Make the internal dynamic string interface available to extensions using
[sqlite.git] / src / build.c
blobd0cb0062e155fdd35ce3c6691771ff28353825bb
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
346 sqlite3 *db = pParse->db;
348 /* Read the database schema. If an error occurs, leave an error message
349 ** and code in pParse and return NULL. */
350 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
351 && SQLITE_OK!=sqlite3ReadSchema(pParse)
353 return 0;
356 p = sqlite3FindTable(db, zName, zDbase);
357 if( p==0 ){
358 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
359 #ifndef SQLITE_OMIT_VIRTUALTABLE
360 if( sqlite3FindDbName(db, zDbase)<1 ){
361 /* If zName is the not the name of a table in the schema created using
362 ** CREATE, then check to see if it is the name of an virtual table that
363 ** can be an eponymous virtual table. */
364 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
365 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
366 pMod = sqlite3PragmaVtabRegister(db, zName);
368 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
369 return pMod->pEpoTab;
372 #endif
373 if( (flags & LOCATE_NOERR)==0 ){
374 if( zDbase ){
375 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
376 }else{
377 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
379 pParse->checkSchema = 1;
383 return p;
387 ** Locate the table identified by *p.
389 ** This is a wrapper around sqlite3LocateTable(). The difference between
390 ** sqlite3LocateTable() and this function is that this function restricts
391 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
392 ** non-NULL if it is part of a view or trigger program definition. See
393 ** sqlite3FixSrcList() for details.
395 Table *sqlite3LocateTableItem(
396 Parse *pParse,
397 u32 flags,
398 struct SrcList_item *p
400 const char *zDb;
401 assert( p->pSchema==0 || p->zDatabase==0 );
402 if( p->pSchema ){
403 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
404 zDb = pParse->db->aDb[iDb].zDbSName;
405 }else{
406 zDb = p->zDatabase;
408 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
412 ** Locate the in-memory structure that describes
413 ** a particular index given the name of that index
414 ** and the name of the database that contains the index.
415 ** Return NULL if not found.
417 ** If zDatabase is 0, all databases are searched for the
418 ** table and the first matching index is returned. (No checking
419 ** for duplicate index names is done.) The search order is
420 ** TEMP first, then MAIN, then any auxiliary databases added
421 ** using the ATTACH command.
423 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
424 Index *p = 0;
425 int i;
426 /* All mutexes are required for schema access. Make sure we hold them. */
427 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
428 for(i=OMIT_TEMPDB; i<db->nDb; i++){
429 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
430 Schema *pSchema = db->aDb[j].pSchema;
431 assert( pSchema );
432 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
433 assert( sqlite3SchemaMutexHeld(db, j, 0) );
434 p = sqlite3HashFind(&pSchema->idxHash, zName);
435 if( p ) break;
437 return p;
441 ** Reclaim the memory used by an index
443 static void freeIndex(sqlite3 *db, Index *p){
444 #ifndef SQLITE_OMIT_ANALYZE
445 sqlite3DeleteIndexSamples(db, p);
446 #endif
447 sqlite3ExprDelete(db, p->pPartIdxWhere);
448 sqlite3ExprListDelete(db, p->aColExpr);
449 sqlite3DbFree(db, p->zColAff);
450 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
451 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
452 sqlite3_free(p->aiRowEst);
453 #endif
454 sqlite3DbFree(db, p);
458 ** For the index called zIdxName which is found in the database iDb,
459 ** unlike that index from its Table then remove the index from
460 ** the index hash table and free all memory structures associated
461 ** with the index.
463 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
464 Index *pIndex;
465 Hash *pHash;
467 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
468 pHash = &db->aDb[iDb].pSchema->idxHash;
469 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
470 if( ALWAYS(pIndex) ){
471 if( pIndex->pTable->pIndex==pIndex ){
472 pIndex->pTable->pIndex = pIndex->pNext;
473 }else{
474 Index *p;
475 /* Justification of ALWAYS(); The index must be on the list of
476 ** indices. */
477 p = pIndex->pTable->pIndex;
478 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
479 if( ALWAYS(p && p->pNext==pIndex) ){
480 p->pNext = pIndex->pNext;
483 freeIndex(db, pIndex);
485 db->mDbFlags |= DBFLAG_SchemaChange;
489 ** Look through the list of open database files in db->aDb[] and if
490 ** any have been closed, remove them from the list. Reallocate the
491 ** db->aDb[] structure to a smaller size, if possible.
493 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
494 ** are never candidates for being collapsed.
496 void sqlite3CollapseDatabaseArray(sqlite3 *db){
497 int i, j;
498 for(i=j=2; i<db->nDb; i++){
499 struct Db *pDb = &db->aDb[i];
500 if( pDb->pBt==0 ){
501 sqlite3DbFree(db, pDb->zDbSName);
502 pDb->zDbSName = 0;
503 continue;
505 if( j<i ){
506 db->aDb[j] = db->aDb[i];
508 j++;
510 db->nDb = j;
511 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
512 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
513 sqlite3DbFree(db, db->aDb);
514 db->aDb = db->aDbStatic;
519 ** Reset the schema for the database at index iDb. Also reset the
520 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
521 ** Deferred resets may be run by calling with iDb<0.
523 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
524 int i;
525 assert( iDb<db->nDb );
527 if( iDb>=0 ){
528 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
529 DbSetProperty(db, iDb, DB_ResetWanted);
530 DbSetProperty(db, 1, DB_ResetWanted);
531 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
534 if( db->nSchemaLock==0 ){
535 for(i=0; i<db->nDb; i++){
536 if( DbHasProperty(db, i, DB_ResetWanted) ){
537 sqlite3SchemaClear(db->aDb[i].pSchema);
544 ** Erase all schema information from all attached databases (including
545 ** "main" and "temp") for a single database connection.
547 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
548 int i;
549 sqlite3BtreeEnterAll(db);
550 assert( db->nSchemaLock==0 );
551 for(i=0; i<db->nDb; i++){
552 Db *pDb = &db->aDb[i];
553 if( pDb->pSchema ){
554 sqlite3SchemaClear(pDb->pSchema);
557 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
558 sqlite3VtabUnlockList(db);
559 sqlite3BtreeLeaveAll(db);
560 sqlite3CollapseDatabaseArray(db);
564 ** This routine is called when a commit occurs.
566 void sqlite3CommitInternalChanges(sqlite3 *db){
567 db->mDbFlags &= ~DBFLAG_SchemaChange;
571 ** Delete memory allocated for the column names of a table or view (the
572 ** Table.aCol[] array).
574 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
575 int i;
576 Column *pCol;
577 assert( pTable!=0 );
578 if( (pCol = pTable->aCol)!=0 ){
579 for(i=0; i<pTable->nCol; i++, pCol++){
580 sqlite3DbFree(db, pCol->zName);
581 sqlite3ExprDelete(db, pCol->pDflt);
582 sqlite3DbFree(db, pCol->zColl);
584 sqlite3DbFree(db, pTable->aCol);
589 ** Remove the memory data structures associated with the given
590 ** Table. No changes are made to disk by this routine.
592 ** This routine just deletes the data structure. It does not unlink
593 ** the table data structure from the hash table. But it does destroy
594 ** memory structures of the indices and foreign keys associated with
595 ** the table.
597 ** The db parameter is optional. It is needed if the Table object
598 ** contains lookaside memory. (Table objects in the schema do not use
599 ** lookaside memory, but some ephemeral Table objects do.) Or the
600 ** db parameter can be used with db->pnBytesFreed to measure the memory
601 ** used by the Table object.
603 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
604 Index *pIndex, *pNext;
606 #ifdef SQLITE_DEBUG
607 /* Record the number of outstanding lookaside allocations in schema Tables
608 ** prior to doing any free() operations. Since schema Tables do not use
609 ** lookaside, this number should not change. */
610 int nLookaside = 0;
611 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
612 nLookaside = sqlite3LookasideUsed(db, 0);
614 #endif
616 /* Delete all indices associated with this table. */
617 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
618 pNext = pIndex->pNext;
619 assert( pIndex->pSchema==pTable->pSchema
620 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
621 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
622 char *zName = pIndex->zName;
623 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
624 &pIndex->pSchema->idxHash, zName, 0
626 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
627 assert( pOld==pIndex || pOld==0 );
629 freeIndex(db, pIndex);
632 /* Delete any foreign keys attached to this table. */
633 sqlite3FkDelete(db, pTable);
635 /* Delete the Table structure itself.
637 sqlite3DeleteColumnNames(db, pTable);
638 sqlite3DbFree(db, pTable->zName);
639 sqlite3DbFree(db, pTable->zColAff);
640 sqlite3SelectDelete(db, pTable->pSelect);
641 sqlite3ExprListDelete(db, pTable->pCheck);
642 #ifndef SQLITE_OMIT_VIRTUALTABLE
643 sqlite3VtabClear(db, pTable);
644 #endif
645 sqlite3DbFree(db, pTable);
647 /* Verify that no lookaside memory was used by schema tables */
648 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
650 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
651 /* Do not delete the table until the reference count reaches zero. */
652 if( !pTable ) return;
653 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
654 deleteTable(db, pTable);
659 ** Unlink the given table from the hash tables and the delete the
660 ** table structure with all its indices and foreign keys.
662 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
663 Table *p;
664 Db *pDb;
666 assert( db!=0 );
667 assert( iDb>=0 && iDb<db->nDb );
668 assert( zTabName );
669 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
670 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
671 pDb = &db->aDb[iDb];
672 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
673 sqlite3DeleteTable(db, p);
674 db->mDbFlags |= DBFLAG_SchemaChange;
678 ** Given a token, return a string that consists of the text of that
679 ** token. Space to hold the returned string
680 ** is obtained from sqliteMalloc() and must be freed by the calling
681 ** function.
683 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
684 ** surround the body of the token are removed.
686 ** Tokens are often just pointers into the original SQL text and so
687 ** are not \000 terminated and are not persistent. The returned string
688 ** is \000 terminated and is persistent.
690 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
691 char *zName;
692 if( pName ){
693 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
694 sqlite3Dequote(zName);
695 }else{
696 zName = 0;
698 return zName;
702 ** Open the sqlite_master table stored in database number iDb for
703 ** writing. The table is opened using cursor 0.
705 void sqlite3OpenMasterTable(Parse *p, int iDb){
706 Vdbe *v = sqlite3GetVdbe(p);
707 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
708 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
709 if( p->nTab==0 ){
710 p->nTab = 1;
715 ** Parameter zName points to a nul-terminated buffer containing the name
716 ** of a database ("main", "temp" or the name of an attached db). This
717 ** function returns the index of the named database in db->aDb[], or
718 ** -1 if the named db cannot be found.
720 int sqlite3FindDbName(sqlite3 *db, const char *zName){
721 int i = -1; /* Database number */
722 if( zName ){
723 Db *pDb;
724 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
725 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
726 /* "main" is always an acceptable alias for the primary database
727 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
728 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
731 return i;
735 ** The token *pName contains the name of a database (either "main" or
736 ** "temp" or the name of an attached db). This routine returns the
737 ** index of the named database in db->aDb[], or -1 if the named db
738 ** does not exist.
740 int sqlite3FindDb(sqlite3 *db, Token *pName){
741 int i; /* Database number */
742 char *zName; /* Name we are searching for */
743 zName = sqlite3NameFromToken(db, pName);
744 i = sqlite3FindDbName(db, zName);
745 sqlite3DbFree(db, zName);
746 return i;
749 /* The table or view or trigger name is passed to this routine via tokens
750 ** pName1 and pName2. If the table name was fully qualified, for example:
752 ** CREATE TABLE xxx.yyy (...);
754 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
755 ** the table name is not fully qualified, i.e.:
757 ** CREATE TABLE yyy(...);
759 ** Then pName1 is set to "yyy" and pName2 is "".
761 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
762 ** pName2) that stores the unqualified table name. The index of the
763 ** database "xxx" is returned.
765 int sqlite3TwoPartName(
766 Parse *pParse, /* Parsing and code generating context */
767 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
768 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
769 Token **pUnqual /* Write the unqualified object name here */
771 int iDb; /* Database holding the object */
772 sqlite3 *db = pParse->db;
774 assert( pName2!=0 );
775 if( pName2->n>0 ){
776 if( db->init.busy ) {
777 sqlite3ErrorMsg(pParse, "corrupt database");
778 return -1;
780 *pUnqual = pName2;
781 iDb = sqlite3FindDb(db, pName1);
782 if( iDb<0 ){
783 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
784 return -1;
786 }else{
787 assert( db->init.iDb==0 || db->init.busy
788 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
789 iDb = db->init.iDb;
790 *pUnqual = pName1;
792 return iDb;
796 ** This routine is used to check if the UTF-8 string zName is a legal
797 ** unqualified name for a new schema object (table, index, view or
798 ** trigger). All names are legal except those that begin with the string
799 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
800 ** is reserved for internal use.
802 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
803 if( !pParse->db->init.busy && pParse->nested==0
804 && (pParse->db->flags & SQLITE_WriteSchema)==0
805 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
806 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
807 return SQLITE_ERROR;
809 return SQLITE_OK;
813 ** Return the PRIMARY KEY index of a table
815 Index *sqlite3PrimaryKeyIndex(Table *pTab){
816 Index *p;
817 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
818 return p;
822 ** Return the column of index pIdx that corresponds to table
823 ** column iCol. Return -1 if not found.
825 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
826 int i;
827 for(i=0; i<pIdx->nColumn; i++){
828 if( iCol==pIdx->aiColumn[i] ) return i;
830 return -1;
834 ** Begin constructing a new table representation in memory. This is
835 ** the first of several action routines that get called in response
836 ** to a CREATE TABLE statement. In particular, this routine is called
837 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
838 ** flag is true if the table should be stored in the auxiliary database
839 ** file instead of in the main database file. This is normally the case
840 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
841 ** CREATE and TABLE.
843 ** The new table record is initialized and put in pParse->pNewTable.
844 ** As more of the CREATE TABLE statement is parsed, additional action
845 ** routines will be called to add more information to this record.
846 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
847 ** is called to complete the construction of the new table record.
849 void sqlite3StartTable(
850 Parse *pParse, /* Parser context */
851 Token *pName1, /* First part of the name of the table or view */
852 Token *pName2, /* Second part of the name of the table or view */
853 int isTemp, /* True if this is a TEMP table */
854 int isView, /* True if this is a VIEW */
855 int isVirtual, /* True if this is a VIRTUAL table */
856 int noErr /* Do nothing if table already exists */
858 Table *pTable;
859 char *zName = 0; /* The name of the new table */
860 sqlite3 *db = pParse->db;
861 Vdbe *v;
862 int iDb; /* Database number to create the table in */
863 Token *pName; /* Unqualified name of the table to create */
865 if( db->init.busy && db->init.newTnum==1 ){
866 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
867 iDb = db->init.iDb;
868 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
869 pName = pName1;
870 }else{
871 /* The common case */
872 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
873 if( iDb<0 ) return;
874 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
875 /* If creating a temp table, the name may not be qualified. Unless
876 ** the database name is "temp" anyway. */
877 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
878 return;
880 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
881 zName = sqlite3NameFromToken(db, pName);
883 pParse->sNameToken = *pName;
884 if( zName==0 ) return;
885 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
886 goto begin_table_error;
888 if( db->init.iDb==1 ) isTemp = 1;
889 #ifndef SQLITE_OMIT_AUTHORIZATION
890 assert( isTemp==0 || isTemp==1 );
891 assert( isView==0 || isView==1 );
893 static const u8 aCode[] = {
894 SQLITE_CREATE_TABLE,
895 SQLITE_CREATE_TEMP_TABLE,
896 SQLITE_CREATE_VIEW,
897 SQLITE_CREATE_TEMP_VIEW
899 char *zDb = db->aDb[iDb].zDbSName;
900 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
901 goto begin_table_error;
903 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
904 zName, 0, zDb) ){
905 goto begin_table_error;
908 #endif
910 /* Make sure the new table name does not collide with an existing
911 ** index or table name in the same database. Issue an error message if
912 ** it does. The exception is if the statement being parsed was passed
913 ** to an sqlite3_declare_vtab() call. In that case only the column names
914 ** and types will be used, so there is no need to test for namespace
915 ** collisions.
