
825 ** insert the select result into <table> from R..R+n
826 ** goto C
827 ** D: ...
829 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
830 VdbeCoverage(v);
833 /* Run the BEFORE and INSTEAD OF triggers, if there are any
835 endOfLoop = sqlite3VdbeMakeLabel(v);
836 if( tmask & TRIGGER_BEFORE ){
837 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
839 /* build the NEW.* reference row. Note that if there is an INTEGER
840 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
841 ** translated into a unique ID for the row. But on a BEFORE trigger,
842 ** we do not know what the unique ID will be (because the insert has
843 ** not happened yet) so we substitute a rowid of -1
845 if( ipkColumn<0 ){
846 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
847 }else{
848 int addr1;
849 assert( !withoutRowid );
850 if( useTempTable ){
851 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
852 }else{
853 assert( pSelect==0 ); /* Otherwise useTempTable is true */
854 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
856 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
857 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
858 sqlite3VdbeJumpHere(v, addr1);
859 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
862 /* Cannot have triggers on a virtual table. If it were possible,
863 ** this block would have to account for hidden column.
865 assert( !IsVirtual(pTab) );
867 /* Create the new column data
869 for(i=j=0; i<pTab->nCol; i++){
870 if( pColumn ){
871 for(j=0; j<pColumn->nId; j++){
872 if( pColumn->a[j].idx==i ) break;
875 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
876 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
877 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
878 }else if( useTempTable ){
879 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
880 }else{
881 assert( pSelect==0 ); /* Otherwise useTempTable is true */
882 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
884 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
887 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
888 ** do not attempt any conversions before assembling the record.
889 ** If this is a real table, attempt conversions as required by the
890 ** table column affinities.
892 if( !isView ){
893 sqlite3TableAffinity(v, pTab, regCols+1);
896 /* Fire BEFORE or INSTEAD OF triggers */
897 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
898 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
900 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
903 /* Compute the content of the next row to insert into a range of
904 ** registers beginning at regIns.
906 if( !isView ){
907 if( IsVirtual(pTab) ){
908 /* The row that the VUpdate opcode will delete: none */
909 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
911 if( ipkColumn>=0 ){
912 if( useTempTable ){
913 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
914 }else if( pSelect ){
915 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
916 }else{
917 VdbeOp *pOp;
918 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
919 pOp = sqlite3VdbeGetOp(v, -1);
920 assert( pOp!=0 );
921 if( pOp->opcode==OP_Null && !IsVirtual(pTab) ){
922 appendFlag = 1;
923 pOp->opcode = OP_NewRowid;
924 pOp->p1 = iDataCur;
925 pOp->p2 = regRowid;
926 pOp->p3 = regAutoinc;
929 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
930 ** to generate a unique primary key value.
932 if( !appendFlag ){
933 int addr1;
934 if( !IsVirtual(pTab) ){
935 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
936 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
937 sqlite3VdbeJumpHere(v, addr1);
938 }else{
939 addr1 = sqlite3VdbeCurrentAddr(v);
940 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
942 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
944 }else if( IsVirtual(pTab) || withoutRowid ){
945 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
946 }else{
947 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
948 appendFlag = 1;
950 autoIncStep(pParse, regAutoinc, regRowid);
952 /* Compute data for all columns of the new entry, beginning
953 ** with the first column.
955 nHidden = 0;
956 for(i=0; i<pTab->nCol; i++){
957 int iRegStore = regRowid+1+i;
958 if( i==pTab->iPKey ){
959 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
960 ** Whenever this column is read, the rowid will be substituted
961 ** in its place. Hence, fill this column with a NULL to avoid
962 ** taking up data space with information that will never be used.
963 ** As there may be shallow copies of this value, make it a soft-NULL */
964 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
965 continue;
967 if( pColumn==0 ){
968 if( IsHiddenColumn(&pTab->aCol[i]) ){
969 j = -1;
970 nHidden++;
971 }else{
972 j = i - nHidden;
974 }else{
975 for(j=0; j<pColumn->nId; j++){
976 if( pColumn->a[j].idx==i ) break;
979 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
980 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
981 }else if( useTempTable ){
982 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
983 }else if( pSelect ){
984 if( regFromSelect!=regData ){
985 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
987 }else{
988 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
992 /* Generate code to check constraints and generate index keys and
993 ** do the insertion.
995 #ifndef SQLITE_OMIT_VIRTUALTABLE
996 if( IsVirtual(pTab) ){
997 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
998 sqlite3VtabMakeWritable(pParse, pTab);
999 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1000 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1001 sqlite3MayAbort(pParse);
1002 }else
1003 #endif
1005 int isReplace; /* Set to true if constraints may cause a replace */
1006 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1007 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1008 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
1010 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1012 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1013 ** constraints or (b) there are no triggers and this table is not a
1014 ** parent table in a foreign key constraint. It is safe to set the
1015 ** flag in the second case as if any REPLACE constraint is hit, an
1016 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1017 ** cursor that is disturbed. And these instructions both clear the
1018 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1019 ** functionality. */
1020 bUseSeek = (isReplace==0 || (pTrigger==0 &&
1021 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1023 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1024 regIns, aRegIdx, 0, appendFlag, bUseSeek
1029 /* Update the count of rows that are inserted
1031 if( (db->flags & SQLITE_CountRows)!=0 ){
1032 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1035 if( pTrigger ){
1036 /* Code AFTER triggers */
1037 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1038 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1041 /* The bottom of the main insertion loop, if the data source
1042 ** is a SELECT statement.