917 if( !IN_DECLARE_VTAB ){
918 char *zDb = db->aDb[iDb].zDbSName;
919 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
920 goto begin_table_error;
922 pTable = sqlite3FindTable(db, zName, zDb);
923 if( pTable ){
924 if( !noErr ){
925 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
926 }else{
927 assert( !db->init.busy || CORRUPT_DB );
928 sqlite3CodeVerifySchema(pParse, iDb);
930 goto begin_table_error;
932 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
933 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
934 goto begin_table_error;
938 pTable = sqlite3DbMallocZero(db, sizeof(Table));
939 if( pTable==0 ){
940 assert( db->mallocFailed );
941 pParse->rc = SQLITE_NOMEM_BKPT;
942 pParse->nErr++;
943 goto begin_table_error;
945 pTable->zName = zName;
946 pTable->iPKey = -1;
947 pTable->pSchema = db->aDb[iDb].pSchema;
948 pTable->nTabRef = 1;
949 #ifdef SQLITE_DEFAULT_ROWEST
950 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
951 #else
952 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
953 #endif
954 assert( pParse->pNewTable==0 );
955 pParse->pNewTable = pTable;
957 /* If this is the magic sqlite_sequence table used by autoincrement,
958 ** then record a pointer to this table in the main database structure
959 ** so that INSERT can find the table easily.
961 #ifndef SQLITE_OMIT_AUTOINCREMENT
962 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
963 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
964 pTable->pSchema->pSeqTab = pTable;
966 #endif
968 /* Begin generating the code that will insert the table record into
969 ** the SQLITE_MASTER table. Note in particular that we must go ahead
970 ** and allocate the record number for the table entry now. Before any
971 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
972 ** indices to be created and the table record must come before the
973 ** indices. Hence, the record number for the table must be allocated
974 ** now.
976 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
977 int addr1;
978 int fileFormat;
979 int reg1, reg2, reg3;
980 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
981 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
982 sqlite3BeginWriteOperation(pParse, 1, iDb);
984 #ifndef SQLITE_OMIT_VIRTUALTABLE
985 if( isVirtual ){
986 sqlite3VdbeAddOp0(v, OP_VBegin);
988 #endif
990 /* If the file format and encoding in the database have not been set,
991 ** set them now.
993 reg1 = pParse->regRowid = ++pParse->nMem;
994 reg2 = pParse->regRoot = ++pParse->nMem;
995 reg3 = ++pParse->nMem;
996 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
997 sqlite3VdbeUsesBtree(v, iDb);
998 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
999 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1000 1 : SQLITE_MAX_FILE_FORMAT;
1001 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1002 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1003 sqlite3VdbeJumpHere(v, addr1);
1005 /* This just creates a place-holder record in the sqlite_master table.
1006 ** The record created does not contain anything yet. It will be replaced
1007 ** by the real entry in code generated at sqlite3EndTable().
1009 ** The rowid for the new entry is left in register pParse->regRowid.
1010 ** The root page number of the new table is left in reg pParse->regRoot.
1011 ** The rowid and root page number values are needed by the code that
1012 ** sqlite3EndTable will generate.
1014 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1015 if( isView || isVirtual ){
1016 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1017 }else
1018 #endif
1020 pParse->addrCrTab =
1021 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1023 sqlite3OpenMasterTable(pParse, iDb);
1024 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1025 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1026 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1027 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1028 sqlite3VdbeAddOp0(v, OP_Close);
1031 /* Normal (non-error) return. */
1032 return;
1034 /* If an error occurs, we jump here */
1035 begin_table_error:
1036 sqlite3DbFree(db, zName);
1037 return;
1040 /* Set properties of a table column based on the (magical)
1041 ** name of the column.
1043 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1044 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1045 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1046 pCol->colFlags |= COLFLAG_HIDDEN;
1047 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1048 pTab->tabFlags |= TF_OOOHidden;
1051 #endif
1055 ** Add a new column to the table currently being constructed.
1057 ** The parser calls this routine once for each column declaration
1058 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1059 ** first to get things going. Then this routine is called for each
1060 ** column.
1062 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1063 Table *p;
1064 int i;
1065 char *z;
1066 char *zType;
1067 Column *pCol;
1068 sqlite3 *db = pParse->db;
1069 if( (p = pParse->pNewTable)==0 ) return;
1070 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1071 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1072 return;
1074 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1075 if( z==0 ) return;
1076 memcpy(z, pName->z, pName->n);
1077 z[pName->n] = 0;
1078 sqlite3Dequote(z);
1079 for(i=0; i<p->nCol; i++){
1080 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1081 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1082 sqlite3DbFree(db, z);
1083 return;
1086 if( (p->nCol & 0x7)==0 ){
1087 Column *aNew;
1088 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1089 if( aNew==0 ){
1090 sqlite3DbFree(db, z);
1091 return;
1093 p->aCol = aNew;
1095 pCol = &p->aCol[p->nCol];
1096 memset(pCol, 0, sizeof(p->aCol[0]));
1097 pCol->zName = z;
1098 sqlite3ColumnPropertiesFromName(p, pCol);
1100 if( pType->n==0 ){
1101 /* If there is no type specified, columns have the default affinity
1102 ** 'BLOB' with a default size of 4 bytes. */
1103 pCol->affinity = SQLITE_AFF_BLOB;
1104 pCol->szEst = 1;
1105 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1106 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1107 pCol->colFlags |= COLFLAG_SORTERREF;
1109 #endif
1110 }else{
1111 zType = z + sqlite3Strlen30(z) + 1;
1112 memcpy(zType, pType->z, pType->n);
1113 zType[pType->n] = 0;
1114 sqlite3Dequote(zType);
1115 pCol->affinity = sqlite3AffinityType(zType, pCol);
1116 pCol->colFlags |= COLFLAG_HASTYPE;
1118 p->nCol++;
1119 pParse->constraintName.n = 0;
1123 ** This routine is called by the parser while in the middle of
1124 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1125 ** been seen on a column. This routine sets the notNull flag on
1126 ** the column currently under construction.
1128 void sqlite3AddNotNull(Parse *pParse, int onError){
1129 Table *p;
1130 Column *pCol;
1131 p = pParse->pNewTable;
1132 if( p==0 || NEVER(p->nCol<1) ) return;
1133 pCol = &p->aCol[p->nCol-1];
1134 pCol->notNull = (u8)onError;
1135 p->tabFlags |= TF_HasNotNull;
1137 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1138 ** on this column. */
1139 if( pCol->colFlags & COLFLAG_UNIQUE ){
1140 Index *pIdx;
1141 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1142 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1143 if( pIdx->aiColumn[0]==p->nCol-1 ){
1144 pIdx->uniqNotNull = 1;
1151 ** Scan the column type name zType (length nType) and return the
1152 ** associated affinity type.
1154 ** This routine does a case-independent search of zType for the
1155 ** substrings in the following table. If one of the substrings is
1156 ** found, the corresponding affinity is returned. If zType contains
1157 ** more than one of the substrings, entries toward the top of
1158 ** the table take priority. For example, if zType is 'BLOBINT',
1159 ** SQLITE_AFF_INTEGER is returned.
1161 ** Substring | Affinity
1162 ** --------------------------------
1163 ** 'INT' | SQLITE_AFF_INTEGER
1164 ** 'CHAR' | SQLITE_AFF_TEXT
1165 ** 'CLOB' | SQLITE_AFF_TEXT
1166 ** 'TEXT' | SQLITE_AFF_TEXT
1167 ** 'BLOB' | SQLITE_AFF_BLOB
1168 ** 'REAL' | SQLITE_AFF_REAL
1169 ** 'FLOA' | SQLITE_AFF_REAL
1170 ** 'DOUB' | SQLITE_AFF_REAL
1172 ** If none of the substrings in the above table are found,
1173 ** SQLITE_AFF_NUMERIC is returned.
1175 char sqlite3AffinityType(const char *zIn, Column *pCol){
1176 u32 h = 0;
1177 char aff = SQLITE_AFF_NUMERIC;
1178 const char *zChar = 0;
1180 assert( zIn!=0 );
1181 while( zIn[0] ){
1182 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1183 zIn++;
1184 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1185 aff = SQLITE_AFF_TEXT;
1186 zChar = zIn;
1187 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1188 aff = SQLITE_AFF_TEXT;
1189 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1190 aff = SQLITE_AFF_TEXT;
1191 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1192 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1193 aff = SQLITE_AFF_BLOB;
1194 if( zIn[0]=='(' ) zChar = zIn;
1195 #ifndef SQLITE_OMIT_FLOATING_POINT
1196 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1197 && aff==SQLITE_AFF_NUMERIC ){
1198 aff = SQLITE_AFF_REAL;
1199 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1200 && aff==SQLITE_AFF_NUMERIC ){
1201 aff = SQLITE_AFF_REAL;
1202 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1203 && aff==SQLITE_AFF_NUMERIC ){
1204 aff = SQLITE_AFF_REAL;
1205 #endif
1206 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1207 aff = SQLITE_AFF_INTEGER;
1208 break;
1212 /* If pCol is not NULL, store an estimate of the field size. The
1213 ** estimate is scaled so that the size of an integer is 1. */
1214 if( pCol ){
1215 int v = 0; /* default size is approx 4 bytes */
1216 if( aff<SQLITE_AFF_NUMERIC ){
1217 if( zChar ){
1218 while( zChar[0] ){
1219 if( sqlite3Isdigit(zChar[0]) ){
1220 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1221 sqlite3GetInt32(zChar, &v);
1222 break;
1224 zChar++;
1226 }else{
1227 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1230 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1231 if( v>=sqlite3GlobalConfig.szSorterRef ){
1232 pCol->colFlags |= COLFLAG_SORTERREF;
1234 #endif
1235 v = v/4 + 1;
1236 if( v>255 ) v = 255;
1237 pCol->szEst = v;
1239 return aff;
1243 ** The expression is the default value for the most recently added column
1244 ** of the table currently under construction.
1246 ** Default value expressions must be constant. Raise an exception if this
1247 ** is not the case.
1249 ** This routine is called by the parser while in the middle of
1250 ** parsing a CREATE TABLE statement.
1252 void sqlite3AddDefaultValue(
1253 Parse *pParse, /* Parsing context */
1254 Expr *pExpr, /* The parsed expression of the default value */
1255 const char *zStart, /* Start of the default value text */
1256 const char *zEnd /* First character past end of defaut value text */
1258 Table *p;
1259 Column *pCol;
1260 sqlite3 *db = pParse->db;
1261 p = pParse->pNewTable;
1262 if( p!=0 ){
1263 pCol = &(p->aCol[p->nCol-1]);
1264 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1265 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1266 pCol->zName);
1267 }else{
1268 /* A copy of pExpr is used instead of the original, as pExpr contains
1269 ** tokens that point to volatile memory.
1271 Expr x;
1272 sqlite3ExprDelete(db, pCol->pDflt);
1273 memset(&x, 0, sizeof(x));
1274 x.op = TK_SPAN;
1275 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1276 x.pLeft = pExpr;
1277 x.flags = EP_Skip;
1278 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1279 sqlite3DbFree(db, x.u.zToken);
1282 sqlite3ExprDelete(db, pExpr);
1286 ** Backwards Compatibility Hack:
1288 ** Historical versions of SQLite accepted strings as column names in
1289 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1291 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1292 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1294 ** This is goofy. But to preserve backwards compatibility we continue to
1295 ** accept it. This routine does the necessary conversion. It converts
1296 ** the expression given in its argument from a TK_STRING into a TK_ID
1297 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1298 ** If the epxression is anything other than TK_STRING, the expression is
1299 ** unchanged.
1301 static void sqlite3StringToId(Expr *p){
1302 if( p->op==TK_STRING ){
1303 p->op = TK_ID;
1304 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1305 p->pLeft->op = TK_ID;
1310 ** Designate the PRIMARY KEY for the table. pList is a list of names
1311 ** of columns that form the primary key. If pList is NULL, then the
1312 ** most recently added column of the table is the primary key.
1314 ** A table can have at most one primary key. If the table already has
1315 ** a primary key (and this is the second primary key) then create an
1316 ** error.
1318 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1319 ** then we will try to use that column as the rowid. Set the Table.iPKey
1320 ** field of the table under construction to be the index of the
1321 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1322 ** no INTEGER PRIMARY KEY.
1324 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1325 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1327 void sqlite3AddPrimaryKey(
1328 Parse *pParse, /* Parsing context */
1329 ExprList *pList, /* List of field names to be indexed */
1330 int onError, /* What to do with a uniqueness conflict */
1331 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1332 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1334 Table *pTab = pParse->pNewTable;
1335 Column *pCol = 0;
1336 int iCol = -1, i;
1337 int nTerm;
1338 if( pTab==0 ) goto primary_key_exit;
1339 if( pTab->tabFlags & TF_HasPrimaryKey ){
1340 sqlite3ErrorMsg(pParse,
1341 "table \"%s\" has more than one primary key", pTab->zName);
1342 goto primary_key_exit;
1344 pTab->tabFlags |= TF_HasPrimaryKey;
1345 if( pList==0 ){
1346 iCol = pTab->nCol - 1;
1347 pCol = &pTab->aCol[iCol];
1348 pCol->colFlags |= COLFLAG_PRIMKEY;
1349 nTerm = 1;
1350 }else{
1351 nTerm = pList->nExpr;
1352 for(i=0; i<nTerm; i++){
1353 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1354 assert( pCExpr!=0 );
1355 sqlite3StringToId(pCExpr);
1356 if( pCExpr->op==TK_ID ){
1357 const char *zCName = pCExpr->u.zToken;
1358 for(iCol=0; iCol<pTab->nCol; iCol++){
1359 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1360 pCol = &pTab->aCol[iCol];
1361 pCol->colFlags |= COLFLAG_PRIMKEY;
1362 break;
1368 if( nTerm==1
1369 && pCol
1370 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1371 && sortOrder!=SQLITE_SO_DESC
1373 pTab->iPKey = iCol;
1374 pTab->keyConf = (u8)onError;
1375 assert( autoInc==0 || autoInc==1 );
1376 pTab->tabFlags |= autoInc*TF_Autoincrement;
1377 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1378 }else if( autoInc ){
1379 #ifndef SQLITE_OMIT_AUTOINCREMENT
1380 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1381 "INTEGER PRIMARY KEY");
1382 #endif
1383 }else{
1384 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1385 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1386 pList = 0;
1389 primary_key_exit:
1390 sqlite3ExprListDelete(pParse->db, pList);
1391 return;
1395 ** Add a new CHECK constraint to the table currently under construction.
1397 void sqlite3AddCheckConstraint(
1398 Parse *pParse, /* Parsing context */
1399 Expr *pCheckExpr /* The check expression */
1401 #ifndef SQLITE_OMIT_CHECK
1402 Table *pTab = pParse->pNewTable;
1403 sqlite3 *db = pParse->db;
1404 if( pTab && !IN_DECLARE_VTAB
1405 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1407 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1408 if( pParse->constraintName.n ){
1409 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1411 }else
1412 #endif
1414 sqlite3ExprDelete(pParse->db, pCheckExpr);
1419 ** Set the collation function of the most recently parsed table column
1420 ** to the CollSeq given.
1422 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1423 Table *p;
1424 int i;
1425 char *zColl; /* Dequoted name of collation sequence */
1426 sqlite3 *db;
1428 if( (p = pParse->pNewTable)==0 ) return;
1429 i = p->nCol-1;
1430 db = pParse->db;
1431 zColl = sqlite3NameFromToken(db, pToken);
1432 if( !zColl ) return;
1434 if( sqlite3LocateCollSeq(pParse, zColl) ){
1435 Index *pIdx;
1436 sqlite3DbFree(db, p->aCol[i].zColl);
1437 p->aCol[i].zColl = zColl;
1439 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1440 ** then an index may have been created on this column before the
1441 ** collation type was added. Correct this if it is the case.
1443 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1444 assert( pIdx->nKeyCol==1 );
1445 if( pIdx->aiColumn[0]==i ){
1446 pIdx->azColl[0] = p->aCol[i].zColl;
1449 }else{
1450 sqlite3DbFree(db, zColl);
1455 ** This function returns the collation sequence for database native text
1456 ** encoding identified by the string zName, length nName.
1458 ** If the requested collation sequence is not available, or not available
1459 ** in the database native encoding, the collation factory is invoked to
1460 ** request it. If the collation factory does not supply such a sequence,
1461 ** and the sequence is available in another text encoding, then that is
1462 ** returned instead.
1464 ** If no versions of the requested collations sequence are available, or
1465 ** another error occurs, NULL is returned and an error message written into
1466 ** pParse.
1468 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1469 ** invokes the collation factory if the named collation cannot be found
1470 ** and generates an error message.
1472 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1474 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1475 sqlite3 *db = pParse->db;
1476 u8 enc = ENC(db);
1477 u8 initbusy = db->init.busy;
1478 CollSeq *pColl;
1480 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1481 if( !initbusy && (!pColl || !pColl->xCmp) ){
1482 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1485 return pColl;
1490 ** Generate code that will increment the schema cookie.
1492 ** The schema cookie is used to determine when the schema for the
1493 ** database changes. After each schema change, the cookie value
1494 ** changes. When a process first reads the schema it records the
1495 ** cookie. Thereafter, whenever it goes to access the database,
1496 ** it checks the cookie to make sure the schema has not changed
1497 ** since it was last read.
1499 ** This plan is not completely bullet-proof. It is possible for
1500 ** the schema to change multiple times and for the cookie to be
1501 ** set back to prior value. But schema changes are infrequent
1502 ** and the probability of hitting the same cookie value is only
1503 ** 1 chance in 2^32. So we're safe enough.
1505 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1506 ** the schema-version whenever the schema changes.
1508 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1509 sqlite3 *db = pParse->db;
1510 Vdbe *v = pParse->pVdbe;
1511 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1512 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1513 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1517 ** Measure the number of characters needed to output the given
1518 ** identifier. The number returned includes any quotes used
1519 ** but does not include the null terminator.
1521 ** The estimate is conservative. It might be larger that what is
1522 ** really needed.
1524 static int identLength(const char *z){
1525 int n;
1526 for(n=0; *z; n++, z++){
1527 if( *z=='"' ){ n++; }
1529 return n + 2;
1533 ** The first parameter is a pointer to an output buffer. The second
1534 ** parameter is a pointer to an integer that contains the offset at
1535 ** which to write into the output buffer. This function copies the
1536 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1537 ** to the specified offset in the buffer and updates *pIdx to refer
1538 ** to the first byte after the last byte written before returning.
1540 ** If the string zSignedIdent consists entirely of alpha-numeric
1541 ** characters, does not begin with a digit and is not an SQL keyword,
1542 ** then it is copied to the output buffer exactly as it is. Otherwise,
1543 ** it is quoted using double-quotes.
1545 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1546 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1547 int i, j, needQuote;
1548 i = *pIdx;
1550 for(j=0; zIdent[j]; j++){
1551 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1553 needQuote = sqlite3Isdigit(zIdent[0])
1554 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1555 || zIdent[j]!=0
1556 || j==0;
1558 if( needQuote ) z[i++] = '"';
1559 for(j=0; zIdent[j]; j++){
1560 z[i++] = zIdent[j];
1561 if( zIdent[j]=='"' ) z[i++] = '"';
1563 if( needQuote ) z[i++] = '"';
1564 z[i] = 0;
1565 *pIdx = i;
1569 ** Generate a CREATE TABLE statement appropriate for the given
1570 ** table. Memory to hold the text of the statement is obtained
1571 ** from sqliteMalloc() and must be freed by the calling function.
1573 static char *createTableStmt(sqlite3 *db, Table *p){
1574 int i, k, n;
1575 char *zStmt;
1576 char *zSep, *zSep2, *zEnd;
1577 Column *pCol;
1578 n = 0;
1579 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1580 n += identLength(pCol->zName) + 5;
1582 n += identLength(p->zName);
1583 if( n<50 ){
1584 zSep = "";
1585 zSep2 = ",";
1586 zEnd = ")";
1587 }else{
1588 zSep = "\n ";
1589 zSep2 = ",\n ";
1590 zEnd = "\n)";
1592 n += 35 + 6*p->nCol;
1593 zStmt = sqlite3DbMallocRaw(0, n);
1594 if( zStmt==0 ){
1595 sqlite3OomFault(db);
1596 return 0;
1598 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1599 k = sqlite3Strlen30(zStmt);
1600 identPut(zStmt, &k, p->zName);
1601 zStmt[k++] = '(';
1602 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1603 static const char * const azType[] = {
1604 /* SQLITE_AFF_BLOB */ "",
1605 /* SQLITE_AFF_TEXT */ " TEXT",
1606 /* SQLITE_AFF_NUMERIC */ " NUM",
1607 /* SQLITE_AFF_INTEGER */ " INT",
1608 /* SQLITE_AFF_REAL */ " REAL"
1610 int len;
1611 const char *zType;
1613 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1614 k += sqlite3Strlen30(&zStmt[k]);
1615 zSep = zSep2;
1616 identPut(zStmt, &k, pCol->zName);
1617 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1618 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1619 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1620 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1621 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1622 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1623 testcase( pCol->affinity==SQLITE_AFF_REAL );
1625 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1626 len = sqlite3Strlen30(zType);
1627 assert( pCol->affinity==SQLITE_AFF_BLOB
1628 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1629 memcpy(&zStmt[k], zType, len);
1630 k += len;
1631 assert( k<=n );
1633 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1634 return zStmt;
1638 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1639 ** on success and SQLITE_NOMEM on an OOM error.
1641 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1642 char *zExtra;
1643 int nByte;
1644 if( pIdx->nColumn>=N ) return SQLITE_OK;
1645 assert( pIdx->isResized==0 );
1646 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1647 zExtra = sqlite3DbMallocZero(db, nByte);
1648 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1649 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1650 pIdx->azColl = (const char**)zExtra;
1651 zExtra += sizeof(char*)*N;
1652 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1653 pIdx->aiColumn = (i16*)zExtra;
1654 zExtra += sizeof(i16)*N;
1655 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1656 pIdx->aSortOrder = (u8*)zExtra;
1657 pIdx->nColumn = N;
1658 pIdx->isResized = 1;
1659 return SQLITE_OK;
1663 ** Estimate the total row width for a table.
1665 static void estimateTableWidth(Table *pTab){
1666 unsigned wTable = 0;
1667 const Column *pTabCol;
1668 int i;
1669 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1670 wTable += pTabCol->szEst;
1672 if( pTab->iPKey<0 ) wTable++;
1673 pTab->szTabRow = sqlite3LogEst(wTable*4);
1677 ** Estimate the average size of a row for an index.
1679 static void estimateIndexWidth(Index *pIdx){
1680 unsigned wIndex = 0;
1681 int i;
1682 const Column *aCol = pIdx->pTable->aCol;
1683 for(i=0; i<pIdx->nColumn; i++){
1684 i16 x = pIdx->aiColumn[i];
1685 assert( x<pIdx->pTable->nCol );
1686 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1688 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1691 /* Return true if value x is found any of the first nCol entries of aiCol[]
1693 static int hasColumn(const i16 *aiCol, int nCol, int x){
1694 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1695 return 0;
1699 ** This routine runs at the end of parsing a CREATE TABLE statement that
1700 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1701 ** internal schema data structures and the generated VDBE code so that they
1702 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1703 ** Changes include:
1705 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1706 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1707 ** into BTREE_BLOBKEY.
1708 ** (3) Bypass the creation of the sqlite_master table entry
1709 ** for the PRIMARY KEY as the primary key index is now
1710 ** identified by the sqlite_master table entry of the table itself.
1711 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1712 ** schema to the rootpage from the main table.
1713 ** (5) Add all table columns to the PRIMARY KEY Index object
1714 ** so that the PRIMARY KEY is a covering index. The surplus
1715 ** columns are part of KeyInfo.nAllField and are not used for
1716 ** sorting or lookup or uniqueness checks.
1717 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1718 ** indices with the PRIMARY KEY columns.
1720 ** For virtual tables, only (1) is performed.
1722 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1723 Index *pIdx;
1724 Index *pPk;
1725 int nPk;
1726 int i, j;
1727 sqlite3 *db = pParse->db;
1728 Vdbe *v = pParse->pVdbe;
1730 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1732 if( !db->init.imposterTable ){
1733 for(i=0; i<pTab->nCol; i++){
1734 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1735 pTab->aCol[i].notNull = OE_Abort;
1740 /* The remaining transformations only apply to b-tree tables, not to
1741 ** virtual tables */
1742 if( IN_DECLARE_VTAB ) return;
1744 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1745 ** into BTREE_BLOBKEY.
1747 if( pParse->addrCrTab ){
1748 assert( v );
1749 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1752 /* Locate the PRIMARY KEY index. Or, if this table was originally
1753 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1755 if( pTab->iPKey>=0 ){
1756 ExprList *pList;
1757 Token ipkToken;
1758 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1759 pList = sqlite3ExprListAppend(pParse, 0,
1760 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1761 if( pList==0 ) return;
1762 pList->a[0].sortOrder = pParse->iPkSortOrder;
1763 assert( pParse->pNewTable==pTab );
1764 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1765 SQLITE_IDXTYPE_PRIMARYKEY);
1766 if( db->mallocFailed ) return;
1767 pPk = sqlite3PrimaryKeyIndex(pTab);
1768 pTab->iPKey = -1;
1769 }else{
1770 pPk = sqlite3PrimaryKeyIndex(pTab);
1773 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1774 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1775 ** code assumes the PRIMARY KEY contains no repeated columns.
1777 for(i=j=1; i<pPk->nKeyCol; i++){
1778 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1779 pPk->nColumn--;
1780 }else{
1781 pPk->aiColumn[j++] = pPk->aiColumn[i];
1784 pPk->nKeyCol = j;
1786 assert( pPk!=0 );
1787 pPk->isCovering = 1;
1788 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1789 nPk = pPk->nKeyCol;
1791 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1792 ** table entry. This is only required if currently generating VDBE
1793 ** code for a CREATE TABLE (not when parsing one as part of reading
1794 ** a database schema). */
1795 if( v && pPk->tnum>0 ){
1796 assert( db->init.busy==0 );
1797 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1800 /* The root page of the PRIMARY KEY is the table root page */
1801 pPk->tnum = pTab->tnum;
1803 /* Update the in-memory representation of all UNIQUE indices by converting
1804 ** the final rowid column into one or more columns of the PRIMARY KEY.
1806 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1807 int n;
1808 if( IsPrimaryKeyIndex(pIdx) ) continue;
1809 for(i=n=0; i<nPk; i++){
1810 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1812 if( n==0 ){
1813 /* This index is a superset of the primary key */
1814 pIdx->nColumn = pIdx->nKeyCol;
1815 continue;
1817 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1818 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1819 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1820 pIdx->aiColumn[j] = pPk->aiColumn[i];
1821 pIdx->azColl[j] = pPk->azColl[i];
1822 j++;
1825 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1826 assert( pIdx->nColumn>=j );
1829 /* Add all table columns to the PRIMARY KEY index
1831 if( nPk<pTab->nCol ){
1832 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1833 for(i=0, j=nPk; i<pTab->nCol; i++){
1834 if( !hasColumn(pPk->aiColumn, j, i) ){
1835 assert( j<pPk->nColumn );
1836 pPk->aiColumn[j] = i;
1837 pPk->azColl[j] = sqlite3StrBINARY;
1838 j++;
1841 assert( pPk->nColumn==j );
1842 assert( pTab->nCol==j );
1843 }else{
1844 pPk->nColumn = pTab->nCol;
1849 ** This routine is called to report the final ")" that terminates
1850 ** a CREATE TABLE statement.
1852 ** The table structure that other action routines have been building
1853 ** is added to the internal hash tables, assuming no errors have
1854 ** occurred.
1856 ** An entry for the table is made in the master table on disk, unless
1857 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1858 ** it means we are reading the sqlite_master table because we just
1859 ** connected to the database or because the sqlite_master table has
1860 ** recently changed, so the entry for this table already exists in
1861 ** the sqlite_master table. We do not want to create it again.
1863 ** If the pSelect argument is not NULL, it means that this routine
1864 ** was called to create a table generated from a
1865 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1866 ** the new table will match the result set of the SELECT.
1868 void sqlite3EndTable(
1869 Parse *pParse, /* Parse context */
1870 Token *pCons, /* The ',' token after the last column defn. */
1871 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1872 u8 tabOpts, /* Extra table options. Usually 0. */
1873 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1875 Table *p; /* The new table */
1876 sqlite3 *db = pParse->db; /* The database connection */
1877 int iDb; /* Database in which the table lives */
1878 Index *pIdx; /* An implied index of the table */
1880 if( pEnd==0 && pSelect==0 ){
1881 return;
1883 assert( !db->mallocFailed );
1884 p = pParse->pNewTable;
1885 if( p==0 ) return;
1887 /* If the db->init.busy is 1 it means we are reading the SQL off the
1888 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1889 ** So do not write to the disk again. Extract the root page number
1890 ** for the table from the db->init.newTnum field. (The page number
1891 ** should have been put there by the sqliteOpenCb routine.)
1893 ** If the root page number is 1, that means this is the sqlite_master
1894 ** table itself. So mark it read-only.
1896 if( db->init.busy ){
1897 if( pSelect ){
1898 sqlite3ErrorMsg(pParse, "");
1899 return;
1901 p->tnum = db->init.newTnum;
1902 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1905 /* Special processing for WITHOUT ROWID Tables */
1906 if( tabOpts & TF_WithoutRowid ){
1907 if( (p->tabFlags & TF_Autoincrement) ){
1908 sqlite3ErrorMsg(pParse,
1909 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1910 return;
1912 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1913 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1914 }else{
1915 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1916 convertToWithoutRowidTable(pParse, p);
1920 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1922 #ifndef SQLITE_OMIT_CHECK
1923 /* Resolve names in all CHECK constraint expressions.
1925 if( p->pCheck ){
1926 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1928 #endif /* !defined(SQLITE_OMIT_CHECK) */
1930 /* Estimate the average row size for the table and for all implied indices */
1931 estimateTableWidth(p);
1932 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1933 estimateIndexWidth(pIdx);
1936 /* If not initializing, then create a record for the new table
1937 ** in the SQLITE_MASTER table of the database.
1939 ** If this is a TEMPORARY table, write the entry into the auxiliary
1940 ** file instead of into the main database file.