1044 sqlite3VdbeResolveLabel(v, endOfLoop);
1045 if( useTempTable ){
1046 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1047 sqlite3VdbeJumpHere(v, addrInsTop);
1048 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1049 }else if( pSelect ){
1050 sqlite3VdbeGoto(v, addrCont);
1051 sqlite3VdbeJumpHere(v, addrInsTop);
1054 insert_end:
1055 /* Update the sqlite_sequence table by storing the content of the
1056 ** maximum rowid counter values recorded while inserting into
1057 ** autoincrement tables.
1059 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1060 sqlite3AutoincrementEnd(pParse);
1064 ** Return the number of rows inserted. If this routine is
1065 ** generating code because of a call to sqlite3NestedParse(), do not
1066 ** invoke the callback function.
1068 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1069 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1070 sqlite3VdbeSetNumCols(v, 1);
1071 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1074 insert_cleanup:
1075 sqlite3SrcListDelete(db, pTabList);
1076 sqlite3ExprListDelete(db, pList);
1077 sqlite3SelectDelete(db, pSelect);
1078 sqlite3IdListDelete(db, pColumn);
1079 sqlite3DbFree(db, aRegIdx);
1082 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1083 ** they may interfere with compilation of other functions in this file
1084 ** (or in another file, if this file becomes part of the amalgamation). */
1085 #ifdef isView
1086 #undef isView
1087 #endif
1088 #ifdef pTrigger
1089 #undef pTrigger
1090 #endif
1091 #ifdef tmask
1092 #undef tmask
1093 #endif
1096 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
1098 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1099 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1101 /* This is the Walker callback from checkConstraintUnchanged(). Set
1102 ** bit 0x01 of pWalker->eCode if
1103 ** pWalker->eCode to 0 if this expression node references any of the
1104 ** columns that are being modifed by an UPDATE statement.
1106 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1107 if( pExpr->op==TK_COLUMN ){
1108 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1109 if( pExpr->iColumn>=0 ){
1110 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1111 pWalker->eCode |= CKCNSTRNT_COLUMN;
1113 }else{
1114 pWalker->eCode |= CKCNSTRNT_ROWID;
1117 return WRC_Continue;
1121 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1122 ** only columns that are modified by the UPDATE are those for which
1123 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1125 ** Return true if CHECK constraint pExpr does not use any of the
1126 ** changing columns (or the rowid if it is changing). In other words,
1127 ** return true if this CHECK constraint can be skipped when validating
1128 ** the new row in the UPDATE statement.
1130 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
1131 Walker w;
1132 memset(&w, 0, sizeof(w));
1133 w.eCode = 0;
1134 w.xExprCallback = checkConstraintExprNode;
1135 w.u.aiCol = aiChng;
1136 sqlite3WalkExpr(&w, pExpr);
1137 if( !chngRowid ){
1138 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1139 w.eCode &= ~CKCNSTRNT_ROWID;
1141 testcase( w.eCode==0 );
1142 testcase( w.eCode==CKCNSTRNT_COLUMN );
1143 testcase( w.eCode==CKCNSTRNT_ROWID );
1144 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1145 return !w.eCode;
1149 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1150 ** on table pTab.
1152 ** The regNewData parameter is the first register in a range that contains
1153 ** the data to be inserted or the data after the update. There will be
1154 ** pTab->nCol+1 registers in this range. The first register (the one
1155 ** that regNewData points to) will contain the new rowid, or NULL in the
1156 ** case of a WITHOUT ROWID table. The second register in the range will
1157 ** contain the content of the first table column. The third register will
1158 ** contain the content of the second table column. And so forth.
1160 ** The regOldData parameter is similar to regNewData except that it contains
1161 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1162 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1163 ** checking regOldData for zero.
1165 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1166 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1167 ** might be modified by the UPDATE. If pkChng is false, then the key of
1168 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1170 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1171 ** was explicitly specified as part of the INSERT statement. If pkChng
1172 ** is zero, it means that the either rowid is computed automatically or
1173 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1174 ** pkChng will only be true if the INSERT statement provides an integer
1175 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1177 ** The code generated by this routine will store new index entries into
1178 ** registers identified by aRegIdx[]. No index entry is created for
1179 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1180 ** the same as the order of indices on the linked list of indices
1181 ** at pTab->pIndex.
1183 ** The caller must have already opened writeable cursors on the main
1184 ** table and all applicable indices (that is to say, all indices for which
1185 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1186 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1187 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1188 ** for the first index in the pTab->pIndex list. Cursors for other indices
1189 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1191 ** This routine also generates code to check constraints. NOT NULL,
1192 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1193 ** then the appropriate action is performed. There are five possible
1194 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1196 ** Constraint type Action What Happens
1197 ** --------------- ---------- ----------------------------------------
1198 ** any ROLLBACK The current transaction is rolled back and
1199 ** sqlite3_step() returns immediately with a
1200 ** return code of SQLITE_CONSTRAINT.
1202 ** any ABORT Back out changes from the current command
1203 ** only (do not do a complete rollback) then
1204 ** cause sqlite3_step() to return immediately
1205 ** with SQLITE_CONSTRAINT.
1207 ** any FAIL Sqlite3_step() returns immediately with a
1208 ** return code of SQLITE_CONSTRAINT. The
1209 ** transaction is not rolled back and any
1210 ** changes to prior rows are retained.
1212 ** any IGNORE The attempt in insert or update the current
1213 ** row is skipped, without throwing an error.
1214 ** Processing continues with the next row.