1942 if( !db->init.busy ){
1943 int n;
1944 Vdbe *v;
1945 char *zType; /* "view" or "table" */
1946 char *zType2; /* "VIEW" or "TABLE" */
1947 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1949 v = sqlite3GetVdbe(pParse);
1950 if( NEVER(v==0) ) return;
1952 sqlite3VdbeAddOp1(v, OP_Close, 0);
1955 ** Initialize zType for the new view or table.
1957 if( p->pSelect==0 ){
1958 /* A regular table */
1959 zType = "table";
1960 zType2 = "TABLE";
1961 #ifndef SQLITE_OMIT_VIEW
1962 }else{
1963 /* A view */
1964 zType = "view";
1965 zType2 = "VIEW";
1966 #endif
1969 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1970 ** statement to populate the new table. The root-page number for the
1971 ** new table is in register pParse->regRoot.
1973 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1974 ** suitable state to query for the column names and types to be used
1975 ** by the new table.
1977 ** A shared-cache write-lock is not required to write to the new table,
1978 ** as a schema-lock must have already been obtained to create it. Since
1979 ** a schema-lock excludes all other database users, the write-lock would
1980 ** be redundant.
1982 if( pSelect ){
1983 SelectDest dest; /* Where the SELECT should store results */
1984 int regYield; /* Register holding co-routine entry-point */
1985 int addrTop; /* Top of the co-routine */
1986 int regRec; /* A record to be insert into the new table */
1987 int regRowid; /* Rowid of the next row to insert */
1988 int addrInsLoop; /* Top of the loop for inserting rows */
1989 Table *pSelTab; /* A table that describes the SELECT results */
1991 regYield = ++pParse->nMem;
1992 regRec = ++pParse->nMem;
1993 regRowid = ++pParse->nMem;
1994 assert(pParse->nTab==1);
1995 sqlite3MayAbort(pParse);
1996 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1997 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1998 pParse->nTab = 2;
1999 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2000 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2001 if( pParse->nErr ) return;
2002 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
2003 if( pSelTab==0 ) return;
2004 assert( p->aCol==0 );
2005 p->nCol = pSelTab->nCol;
2006 p->aCol = pSelTab->aCol;
2007 pSelTab->nCol = 0;
2008 pSelTab->aCol = 0;
2009 sqlite3DeleteTable(db, pSelTab);
2010 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2011 sqlite3Select(pParse, pSelect, &dest);
2012 if( pParse->nErr ) return;
2013 sqlite3VdbeEndCoroutine(v, regYield);
2014 sqlite3VdbeJumpHere(v, addrTop - 1);
2015 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2016 VdbeCoverage(v);
2017 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2018 sqlite3TableAffinity(v, p, 0);
2019 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2020 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2021 sqlite3VdbeGoto(v, addrInsLoop);
2022 sqlite3VdbeJumpHere(v, addrInsLoop);
2023 sqlite3VdbeAddOp1(v, OP_Close, 1);
2026 /* Compute the complete text of the CREATE statement */
2027 if( pSelect ){
2028 zStmt = createTableStmt(db, p);
2029 }else{
2030 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2031 n = (int)(pEnd2->z - pParse->sNameToken.z);
2032 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2033 zStmt = sqlite3MPrintf(db,
2034 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2038 /* A slot for the record has already been allocated in the
2039 ** SQLITE_MASTER table. We just need to update that slot with all
2040 ** the information we've collected.
2042 sqlite3NestedParse(pParse,
2043 "UPDATE %Q.%s "
2044 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2045 "WHERE rowid=#%d",
2046 db->aDb[iDb].zDbSName, MASTER_NAME,
2047 zType,
2048 p->zName,
2049 p->zName,
2050 pParse->regRoot,
2051 zStmt,
2052 pParse->regRowid
2054 sqlite3DbFree(db, zStmt);
2055 sqlite3ChangeCookie(pParse, iDb);
2057 #ifndef SQLITE_OMIT_AUTOINCREMENT
2058 /* Check to see if we need to create an sqlite_sequence table for
2059 ** keeping track of autoincrement keys.
2061 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2062 Db *pDb = &db->aDb[iDb];
2063 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2064 if( pDb->pSchema->pSeqTab==0 ){
2065 sqlite3NestedParse(pParse,
2066 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2067 pDb->zDbSName
2071 #endif
2073 /* Reparse everything to update our internal data structures */
2074 sqlite3VdbeAddParseSchemaOp(v, iDb,
2075 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2079 /* Add the table to the in-memory representation of the database.
2081 if( db->init.busy ){
2082 Table *pOld;
2083 Schema *pSchema = p->pSchema;
2084 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2085 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2086 if( pOld ){
2087 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2088 sqlite3OomFault(db);
2089 return;
2091 pParse->pNewTable = 0;
2092 db->mDbFlags |= DBFLAG_SchemaChange;
2094 #ifndef SQLITE_OMIT_ALTERTABLE
2095 if( !p->pSelect ){
2096 const char *zName = (const char *)pParse->sNameToken.z;
2097 int nName;
2098 assert( !pSelect && pCons && pEnd );
2099 if( pCons->z==0 ){
2100 pCons = pEnd;
2102 nName = (int)((const char *)pCons->z - zName);
2103 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2105 #endif
2109 #ifndef SQLITE_OMIT_VIEW
2111 ** The parser calls this routine in order to create a new VIEW
2113 void sqlite3CreateView(
2114 Parse *pParse, /* The parsing context */
2115 Token *pBegin, /* The CREATE token that begins the statement */
2116 Token *pName1, /* The token that holds the name of the view */
2117 Token *pName2, /* The token that holds the name of the view */
2118 ExprList *pCNames, /* Optional list of view column names */
2119 Select *pSelect, /* A SELECT statement that will become the new view */
2120 int isTemp, /* TRUE for a TEMPORARY view */
2121 int noErr /* Suppress error messages if VIEW already exists */
2123 Table *p;
2124 int n;
2125 const char *z;
2126 Token sEnd;
2127 DbFixer sFix;
2128 Token *pName = 0;
2129 int iDb;
2130 sqlite3 *db = pParse->db;
2132 if( pParse->nVar>0 ){
2133 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2134 goto create_view_fail;
2136 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2137 p = pParse->pNewTable;
2138 if( p==0 || pParse->nErr ) goto create_view_fail;
2139 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2140 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2141 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2142 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2144 /* Make a copy of the entire SELECT statement that defines the view.
2145 ** This will force all the Expr.token.z values to be dynamically
2146 ** allocated rather than point to the input string - which means that
2147 ** they will persist after the current sqlite3_exec() call returns.
2149 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2150 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2151 if( db->mallocFailed ) goto create_view_fail;
2153 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2154 ** the end.
2156 sEnd = pParse->sLastToken;
2157 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2158 if( sEnd.z[0]!=';' ){
2159 sEnd.z += sEnd.n;
2161 sEnd.n = 0;
2162 n = (int)(sEnd.z - pBegin->z);
2163 assert( n>0 );
2164 z = pBegin->z;
2165 while( sqlite3Isspace(z[n-1]) ){ n--; }
2166 sEnd.z = &z[n-1];
2167 sEnd.n = 1;
2169 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2170 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2172 create_view_fail:
2173 sqlite3SelectDelete(db, pSelect);
2174 sqlite3ExprListDelete(db, pCNames);
2175 return;
2177 #endif /* SQLITE_OMIT_VIEW */
2179 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2181 ** The Table structure pTable is really a VIEW. Fill in the names of
2182 ** the columns of the view in the pTable structure. Return the number
2183 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2185 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2186 Table *pSelTab; /* A fake table from which we get the result set */
2187 Select *pSel; /* Copy of the SELECT that implements the view */
2188 int nErr = 0; /* Number of errors encountered */
2189 int n; /* Temporarily holds the number of cursors assigned */
2190 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2191 #ifndef SQLITE_OMIT_VIRTUALTABLE
2192 int rc;
2193 #endif
2194 #ifndef SQLITE_OMIT_AUTHORIZATION
2195 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2196 #endif
2198 assert( pTable );
2200 #ifndef SQLITE_OMIT_VIRTUALTABLE
2201 db->nSchemaLock++;
2202 rc = sqlite3VtabCallConnect(pParse, pTable);
2203 db->nSchemaLock--;
2204 if( rc ){
2205 return 1;
2207 if( IsVirtual(pTable) ) return 0;
2208 #endif
2210 #ifndef SQLITE_OMIT_VIEW
2211 /* A positive nCol means the columns names for this view are
2212 ** already known.
2214 if( pTable->nCol>0 ) return 0;
2216 /* A negative nCol is a special marker meaning that we are currently
2217 ** trying to compute the column names. If we enter this routine with
2218 ** a negative nCol, it means two or more views form a loop, like this:
2220 ** CREATE VIEW one AS SELECT * FROM two;
2221 ** CREATE VIEW two AS SELECT * FROM one;
2223 ** Actually, the error above is now caught prior to reaching this point.
2224 ** But the following test is still important as it does come up
2225 ** in the following:
2227 ** CREATE TABLE main.ex1(a);
2228 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2229 ** SELECT * FROM temp.ex1;
2231 if( pTable->nCol<0 ){
2232 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2233 return 1;
2235 assert( pTable->nCol>=0 );
2237 /* If we get this far, it means we need to compute the table names.
2238 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2239 ** "*" elements in the results set of the view and will assign cursors
2240 ** to the elements of the FROM clause. But we do not want these changes
2241 ** to be permanent. So the computation is done on a copy of the SELECT
2242 ** statement that defines the view.
2244 assert( pTable->pSelect );
2245 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2246 if( pSel ){
2247 n = pParse->nTab;
2248 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2249 pTable->nCol = -1;
2250 db->lookaside.bDisable++;
2251 #ifndef SQLITE_OMIT_AUTHORIZATION
2252 xAuth = db->xAuth;
2253 db->xAuth = 0;
2254 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2255 db->xAuth = xAuth;
2256 #else
2257 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2258 #endif
2259 pParse->nTab = n;
2260 if( pTable->pCheck ){
2261 /* CREATE VIEW name(arglist) AS ...
2262 ** The names of the columns in the table are taken from
2263 ** arglist which is stored in pTable->pCheck. The pCheck field
2264 ** normally holds CHECK constraints on an ordinary table, but for
2265 ** a VIEW it holds the list of column names.
2267 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2268 &pTable->nCol, &pTable->aCol);
2269 if( db->mallocFailed==0
2270 && pParse->nErr==0
2271 && pTable->nCol==pSel->pEList->nExpr
2273 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2275 }else if( pSelTab ){
2276 /* CREATE VIEW name AS... without an argument list. Construct
2277 ** the column names from the SELECT statement that defines the view.
2279 assert( pTable->aCol==0 );
2280 pTable->nCol = pSelTab->nCol;
2281 pTable->aCol = pSelTab->aCol;
2282 pSelTab->nCol = 0;
2283 pSelTab->aCol = 0;
2284 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2285 }else{
2286 pTable->nCol = 0;
2287 nErr++;
2289 sqlite3DeleteTable(db, pSelTab);
2290 sqlite3SelectDelete(db, pSel);
2291 db->lookaside.bDisable--;
2292 } else {
2293 nErr++;
2295 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2296 #endif /* SQLITE_OMIT_VIEW */
2297 return nErr;
2299 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2301 #ifndef SQLITE_OMIT_VIEW
2303 ** Clear the column names from every VIEW in database idx.
2305 static void sqliteViewResetAll(sqlite3 *db, int idx){
2306 HashElem *i;
2307 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2308 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2309 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2310 Table *pTab = sqliteHashData(i);
2311 if( pTab->pSelect ){
2312 sqlite3DeleteColumnNames(db, pTab);
2313 pTab->aCol = 0;
2314 pTab->nCol = 0;
2317 DbClearProperty(db, idx, DB_UnresetViews);
2319 #else
2320 # define sqliteViewResetAll(A,B)
2321 #endif /* SQLITE_OMIT_VIEW */
2324 ** This function is called by the VDBE to adjust the internal schema
2325 ** used by SQLite when the btree layer moves a table root page. The
2326 ** root-page of a table or index in database iDb has changed from iFrom
2327 ** to iTo.
2329 ** Ticket #1728: The symbol table might still contain information
2330 ** on tables and/or indices that are the process of being deleted.
2331 ** If you are unlucky, one of those deleted indices or tables might
2332 ** have the same rootpage number as the real table or index that is
2333 ** being moved. So we cannot stop searching after the first match
2334 ** because the first match might be for one of the deleted indices
2335 ** or tables and not the table/index that is actually being moved.
2336 ** We must continue looping until all tables and indices with
2337 ** rootpage==iFrom have been converted to have a rootpage of iTo
2338 ** in order to be certain that we got the right one.
2340 #ifndef SQLITE_OMIT_AUTOVACUUM
2341 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2342 HashElem *pElem;
2343 Hash *pHash;
2344 Db *pDb;
2346 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2347 pDb = &db->aDb[iDb];
2348 pHash = &pDb->pSchema->tblHash;
2349 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2350 Table *pTab = sqliteHashData(pElem);
2351 if( pTab->tnum==iFrom ){
2352 pTab->tnum = iTo;
2355 pHash = &pDb->pSchema->idxHash;
2356 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2357 Index *pIdx = sqliteHashData(pElem);
2358 if( pIdx->tnum==iFrom ){
2359 pIdx->tnum = iTo;
2363 #endif
2366 ** Write code to erase the table with root-page iTable from database iDb.
2367 ** Also write code to modify the sqlite_master table and internal schema
2368 ** if a root-page of another table is moved by the btree-layer whilst
2369 ** erasing iTable (this can happen with an auto-vacuum database).
2371 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2372 Vdbe *v = sqlite3GetVdbe(pParse);
2373 int r1 = sqlite3GetTempReg(pParse);
2374 assert( iTable>1 );
2375 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2376 sqlite3MayAbort(pParse);
2377 #ifndef SQLITE_OMIT_AUTOVACUUM
2378 /* OP_Destroy stores an in integer r1. If this integer
2379 ** is non-zero, then it is the root page number of a table moved to
2380 ** location iTable. The following code modifies the sqlite_master table to
2381 ** reflect this.
2383 ** The "#NNN" in the SQL is a special constant that means whatever value
2384 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2385 ** token for additional information.
2387 sqlite3NestedParse(pParse,
2388 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2389 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2390 #endif
2391 sqlite3ReleaseTempReg(pParse, r1);
2395 ** Write VDBE code to erase table pTab and all associated indices on disk.
2396 ** Code to update the sqlite_master tables and internal schema definitions
2397 ** in case a root-page belonging to another table is moved by the btree layer
2398 ** is also added (this can happen with an auto-vacuum database).
2400 static void destroyTable(Parse *pParse, Table *pTab){
2401 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2402 ** is not defined), then it is important to call OP_Destroy on the
2403 ** table and index root-pages in order, starting with the numerically
2404 ** largest root-page number. This guarantees that none of the root-pages
2405 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2406 ** following were coded:
2408 ** OP_Destroy 4 0
2409 ** ...
2410 ** OP_Destroy 5 0
2412 ** and root page 5 happened to be the largest root-page number in the
2413 ** database, then root page 5 would be moved to page 4 by the
2414 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2415 ** a free-list page.
2417 int iTab = pTab->tnum;
2418 int iDestroyed = 0;
2420 while( 1 ){
2421 Index *pIdx;
2422 int iLargest = 0;
2424 if( iDestroyed==0 || iTab<iDestroyed ){
2425 iLargest = iTab;
2427 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2428 int iIdx = pIdx->tnum;
2429 assert( pIdx->pSchema==pTab->pSchema );
2430 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2431 iLargest = iIdx;
2434 if( iLargest==0 ){
2435 return;
2436 }else{
2437 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2438 assert( iDb>=0 && iDb<pParse->db->nDb );
2439 destroyRootPage(pParse, iLargest, iDb);
2440 iDestroyed = iLargest;
2446 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2447 ** after a DROP INDEX or DROP TABLE command.
2449 static void sqlite3ClearStatTables(
2450 Parse *pParse, /* The parsing context */
2451 int iDb, /* The database number */
2452 const char *zType, /* "idx" or "tbl" */
2453 const char *zName /* Name of index or table */
2455 int i;
2456 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2457 for(i=1; i<=4; i++){
2458 char zTab[24];
2459 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2460 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2461 sqlite3NestedParse(pParse,
2462 "DELETE FROM %Q.%s WHERE %s=%Q",
2463 zDbName, zTab, zType, zName
2470 ** Generate code to drop a table.
2472 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2473 Vdbe *v;
2474 sqlite3 *db = pParse->db;
2475 Trigger *pTrigger;
2476 Db *pDb = &db->aDb[iDb];
2478 v = sqlite3GetVdbe(pParse);
2479 assert( v!=0 );
2480 sqlite3BeginWriteOperation(pParse, 1, iDb);
2482 #ifndef SQLITE_OMIT_VIRTUALTABLE
2483 if( IsVirtual(pTab) ){
2484 sqlite3VdbeAddOp0(v, OP_VBegin);
2486 #endif
2488 /* Drop all triggers associated with the table being dropped. Code
2489 ** is generated to remove entries from sqlite_master and/or
2490 ** sqlite_temp_master if required.
2492 pTrigger = sqlite3TriggerList(pParse, pTab);
2493 while( pTrigger ){
2494 assert( pTrigger->pSchema==pTab->pSchema ||
2495 pTrigger->pSchema==db->aDb[1].pSchema );
2496 sqlite3DropTriggerPtr(pParse, pTrigger);
2497 pTrigger = pTrigger->pNext;
2500 #ifndef SQLITE_OMIT_AUTOINCREMENT
2501 /* Remove any entries of the sqlite_sequence table associated with
2502 ** the table being dropped. This is done before the table is dropped
2503 ** at the btree level, in case the sqlite_sequence table needs to
2504 ** move as a result of the drop (can happen in auto-vacuum mode).
2506 if( pTab->tabFlags & TF_Autoincrement ){
2507 sqlite3NestedParse(pParse,
2508 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2509 pDb->zDbSName, pTab->zName
2512 #endif
2514 /* Drop all SQLITE_MASTER table and index entries that refer to the
2515 ** table. The program name loops through the master table and deletes
2516 ** every row that refers to a table of the same name as the one being
2517 ** dropped. Triggers are handled separately because a trigger can be
2518 ** created in the temp database that refers to a table in another
2519 ** database.
2521 sqlite3NestedParse(pParse,
2522 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2523 pDb->zDbSName, MASTER_NAME, pTab->zName);
2524 if( !isView && !IsVirtual(pTab) ){
2525 destroyTable(pParse, pTab);
2528 /* Remove the table entry from SQLite's internal schema and modify
2529 ** the schema cookie.
2531 if( IsVirtual(pTab) ){
2532 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2534 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2535 sqlite3ChangeCookie(pParse, iDb);
2536 sqliteViewResetAll(db, iDb);
2540 ** This routine is called to do the work of a DROP TABLE statement.
2541 ** pName is the name of the table to be dropped.
2543 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2544 Table *pTab;
2545 Vdbe *v;
2546 sqlite3 *db = pParse->db;
2547 int iDb;
2549 if( db->mallocFailed ){
2550 goto exit_drop_table;
2552 assert( pParse->nErr==0 );
2553 assert( pName->nSrc==1 );
2554 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2555 if( noErr ) db->suppressErr++;
2556 assert( isView==0 || isView==LOCATE_VIEW );
2557 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2558 if( noErr ) db->suppressErr--;
2560 if( pTab==0 ){
2561 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2562 goto exit_drop_table;
2564 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2565 assert( iDb>=0 && iDb<db->nDb );
2567 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2568 ** it is initialized.
2570 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2571 goto exit_drop_table;
2573 #ifndef SQLITE_OMIT_AUTHORIZATION
2575 int code;
2576 const char *zTab = SCHEMA_TABLE(iDb);
2577 const char *zDb = db->aDb[iDb].zDbSName;
2578 const char *zArg2 = 0;
2579 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2580 goto exit_drop_table;
2582 if( isView ){
2583 if( !OMIT_TEMPDB && iDb==1 ){
2584 code = SQLITE_DROP_TEMP_VIEW;
2585 }else{
2586 code = SQLITE_DROP_VIEW;
2588 #ifndef SQLITE_OMIT_VIRTUALTABLE
2589 }else if( IsVirtual(pTab) ){
2590 code = SQLITE_DROP_VTABLE;
2591 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2592 #endif
2593 }else{
2594 if( !OMIT_TEMPDB && iDb==1 ){
2595 code = SQLITE_DROP_TEMP_TABLE;
2596 }else{
2597 code = SQLITE_DROP_TABLE;
2600 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2601 goto exit_drop_table;
2603 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2604 goto exit_drop_table;
2607 #endif
2608 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2609 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2610 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2611 goto exit_drop_table;
2614 #ifndef SQLITE_OMIT_VIEW
2615 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2616 ** on a table.
2618 if( isView && pTab->pSelect==0 ){
2619 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2620 goto exit_drop_table;
2622 if( !isView && pTab->pSelect ){
2623 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2624 goto exit_drop_table;
2626 #endif
2628 /* Generate code to remove the table from the master table
2629 ** on disk.
2631 v = sqlite3GetVdbe(pParse);
2632 if( v ){
2633 sqlite3BeginWriteOperation(pParse, 1, iDb);
2634 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2635 sqlite3FkDropTable(pParse, pName, pTab);
2636 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2639 exit_drop_table:
2640 sqlite3SrcListDelete(db, pName);
2644 ** This routine is called to create a new foreign key on the table
2645 ** currently under construction. pFromCol determines which columns
2646 ** in the current table point to the foreign key. If pFromCol==0 then
2647 ** connect the key to the last column inserted. pTo is the name of
2648 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2649 ** of tables in the parent pTo table. flags contains all
2650 ** information about the conflict resolution algorithms specified
2651 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2653 ** An FKey structure is created and added to the table currently
2654 ** under construction in the pParse->pNewTable field.
2656 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2657 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2659 void sqlite3CreateForeignKey(
2660 Parse *pParse, /* Parsing context */
2661 ExprList *pFromCol, /* Columns in this table that point to other table */
2662 Token *pTo, /* Name of the other table */
2663 ExprList *pToCol, /* Columns in the other table */
2664 int flags /* Conflict resolution algorithms. */
2666 sqlite3 *db = pParse->db;
2667 #ifndef SQLITE_OMIT_FOREIGN_KEY
2668 FKey *pFKey = 0;
2669 FKey *pNextTo;
2670 Table *p = pParse->pNewTable;
2671 int nByte;
2672 int i;
2673 int nCol;
2674 char *z;
2676 assert( pTo!=0 );
2677 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2678 if( pFromCol==0 ){
2679 int iCol = p->nCol-1;
2680 if( NEVER(iCol<0) ) goto fk_end;
2681 if( pToCol && pToCol->nExpr!=1 ){
2682 sqlite3ErrorMsg(pParse, "foreign key on %s"
2683 " should reference only one column of table %T",
2684 p->aCol[iCol].zName, pTo);
2685 goto fk_end;
2687 nCol = 1;
2688 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2689 sqlite3ErrorMsg(pParse,
2690 "number of columns in foreign key does not match the number of "
2691 "columns in the referenced table");
2692 goto fk_end;
2693 }else{
2694 nCol = pFromCol->nExpr;
2696 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2697 if( pToCol ){
2698 for(i=0; i<pToCol->nExpr; i++){
2699 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2702 pFKey = sqlite3DbMallocZero(db, nByte );
2703 if( pFKey==0 ){
2704 goto fk_end;
2706 pFKey->pFrom = p;
2707 pFKey->pNextFrom = p->pFKey;
2708 z = (char*)&pFKey->aCol[nCol];
2709 pFKey->zTo = z;
2710 memcpy(z, pTo->z, pTo->n);
2711 z[pTo->n] = 0;
2712 sqlite3Dequote(z);
2713 z += pTo->n+1;
2714 pFKey->nCol = nCol;
2715 if( pFromCol==0 ){
2716 pFKey->aCol[0].iFrom = p->nCol-1;
2717 }else{
2718 for(i=0; i<nCol; i++){
2719 int j;
2720 for(j=0; j<p->nCol; j++){
2721 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2722 pFKey->aCol[i].iFrom = j;
2723 break;
2726 if( j>=p->nCol ){
2727 sqlite3ErrorMsg(pParse,
2728 "unknown column \"%s\" in foreign key definition",
2729 pFromCol->a[i].zName);
2730 goto fk_end;
2734 if( pToCol ){
2735 for(i=0; i<nCol; i++){
2736 int n = sqlite3Strlen30(pToCol->a[i].zName);
2737 pFKey->aCol[i].zCol = z;
2738 memcpy(z, pToCol->a[i].zName, n);
2739 z[n] = 0;
2740 z += n+1;
2743 pFKey->isDeferred = 0;
2744 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2745 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2747 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2748 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2749 pFKey->zTo, (void *)pFKey
2751 if( pNextTo==pFKey ){
2752 sqlite3OomFault(db);
2753 goto fk_end;
2755 if( pNextTo ){
2756 assert( pNextTo->pPrevTo==0 );
2757 pFKey->pNextTo = pNextTo;
2758 pNextTo->pPrevTo = pFKey;
2761 /* Link the foreign key to the table as the last step.
2763 p->pFKey = pFKey;
2764 pFKey = 0;
2766 fk_end:
2767 sqlite3DbFree(db, pFKey);
2768 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2769 sqlite3ExprListDelete(db, pFromCol);
2770 sqlite3ExprListDelete(db, pToCol);
2774 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2775 ** clause is seen as part of a foreign key definition. The isDeferred
2776 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2777 ** The behavior of the most recently created foreign key is adjusted
2778 ** accordingly.
2780 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2781 #ifndef SQLITE_OMIT_FOREIGN_KEY
2782 Table *pTab;
2783 FKey *pFKey;
2784 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2785 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2786 pFKey->isDeferred = (u8)isDeferred;
2787 #endif
2791 ** Generate code that will erase and refill index *pIdx. This is
2792 ** used to initialize a newly created index or to recompute the
2793 ** content of an index in response to a REINDEX command.
2795 ** if memRootPage is not negative, it means that the index is newly
2796 ** created. The register specified by memRootPage contains the
2797 ** root page number of the index. If memRootPage is negative, then
2798 ** the index already exists and must be cleared before being refilled and
2799 ** the root page number of the index is taken from pIndex->tnum.
2801 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2802 Table *pTab = pIndex->pTable; /* The table that is indexed */
2803 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2804 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2805 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2806 int addr1; /* Address of top of loop */
2807 int addr2; /* Address to jump to for next iteration */
2808 int tnum; /* Root page of index */
2809 int iPartIdxLabel; /* Jump to this label to skip a row */
2810 Vdbe *v; /* Generate code into this virtual machine */
2811 KeyInfo *pKey; /* KeyInfo for index */
2812 int regRecord; /* Register holding assembled index record */
2813 sqlite3 *db = pParse->db; /* The database connection */
2814 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2816 #ifndef SQLITE_OMIT_AUTHORIZATION
2817 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2818 db->aDb[iDb].zDbSName ) ){
2819 return;
2821 #endif
2823 /* Require a write-lock on the table to perform this operation */
2824 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2826 v = sqlite3GetVdbe(pParse);
2827 if( v==0 ) return;
2828 if( memRootPage>=0 ){
2829 tnum = memRootPage;
2830 }else{
2831 tnum = pIndex->tnum;
2833 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2834 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2836 /* Open the sorter cursor if we are to use one. */
2837 iSorter = pParse->nTab++;
2838 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2839 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2841 /* Open the table. Loop through all rows of the table, inserting index
2842 ** records into the sorter. */
2843 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2844 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2845 regRecord = sqlite3GetTempReg(pParse);
2847 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2848 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2849 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2850 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2851 sqlite3VdbeJumpHere(v, addr1);
2852 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2853 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2854 (char *)pKey, P4_KEYINFO);
2855 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2857 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2858 if( IsUniqueIndex(pIndex) ){
2859 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2860 sqlite3VdbeGoto(v, j2);
2861 addr2 = sqlite3VdbeCurrentAddr(v);
2862 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2863 pIndex->nKeyCol); VdbeCoverage(v);
2864 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2865 }else{
2866 addr2 = sqlite3VdbeCurrentAddr(v);
2868 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2869 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2870 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2871 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2872 sqlite3ReleaseTempReg(pParse, regRecord);
2873 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2874 sqlite3VdbeJumpHere(v, addr1);
2876 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2877 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2878 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2882 ** Allocate heap space to hold an Index object with nCol columns.
2884 ** Increase the allocation size to provide an extra nExtra bytes
2885 ** of 8-byte aligned space after the Index object and return a
2886 ** pointer to this extra space in *ppExtra.
2888 Index *sqlite3AllocateIndexObject(
2889 sqlite3 *db, /* Database connection */
2890 i16 nCol, /* Total number of columns in the index */
2891 int nExtra, /* Number of bytes of extra space to alloc */
2892 char **ppExtra /* Pointer to the "extra" space */
2894 Index *p; /* Allocated index object */
2895 int nByte; /* Bytes of space for Index object + arrays */
2897 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2898 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2899 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2900 sizeof(i16)*nCol + /* Index.aiColumn */
2901 sizeof(u8)*nCol); /* Index.aSortOrder */
2902 p = sqlite3DbMallocZero(db, nByte + nExtra);
2903 if( p ){
2904 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2905 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2906 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2907 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2908 p->aSortOrder = (u8*)pExtra;
2909 p->nColumn = nCol;
2910 p->nKeyCol = nCol - 1;
2911 *ppExtra = ((char*)p) + nByte;
2913 return p;
2917 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2918 ** and pTblList is the name of the table that is to be indexed. Both will
2919 ** be NULL for a primary key or an index that is created to satisfy a
2920 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2921 ** as the table to be indexed. pParse->pNewTable is a table that is
2922 ** currently being constructed by a CREATE TABLE statement.
2924 ** pList is a list of columns to be indexed. pList will be NULL if this
2925 ** is a primary key or unique-constraint on the most recent column added
2926 ** to the table currently under construction.
2928 void sqlite3CreateIndex(
2929 Parse *pParse, /* All information about this parse */
2930 Token *pName1, /* First part of index name. May be NULL */
2931 Token *pName2, /* Second part of index name. May be NULL */
2932 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2933 ExprList *pList, /* A list of columns to be indexed */
2934 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2935 Token *pStart, /* The CREATE token that begins this statement */
2936 Expr *pPIWhere, /* WHERE clause for partial indices */
2937 int sortOrder, /* Sort order of primary key when pList==NULL */
2938 int ifNotExist, /* Omit error if index already exists */
2939 u8 idxType /* The index type */
2941 Table *pTab = 0; /* Table to be indexed */
2942 Index *pIndex = 0; /* The index to be created */
2943 char *zName = 0; /* Name of the index */
2944 int nName; /* Number of characters in zName */
2945 int i, j;
2946 DbFixer sFix; /* For assigning database names to pTable */
2947 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2948 sqlite3 *db = pParse->db;
2949 Db *pDb; /* The specific table containing the indexed database */
2950 int iDb; /* Index of the database that is being written */
2951 Token *pName = 0; /* Unqualified name of the index to create */
2952 struct ExprList_item *pListItem; /* For looping over pList */
2953 int nExtra = 0; /* Space allocated for zExtra[] */
2954 int nExtraCol; /* Number of extra columns needed */
2955 char *zExtra = 0; /* Extra space after the Index object */
2956 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2958 if( db->mallocFailed || pParse->nErr>0 ){
2959 goto exit_create_index;
2961 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2962 goto exit_create_index;
2964 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2965 goto exit_create_index;
2969 ** Find the table that is to be indexed. Return early if not found.