1215 ** (There is an immediate jump to ignoreDest.)
1217 ** NOT NULL REPLACE The NULL value is replace by the default
1218 ** value for that column. If the default value
1219 ** is NULL, the action is the same as ABORT.
1221 ** UNIQUE REPLACE The other row that conflicts with the row
1222 ** being inserted is removed.
1224 ** CHECK REPLACE Illegal. The results in an exception.
1226 ** Which action to take is determined by the overrideError parameter.
1227 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1228 ** is used. Or if pParse->onError==OE_Default then the onError value
1229 ** for the constraint is used.
1231 void sqlite3GenerateConstraintChecks(
1232 Parse *pParse, /* The parser context */
1233 Table *pTab, /* The table being inserted or updated */
1234 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1235 int iDataCur, /* Canonical data cursor (main table or PK index) */
1236 int iIdxCur, /* First index cursor */
1237 int regNewData, /* First register in a range holding values to insert */
1238 int regOldData, /* Previous content. 0 for INSERTs */
1239 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1240 u8 overrideError, /* Override onError to this if not OE_Default */
1241 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1242 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1243 int *aiChng /* column i is unchanged if aiChng[i]<0 */
1245 Vdbe *v; /* VDBE under constrution */
1246 Index *pIdx; /* Pointer to one of the indices */
1247 Index *pPk = 0; /* The PRIMARY KEY index */
1248 sqlite3 *db; /* Database connection */
1249 int i; /* loop counter */
1250 int ix; /* Index loop counter */
1251 int nCol; /* Number of columns */
1252 int onError; /* Conflict resolution strategy */
1253 int addr1; /* Address of jump instruction */
1254 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1255 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1256 int ipkTop = 0; /* Top of the rowid change constraint check */
1257 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1258 u8 isUpdate; /* True if this is an UPDATE operation */
1259 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1261 isUpdate = regOldData!=0;
1262 db = pParse->db;
1263 v = sqlite3GetVdbe(pParse);
1264 assert( v!=0 );
1265 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1266 nCol = pTab->nCol;
1268 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1269 ** normal rowid tables. nPkField is the number of key fields in the
1270 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1271 ** number of fields in the true primary key of the table. */
1272 if( HasRowid(pTab) ){
1273 pPk = 0;
1274 nPkField = 1;
1275 }else{
1276 pPk = sqlite3PrimaryKeyIndex(pTab);
1277 nPkField = pPk->nKeyCol;
1280 /* Record that this module has started */
1281 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1282 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1284 /* Test all NOT NULL constraints.
1286 for(i=0; i<nCol; i++){
1287 if( i==pTab->iPKey ){
1288 continue; /* ROWID is never NULL */
1290 if( aiChng && aiChng[i]<0 ){
1291 /* Don't bother checking for NOT NULL on columns that do not change */
1292 continue;
1294 onError = pTab->aCol[i].notNull;
1295 if( onError==OE_None ) continue; /* This column is allowed to be NULL */
1296 if( overrideError!=OE_Default ){
1297 onError = overrideError;
1298 }else if( onError==OE_Default ){
1299 onError = OE_Abort;
1301 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1302 onError = OE_Abort;
1304 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1305 || onError==OE_Ignore || onError==OE_Replace );
1306 switch( onError ){
1307 case OE_Abort:
1308 sqlite3MayAbort(pParse);
1309 /* Fall through */
1310 case OE_Rollback:
1311 case OE_Fail: {
1312 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1313 pTab->aCol[i].zName);
1314 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1315 regNewData+1+i);
1316 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1317 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1318 VdbeCoverage(v);
1319 break;
1321 case OE_Ignore: {
1322 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1323 VdbeCoverage(v);
1324 break;
1326 default: {
1327 assert( onError==OE_Replace );
1328 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1329 VdbeCoverage(v);
1330 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1331 sqlite3VdbeJumpHere(v, addr1);
1332 break;
1337 /* Test all CHECK constraints
1339 #ifndef SQLITE_OMIT_CHECK
1340 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1341 ExprList *pCheck = pTab->pCheck;
1342 pParse->iSelfTab = -(regNewData+1);
1343 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1344 for(i=0; i<pCheck->nExpr; i++){
1345 int allOk;
1346 Expr *pExpr = pCheck->a[i].pExpr;
1347 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
1348 allOk = sqlite3VdbeMakeLabel(v);
1349 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1350 if( onError==OE_Ignore ){
1351 sqlite3VdbeGoto(v, ignoreDest);
1352 }else{
1353 char *zName = pCheck->a[i].zName;
1354 if( zName==0 ) zName = pTab->zName;
1355 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1356 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1357 onError, zName, P4_TRANSIENT,
1358 P5_ConstraintCheck);
1360 sqlite3VdbeResolveLabel(v, allOk);
1362 pParse->iSelfTab = 0;
1364 #endif /* !defined(SQLITE_OMIT_CHECK) */
1366 /* If rowid is changing, make sure the new rowid does not previously
1367 ** exist in the table.
1369 if( pkChng && pPk==0 ){
1370 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1372 /* Figure out what action to take in case of a rowid collision */
1373 onError = pTab->keyConf;
1374 if( overrideError!=OE_Default ){
1375 onError = overrideError;
1376 }else if( onError==OE_Default ){
1377 onError = OE_Abort;
1380 if( isUpdate ){
1381 /* pkChng!=0 does not mean that the rowid has changed, only that
1382 ** it might have changed. Skip the conflict logic below if the rowid
1383 ** is unchanged. */
1384 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1385 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1386 VdbeCoverage(v);
1389 /* If the response to a rowid conflict is REPLACE but the response
1390 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1391 ** to defer the running of the rowid conflict checking until after
1392 ** the UNIQUE constraints have run.