2971 if( pTblName!=0 ){
2973 /* Use the two-part index name to determine the database
2974 ** to search for the table. 'Fix' the table name to this db
2975 ** before looking up the table.
2977 assert( pName1 && pName2 );
2978 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2979 if( iDb<0 ) goto exit_create_index;
2980 assert( pName && pName->z );
2982 #ifndef SQLITE_OMIT_TEMPDB
2983 /* If the index name was unqualified, check if the table
2984 ** is a temp table. If so, set the database to 1. Do not do this
2985 ** if initialising a database schema.
2987 if( !db->init.busy ){
2988 pTab = sqlite3SrcListLookup(pParse, pTblName);
2989 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2990 iDb = 1;
2993 #endif
2995 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2996 if( sqlite3FixSrcList(&sFix, pTblName) ){
2997 /* Because the parser constructs pTblName from a single identifier,
2998 ** sqlite3FixSrcList can never fail. */
2999 assert(0);
3001 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3002 assert( db->mallocFailed==0 || pTab==0 );
3003 if( pTab==0 ) goto exit_create_index;
3004 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3005 sqlite3ErrorMsg(pParse,
3006 "cannot create a TEMP index on non-TEMP table \"%s\"",
3007 pTab->zName);
3008 goto exit_create_index;
3010 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3011 }else{
3012 assert( pName==0 );
3013 assert( pStart==0 );
3014 pTab = pParse->pNewTable;
3015 if( !pTab ) goto exit_create_index;
3016 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3018 pDb = &db->aDb[iDb];
3020 assert( pTab!=0 );
3021 assert( pParse->nErr==0 );
3022 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3023 && db->init.busy==0
3024 #if SQLITE_USER_AUTHENTICATION
3025 && sqlite3UserAuthTable(pTab->zName)==0
3026 #endif
3027 #ifdef SQLITE_ALLOW_SQLITE_MASTER_INDEX
3028 && sqlite3StrICmp(&pTab->zName[7],"master")!=0
3029 #endif
3030 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0
3032 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3033 goto exit_create_index;
3035 #ifndef SQLITE_OMIT_VIEW
3036 if( pTab->pSelect ){
3037 sqlite3ErrorMsg(pParse, "views may not be indexed");
3038 goto exit_create_index;
3040 #endif
3041 #ifndef SQLITE_OMIT_VIRTUALTABLE
3042 if( IsVirtual(pTab) ){
3043 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3044 goto exit_create_index;
3046 #endif
3049 ** Find the name of the index. Make sure there is not already another
3050 ** index or table with the same name.
3052 ** Exception: If we are reading the names of permanent indices from the
3053 ** sqlite_master table (because some other process changed the schema) and
3054 ** one of the index names collides with the name of a temporary table or
3055 ** index, then we will continue to process this index.
3057 ** If pName==0 it means that we are
3058 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3059 ** own name.
3061 if( pName ){
3062 zName = sqlite3NameFromToken(db, pName);
3063 if( zName==0 ) goto exit_create_index;
3064 assert( pName->z!=0 );
3065 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3066 goto exit_create_index;
3068 if( !db->init.busy ){
3069 if( sqlite3FindTable(db, zName, 0)!=0 ){
3070 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3071 goto exit_create_index;
3074 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3075 if( !ifNotExist ){
3076 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3077 }else{
3078 assert( !db->init.busy );
3079 sqlite3CodeVerifySchema(pParse, iDb);
3081 goto exit_create_index;
3083 }else{
3084 int n;
3085 Index *pLoop;
3086 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3087 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3088 if( zName==0 ){
3089 goto exit_create_index;
3092 /* Automatic index names generated from within sqlite3_declare_vtab()
3093 ** must have names that are distinct from normal automatic index names.
3094 ** The following statement converts "sqlite3_autoindex..." into
3095 ** "sqlite3_butoindex..." in order to make the names distinct.
3096 ** The "vtab_err.test" test demonstrates the need of this statement. */
3097 if( IN_DECLARE_VTAB ) zName[7]++;
3100 /* Check for authorization to create an index.
3102 #ifndef SQLITE_OMIT_AUTHORIZATION
3104 const char *zDb = pDb->zDbSName;
3105 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3106 goto exit_create_index;
3108 i = SQLITE_CREATE_INDEX;
3109 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3110 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3111 goto exit_create_index;
3114 #endif
3116 /* If pList==0, it means this routine was called to make a primary
3117 ** key out of the last column added to the table under construction.
3118 ** So create a fake list to simulate this.
3120 if( pList==0 ){
3121 Token prevCol;
3122 Column *pCol = &pTab->aCol[pTab->nCol-1];
3123 pCol->colFlags |= COLFLAG_UNIQUE;
3124 sqlite3TokenInit(&prevCol, pCol->zName);
3125 pList = sqlite3ExprListAppend(pParse, 0,
3126 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3127 if( pList==0 ) goto exit_create_index;
3128 assert( pList->nExpr==1 );
3129 sqlite3ExprListSetSortOrder(pList, sortOrder);
3130 }else{
3131 sqlite3ExprListCheckLength(pParse, pList, "index");
3134 /* Figure out how many bytes of space are required to store explicitly
3135 ** specified collation sequence names.
3137 for(i=0; i<pList->nExpr; i++){
3138 Expr *pExpr = pList->a[i].pExpr;
3139 assert( pExpr!=0 );
3140 if( pExpr->op==TK_COLLATE ){
3141 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3146 ** Allocate the index structure.
3148 nName = sqlite3Strlen30(zName);
3149 nExtraCol = pPk ? pPk->nKeyCol : 1;
3150 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3151 nName + nExtra + 1, &zExtra);
3152 if( db->mallocFailed ){
3153 goto exit_create_index;
3155 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3156 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3157 pIndex->zName = zExtra;
3158 zExtra += nName + 1;
3159 memcpy(pIndex->zName, zName, nName+1);
3160 pIndex->pTable = pTab;
3161 pIndex->onError = (u8)onError;
3162 pIndex->uniqNotNull = onError!=OE_None;
3163 pIndex->idxType = idxType;
3164 pIndex->pSchema = db->aDb[iDb].pSchema;
3165 pIndex->nKeyCol = pList->nExpr;
3166 if( pPIWhere ){
3167 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3168 pIndex->pPartIdxWhere = pPIWhere;
3169 pPIWhere = 0;
3171 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3173 /* Check to see if we should honor DESC requests on index columns
3175 if( pDb->pSchema->file_format>=4 ){
3176 sortOrderMask = -1; /* Honor DESC */
3177 }else{
3178 sortOrderMask = 0; /* Ignore DESC */
3181 /* Analyze the list of expressions that form the terms of the index and
3182 ** report any errors. In the common case where the expression is exactly
3183 ** a table column, store that column in aiColumn[]. For general expressions,
3184 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3186 ** TODO: Issue a warning if two or more columns of the index are identical.
3187 ** TODO: Issue a warning if the table primary key is used as part of the
3188 ** index key.
3190 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3191 Expr *pCExpr; /* The i-th index expression */
3192 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3193 const char *zColl; /* Collation sequence name */
3195 sqlite3StringToId(pListItem->pExpr);
3196 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3197 if( pParse->nErr ) goto exit_create_index;
3198 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3199 if( pCExpr->op!=TK_COLUMN ){
3200 if( pTab==pParse->pNewTable ){
3201 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3202 "UNIQUE constraints");
3203 goto exit_create_index;
3205 if( pIndex->aColExpr==0 ){
3206 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3207 pIndex->aColExpr = pCopy;
3208 if( !db->mallocFailed ){
3209 assert( pCopy!=0 );
3210 pListItem = &pCopy->a[i];
3213 j = XN_EXPR;
3214 pIndex->aiColumn[i] = XN_EXPR;
3215 pIndex->uniqNotNull = 0;
3216 }else{
3217 j = pCExpr->iColumn;
3218 assert( j<=0x7fff );
3219 if( j<0 ){
3220 j = pTab->iPKey;
3221 }else if( pTab->aCol[j].notNull==0 ){
3222 pIndex->uniqNotNull = 0;
3224 pIndex->aiColumn[i] = (i16)j;
3226 zColl = 0;
3227 if( pListItem->pExpr->op==TK_COLLATE ){
3228 int nColl;
3229 zColl = pListItem->pExpr->u.zToken;
3230 nColl = sqlite3Strlen30(zColl) + 1;
3231 assert( nExtra>=nColl );
3232 memcpy(zExtra, zColl, nColl);
3233 zColl = zExtra;
3234 zExtra += nColl;
3235 nExtra -= nColl;
3236 }else if( j>=0 ){
3237 zColl = pTab->aCol[j].zColl;
3239 if( !zColl ) zColl = sqlite3StrBINARY;
3240 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3241 goto exit_create_index;
3243 pIndex->azColl[i] = zColl;
3244 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3245 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3248 /* Append the table key to the end of the index. For WITHOUT ROWID
3249 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3250 ** normal tables (when pPk==0) this will be the rowid.
3252 if( pPk ){
3253 for(j=0; j<pPk->nKeyCol; j++){
3254 int x = pPk->aiColumn[j];
3255 assert( x>=0 );
3256 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3257 pIndex->nColumn--;
3258 }else{
3259 pIndex->aiColumn[i] = x;
3260 pIndex->azColl[i] = pPk->azColl[j];
3261 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3262 i++;
3265 assert( i==pIndex->nColumn );
3266 }else{
3267 pIndex->aiColumn[i] = XN_ROWID;
3268 pIndex->azColl[i] = sqlite3StrBINARY;
3270 sqlite3DefaultRowEst(pIndex);
3271 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3273 /* If this index contains every column of its table, then mark
3274 ** it as a covering index */
3275 assert( HasRowid(pTab)
3276 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3277 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3278 pIndex->isCovering = 1;
3279 for(j=0; j<pTab->nCol; j++){
3280 if( j==pTab->iPKey ) continue;
3281 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3282 pIndex->isCovering = 0;
3283 break;
3287 if( pTab==pParse->pNewTable ){
3288 /* This routine has been called to create an automatic index as a
3289 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3290 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3291 ** i.e. one of:
3293 ** CREATE TABLE t(x PRIMARY KEY, y);
3294 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3296 ** Either way, check to see if the table already has such an index. If
3297 ** so, don't bother creating this one. This only applies to
3298 ** automatically created indices. Users can do as they wish with
3299 ** explicit indices.
3301 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3302 ** (and thus suppressing the second one) even if they have different
3303 ** sort orders.
3305 ** If there are different collating sequences or if the columns of
3306 ** the constraint occur in different orders, then the constraints are
3307 ** considered distinct and both result in separate indices.
3309 Index *pIdx;
3310 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3311 int k;
3312 assert( IsUniqueIndex(pIdx) );
3313 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3314 assert( IsUniqueIndex(pIndex) );
3316 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3317 for(k=0; k<pIdx->nKeyCol; k++){
3318 const char *z1;
3319 const char *z2;
3320 assert( pIdx->aiColumn[k]>=0 );
3321 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3322 z1 = pIdx->azColl[k];
3323 z2 = pIndex->azColl[k];
3324 if( sqlite3StrICmp(z1, z2) ) break;
3326 if( k==pIdx->nKeyCol ){
3327 if( pIdx->onError!=pIndex->onError ){
3328 /* This constraint creates the same index as a previous
3329 ** constraint specified somewhere in the CREATE TABLE statement.
3330 ** However the ON CONFLICT clauses are different. If both this
3331 ** constraint and the previous equivalent constraint have explicit
3332 ** ON CONFLICT clauses this is an error. Otherwise, use the
3333 ** explicitly specified behavior for the index.
3335 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3336 sqlite3ErrorMsg(pParse,
3337 "conflicting ON CONFLICT clauses specified", 0);
3339 if( pIdx->onError==OE_Default ){
3340 pIdx->onError = pIndex->onError;
3343 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3344 goto exit_create_index;
3349 /* Link the new Index structure to its table and to the other
3350 ** in-memory database structures.
3352 assert( pParse->nErr==0 );
3353 if( db->init.busy ){
3354 Index *p;
3355 assert( !IN_DECLARE_VTAB );
3356 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3357 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3358 pIndex->zName, pIndex);
3359 if( p ){
3360 assert( p==pIndex ); /* Malloc must have failed */
3361 sqlite3OomFault(db);
3362 goto exit_create_index;
3364 db->mDbFlags |= DBFLAG_SchemaChange;
3365 if( pTblName!=0 ){
3366 pIndex->tnum = db->init.newTnum;
3370 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3371 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3372 ** emit code to allocate the index rootpage on disk and make an entry for
3373 ** the index in the sqlite_master table and populate the index with
3374 ** content. But, do not do this if we are simply reading the sqlite_master
3375 ** table to parse the schema, or if this index is the PRIMARY KEY index
3376 ** of a WITHOUT ROWID table.
3378 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3379 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3380 ** has just been created, it contains no data and the index initialization
3381 ** step can be skipped.
3383 else if( HasRowid(pTab) || pTblName!=0 ){
3384 Vdbe *v;
3385 char *zStmt;
3386 int iMem = ++pParse->nMem;
3388 v = sqlite3GetVdbe(pParse);
3389 if( v==0 ) goto exit_create_index;
3391 sqlite3BeginWriteOperation(pParse, 1, iDb);
3393 /* Create the rootpage for the index using CreateIndex. But before
3394 ** doing so, code a Noop instruction and store its address in
3395 ** Index.tnum. This is required in case this index is actually a
3396 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3397 ** that case the convertToWithoutRowidTable() routine will replace
3398 ** the Noop with a Goto to jump over the VDBE code generated below. */
3399 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3400 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3402 /* Gather the complete text of the CREATE INDEX statement into
3403 ** the zStmt variable
3405 if( pStart ){
3406 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3407 if( pName->z[n-1]==';' ) n--;
3408 /* A named index with an explicit CREATE INDEX statement */
3409 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3410 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3411 }else{
3412 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3413 /* zStmt = sqlite3MPrintf(""); */
3414 zStmt = 0;
3417 /* Add an entry in sqlite_master for this index
3419 sqlite3NestedParse(pParse,
3420 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3421 db->aDb[iDb].zDbSName, MASTER_NAME,
3422 pIndex->zName,
3423 pTab->zName,
3424 iMem,
3425 zStmt
3427 sqlite3DbFree(db, zStmt);
3429 /* Fill the index with data and reparse the schema. Code an OP_Expire
3430 ** to invalidate all pre-compiled statements.
3432 if( pTblName ){
3433 sqlite3RefillIndex(pParse, pIndex, iMem);
3434 sqlite3ChangeCookie(pParse, iDb);
3435 sqlite3VdbeAddParseSchemaOp(v, iDb,
3436 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3437 sqlite3VdbeAddOp0(v, OP_Expire);
3440 sqlite3VdbeJumpHere(v, pIndex->tnum);
3443 /* When adding an index to the list of indices for a table, make
3444 ** sure all indices labeled OE_Replace come after all those labeled
3445 ** OE_Ignore. This is necessary for the correct constraint check
3446 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3447 ** UPDATE and INSERT statements.
3449 if( db->init.busy || pTblName==0 ){
3450 if( onError!=OE_Replace || pTab->pIndex==0
3451 || pTab->pIndex->onError==OE_Replace){
3452 pIndex->pNext = pTab->pIndex;
3453 pTab->pIndex = pIndex;
3454 }else{
3455 Index *pOther = pTab->pIndex;
3456 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3457 pOther = pOther->pNext;
3459 pIndex->pNext = pOther->pNext;
3460 pOther->pNext = pIndex;
3462 pIndex = 0;
3465 /* Clean up before exiting */
3466 exit_create_index:
3467 if( pIndex ) freeIndex(db, pIndex);
3468 sqlite3ExprDelete(db, pPIWhere);
3469 sqlite3ExprListDelete(db, pList);
3470 sqlite3SrcListDelete(db, pTblName);
3471 sqlite3DbFree(db, zName);
3475 ** Fill the Index.aiRowEst[] array with default information - information
3476 ** to be used when we have not run the ANALYZE command.
3478 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3479 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3480 ** number of rows in the table that match any particular value of the
3481 ** first column of the index. aiRowEst[2] is an estimate of the number
3482 ** of rows that match any particular combination of the first 2 columns
3483 ** of the index. And so forth. It must always be the case that
3485 ** aiRowEst[N]<=aiRowEst[N-1]
3486 ** aiRowEst[N]>=1
3488 ** Apart from that, we have little to go on besides intuition as to
3489 ** how aiRowEst[] should be initialized. The numbers generated here
3490 ** are based on typical values found in actual indices.
3492 void sqlite3DefaultRowEst(Index *pIdx){
3493 /* 10, 9, 8, 7, 6 */
3494 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3495 LogEst *a = pIdx->aiRowLogEst;
3496 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3497 int i;
3499 /* Indexes with default row estimates should not have stat1 data */
3500 assert( !pIdx->hasStat1 );
3502 /* Set the first entry (number of rows in the index) to the estimated
3503 ** number of rows in the table, or half the number of rows in the table
3504 ** for a partial index. But do not let the estimate drop below 10. */
3505 a[0] = pIdx->pTable->nRowLogEst;
3506 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3507 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3509 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3510 ** 6 and each subsequent value (if any) is 5. */
3511 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3512 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3513 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3516 assert( 0==sqlite3LogEst(1) );
3517 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3521 ** This routine will drop an existing named index. This routine
3522 ** implements the DROP INDEX statement.
3524 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3525 Index *pIndex;
3526 Vdbe *v;
3527 sqlite3 *db = pParse->db;
3528 int iDb;
3530 assert( pParse->nErr==0 ); /* Never called with prior errors */
3531 if( db->mallocFailed ){
3532 goto exit_drop_index;
3534 assert( pName->nSrc==1 );
3535 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3536 goto exit_drop_index;
3538 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3539 if( pIndex==0 ){
3540 if( !ifExists ){
3541 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3542 }else{
3543 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3545 pParse->checkSchema = 1;
3546 goto exit_drop_index;
3548 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3549 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3550 "or PRIMARY KEY constraint cannot be dropped", 0);
3551 goto exit_drop_index;
3553 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3554 #ifndef SQLITE_OMIT_AUTHORIZATION
3556 int code = SQLITE_DROP_INDEX;
3557 Table *pTab = pIndex->pTable;
3558 const char *zDb = db->aDb[iDb].zDbSName;
3559 const char *zTab = SCHEMA_TABLE(iDb);
3560 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3561 goto exit_drop_index;
3563 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3564 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3565 goto exit_drop_index;
3568 #endif
3570 /* Generate code to remove the index and from the master table */
3571 v = sqlite3GetVdbe(pParse);
3572 if( v ){
3573 sqlite3BeginWriteOperation(pParse, 1, iDb);
3574 sqlite3NestedParse(pParse,
3575 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3576 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3578 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3579 sqlite3ChangeCookie(pParse, iDb);
3580 destroyRootPage(pParse, pIndex->tnum, iDb);
3581 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3584 exit_drop_index:
3585 sqlite3SrcListDelete(db, pName);
3589 ** pArray is a pointer to an array of objects. Each object in the
3590 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3591 ** to extend the array so that there is space for a new object at the end.
3593 ** When this function is called, *pnEntry contains the current size of
3594 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3595 ** in total).
3597 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3598 ** space allocated for the new object is zeroed, *pnEntry updated to
3599 ** reflect the new size of the array and a pointer to the new allocation
3600 ** returned. *pIdx is set to the index of the new array entry in this case.
3602 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3603 ** unchanged and a copy of pArray returned.
3605 void *sqlite3ArrayAllocate(
3606 sqlite3 *db, /* Connection to notify of malloc failures */
3607 void *pArray, /* Array of objects. Might be reallocated */
3608 int szEntry, /* Size of each object in the array */
3609 int *pnEntry, /* Number of objects currently in use */
3610 int *pIdx /* Write the index of a new slot here */
3612 char *z;
3613 int n = *pnEntry;
3614 if( (n & (n-1))==0 ){
3615 int sz = (n==0) ? 1 : 2*n;
3616 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3617 if( pNew==0 ){
3618 *pIdx = -1;
3619 return pArray;
3621 pArray = pNew;
3623 z = (char*)pArray;
3624 memset(&z[n * szEntry], 0, szEntry);
3625 *pIdx = n;
3626 ++*pnEntry;
3627 return pArray;
3631 ** Append a new element to the given IdList. Create a new IdList if
3632 ** need be.
3634 ** A new IdList is returned, or NULL if malloc() fails.
3636 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3637 int i;
3638 if( pList==0 ){
3639 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3640 if( pList==0 ) return 0;
3642 pList->a = sqlite3ArrayAllocate(
3644 pList->a,
3645 sizeof(pList->a[0]),
3646 &pList->nId,
3649 if( i<0 ){
3650 sqlite3IdListDelete(db, pList);
3651 return 0;
3653 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3654 return pList;
3658 ** Delete an IdList.
3660 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3661 int i;
3662 if( pList==0 ) return;
3663 for(i=0; i<pList->nId; i++){
3664 sqlite3DbFree(db, pList->a[i].zName);
3666 sqlite3DbFree(db, pList->a);
3667 sqlite3DbFreeNN(db, pList);
3671 ** Return the index in pList of the identifier named zId. Return -1
3672 ** if not found.
3674 int sqlite3IdListIndex(IdList *pList, const char *zName){
3675 int i;
3676 if( pList==0 ) return -1;
3677 for(i=0; i<pList->nId; i++){
3678 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3680 return -1;
3684 ** Expand the space allocated for the given SrcList object by
3685 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3686 ** New slots are zeroed.
3688 ** For example, suppose a SrcList initially contains two entries: A,B.
3689 ** To append 3 new entries onto the end, do this:
3691 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3693 ** After the call above it would contain: A, B, nil, nil, nil.
3694 ** If the iStart argument had been 1 instead of 2, then the result
3695 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3696 ** the iStart value would be 0. The result then would
3697 ** be: nil, nil, nil, A, B.
3699 ** If a memory allocation fails the SrcList is unchanged. The
3700 ** db->mallocFailed flag will be set to true.
3702 SrcList *sqlite3SrcListEnlarge(
3703 sqlite3 *db, /* Database connection to notify of OOM errors */
3704 SrcList *pSrc, /* The SrcList to be enlarged */
3705 int nExtra, /* Number of new slots to add to pSrc->a[] */
3706 int iStart /* Index in pSrc->a[] of first new slot */
3708 int i;
3710 /* Sanity checking on calling parameters */
3711 assert( iStart>=0 );
3712 assert( nExtra>=1 );
3713 assert( pSrc!=0 );
3714 assert( iStart<=pSrc->nSrc );
3716 /* Allocate additional space if needed */
3717 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3718 SrcList *pNew;
3719 int nAlloc = pSrc->nSrc*2+nExtra;
3720 int nGot;
3721 pNew = sqlite3DbRealloc(db, pSrc,
3722 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3723 if( pNew==0 ){
3724 assert( db->mallocFailed );
3725 return pSrc;
3727 pSrc = pNew;
3728 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3729 pSrc->nAlloc = nGot;
3732 /* Move existing slots that come after the newly inserted slots
3733 ** out of the way */
3734 for(i=pSrc->nSrc-1; i>=iStart; i--){
3735 pSrc->a[i+nExtra] = pSrc->a[i];
3737 pSrc->nSrc += nExtra;
3739 /* Zero the newly allocated slots */
3740 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3741 for(i=iStart; i<iStart+nExtra; i++){
3742 pSrc->a[i].iCursor = -1;
3745 /* Return a pointer to the enlarged SrcList */
3746 return pSrc;
3751 ** Append a new table name to the given SrcList. Create a new SrcList if
3752 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3754 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3755 ** SrcList might be the same as the SrcList that was input or it might be
3756 ** a new one. If an OOM error does occurs, then the prior value of pList
3757 ** that is input to this routine is automatically freed.
3759 ** If pDatabase is not null, it means that the table has an optional
3760 ** database name prefix. Like this: "database.table". The pDatabase
3761 ** points to the table name and the pTable points to the database name.
3762 ** The SrcList.a[].zName field is filled with the table name which might
3763 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3764 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3765 ** or with NULL if no database is specified.
3767 ** In other words, if call like this:
3769 ** sqlite3SrcListAppend(D,A,B,0);
3771 ** Then B is a table name and the database name is unspecified. If called
3772 ** like this:
3774 ** sqlite3SrcListAppend(D,A,B,C);
3776 ** Then C is the table name and B is the database name. If C is defined
3777 ** then so is B. In other words, we never have a case where:
3779 ** sqlite3SrcListAppend(D,A,0,C);
3781 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3782 ** before being added to the SrcList.
3784 SrcList *sqlite3SrcListAppend(
3785 sqlite3 *db, /* Connection to notify of malloc failures */
3786 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3787 Token *pTable, /* Table to append */
3788 Token *pDatabase /* Database of the table */
3790 struct SrcList_item *pItem;
3791 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3792 assert( db!=0 );
3793 if( pList==0 ){
3794 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3795 if( pList==0 ) return 0;
3796 pList->nAlloc = 1;
3797 pList->nSrc = 1;
3798 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3799 pList->a[0].iCursor = -1;
3800 }else{
3801 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3803 if( db->mallocFailed ){
3804 sqlite3SrcListDelete(db, pList);
3805 return 0;
3807 pItem = &pList->a[pList->nSrc-1];
3808 if( pDatabase && pDatabase->z==0 ){
3809 pDatabase = 0;
3811 if( pDatabase ){
3812 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3813 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3814 }else{
3815 pItem->zName = sqlite3NameFromToken(db, pTable);
3816 pItem->zDatabase = 0;
3818 return pList;
3822 ** Assign VdbeCursor index numbers to all tables in a SrcList
3824 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3825 int i;
3826 struct SrcList_item *pItem;
3827 assert(pList || pParse->db->mallocFailed );
3828 if( pList ){
3829 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3830 if( pItem->iCursor>=0 ) break;
3831 pItem->iCursor = pParse->nTab++;
3832 if( pItem->pSelect ){
3833 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3840 ** Delete an entire SrcList including all its substructure.
3842 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3843 int i;
3844 struct SrcList_item *pItem;
3845 if( pList==0 ) return;
3846 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3847 sqlite3DbFree(db, pItem->zDatabase);
3848 sqlite3DbFree(db, pItem->zName);
3849 sqlite3DbFree(db, pItem->zAlias);
3850 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3851 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3852 sqlite3DeleteTable(db, pItem->pTab);
3853 sqlite3SelectDelete(db, pItem->pSelect);
3854 sqlite3ExprDelete(db, pItem->pOn);
3855 sqlite3IdListDelete(db, pItem->pUsing);
3857 sqlite3DbFreeNN(db, pList);
3861 ** This routine is called by the parser to add a new term to the
3862 ** end of a growing FROM clause. The "p" parameter is the part of
3863 ** the FROM clause that has already been constructed. "p" is NULL
3864 ** if this is the first term of the FROM clause. pTable and pDatabase
3865 ** are the name of the table and database named in the FROM clause term.
3866 ** pDatabase is NULL if the database name qualifier is missing - the
3867 ** usual case. If the term has an alias, then pAlias points to the
3868 ** alias token. If the term is a subquery, then pSubquery is the
3869 ** SELECT statement that the subquery encodes. The pTable and
3870 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3871 ** parameters are the content of the ON and USING clauses.
3873 ** Return a new SrcList which encodes is the FROM with the new
3874 ** term added.
3876 SrcList *sqlite3SrcListAppendFromTerm(
3877 Parse *pParse, /* Parsing context */
3878 SrcList *p, /* The left part of the FROM clause already seen */
3879 Token *pTable, /* Name of the table to add to the FROM clause */
3880 Token *pDatabase, /* Name of the database containing pTable */
3881 Token *pAlias, /* The right-hand side of the AS subexpression */
3882 Select *pSubquery, /* A subquery used in place of a table name */
3883 Expr *pOn, /* The ON clause of a join */
3884 IdList *pUsing /* The USING clause of a join */
3886 struct SrcList_item *pItem;
3887 sqlite3 *db = pParse->db;
3888 if( !p && (pOn || pUsing) ){
3889 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3890 (pOn ? "ON" : "USING")
3892 goto append_from_error;
3894 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3895 if( p==0 ){
3896 goto append_from_error;
3898 assert( p->nSrc>0 );
3899 pItem = &p->a[p->nSrc-1];
3900 assert( pAlias!=0 );
3901 if( pAlias->n ){
3902 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3904 pItem->pSelect = pSubquery;
3905 pItem->pOn = pOn;
3906 pItem->pUsing = pUsing;
3907 return p;
3909 append_from_error:
3910 assert( p==0 );
3911 sqlite3ExprDelete(db, pOn);
3912 sqlite3IdListDelete(db, pUsing);
3913 sqlite3SelectDelete(db, pSubquery);
3914 return 0;
3918 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3919 ** element of the source-list passed as the second argument.
3921 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3922 assert( pIndexedBy!=0 );
3923 if( p && pIndexedBy->n>0 ){
3924 struct SrcList_item *pItem;
3925 assert( p->nSrc>0 );
3926 pItem = &p->a[p->nSrc-1];
3927 assert( pItem->fg.notIndexed==0 );
3928 assert( pItem->fg.isIndexedBy==0 );
3929 assert( pItem->fg.isTabFunc==0 );
3930 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3931 /* A "NOT INDEXED" clause was supplied. See parse.y
3932 ** construct "indexed_opt" for details. */
3933 pItem->fg.notIndexed = 1;
3934 }else{
3935 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3936 pItem->fg.isIndexedBy = 1;
3942 ** Add the list of function arguments to the SrcList entry for a
3943 ** table-valued-function.
3945 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3946 if( p ){
3947 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3948 assert( pItem->fg.notIndexed==0 );
3949 assert( pItem->fg.isIndexedBy==0 );
3950 assert( pItem->fg.isTabFunc==0 );
3951 pItem->u1.pFuncArg = pList;
3952 pItem->fg.isTabFunc = 1;
3953 }else{
3954 sqlite3ExprListDelete(pParse->db, pList);
3959 ** When building up a FROM clause in the parser, the join operator
3960 ** is initially attached to the left operand. But the code generator
3961 ** expects the join operator to be on the right operand. This routine
3962 ** Shifts all join operators from left to right for an entire FROM
3963 ** clause.
3965 ** Example: Suppose the join is like this:
3967 ** A natural cross join B
3969 ** The operator is "natural cross join". The A and B operands are stored
3970 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3971 ** operator with A. This routine shifts that operator over to B.