1394 if( onError==OE_Replace && overrideError!=OE_Replace ){
1395 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1396 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1397 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1398 break;
1403 /* Check to see if the new rowid already exists in the table. Skip
1404 ** the following conflict logic if it does not. */
1405 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1406 VdbeCoverage(v);
1408 /* Generate code that deals with a rowid collision */
1409 switch( onError ){
1410 default: {
1411 onError = OE_Abort;
1412 /* Fall thru into the next case */
1414 case OE_Rollback:
1415 case OE_Abort:
1416 case OE_Fail: {
1417 sqlite3RowidConstraint(pParse, onError, pTab);
1418 break;
1420 case OE_Replace: {
1421 /* If there are DELETE triggers on this table and the
1422 ** recursive-triggers flag is set, call GenerateRowDelete() to
1423 ** remove the conflicting row from the table. This will fire
1424 ** the triggers and remove both the table and index b-tree entries.
1426 ** Otherwise, if there are no triggers or the recursive-triggers
1427 ** flag is not set, but the table has one or more indexes, call
1428 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1429 ** only. The table b-tree entry will be replaced by the new entry
1430 ** when it is inserted.
1432 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1433 ** also invoke MultiWrite() to indicate that this VDBE may require
1434 ** statement rollback (if the statement is aborted after the delete
1435 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1436 ** but being more selective here allows statements like:
1438 ** REPLACE INTO t(rowid) VALUES($newrowid)
1440 ** to run without a statement journal if there are no indexes on the
1441 ** table.
1443 Trigger *pTrigger = 0;
1444 if( db->flags&SQLITE_RecTriggers ){
1445 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1447 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1448 sqlite3MultiWrite(pParse);
1449 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1450 regNewData, 1, 0, OE_Replace, 1, -1);
1451 }else{
1452 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1453 if( HasRowid(pTab) ){
1454 /* This OP_Delete opcode fires the pre-update-hook only. It does
1455 ** not modify the b-tree. It is more efficient to let the coming
1456 ** OP_Insert replace the existing entry than it is to delete the
1457 ** existing entry and then insert a new one. */
1458 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1459 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1461 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1462 if( pTab->pIndex ){
1463 sqlite3MultiWrite(pParse);
1464 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1467 seenReplace = 1;
1468 break;
1470 case OE_Ignore: {
1471 /*assert( seenReplace==0 );*/
1472 sqlite3VdbeGoto(v, ignoreDest);
1473 break;
1476 sqlite3VdbeResolveLabel(v, addrRowidOk);
1477 if( ipkTop ){
1478 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1479 sqlite3VdbeJumpHere(v, ipkTop);
1483 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1484 ** index and making sure that duplicate entries do not already exist.
1485 ** Compute the revised record entries for indices as we go.
1487 ** This loop also handles the case of the PRIMARY KEY index for a
1488 ** WITHOUT ROWID table.
1490 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1491 int regIdx; /* Range of registers hold conent for pIdx */
1492 int regR; /* Range of registers holding conflicting PK */
1493 int iThisCur; /* Cursor for this UNIQUE index */
1494 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1496 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1497 if( bAffinityDone==0 ){
1498 sqlite3TableAffinity(v, pTab, regNewData+1);
1499 bAffinityDone = 1;
1501 iThisCur = iIdxCur+ix;
1502 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1504 /* Skip partial indices for which the WHERE clause is not true */
1505 if( pIdx->pPartIdxWhere ){
1506 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1507 pParse->iSelfTab = -(regNewData+1);
1508 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1509 SQLITE_JUMPIFNULL);
1510 pParse->iSelfTab = 0;
1513 /* Create a record for this index entry as it should appear after
1514 ** the insert or update. Store that record in the aRegIdx[ix] register
1516 regIdx = aRegIdx[ix]+1;
1517 for(i=0; i<pIdx->nColumn; i++){
1518 int iField = pIdx->aiColumn[i];
1519 int x;
1520 if( iField==XN_EXPR ){
1521 pParse->iSelfTab = -(regNewData+1);
1522 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1523 pParse->iSelfTab = 0;
1524 VdbeComment((v, "%s column %d", pIdx->zName, i));
1525 }else{
1526 if( iField==XN_ROWID || iField==pTab->iPKey ){
1527 x = regNewData;
1528 }else{
1529 x = iField + regNewData + 1;
1531 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1532 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1535 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1536 VdbeComment((v, "for %s", pIdx->zName));
1537 #ifdef SQLITE_ENABLE_NULL_TRIM
1538 if( pIdx->idxType==2 ) sqlite3SetMakeRecordP5(v, pIdx->pTable);
1539 #endif
1541 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1542 ** of a WITHOUT ROWID table and there has been no change the
1543 ** primary key, then no collision is possible. The collision detection
1544 ** logic below can all be skipped. */
1545 if( isUpdate && pPk==pIdx && pkChng==0 ){
1546 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1547 continue;
1550 /* Find out what action to take in case there is a uniqueness conflict */
1551 onError = pIdx->onError;
1552 if( onError==OE_None ){
1553 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1554 continue; /* pIdx is not a UNIQUE index */
1556 if( overrideError!=OE_Default ){
1557 onError = overrideError;
1558 }else if( onError==OE_Default ){
1559 onError = OE_Abort;
1562 /* Collision detection may be omitted if all of the following are true:
1563 ** (1) The conflict resolution algorithm is REPLACE
1564 ** (2) The table is a WITHOUT ROWID table
1565 ** (3) There are no secondary indexes on the table
1566 ** (4) No delete triggers need to be fired if there is a conflict
1567 ** (5) No FK constraint counters need to be updated if a conflict occurs.
1569 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
1570 && pPk==pIdx /* Condition 2 */
1571 && onError==OE_Replace /* Condition 1 */
1572 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
1573 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1574 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
1575 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1577 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1578 continue;
1581 /* Check to see if the new index entry will be unique */
1582 sqlite3ExprCachePush(pParse);
1583 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1584 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1586 /* Generate code to handle collisions */
1587 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1588 if( isUpdate || onError==OE_Replace ){
1589 if( HasRowid(pTab) ){
1590 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1591 /* Conflict only if the rowid of the existing index entry
1592 ** is different from old-rowid */
1593 if( isUpdate ){
1594 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1595 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1596 VdbeCoverage(v);
1598 }else{
1599 int x;
1600 /* Extract the PRIMARY KEY from the end of the index entry and
1601 ** store it in registers regR..regR+nPk-1 */
1602 if( pIdx!=pPk ){
1603 for(i=0; i<pPk->nKeyCol; i++){
1604 assert( pPk->aiColumn[i]>=0 );
1605 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1606 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1607 VdbeComment((v, "%s.%s", pTab->zName,
1608 pTab->aCol[pPk->aiColumn[i]].zName));
1611 if( isUpdate ){
1612 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1613 ** table, only conflict if the new PRIMARY KEY values are actually
1614 ** different from the old.
1616 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1617 ** of the matched index row are different from the original PRIMARY
1618 ** KEY values of this row before the update. */
1619 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1620 int op = OP_Ne;
1621 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1623 for(i=0; i<pPk->nKeyCol; i++){
1624 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1625 x = pPk->aiColumn[i];
1626 assert( x>=0 );
1627 if( i==(pPk->nKeyCol-1) ){
1628 addrJump = addrUniqueOk;
1629 op = OP_Eq;
1631 sqlite3VdbeAddOp4(v, op,
1632 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1634 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1635 VdbeCoverageIf(v, op==OP_Eq);
1636 VdbeCoverageIf(v, op==OP_Ne);
1642 /* Generate code that executes if the new index entry is not unique */
1643 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1644 || onError==OE_Ignore || onError==OE_Replace );
1645 switch( onError ){
1646 case OE_Rollback:
1647 case OE_Abort:
1648 case OE_Fail: {
1649 sqlite3UniqueConstraint(pParse, onError, pIdx);
1650 break;
1652 case OE_Ignore: {
1653 sqlite3VdbeGoto(v, ignoreDest);
1654 break;
1656 default: {
1657 Trigger *pTrigger = 0;
1658 assert( onError==OE_Replace );
1659 sqlite3MultiWrite(pParse);
1660 if( db->flags&SQLITE_RecTriggers ){
1661 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1663 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1664 regR, nPkField, 0, OE_Replace,
1665 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1666 seenReplace = 1;
1667 break;
1670 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1671 sqlite3ExprCachePop(pParse);
1672 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1674 if( ipkTop ){
1675 sqlite3VdbeGoto(v, ipkTop+1);
1676 sqlite3VdbeJumpHere(v, ipkBottom);
1679 *pbMayReplace = seenReplace;
1680 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1683 #ifdef SQLITE_ENABLE_NULL_TRIM
1685 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1686 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1688 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1690 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1691 u16 i;
1693 /* Records with omitted columns are only allowed for schema format
1694 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1695 if( pTab->pSchema->file_format<2 ) return;
1697 for(i=pTab->nCol-1; i>0; i--){
1698 if( pTab->aCol[i].pDflt!=0 ) break;
1699 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
1701 sqlite3VdbeChangeP5(v, i+1);
1703 #endif
1706 ** This routine generates code to finish the INSERT or UPDATE operation
1707 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1708 ** A consecutive range of registers starting at regNewData contains the
1709 ** rowid and the content to be inserted.
1711 ** The arguments to this routine should be the same as the first six
1712 ** arguments to sqlite3GenerateConstraintChecks.
1714 void sqlite3CompleteInsertion(
1715 Parse *pParse, /* The parser context */
1716 Table *pTab, /* the table into which we are inserting */
1717 int iDataCur, /* Cursor of the canonical data source */
1718 int iIdxCur, /* First index cursor */
1719 int regNewData, /* Range of content */
1720 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1721 int update_flags, /* True for UPDATE, False for INSERT */
1722 int appendBias, /* True if this is likely to be an append */
1723 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1725 Vdbe *v; /* Prepared statements under construction */
1726 Index *pIdx; /* An index being inserted or updated */
1727 u8 pik_flags; /* flag values passed to the btree insert */
1728 int regData; /* Content registers (after the rowid) */
1729 int regRec; /* Register holding assembled record for the table */
1730 int i; /* Loop counter */
1731 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1733 assert( update_flags==0
1734 || update_flags==OPFLAG_ISUPDATE
1735 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1738 v = sqlite3GetVdbe(pParse);
1739 assert( v!=0 );
1740 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1741 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1742 if( aRegIdx[i]==0 ) continue;
1743 bAffinityDone = 1;
1744 if( pIdx->pPartIdxWhere ){
1745 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1746 VdbeCoverage(v);
1748 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1749 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1750 assert( pParse->nested==0 );
1751 pik_flags |= OPFLAG_NCHANGE;
1752 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1753 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1754 if( update_flags==0 ){
1755 sqlite3VdbeAddOp4(v, OP_InsertInt,
1756 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
1758 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1760 #endif
1762 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1763 aRegIdx[i]+1,
1764 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1765 sqlite3VdbeChangeP5(v, pik_flags);
1767 if( !HasRowid(pTab) ) return;
1768 regData = regNewData + 1;
1769 regRec = sqlite3GetTempReg(pParse);
1770 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1771 sqlite3SetMakeRecordP5(v, pTab);
1772 if( !bAffinityDone ){
1773 sqlite3TableAffinity(v, pTab, 0);
1774 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1776 if( pParse->nested ){
1777 pik_flags = 0;
1778 }else{
1779 pik_flags = OPFLAG_NCHANGE;
1780 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1782 if( appendBias ){
1783 pik_flags |= OPFLAG_APPEND;
1785 if( useSeekResult ){
1786 pik_flags |= OPFLAG_USESEEKRESULT;
1788 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1789 if( !pParse->nested ){
1790 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1792 sqlite3VdbeChangeP5(v, pik_flags);
1796 ** Allocate cursors for the pTab table and all its indices and generate
1797 ** code to open and initialized those cursors.