3973 void sqlite3SrcListShiftJoinType(SrcList *p){
3974 if( p ){
3975 int i;
3976 for(i=p->nSrc-1; i>0; i--){
3977 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3979 p->a[0].fg.jointype = 0;
3984 ** Generate VDBE code for a BEGIN statement.
3986 void sqlite3BeginTransaction(Parse *pParse, int type){
3987 sqlite3 *db;
3988 Vdbe *v;
3989 int i;
3991 assert( pParse!=0 );
3992 db = pParse->db;
3993 assert( db!=0 );
3994 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3995 return;
3997 v = sqlite3GetVdbe(pParse);
3998 if( !v ) return;
3999 if( type!=TK_DEFERRED ){
4000 for(i=0; i<db->nDb; i++){
4001 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
4002 sqlite3VdbeUsesBtree(v, i);
4005 sqlite3VdbeAddOp0(v, OP_AutoCommit);
4009 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4010 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4011 ** code is generated for a COMMIT.
4013 void sqlite3EndTransaction(Parse *pParse, int eType){
4014 Vdbe *v;
4015 int isRollback;
4017 assert( pParse!=0 );
4018 assert( pParse->db!=0 );
4019 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4020 isRollback = eType==TK_ROLLBACK;
4021 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4022 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4023 return;
4025 v = sqlite3GetVdbe(pParse);
4026 if( v ){
4027 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4032 ** This function is called by the parser when it parses a command to create,
4033 ** release or rollback an SQL savepoint.
4035 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4036 char *zName = sqlite3NameFromToken(pParse->db, pName);
4037 if( zName ){
4038 Vdbe *v = sqlite3GetVdbe(pParse);
4039 #ifndef SQLITE_OMIT_AUTHORIZATION
4040 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4041 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4042 #endif
4043 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4044 sqlite3DbFree(pParse->db, zName);
4045 return;
4047 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4052 ** Make sure the TEMP database is open and available for use. Return
4053 ** the number of errors. Leave any error messages in the pParse structure.
4055 int sqlite3OpenTempDatabase(Parse *pParse){
4056 sqlite3 *db = pParse->db;
4057 if( db->aDb[1].pBt==0 && !pParse->explain ){
4058 int rc;
4059 Btree *pBt;
4060 static const int flags =
4061 SQLITE_OPEN_READWRITE |
4062 SQLITE_OPEN_CREATE |
4063 SQLITE_OPEN_EXCLUSIVE |
4064 SQLITE_OPEN_DELETEONCLOSE |
4065 SQLITE_OPEN_TEMP_DB;
4067 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4068 if( rc!=SQLITE_OK ){
4069 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4070 "file for storing temporary tables");
4071 pParse->rc = rc;
4072 return 1;
4074 db->aDb[1].pBt = pBt;
4075 assert( db->aDb[1].pSchema );
4076 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4077 sqlite3OomFault(db);
4078 return 1;
4081 return 0;
4085 ** Record the fact that the schema cookie will need to be verified
4086 ** for database iDb. The code to actually verify the schema cookie
4087 ** will occur at the end of the top-level VDBE and will be generated
4088 ** later, by sqlite3FinishCoding().
4090 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4091 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4093 assert( iDb>=0 && iDb<pParse->db->nDb );
4094 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4095 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4096 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4097 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4098 DbMaskSet(pToplevel->cookieMask, iDb);
4099 if( !OMIT_TEMPDB && iDb==1 ){
4100 sqlite3OpenTempDatabase(pToplevel);
4106 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4107 ** attached database. Otherwise, invoke it for the database named zDb only.
4109 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4110 sqlite3 *db = pParse->db;
4111 int i;
4112 for(i=0; i<db->nDb; i++){
4113 Db *pDb = &db->aDb[i];
4114 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4115 sqlite3CodeVerifySchema(pParse, i);
4121 ** Generate VDBE code that prepares for doing an operation that
4122 ** might change the database.
4124 ** This routine starts a new transaction if we are not already within
4125 ** a transaction. If we are already within a transaction, then a checkpoint
4126 ** is set if the setStatement parameter is true. A checkpoint should
4127 ** be set for operations that might fail (due to a constraint) part of
4128 ** the way through and which will need to undo some writes without having to
4129 ** rollback the whole transaction. For operations where all constraints
4130 ** can be checked before any changes are made to the database, it is never
4131 ** necessary to undo a write and the checkpoint should not be set.
4133 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4134 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4135 sqlite3CodeVerifySchema(pParse, iDb);
4136 DbMaskSet(pToplevel->writeMask, iDb);
4137 pToplevel->isMultiWrite |= setStatement;
4141 ** Indicate that the statement currently under construction might write
4142 ** more than one entry (example: deleting one row then inserting another,
4143 ** inserting multiple rows in a table, or inserting a row and index entries.)
4144 ** If an abort occurs after some of these writes have completed, then it will
4145 ** be necessary to undo the completed writes.
4147 void sqlite3MultiWrite(Parse *pParse){
4148 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4149 pToplevel->isMultiWrite = 1;
4153 ** The code generator calls this routine if is discovers that it is
4154 ** possible to abort a statement prior to completion. In order to
4155 ** perform this abort without corrupting the database, we need to make
4156 ** sure that the statement is protected by a statement transaction.
4158 ** Technically, we only need to set the mayAbort flag if the
4159 ** isMultiWrite flag was previously set. There is a time dependency
4160 ** such that the abort must occur after the multiwrite. This makes
4161 ** some statements involving the REPLACE conflict resolution algorithm
4162 ** go a little faster. But taking advantage of this time dependency
4163 ** makes it more difficult to prove that the code is correct (in
4164 ** particular, it prevents us from writing an effective
4165 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4166 ** to take the safe route and skip the optimization.
4168 void sqlite3MayAbort(Parse *pParse){
4169 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4170 pToplevel->mayAbort = 1;
4174 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4175 ** error. The onError parameter determines which (if any) of the statement
4176 ** and/or current transaction is rolled back.
4178 void sqlite3HaltConstraint(
4179 Parse *pParse, /* Parsing context */
4180 int errCode, /* extended error code */
4181 int onError, /* Constraint type */
4182 char *p4, /* Error message */
4183 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4184 u8 p5Errmsg /* P5_ErrMsg type */
4186 Vdbe *v = sqlite3GetVdbe(pParse);
4187 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4188 if( onError==OE_Abort ){
4189 sqlite3MayAbort(pParse);
4191 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4192 sqlite3VdbeChangeP5(v, p5Errmsg);
4196 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4198 void sqlite3UniqueConstraint(
4199 Parse *pParse, /* Parsing context */
4200 int onError, /* Constraint type */
4201 Index *pIdx /* The index that triggers the constraint */
4203 char *zErr;
4204 int j;
4205 StrAccum errMsg;
4206 Table *pTab = pIdx->pTable;
4208 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4209 if( pIdx->aColExpr ){
4210 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
4211 }else{
4212 for(j=0; j<pIdx->nKeyCol; j++){
4213 char *zCol;
4214 assert( pIdx->aiColumn[j]>=0 );
4215 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4216 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
4217 sqlite3_str_appendall(&errMsg, pTab->zName);
4218 sqlite3_str_append(&errMsg, ".", 1);
4219 sqlite3_str_appendall(&errMsg, zCol);
4222 zErr = sqlite3StrAccumFinish(&errMsg);
4223 sqlite3HaltConstraint(pParse,
4224 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4225 : SQLITE_CONSTRAINT_UNIQUE,
4226 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4231 ** Code an OP_Halt due to non-unique rowid.
4233 void sqlite3RowidConstraint(
4234 Parse *pParse, /* Parsing context */
4235 int onError, /* Conflict resolution algorithm */
4236 Table *pTab /* The table with the non-unique rowid */
4238 char *zMsg;
4239 int rc;
4240 if( pTab->iPKey>=0 ){
4241 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4242 pTab->aCol[pTab->iPKey].zName);
4243 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4244 }else{
4245 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4246 rc = SQLITE_CONSTRAINT_ROWID;
4248 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4249 P5_ConstraintUnique);
4253 ** Check to see if pIndex uses the collating sequence pColl. Return
4254 ** true if it does and false if it does not.
4256 #ifndef SQLITE_OMIT_REINDEX
4257 static int collationMatch(const char *zColl, Index *pIndex){
4258 int i;
4259 assert( zColl!=0 );
4260 for(i=0; i<pIndex->nColumn; i++){
4261 const char *z = pIndex->azColl[i];
4262 assert( z!=0 || pIndex->aiColumn[i]<0 );
4263 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4264 return 1;
4267 return 0;
4269 #endif
4272 ** Recompute all indices of pTab that use the collating sequence pColl.
4273 ** If pColl==0 then recompute all indices of pTab.
4275 #ifndef SQLITE_OMIT_REINDEX
4276 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4277 Index *pIndex; /* An index associated with pTab */
4279 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4280 if( zColl==0 || collationMatch(zColl, pIndex) ){
4281 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4282 sqlite3BeginWriteOperation(pParse, 0, iDb);
4283 sqlite3RefillIndex(pParse, pIndex, -1);
4287 #endif
4290 ** Recompute all indices of all tables in all databases where the
4291 ** indices use the collating sequence pColl. If pColl==0 then recompute
4292 ** all indices everywhere.
4294 #ifndef SQLITE_OMIT_REINDEX
4295 static void reindexDatabases(Parse *pParse, char const *zColl){
4296 Db *pDb; /* A single database */
4297 int iDb; /* The database index number */
4298 sqlite3 *db = pParse->db; /* The database connection */
4299 HashElem *k; /* For looping over tables in pDb */
4300 Table *pTab; /* A table in the database */
4302 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4303 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4304 assert( pDb!=0 );
4305 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4306 pTab = (Table*)sqliteHashData(k);
4307 reindexTable(pParse, pTab, zColl);
4311 #endif
4314 ** Generate code for the REINDEX command.
4316 ** REINDEX -- 1
4317 ** REINDEX <collation> -- 2
4318 ** REINDEX ?<database>.?<tablename> -- 3
4319 ** REINDEX ?<database>.?<indexname> -- 4
4321 ** Form 1 causes all indices in all attached databases to be rebuilt.
4322 ** Form 2 rebuilds all indices in all databases that use the named
4323 ** collating function. Forms 3 and 4 rebuild the named index or all
4324 ** indices associated with the named table.
4326 #ifndef SQLITE_OMIT_REINDEX
4327 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4328 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4329 char *z; /* Name of a table or index */
4330 const char *zDb; /* Name of the database */
4331 Table *pTab; /* A table in the database */
4332 Index *pIndex; /* An index associated with pTab */
4333 int iDb; /* The database index number */
4334 sqlite3 *db = pParse->db; /* The database connection */
4335 Token *pObjName; /* Name of the table or index to be reindexed */
4337 /* Read the database schema. If an error occurs, leave an error message
4338 ** and code in pParse and return NULL. */
4339 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4340 return;
4343 if( pName1==0 ){
4344 reindexDatabases(pParse, 0);
4345 return;
4346 }else if( NEVER(pName2==0) || pName2->z==0 ){
4347 char *zColl;
4348 assert( pName1->z );
4349 zColl = sqlite3NameFromToken(pParse->db, pName1);
4350 if( !zColl ) return;
4351 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4352 if( pColl ){
4353 reindexDatabases(pParse, zColl);
4354 sqlite3DbFree(db, zColl);
4355 return;
4357 sqlite3DbFree(db, zColl);
4359 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4360 if( iDb<0 ) return;
4361 z = sqlite3NameFromToken(db, pObjName);
4362 if( z==0 ) return;
4363 zDb = db->aDb[iDb].zDbSName;
4364 pTab = sqlite3FindTable(db, z, zDb);
4365 if( pTab ){
4366 reindexTable(pParse, pTab, 0);
4367 sqlite3DbFree(db, z);
4368 return;
4370 pIndex = sqlite3FindIndex(db, z, zDb);
4371 sqlite3DbFree(db, z);
4372 if( pIndex ){
4373 sqlite3BeginWriteOperation(pParse, 0, iDb);
4374 sqlite3RefillIndex(pParse, pIndex, -1);
4375 return;
4377 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4379 #endif
4382 ** Return a KeyInfo structure that is appropriate for the given Index.
4384 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4385 ** when it has finished using it.
4387 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4388 int i;
4389 int nCol = pIdx->nColumn;
4390 int nKey = pIdx->nKeyCol;
4391 KeyInfo *pKey;
4392 if( pParse->nErr ) return 0;
4393 if( pIdx->uniqNotNull ){
4394 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4395 }else{
4396 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4398 if( pKey ){
4399 assert( sqlite3KeyInfoIsWriteable(pKey) );
4400 for(i=0; i<nCol; i++){
4401 const char *zColl = pIdx->azColl[i];
4402 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4403 sqlite3LocateCollSeq(pParse, zColl);
4404 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4406 if( pParse->nErr ){
4407 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4408 if( pIdx->bNoQuery==0 ){
4409 /* Deactivate the index because it contains an unknown collating
4410 ** sequence. The only way to reactive the index is to reload the
4411 ** schema. Adding the missing collating sequence later does not
4412 ** reactive the index. The application had the chance to register
4413 ** the missing index using the collation-needed callback. For
4414 ** simplicity, SQLite will not give the application a second chance.
4416 pIdx->bNoQuery = 1;
4417 pParse->rc = SQLITE_ERROR_RETRY;
4419 sqlite3KeyInfoUnref(pKey);
4420 pKey = 0;
4423 return pKey;
4426 #ifndef SQLITE_OMIT_CTE
4428 ** This routine is invoked once per CTE by the parser while parsing a
4429 ** WITH clause.
4431 With *sqlite3WithAdd(
4432 Parse *pParse, /* Parsing context */
4433 With *pWith, /* Existing WITH clause, or NULL */
4434 Token *pName, /* Name of the common-table */
4435 ExprList *pArglist, /* Optional column name list for the table */
4436 Select *pQuery /* Query used to initialize the table */
4438 sqlite3 *db = pParse->db;
4439 With *pNew;
4440 char *zName;
4442 /* Check that the CTE name is unique within this WITH clause. If
4443 ** not, store an error in the Parse structure. */
4444 zName = sqlite3NameFromToken(pParse->db, pName);
4445 if( zName && pWith ){
4446 int i;
4447 for(i=0; i<pWith->nCte; i++){
4448 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4449 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4454 if( pWith ){
4455 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4456 pNew = sqlite3DbRealloc(db, pWith, nByte);
4457 }else{
4458 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4460 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4462 if( db->mallocFailed ){
4463 sqlite3ExprListDelete(db, pArglist);
4464 sqlite3SelectDelete(db, pQuery);
4465 sqlite3DbFree(db, zName);
4466 pNew = pWith;
4467 }else{
4468 pNew->a[pNew->nCte].pSelect = pQuery;
4469 pNew->a[pNew->nCte].pCols = pArglist;
4470 pNew->a[pNew->nCte].zName = zName;
4471 pNew->a[pNew->nCte].zCteErr = 0;
4472 pNew->nCte++;
4475 return pNew;
4479 ** Free the contents of the With object passed as the second argument.
4481 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4482 if( pWith ){
4483 int i;
4484 for(i=0; i<pWith->nCte; i++){
4485 struct Cte *pCte = &pWith->a[i];
4486 sqlite3ExprListDelete(db, pCte->pCols);
4487 sqlite3SelectDelete(db, pCte->pSelect);
4488 sqlite3DbFree(db, pCte->zName);
4490 sqlite3DbFree(db, pWith);
4493 #endif /* !defined(SQLITE_OMIT_CTE) */