1799 ** The cursor for the object that contains the complete data (normally
1800 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1801 ** ROWID table) is returned in *piDataCur. The first index cursor is
1802 ** returned in *piIdxCur. The number of indices is returned.
1804 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1805 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1806 ** If iBase is negative, then allocate the next available cursor.
1808 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1809 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1810 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1811 ** pTab->pIndex list.
1813 ** If pTab is a virtual table, then this routine is a no-op and the
1814 ** *piDataCur and *piIdxCur values are left uninitialized.
1816 int sqlite3OpenTableAndIndices(
1817 Parse *pParse, /* Parsing context */
1818 Table *pTab, /* Table to be opened */
1819 int op, /* OP_OpenRead or OP_OpenWrite */
1820 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
1821 int iBase, /* Use this for the table cursor, if there is one */
1822 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1823 int *piDataCur, /* Write the database source cursor number here */
1824 int *piIdxCur /* Write the first index cursor number here */
1826 int i;
1827 int iDb;
1828 int iDataCur;
1829 Index *pIdx;
1830 Vdbe *v;
1832 assert( op==OP_OpenRead || op==OP_OpenWrite );
1833 assert( op==OP_OpenWrite || p5==0 );
1834 if( IsVirtual(pTab) ){
1835 /* This routine is a no-op for virtual tables. Leave the output
1836 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1837 ** can detect if they are used by mistake in the caller. */
1838 return 0;
1840 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1841 v = sqlite3GetVdbe(pParse);
1842 assert( v!=0 );
1843 if( iBase<0 ) iBase = pParse->nTab;
1844 iDataCur = iBase++;
1845 if( piDataCur ) *piDataCur = iDataCur;
1846 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1847 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1848 }else{
1849 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1851 if( piIdxCur ) *piIdxCur = iBase;
1852 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1853 int iIdxCur = iBase++;
1854 assert( pIdx->pSchema==pTab->pSchema );
1855 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1856 if( piDataCur ) *piDataCur = iIdxCur;
1857 p5 = 0;
1859 if( aToOpen==0 || aToOpen[i+1] ){
1860 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1861 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1862 sqlite3VdbeChangeP5(v, p5);
1863 VdbeComment((v, "%s", pIdx->zName));
1866 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1867 return i;
1871 #ifdef SQLITE_TEST
1873 ** The following global variable is incremented whenever the
1874 ** transfer optimization is used. This is used for testing
1875 ** purposes only - to make sure the transfer optimization really
1876 ** is happening when it is supposed to.
1878 int sqlite3_xferopt_count;
1879 #endif /* SQLITE_TEST */
1882 #ifndef SQLITE_OMIT_XFER_OPT
1884 ** Check to see if index pSrc is compatible as a source of data
1885 ** for index pDest in an insert transfer optimization. The rules
1886 ** for a compatible index:
1888 ** * The index is over the same set of columns
1889 ** * The same DESC and ASC markings occurs on all columns
1890 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1891 ** * The same collating sequence on each column
1892 ** * The index has the exact same WHERE clause
1894 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1895 int i;
1896 assert( pDest && pSrc );
1897 assert( pDest->pTable!=pSrc->pTable );
1898 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1899 return 0; /* Different number of columns */
1901 if( pDest->onError!=pSrc->onError ){
1902 return 0; /* Different conflict resolution strategies */
1904 for(i=0; i<pSrc->nKeyCol; i++){
1905 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1906 return 0; /* Different columns indexed */
1908 if( pSrc->aiColumn[i]==XN_EXPR ){
1909 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
1910 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
1911 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
1912 return 0; /* Different expressions in the index */
1915 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1916 return 0; /* Different sort orders */
1918 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
1919 return 0; /* Different collating sequences */
1922 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1923 return 0; /* Different WHERE clauses */
1926 /* If no test above fails then the indices must be compatible */
1927 return 1;
1931 ** Attempt the transfer optimization on INSERTs of the form
1933 ** INSERT INTO tab1 SELECT * FROM tab2;
1935 ** The xfer optimization transfers raw records from tab2 over to tab1.
1936 ** Columns are not decoded and reassembled, which greatly improves
1937 ** performance. Raw index records are transferred in the same way.
1939 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1940 ** There are lots of rules for determining compatibility - see comments
1941 ** embedded in the code for details.
1943 ** This routine returns TRUE if the optimization is guaranteed to be used.
1944 ** Sometimes the xfer optimization will only work if the destination table
1945 ** is empty - a factor that can only be determined at run-time. In that
1946 ** case, this routine generates code for the xfer optimization but also
1947 ** does a test to see if the destination table is empty and jumps over the
1948 ** xfer optimization code if the test fails. In that case, this routine
1949 ** returns FALSE so that the caller will know to go ahead and generate
1950 ** an unoptimized transfer. This routine also returns FALSE if there
1951 ** is no chance that the xfer optimization can be applied.
1953 ** This optimization is particularly useful at making VACUUM run faster.
1955 static int xferOptimization(
1956 Parse *pParse, /* Parser context */
1957 Table *pDest, /* The table we are inserting into */
1958 Select *pSelect, /* A SELECT statement to use as the data source */
1959 int onError, /* How to handle constraint errors */
1960 int iDbDest /* The database of pDest */
1962 sqlite3 *db = pParse->db;
1963 ExprList *pEList; /* The result set of the SELECT */
1964 Table *pSrc; /* The table in the FROM clause of SELECT */
1965 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1966 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1967 int i; /* Loop counter */
1968 int iDbSrc; /* The database of pSrc */
1969 int iSrc, iDest; /* Cursors from source and destination */
1970 int addr1, addr2; /* Loop addresses */
1971 int emptyDestTest = 0; /* Address of test for empty pDest */
1972 int emptySrcTest = 0; /* Address of test for empty pSrc */
1973 Vdbe *v; /* The VDBE we are building */
1974 int regAutoinc; /* Memory register used by AUTOINC */
1975 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1976 int regData, regRowid; /* Registers holding data and rowid */
1978 if( pSelect==0 ){
1979 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1981 if( pParse->pWith || pSelect->pWith ){
1982 /* Do not attempt to process this query if there are an WITH clauses
1983 ** attached to it. Proceeding may generate a false "no such table: xxx"
1984 ** error if pSelect reads from a CTE named "xxx". */
1985 return 0;
1987 if( sqlite3TriggerList(pParse, pDest) ){
1988 return 0; /* tab1 must not have triggers */
1990 #ifndef SQLITE_OMIT_VIRTUALTABLE
1991 if( IsVirtual(pDest) ){
1992 return 0; /* tab1 must not be a virtual table */
1994 #endif
1995 if( onError==OE_Default ){
1996 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1997 if( onError==OE_Default ) onError = OE_Abort;
1999 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
2000 if( pSelect->pSrc->nSrc!=1 ){
2001 return 0; /* FROM clause must have exactly one term */
2003 if( pSelect->pSrc->a[0].pSelect ){
2004 return 0; /* FROM clause cannot contain a subquery */
2006 if( pSelect->pWhere ){
2007 return 0; /* SELECT may not have a WHERE clause */
2009 if( pSelect->pOrderBy ){
2010 return 0; /* SELECT may not have an ORDER BY clause */
2012 /* Do not need to test for a HAVING clause. If HAVING is present but
2013 ** there is no ORDER BY, we will get an error. */
2014 if( pSelect->pGroupBy ){
2015 return 0; /* SELECT may not have a GROUP BY clause */
2017 if( pSelect->pLimit ){
2018 return 0; /* SELECT may not have a LIMIT clause */
2020 if( pSelect->pPrior ){
2021 return 0; /* SELECT may not be a compound query */
2023 if( pSelect->selFlags & SF_Distinct ){
2024 return 0; /* SELECT may not be DISTINCT */
2026 pEList = pSelect->pEList;
2027 assert( pEList!=0 );
2028 if( pEList->nExpr!=1 ){
2029 return 0; /* The result set must have exactly one column */
2031 assert( pEList->a[0].pExpr );
2032 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2033 return 0; /* The result set must be the special operator "*" */
2036 /* At this point we have established that the statement is of the
2037 ** correct syntactic form to participate in this optimization. Now
2038 ** we have to check the semantics.
2040 pItem = pSelect->pSrc->a;
2041 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2042 if( pSrc==0 ){
2043 return 0; /* FROM clause does not contain a real table */
2045 if( pSrc==pDest ){
2046 return 0; /* tab1 and tab2 may not be the same table */
2048 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2049 return 0; /* source and destination must both be WITHOUT ROWID or not */
2051 #ifndef SQLITE_OMIT_VIRTUALTABLE
2052 if( IsVirtual(pSrc) ){
2053 return 0; /* tab2 must not be a virtual table */
2055 #endif
2056 if( pSrc->pSelect ){
2057 return 0; /* tab2 may not be a view */
2059 if( pDest->nCol!=pSrc->nCol ){
2060 return 0; /* Number of columns must be the same in tab1 and tab2 */
2062 if( pDest->iPKey!=pSrc->iPKey ){
2063 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2065 for(i=0; i<pDest->nCol; i++){
2066 Column *pDestCol = &pDest->aCol[i];
2067 Column *pSrcCol = &pSrc->aCol[i];
2068 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2069 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2070 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2072 return 0; /* Neither table may have __hidden__ columns */
2074 #endif
2075 if( pDestCol->affinity!=pSrcCol->affinity ){
2076 return 0; /* Affinity must be the same on all columns */
2078 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2079 return 0; /* Collating sequence must be the same on all columns */
2081 if( pDestCol->notNull && !pSrcCol->notNull ){
2082 return 0; /* tab2 must be NOT NULL if tab1 is */
2084 /* Default values for second and subsequent columns need to match. */
2085 if( i>0 ){
2086 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2087 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2088 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2089 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2090 pSrcCol->pDflt->u.zToken)!=0)
2092 return 0; /* Default values must be the same for all columns */
2096 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2097 if( IsUniqueIndex(pDestIdx) ){
2098 destHasUniqueIdx = 1;
2100 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2101 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2103 if( pSrcIdx==0 ){
2104 return 0; /* pDestIdx has no corresponding index in pSrc */
2107 #ifndef SQLITE_OMIT_CHECK
2108 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2109 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2111 #endif
2112 #ifndef SQLITE_OMIT_FOREIGN_KEY
2113 /* Disallow the transfer optimization if the destination table constains
2114 ** any foreign key constraints. This is more restrictive than necessary.
2115 ** But the main beneficiary of the transfer optimization is the VACUUM
2116 ** command, and the VACUUM command disables foreign key constraints. So
2117 ** the extra complication to make this rule less restrictive is probably
2118 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2120 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2121 return 0;
2123 #endif
2124 if( (db->flags & SQLITE_CountRows)!=0 ){
2125 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2128 /* If we get this far, it means that the xfer optimization is at
2129 ** least a possibility, though it might only work if the destination
2130 ** table (tab1) is initially empty.
2132 #ifdef SQLITE_TEST
2133 sqlite3_xferopt_count++;
2134 #endif
2135 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2136 v = sqlite3GetVdbe(pParse);
2137 sqlite3CodeVerifySchema(pParse, iDbSrc);
2138 iSrc = pParse->nTab++;
2139 iDest = pParse->nTab++;
2140 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2141 regData = sqlite3GetTempReg(pParse);
2142 regRowid = sqlite3GetTempReg(pParse);
2143 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2144 assert( HasRowid(pDest) || destHasUniqueIdx );
2145 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2146 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2147 || destHasUniqueIdx /* (2) */
2148 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2150 /* In some circumstances, we are able to run the xfer optimization
2151 ** only if the destination table is initially empty. Unless the
2152 ** DBFLAG_Vacuum flag is set, this block generates code to make
2153 ** that determination. If DBFLAG_Vacuum is set, then the destination
2154 ** table is always empty.
2156 ** Conditions under which the destination must be empty:
2158 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2159 ** (If the destination is not initially empty, the rowid fields
2160 ** of index entries might need to change.)
2162 ** (2) The destination has a unique index. (The xfer optimization
2163 ** is unable to test uniqueness.)
2165 ** (3) onError is something other than OE_Abort and OE_Rollback.
2167 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2168 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2169 sqlite3VdbeJumpHere(v, addr1);
2171 if( HasRowid(pSrc) ){
2172 u8 insFlags;
2173 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2174 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2175 if( pDest->iPKey>=0 ){
2176 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2177 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2178 VdbeCoverage(v);
2179 sqlite3RowidConstraint(pParse, onError, pDest);
2180 sqlite3VdbeJumpHere(v, addr2);
2181 autoIncStep(pParse, regAutoinc, regRowid);
2182 }else if( pDest->pIndex==0 ){
2183 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2184 }else{
2185 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2186 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2188 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2189 if( db->mDbFlags & DBFLAG_Vacuum ){
2190 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2191 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2192 OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2193 }else{
2194 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2196 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2197 (char*)pDest, P4_TABLE);
2198 sqlite3VdbeChangeP5(v, insFlags);
2199 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2200 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2201 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2202 }else{
2203 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2204 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2206 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2207 u8 idxInsFlags = 0;
2208 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2209 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2211 assert( pSrcIdx );
2212 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2213 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2214 VdbeComment((v, "%s", pSrcIdx->zName));
2215 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2216 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2217 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2218 VdbeComment((v, "%s", pDestIdx->zName));
2219 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2220 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2221 if( db->mDbFlags & DBFLAG_Vacuum ){
2222 /* This INSERT command is part of a VACUUM operation, which guarantees
2223 ** that the destination table is empty. If all indexed columns use
2224 ** collation sequence BINARY, then it can also be assumed that the
2225 ** index will be populated by inserting keys in strictly sorted
2226 ** order. In this case, instead of seeking within the b-tree as part
2227 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2228 ** OP_IdxInsert to seek to the point within the b-tree where each key
2229 ** should be inserted. This is faster.
2231 ** If any of the indexed columns use a collation sequence other than
2232 ** BINARY, this optimization is disabled. This is because the user
2233 ** might change the definition of a collation sequence and then run
2234 ** a VACUUM command. In that case keys may not be written in strictly
2235 ** sorted order. */
2236 for(i=0; i<pSrcIdx->nColumn; i++){
2237 const char *zColl = pSrcIdx->azColl[i];
2238 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2240 if( i==pSrcIdx->nColumn ){
2241 idxInsFlags = OPFLAG_USESEEKRESULT;
2242 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2245 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2246 idxInsFlags |= OPFLAG_NCHANGE;
2248 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2249 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2250 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2251 sqlite3VdbeJumpHere(v, addr1);
2252 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2253 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2255 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2256 sqlite3ReleaseTempReg(pParse, regRowid);
2257 sqlite3ReleaseTempReg(pParse, regData);
2258 if( emptyDestTest ){
2259 sqlite3AutoincrementEnd(pParse);
2260 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2261 sqlite3VdbeJumpHere(v, emptyDestTest);
2262 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2263 return 0;
2264 }else{
2265 return 1;
2268 #endif /* SQLITE_OMIT_XFER_OPT */